NUMBER OF X-RAY EXAMINATIONS PERFORMED ON PAEDIATRIC AND GERIATRIC PATIENTS COMPARED WITH ADULT PATIENTS

A. Aroua^{1,*}, F. O. Bochud¹, J.-F. Valley¹, J.-P. Vader² and F. R. Verdun¹ ¹University Institute of Radiation Physics (IRA-DUMSC), University of Lausanne, Grand-Pré 1, CH-1007 Lausanne, Switzerland

²University Institute of Social and Preventive Medicine (IUMSP-DUMSC), University of Lausanne, Bugnon 17, CH-1005 Lausanne, Switzerland

Received April 20 2006, revised August 28 2006, accepted September 6 2006

The age of the patient is of prime importance when assessing the radiological risk to patients due to medical X-ray exposures and the total detriment to the population due to radiodiagnostics. In order to take into account the age-specific radiosensitivity, three age groups are considered: children, adults and the elderly. In this work, the relative number of examinations carried out on paediatric and geriatric patients is established, compared with adult patients, for radiodiagnostics as a whole, for dental and medical radiology, for 8 radiological modalities as well as for 40 types of X-ray examinations. The relative numbers of X-ray examinations are determined based on the corresponding age distributions of patients and that of the general population. Two broad groups of X-ray examinations may be defined. Group A comprises conventional radiography, fluoroscopy and computed tomography; for this group a paediatric patient undergoes half the number of examinations as that of an adult, and a geriatric patient undergoes a one-fourth of the number of examinations carried out on an adult, and a geriatric patient undergoes a one-fourth of the number of examinations carried out on an adult, and a geriatric patient undergoes five times more.

INTRODUCTION

The age of the patient is quite an important parameter for the evaluation of the detriment of medical X-ray exposures. The risks associated with an exposure for elderly patients (induction of cancer with 20 y latency, hereditary disorders in the offspring) are less important than those for adult patients, whereas children are more radiosensitive than adults.

To take into account the effect of age in estimating the radiological risk, various models are proposed in literature to correct the effective dose, such as the BfS model⁽¹⁾ or the NRPB model⁽²⁾. They all suggest the use of a multiplying factor decreasing with age to weight the effective dose. Usually three age categories are used: children, adults and the elderly with boundaries that may change slightly from one model to another.

It is, therefore, important, when assessing the impact of diagnostic and interventional radiology on the population, to establish the age distribution of patients undergoing X-ray examinations and to determine the fraction of these examinations associated with paediatric, adult and geriatric patients.

This work aims at determining the number of X-ray examinations performed on children and the elderly, considering adults as a reference, for a

number of radiological modalities and a series of common radiological examinations.

METHODS

In this work the following age groups are adopted:

- (1) Paediatric patients: below age 15.
- (2) Adult patients: between age 15 and age 64.
- (3) Geriatric patients: age 65 and above.

Figure 1. Patient age profile (histograms) related to all radiological modalities (average age of 50). The age profile of the Swiss general population is shown in solid line; with a corresponding average age of 39.

^{*}Corresponding author: abbas@aroua.com

X-RAY EXAMINATIONS IN PA	EDIATRICS AND GERIATRICS
--------------------------	--------------------------

Radiological modality	Α				Age group			All ages
			(0–14)	(15–39)	(40–64)	(15–64)	(65+)	
Population Medical and dental X-ray examinations	39 50	N N	1,242,329 666,713	2,507,375 2,376,014	2,270,978 3,660,720	4,778,353 6,036,734	1,076,212 2,826,757	7,096,894 9,530,204
		$N_{\rm p}$	7 537 0.42	25 948	38 1,612	63 1,263	30 2,627 2.08	100 1,343
Dental X-ray examinations	42	N	269,532	1,630,979	1,724,134	3,355,113	498,833	4,123,478
		$N_{ m a}$ $N_{ m p}$ R	7 217 0.31	40 650	41 759	81 702 1.00	12 464 0.66	100 581
Medical X-ray examinations	56	N	397,207	744,212	1,936,394	2,680,606	2,328,913	5,406,726
		$N_{\rm a}$ $N_{\rm p}$ R	320 0.57	297	853	50 561 1.00	43 2,164 3.86	762
Radiography	48	N Na Na	466,160 10 375	1,206,473 27 481	1,511,371 33 666	2,717,844 60 569	1,375,460 30 1,278	4,559,465 100 642
Conventional	48	$R \\ N$	0.66 20,713	30,954	57,928	1.00 88,882	2.25 46,205	155,799
пиотозсору		$N_{\rm a}$ $N_{\rm p}$	13 17	20 12	37 26	57 19	30 43	100 22
Conventional tomography	52	R N	0.90	2,931	5,326	1.00 8,257	2.31 3,107	11,364
		$N_{\rm a}$ $N_{\rm p}$		26 1.2	47 2.3	73 1.7	27 2.9 1.67	100 1.6
Computed tomography	54	N Na	6,703 2	71,339 22	139,124 42	210,463 64	111,318 34	328,484 100
Mammography	55	$N_{\rm p}$ R N	5 0.12 63	28 	61 158 840	44 1.00 177 960	103 2.35 44 554	46
		N_a N_p	0 0.05	9 8	71 70	80 37	20 41	100 31
Angiography	60	R N N _a	2,930 4	5,374 8	28,742 41	1.00 34,116 49	1.11 33,024 47	70,070 100
Bone densitometry	61	$N_{\rm p}$ R N	2.4 0.33 272	2.1	13	7.1 1.00 19.375	31 4.30	10
bone densitometry	01	$N_{\rm a}$ $N_{\rm p}$	1 0.22	1 0.15	59 8.4	60 4.1	39 12	100 4.5
Interventional procedures	63	R N Na	0.05 534 2	1,711	9,768 37	1.00 11,479 43	2.88 14,734 55	26,747 100
		$N_{\rm p}$ R	0.4 0.18	0.7	4.3	2.4 1.00	14 5.70	3.8

Table 1. Number of X-ray examinations performed on paediatric and geriatric patients relative to adult patients for various radiological modalities.

A: mean value of the age distribution

N: number of examinations performed annually in Switzerland (or Swiss population) within the corresponding age group N_a : fraction (%) of the number of examinations for the corresponding age group N_p : number of examinations per 1000 population of the corresponding age group; *R*: N_p for the corresponding age group/ N_p (15–64).

Group of X-ray examinations	Paediatric patients (0–14)	Adult patients (15–64)	Geriatric patients (65+)
Group A Radiography, Conventional fluoroscopy, Computed	0.5	1	2.5
tomography Group B Angiography, Interventional radiology	0.25	1	5

 Table 2.
 Number of X-ray examinations performed on paediatric and geriatric patients relative to adult patients for two broad groups of X-ray examinations.

In this study patients above 65 are considered as geriatric patients. The United Nations Scientific Committee on the Effects of the Atomic Radiation (UNSCEAR)⁽³⁾ provides age data in different age groups: 0-15, 16-40 and >40. In order to provide data in the present work that can be used in the UNSCEAR format, the group of adult patients (15–64) is divided into two subgroups (15–39 and 40–64). The second subgroup added to the geriatric group leads to the third UNSCEAR group.

If $n_{pa}(a)$ and $n_{gp}(a)$ represent the age distribution of patients who undergo X-ray examinations and that of the general population, respectively, the fractions of paediatric, adult and geriatric patients may then be expressed, respectively, as follows:

$$\int_{0}^{15} n_{\rm pa}(a) da, \quad \int_{15}^{65} n_{\rm pa}(a) da, \quad \int_{65}^{\infty} n_{\rm pa}(a) da.$$

Similarly, the fractions of children, adults and the elderly within the general population may be expressed, respectively, as follows:

$$\int_{0}^{15} n_{\rm gp}(a) da, \quad \int_{15}^{65} n_{\rm gp}(a) da, \quad \int_{65}^{\infty} n_{\rm gp}(a) da.$$

If the adult patients are taken as a reference, the relative number of examinations for paediatric patients, R_{ped} , may be written as follows:

$$R_{\rm ped} = \frac{\int_0^{15} n_{\rm pa}(a) da / \int_0^{15} n_{\rm gp}(a) da}{\int_{15}^{65} n_{\rm pa}(a) da / \int_{15}^{65} n_{\rm gp}(a) da}$$

Similarly, the relative number of examinations for geriatric patients, R_{ger} , may be written as follows:

$$R_{\rm ger} = \frac{\int_{65}^{\infty} n_{\rm pa}(a) da / \int_{65}^{\infty} n_{\rm gp}(a) da}{\int_{15}^{65} n_{\rm pa}(a) da / \int_{15}^{65} n_{\rm gp}(a) da}$$

The age distributions used in this work, $n_{pa}(a)$, are established from the data collected during the 1998 nationwide survey on the exposure of the Swiss

population by radiodiagnostics⁽⁴⁻⁶⁾, while the age distribution of the Swiss general population, $n_{gp}(a)$, for the same year, is established using the official published data⁽⁷⁾.

Figure 1 shows the age distribution $n_{pa}(a)$ for the total number of X-ray examinations carried out in Switzerland considering all the radiological modalities and compares it with the age distribution of the Swiss general population.

The number of X-ray examinations performed on paediatric and geriatric patients, relative to adult patients, is determined for eight radiological modalities: (1) radiography (except mammography), (2) conventional fluoroscopy (non-vascular, used mainly in gastro-enterology, urology and genecology), (3) computed tomography, (4) angiography, (5) interventional radiology, (6) mammography, (7) conventional tomography, and (8) bone densitometry, as well as for 40 types of examinations covering these eight radiological modalities.

RESULTS AND DISCUSSION

Table 1 presents the number of X-ray examinations for paediatric and geriatric patients, relative to adult patients, R, first for the whole radiological profession, then separately for dental and medical radiology and last for eight medical radiological modalities. These modalities are sorted by ascending average age (A). In each case, the annual total number of examinations (N), the fraction of that number (N_a in %) for each age group and the number of examination per 1000 population (N_p) are given as well.

Table 1 indicates that if all medical and dental examinations are considered, then a geriatric patient undergoes twice the number of X-ray examinations as that of an adult patient, whereas a paediatric patient undergoes less than half the number as that of an adult.

When splitting the total number of X-ray examinations into dental and medical, two significantly different distributions are obtained with average ages of 42 and 56, respectively. In the case of dental examinations, geriatric patients undergo on average two-thirds the number of dental examinations as that of adult patients whereas paediatric patients undergo less than one-third. As regards medical examinations, the relative number of examinations for geriatric patients is \sim 4 and that for paediatric patients is \sim 0.6.

If the eight medical radiological modalities are looked at separately, one finds that except for mammography where a geriatric patient has only 10% more examinations than an adult patient, in all other modalities the relative number of examinations in geriatrics is high and ranges between 1.7 for conventional tomography and 5.7 for interventional radiology. Concerning paediatrics, the relative

X-RAY EXAMINATIONS IN PAEDIATRICS AND GERIATRICS

X-ray examination	Α			All ages				
			(0–14)	(15–39)	(40–64)	(15–64)	(65+)	
Population Micturating cysto- urethrography (MCU)	39 11	$N \\ N$	1,242,329 9,583	2,507,375 597	2,270,978 540	4,778,353 1,137	1,076,212 617	7,096,894 11,337
urean ography (mee)		$N_{\rm a}$ $N_{\rm p}$	85 7.7	5 0.24	5 0.24	10 0.24	5 0.57	100 1.6
Skull radiography	35	R N N _a N _p	32.42 20,263 22 16	35,407 39 14	 21,308 24 9	1.00 56,715 63 12	2.41 13,467 15 13	90,445 100 13
Hand radiography	36	$egin{array}{c} R \\ N \\ N_{ m a} \\ N_{ m p} \end{array}$	1.37 32,637 23 26	48,591 35 19	37,301 27 16	1.00 85,892 62 18	1.05 20,728 15 19	139,257 100 20
Bitewing radiography	37	R N N _a N _p	1.46 115,132 7 93	847,054 50 338		1.00 1,487,989 88 311	1.07 91,326 5 85	 1,694,447 100 239
Orthopantomography (OPG)	41	R N Na Np	0.30 21,712 9 17	93,330 40 37	87,982 37 39	1.00 181,312 77 38	0.27 33,638 14 31	 236,662 100 33
Cervical spine radiography	43	R N N _a N _n	0.46 6,944 5 6			1.00 123,253 81 26	0.82 22,233 15 21	 152,430 100 21
Foot radiography	44	R N N _a	0.22 20,764 12	59,028 33 24	60,691 34 27	1.00 119,719 67 25	0.80 36,468 21 34	176,951 100 25
Cerebral embolisation	44	R N Na Na	0.67 18 4 0.01	24 200 38 0.08	233 45 0.10	1.00 433 83 0.09	1.35 68 13 0.06	519 100 0.07
Thoracic spine radiography	46	R N Na Nn	0.16 6,717 9 5	24,518 33 10	24,757 33	1.00 49,275 66 10	0.69 18,644 25 17	
Apical radiography	47	R N Na N	0.52 85,591 4 69			1.00 1,569,307 78 328	1.68 363,763 18 338	2,018,661 100 284
Intravenous urography (UIV)	48	R N Na Na	0.21 1,421 4	10,054 31 4.0	14,104 43 6.2	1.00 24,158 74 5.1	1.03 7,027 22 6.5	 32,607 100 4.6
Knee radiography	48	R N Na N	0.23 21,921 7	103,423 32		1.00 209,944 64 44	1.29 96,028 29	
Abdomen radiography	49	R N Na	0.40 11,485 8	41,815 29	48,051 33	1.00 89,866 62	2.03 42,846 30	
Barium meal	49	R R N N _a	0.49 2,111 15	 2,212 16	5,028 36	1.00 7,240 52	2.12 4,459 32	 13,810 100

Table 3. Number of X-ray examinations performed on paediatric and geriatric patients relative to adult patients for a series of 40 types of examinations.

X-ray examination	A		Age group					All ages
			(0–14)	(15–39)	(40–64)	(15–64)	(65+)	
		$N_{\rm p}$	1.7	0.9	2.2	1.5	4.1	1.9
	10	R	1.12	_	_	1.00	2.73	
Pelvis CT	49	N	186	1,932	2,395	4,327	1,587	6,100
		N _a	3	32	39	/1	26	100
		N _p	0.15	0.8	1.0	0.9	1.5	0.9
Lumbar spine radiography	50	K N	0.17	70 402	111 130	1.00	73 001	272 967
Lumbar spine radiography	50	N	3,234	79,492 20	41	70	73,091	100
		N	3 7	32	41	40	68	38
		R	0 19	52		1.00	1 70	
Lumbar spine CT	52	N	134	9.485	18,583	28.068	9.542	37.744
		N_{a}	0	25	49	74	25	100
		Nn	0.11	3.8	8.2	5.9	8.9	5.3
		R	0.02			1.00	1.51	
Skull CT	54	N	2,457	18,272	31,314	49,586	26,946	78,988
		$N_{\rm a}$	3	23	40	63	34	100
		Np	2.0	7.3	14	10	25	11
		Ŕ	0.19			1.00	2.41	
Ascending pyelography	54	N	399	2,091	3,839	5,930	3,827	10,155
		$N_{\rm a}$	4	20	38	58	38	100
		$N_{\rm p}$	0.3	0.8	1.7	1.2	3.6	1.4
		Ŕ	0.26			1.00	2.87	
Chest radiography	54	N	126,040	226,768	536,620	763,388	599,528	1,488,956
		$N_{\rm a}$	8	15	36	51	40	100
		$N_{\rm p}$	101	90	236	160	557	210
		R	0.64			1.00	3.49	
Shoulder radiography	54	N	5,367	42,661	60,786	103,447	63,439	172,253
		$N_{\rm a}$	3	25	35	60	37	100
		$N_{\rm p}$	4	17	27	22	59	24
~		R	0.20			1.00	2.72	
Chest CT	54	N	1,251	9,227	21,159	30,386	16,044	47,682
		Na	3	19	44	63	34	100
		Np	1.0	3.7	9.3	6.4	15	6.7
M		R	0.16	10 120	150.040	1.00	2.34	
Mammography	22	IN N	63	19,120	158,840	177,960	44,554	222,577
		Na	0	9	/1	80	20	100
		N _p	0.1	/.0	/0	3/	41	51
Polyis radiography	56	N	18 650	42 172	60 564	1.00	1.11	240.014
Pervis faciography	50	N	18,039	43,172	20	112,750	109,520	240,914
		N	0	10	29	47	43	34
		R	0.64	17	51	1.00	4 31	54
Abdomen CT	58	N	800	16 729	40 543	57 272	38 890	96 962
	50	N	1	17	42	59	40	100
		N.	0.6	67	18	12	36	14
		R	0.05			1.00	3.01	
Barium enema	58	N	724	466	2.649	3.115	3.374	7.213
		N_{α}	10	6	37	43	47	100
		Nn	0.6	0.2	1.2	0.7	3.1	1.0
		R^{P}	0.89			1.00	4.81	
Pelvic angiography	60	N	28	243	1,105	1,348	1,135	2,511
		$N_{\rm a}$	1	10	44	54	45	100
		N_{-}	0.02	0.10	0.49	0.28	1.0	0.35
		R	0.08	_		1.00	3.74	
Retrograde chol-	60	N	30	799	1,902	2,701	2,507	5,238
angiography (ERCP)								
		$N_{\rm a}$	1	15	36	51	48	100

A. AROUA ET AL. **Table 3. Continued**

X-ray examination	A		Age group					All ages
			(0–14)	(15–39)	(40–64)	(15–64)	(65+)	
		$N_{\rm p}$	0.02	0.32	0.84	0.57	2.3	0.74
Biliary drainage	61	N	30	90	311	401	436	867
, ,		$N_{\rm a}$	3	10	36	46	50	100
		$N_{\rm p}$	0.02	0.04	0.14	0.08	0.41	0.12
		R	0.28			1.00	4.83	
Abdominal embolisation	61	N	8	26	89	115	125	248
		Na	3	10	36	46	50	100
		N _p	0.01	0.01	0.04	0.02	0.12	0.03
Chest angiography	61	K N	0.28	200	541	741	4.85	1 /31
Chest angiography	01	N	_	14	38	52	48	1,451
		N _n		0.08	0.24	0.15	0.64	0.20
		R				1.00	4.13	
Coronary angiography	63	N	33	730	9,038	9,768	9,414	19,215
		$N_{\rm a}$	0	4	47	51	49	100
		$N_{\rm p}$	0.03	0.29	4.0	2.0	8.7	2.7
		R	0.01			1.00	4.28	
Coronary dilatation (PTCA)	63	N	29	245	4,615	4,860	4,803	9,692
		Na	0	2	48	50	50	100
		Np	0.02	0.10	2.0	1.0	4.5	1.4
Hip radiography	64	K N	0.02	9 554	22 830	1.00	4.39	100 562
	04	N	7,035	9,554	22,039	32,393	61	100,502
		N.	57	3.8	10	6.8	57	14
		R	0.84			1.00	8.38	
Cerebral angiography	64	N		93	835	928	1,100	2,028
		$N_{\rm a}$		5	41	46	54	100
		$N_{\rm p}$		0.04	0.37	0.19	1.02	0.29
		R		_		1.00	5.26	
Upper limb angiography	65	N	3	78	310	389	563	954
		Na	0	8	33	41	59	100
		Np	0.002	0.03	0.14	0.08	0.52	0.13
Abdominal angiography	66	K N	0.03	242	1 979	1.00	0.43	5 408
Abdominal anglography	00	N	23	243 5	34	2,121	5,554 61	100
		N _n	0.02	0 10	0.83	0 44	31	0.77
		R	0.04			1.00	7.02	
Lower limb angiography	69	N	11	152	1,329	1,481	3,287	4,780
		$N_{\rm a}$	0	3	28	31	69	100
		$N_{\rm p}$	0.01	0.06	0.59	0.31	3.0	0.67
		R	0.03	_		1.00	9.85	
Femoral dilatation	71	N	3	19	664	683	1,823	2,509
		Na	0	1	26	27	73	100
		N _p	0.003	0.008	0.29	0.14	1./	0.35
Pacemaker insertion	74	K M	0.02 52	125	235	360	11.00	3 107
i acemaker moettion	/+	N	2	4	233 7	11	2,705	100
		N_{π}	0.04	0.05	0.10	0.07	2.6	0.45
		$R^{\rm p}$	0.55			1.00	34.28	

X-RAY EXAMINATIONS IN PAEDIATRICS AND GERIATRICS Table 3. Continued

A: mean value of the age distribution

N: number of examinations performed annually in Switzerland (or Swiss population) within the corresponding age group N_a : fraction (%) of the number of examinations for the corresponding age group N_p : number of examinations per 1000 population of the corresponding age group *R*: N_p for the corresponding age group/ N_p (15–64).

number varies between 0 or almost 0 for some modalities such as mammography, conventional tomography and bone densitometry and 0.9 for conventional fluoroscopy, where children seem to be almost equally exposed to X-ray examinations as adults.

From Table 1 it is possible to define two broad groups of common X-ray examinations with simple rounded values of the relative numbers of examinations for paediatric and geriatric patients, as shown in Table 2. For group A (radiography, conventional fluoroscopy and computed tomography), a paediatric patient undergoes half the number of examinations as that of an adult one, while a geriatric patient undergoes 2.5 times more. For group B (angiography, interventional radiology), the differences are doubled, since a paediatric patient undergoes one-fourth the number of examinations as that of an adult one, while a geriatric patient undergoes five times more.

Table 3 presents the same information given in Table 1 for 40 types of X-ray examinations (dental and medical, diagnostic and interventional). The types of examinations are sorted by ascending average age.

The series shown in Table 3 extends from what can be considered as mostly paediatric examinations such as micturating cysto-urethrography, a ratio of 30:1 paediatrics/adults in this study, to what can be seen as mostly geriatric examinations such as pacemaker insertion (more than 30 examinations on the elderly for one examination on adults). In most cases, paediatric patients undergo fewer X-ray examinations than adult patients who themselves undergo fewer X-ray examinations than geriatric patients, except for a limited number of cases. For four types of examinations (10% of the total), micturating cysto-urethrography, skull radiography, hand radiography and barium meal, paediatric patients undergo more X-ray examinations than adult patients, whereas for four other types of examinations (10% of the total), bitewing radiography, orthopantomography (OPG), cervical spine radiography and cerebral embolisation, geriatric patients undergo fewer X-ray examinations than adult patients.

CONCLUSION

The relative number of X-ray examinations performed on paediatric and geriatric patients, compared with adult patients, was established using patient age distributions and that of the general population. This number was determined for 8 radiological modalities and 40 types of X-ray examinations covering medical and dental radiology. It was found that in most cases an adult patient undergoes more examinations than a paediatric patient and less than a geriatric patient. Two broad groups of examinations may be defined. The first one includes conventional radiography, fluoroscopy and computed tomography, while the second comprises angiography and interventional radiology. For the first group an adult undergoes twice as many examinations as a child and 2.5 times less than an elderly patient. For the second group, consisting of dose-intensive examinations, the difference is even larger, since an adult undergoes four times more examinations than a child and one-fifth the number of examinations performed on an elderly patient.

REFERENCES

- Bernhardt, J. H., Veit, R. and Bauer, B. Radiation exposure of the German population from X-ray diagnostic procedures. In: Proceedings of the Ninth Congress of the International Radiation Protection Association 3, Vienna, pp. 383–385 (1996).
- Shrimpton, P. C., Wall, B. F., Croft, J. R. and Webb, G. A. M. Medical Exposure: Guidance on the 1990 Recommendations of ICRP. In: Documents of the NRPB: Occupational, Public and Medical Exposure 4(2), Didcot (1993).
- 3. United Nations Scientific Committee on the Effects of Atomic Radiation. 2000 Report to the General Assembly, Annex D: medical radiation exposures. (NY: UN) (2000).
- Aroua, A., Burnand, B., Decka, I., Vader, J. P. and Valley, J.-F. Nation-wide survey on radiation doses in diagnostic and interventional radiology in Switzerland in 1998. Health Phys. 83(1), 46–55 (2002).
- Aroua, A., Burnand, B., Decka, I., Vader, J. P. and Valley, J.-F. Dosimetric aspects of a national survey of diagnostic and interventional radiology in Switzerland. Med. Phys. 29(10), 2247–2259 (2002).
- Aroua, A., Vader, J.-P. and Valley, J.-F. A survey on exposure by diagnostic and interventional radiology in Switzerland in 1998. Institut Universitaire de Radiophysique Appliquée, Lausanne. Available on: www. hospvd.ch/public/instituts/ira. (2000).
- 7. Service cantonal de recherche et d'information statistique. *Annuaire statistique du Canton de Vaud*, Lausanne (1999).