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Recent advances in sampling and
-omics techniques allow a better charac-
terization of the taxonomic composition
and functional potential of the small intes-
tinal microbiota (SIM).

The SIM is composed of a core micro-
biota present in high abundance
along the entire small intestinal tract
complemented with a set of segment-
specific taxa.

The SIM plays an essential role in car-
bohydrate degradation, amino acid
The small intestinal microbiota (SIM) is essential for gastrointestinal health,
influencing digestion, immune modulation, and nutrient metabolism. Unlike
the colonic microbiota, the SIM has been poorly characterized due to sampling
challenges and ethical considerations. Current evidence suggests that the SIM
consists of five core genera and additional segment-specific taxa. These
bacteria closely interact with the human host, regulating nutrient absorption
and metabolism. Recent work suggests the presence of two forms of small in-
testinal bacterial overgrowth, one dominated by oral bacteria (SIOBO) and a
second dominated by coliform bacteria. Less invasive sampling techniques,
omics approaches, and mechanistic studies will allow a more comprehensive
understanding of the SIM, paving the way for interventions engineering the
SIM towards better health.
metabolism, lipid absorption, and mi-
cronutrient metabolism.

Small intestinal bacterial overgrowth can
be classified in two subgroups, namely
small intestinal oral bacterial overgrowth
(SIOBO) characterized by an overgrowth
of oropharyngealGram-positive bacteria,
and coliform small intestinal bacterial
overgrowth (SIBO) characterized by an
overgrowth of Enterobacteriaceae such
as Escherichia or Klebsiella. SIOBO
may contribute to environmental enteric
dysfunction and linear growth delay.
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The understudied small intestinal microbiota
The human intestinal microbiota describes the sum of microorganisms – including bacteria,
archaea, viruses, fungi, and eukaryotic parasites – that reside in our gastrointestinal tract
(GIT). The microbiota is associated with overall host health and disease [1,2], as it is essential
for critical functions including digestion, immune system regulation, and production of nutrients
and metabolites [3,4]. Unsurprisingly, it has been shown that the gene content and metabolic
capabilities of the microorganisms colonizing the GIT are more extensive than those of their
human host [3,5].

In recent decades, the vast majority of studies have focused on the fecal microbiota which, owing
to its noninvasive and convenient sample collection, served as a proxy for the colonic microbiota
[6]. By comparison, the SIM is largely understudied, mostly due to its challenging accessibility, re-
quiring invasive sampling procedures, thus posing ethical constraints [6]. Given these constraints,
most of the samples characterizing the SIM to date have been collected from patients suffering
from gastrointestinal disorders.

Currently, aspiration of the intestinal fluid, as well as biopsy and luminal brushing, are the most
commonly used small intestinal sampling methods. In addition to their invasive nature, these
sample collection techniques have several drawbacks such as cross contamination, bowel prep-
aration, and restriction to the proximal small intestine [6]. Sampling during surgical procedures, or
through ileostomy pouches, allows to minimise contamination but cannot be applied to healthy
individuals [6]. Recently, less invasive techniques using ingestible sampling capsules have been
developed. They might allow to profile the full length of the digestive tract with minimal physio-
logical disturbances [7]. However, the inaccurate location of the sampled sites, as well as the
potential contamination, are major limitations of these devices even though the coating is spe-
cifically designed to address these issues [7].
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From the duodenum to the colon, environmental variations promote distinct microbial communi-
ties with specialized metabolic functions [8–11]. In the small intestine, significant interactions take
place between the microorganisms, the host, and the nutrients, making the SIM a major factor
both in health and disease-related contexts.

This review aims at summarizing current knowledge on SIM composition and its impact on health
and disease. Furthermore, the review aims to discuss gaps in our understanding of the commu-
nity structure and the metabolic functions within the SIM.

Microbiota composition along the small intestinal tract
The small intestine is characterized by a fast transit time (2–5 h in the small intestine, 10+ h in the
colon), a wide range of pH, and the presence of secretions from the body (Figure 1) [9,11,12].
Overall, these characteristics lead to a dynamic environment that is less diverse and less densely
populated bymicroorganisms in comparison to the colonic microbiota [5,13]. From the duodenum
to the large intestine, the typical concentration of bacteria increases from 103 to 1011 cells/ml, with
the highest density found in the colon [5]. Furthermore, the small intestine has relatively high oxygen
levels, which decrease from the duodenum to the ileum until anaerobic conditions prevail in the
colon [14]. Additionally, the vascular system underneath the epithelium provides oxygenation of
the intestinal tissue, creating an oxygen gradient between the mucosa and the lumen [10]. Facul-
tative anaerobes regulate oxygen availability by gradually depleting the oxygen in the lumen
[15,16]. These changing conditions, combined with the presence of dietary nutrients, create
unique, specialized niches for microbial communities throughout the different sections of the
small intestinal tract.

In recent years, several studies aimed to characterize the microbiome in the different sections of
the small intestinal tract. However, for ethical reasons, most samples have been collected from pa-
tients suffering from intestinal disorders, including functional dyspepsia [17], irritable bowel
syndrome (IBS) [18], cancer [19,20], celiac disease [21,22], Crohn’s disease [23], ileostomy
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Figure 1. The small intestinal microbiota (SIM) and the sites of absorption of nutrients. The core SIM represents five bacterial genera found in high abundance
and prevalence in the three segments of the small intestinal tract. The segment-specific microbiota shows genera found in higher abundance and prevalence in a specific
segment. The boxes highlight the structure of each segment and the differences in enzyme degradation and absorption of essential nutrients, including carbohydrates,
lipids, peptides, vitamins, and minerals.
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[24,25], obesity [26], and stunting [27,28] (Table 1). Importantly, these diseases are influencing
the microbiota composition and, to date, only a few studies have included healthy patients
[7,17,23,29–31] (Table 1). This scarcity in ‘healthy’ SIM data, and the potential confounding ef-
fect due to a disease state, are leading to inconsistencies in the taxonomic composition. Nev-
ertheless, general trends can be observed.

At the phylum level, the SIM is generally composed ofBacillota (formerly Firmicutes),Bacteroidota
(formerly Bacteroidetes), Pseudomonadota (formerly Proteobacteria), Fusobacteriota (formerly
Fusobacteria), and Actinomycetota (formerly Actinobacteria) [66] in varying abundances de-
pending on the individuals and the study [27,36,43]. Other phyla such as Verrucomicrobiota (for-
merly Verrucomicrobia) [66] and Saccharibacteria (formerly TM7) are occasionally found
[27,36,43]. Recently, two studies assessed the microbiome along the length of the GIT: Nagasue
et al. analyzed mucosal samples from the stomach, duodenum, jejunum, ileum, rectum, and
feces of 29 patients suffering from gastrointestinal symptoms [36], and Leite et al. mapped the
small intestinal and fecal microbiota in 53 subjects [43]. Jointly, these studies showed that
there are also important community differences along the GIT. While Bacillota dominate in the du-
odenum, Pseudomonadota abundance increase from the proximal to the distal part of the small
intestinal tract. Bacteroides are more abundant in the ileum where the environmental conditions
more closely resemble the colon and the feces [31,36,43].

As, to date, most studies used 16S rRNA gene amplicon sequencing to investigate taxonomic
composition, the current resolution for a comparative analysis of the SIM is restricted to the
genus level. At this taxonomic rank, Streptococcus, Veillonella, Prevotella, Fusobacterium, and
Haemophilus can be identified as core members of the microbiota as these genera are consis-
tently found in the small intestine regardless of the section sampled (Figure 1). The duodenum
and jejunum’s microbiota is similar in their composition and clearly distinct from the ileum
[30,31,36,43]. In addition to the core microbiota, other segment-specific members commonly
found include Neisseria, Granulicatella, Gemella, Rothia, and Actinomyces in the duodenum
and the jejunum, and Bacteroides, Escherichia–Shigella, Ruminococcus, Bifidobacterium,
Clostridium, and Lactobacillus in the ileum (Figure 1).

Besides the proximal–distal gradient of oxygen and nutrients along the GIT, a gradient for ox-
ygen and secreted antimicrobials is present from the mucosa to the lumen. These gradients,
alongside the mucus layer, create distinct niches across the transversal axis of the intestine
[10,11,67]. To date, only very few studies aimed to characterize both the mucosal and luminal
compartments of the small intestine [29,39,47,60]. Overall, they mostly observed differences
in relative abundance, notably of Streptococcus and Prevotella, while the presence/absence
of specific microbial taxa seems to be fairly similar in between these two sites [47,60]. These
observations are likely explained by the constant renewal of the mucus layer shedding its
associated bacteria in the lumen and the difficulty of collecting samples in this region of
the GIT, which hampers a precise discrimination between samples and associated microor-
ganisms from the mucosa and the lumen [53,67].

Taken together, these results suggest that five genera represent the core SIM and that additional
community members differ in their presence and relative abundance in a specific segment. Im-
portantly, despite the different origins and variety of diets of the sampled patients, the SIM com-
position seems widely similar across populations. Nevertheless, a better characterization at lower
taxonomic levels is still warranted. In this regard, the recent development of non-invasive sam-
pling techniques [7], and the lower cost of deep shotgun metagenomic sequencing, will create
numerous opportunities to widen our understanding of the SIM.
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Table 1. Characteristics of the studies characterizing the SIMa,b

Study n Medical conditions Sampling technique Sampling locationc Analysis techniqued Refs

Leite et al. 2023 505
38

SIBO Aspiration D 16S rRNA
SMS

[32]

Shalon et al. 2023 15 – Capsule-based sampling D, J, I 16S rRNA
SMS

[7]

Collard et al. 2022e 165 SIBO, S Aspiration D Culture [33]

Jiang et al. 2022 30 NLH Biopsy I 16S rRNA [34]

Kelly et al. 2022 7 CF Biopsy I 16S rRNA [35]

Maeda et al. 2022 47 C, H.pI Aspiration D 16S rRNA [20]

Nagasue et al. 2022 29 GI Brush D, J, I 16S rRNA [36]

Villmones et al. 2022 60 O Swab J 16S rRNA, culture [37]

Vonaesch et al. 2022 128 S, EED Aspiration D 16S rRNA [27]

Xia et al. 2022 61 C'sD Swab I 16S rRNA [23]

Zheng et al. 2022 35 – Brush and biopsy D 16S rRNA [29]

Barlow et al. 2021 250 GI Aspiration D 16S rRNA [38]

Dreskin et al. 2021 – – Aspiration D 16S rRNA [39]

Leite et al. 2021 251 GI Aspiration D 16S rRNA [40]

Schiepatti et al. 2021 37 CD Biopsy D 16S rRNA [21]

Chen et al. 2020 36 EED Aspiration D 16S rRNA [28]

Fukui et al. 2020 18 FD Brush D 16S rRNA [17]

Gutierrez-Repiso et al. 2020 45 O Swab J 16S rRNA [26]

Hussain et al. 2020 51 LC Biopsy D 16S rRNA [41]

Leite et al. 2020 140 SIBO Aspiration D 16S rRNA [42]

Leite et al. 2020 23 – Aspiration D, J 16S rRNA [43]

Panelli et al. 2020 83 CD Biopsy D 16S rRNA [22]

Gong et al. 2019 20 IM Biopsy D 16S rRNA [44]

Raj et al. 2019 46 CLD Biopsy D 16S rRNA [45]

Saffouri et al. 2019 126 GI Aspiration D 16S rRNA [46]

Seekatz et al. 2019 64
46

– Aspiration D
J

16S rRNA [30]

Shin et al. 2019 76 SIBO Aspiration and biopsy J 16S rRNA [47]

Zeichner et al. 2019 29 GI Aspiration J 16S rRNA [48]

Mei et al. 2018 28 C Biopsy D 16S rRNA [19]

Shanahan et al. 2018 102 GI Biopsy D 16S rRNA [49]

Villmones et al. 2018 27 GI Swab I 16S rRNA [50]

Vonaesch et al. 2018d 46 SIBO, S Aspiration D 16S rRNA [51]

Zmora et al. 2018 29 – Aspiration D, J, I 16S rRNA
SMS

[31]

Sjöberg et al. 2017 13 C'sD, UC Aspiration D 16S rRNA [52]

Sundin et al. 2017 20 GI Aspiration J 16S rRNA [53]

Chung et al. 2016 47 IBS Biopsy J 16S rRNA [54]

D'Argenio et al. 2016 41 CD Biopsy D 16S rRNA [55]

Giamarellos-Bourboulis et al. 2016 258 IBS Aspiration D 16S rRNA [56]

Nistal et al. 2016 18 CD Biopsy D 16S rRNA [57]

Angelakis et al. 2015 10 O Aspiration D 16S rRNA [58]

(continued on next page)
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Table 1. (continued)

Study n Medical conditions Sampling technique Sampling locationc Analysis techniqued Refs

Dlugosz et al. 2015 51 IBS Biopsy J 16S rRNA [59]

Li et al. 2015 9 – Aspiration and biopsy D 16S rRNA [60]

Zhang et al. 2014 11 – Biopsy I 16S rRNA [61]

Cheng et al. 2013 26 CD Biopsy D qPCR [62]

Wacklin et al. 2013 51 CD Biopsy D 16S rRNA [63]

Nistal et al. 2012 28 CD Biopsy D 16S rRNA [64]

Oh et al. 2012 19 SBT Biopsy I 16S rRNA [65]

Zoetendal et al. 2012 8 GI, I Aspiration I 16S rRNA [25]

aAbbreviations: C, cancer; CD, coeliac disease; CF, cystic fibrosis; CLD, chronic liver disease; C'sD, Crohn's disease; EED, environmental enteric dysfunction; FD,
functional dyspepsia; GI, gastrointestinal tract symptoms; H.pI, Helicobacter pylori infection; I, ileostoma; IBS, irritable bowel syndrome; IM, intestinal metaplasia; LC, liver
cirrhosis; NLH, nodular lymphoid hyperplasia; O, obesity; S, stunting; SBT, small bowel transplant; SIBO, small intestinal bacterial overgrowth; UC, ulcerative colitis; –
healthy/no medical conditions reported.
bInclusion criteria: study published since 2010, analyzing aspirates, biopsies, or brushing of the duodenum, jejunum, or ileum and/or ileal content from stoma pouches,
characterizing the microbiota by either culture, qPCR, 16S rRNA gene amplicon, or SMS and including a characterization of the most prevalent and/or abundant genera of
the small intestinal microbiota as a list and/or plot.
cAbbreviations: D, duodenum; J, jejunum; I, ileum.
d16S rRNA, 16S rRNA gene amplicon sequencing.
eThese studies are, to a large extent, a subset of the samples analyzed in Vonaesch et al. 2022 [27].
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Differences in the microbial community between the small and large intestine
To date, most studies focus on the analysis of fecal samples as a crude read-out of the overall
lower GIT. This poses evident problems as the biotic and abiotic factors and, consequently, the
ecosystems, vary along the length of the GIT. Not surprisingly, the overall community compo-
sition clearly differs along the digestive tract, and notably, between the duodenum and the
feces (Table 2).

At the phylum level, Bacillota and Pseudomonadota are found in higher abundance in the small
intestine, whereas Bacteroidota and Bacillota seem to dominate in the feces (Figure 2)
[36,43,68]. Additionally, albeit the same main phyla are found in varying abundances, the exact
composition at lower taxonomic levels differs within each compartment (Figure 2). Overall, studies
Table 2. Characteristics of the studies including small and large intestinal samplesa

Study n Medical conditions Sampling sites Sample type Analysis technique Refs

Shalon et al. 2023 15 Healthy D, J, PI, DI, AC Capsule-based
sampling

V4 16S rRNA gene sequencing [7]

Vonaesch et al. 2022 150 Stunted D, F Aspirate V4 16S rRNA gene sequencing [27]

Nagasue et al. 2022 29 GIT symptoms D, J, PI, DI, R, F Brush V4 16S rRNA gene sequencing [36]

Leite et al. 2020 53 GIT symptoms D, J, PI, F Aspirate V3–V4 16S rRNA sequencing [43]

Seekatz et al. 2019 8 Healthy D, J, F Aspirate V4 16S rRNA gene sequencing [30]

Vuik et al. 2019 14 Abdominal
symptoms

D, J, PI, DI, AC, DC, R Biopsy V3–V4 16S rRNA sequencing [68]

Vonaesch et al.
2018b

46 Stunted D, F Aspirate V4 16S rRNA gene sequencing [51]

Zmora et al. 2018 25 Healthy D, J, DI, AC, TC, DC, R,
F

Aspirate, brush, biopsy V4 16S rRNA gene sequencing,
SMS

[31]

aAbbreviations: AC, ascending colon; D, duodenum; DC, descending colon; DI, distal ileum; F, feces; GIT, gastrointestinal tract; J, jejunum; PI, proximal ileum; R, rectum;
TC, transverse colon.
bThis study is, to a large extent, a subset of the samples analyzed in Vonaesch et al. 2022 [27].
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Figure 2. Differences between the small and the large intestinal microbiota. The figure summarizes the distribution
of the three main phyla along the gastrointestinal tract (GIT). While Bacillota remains at a high abundance along the intestinal
tract, Pseudomonadota abundance decreases and Bacteroidota abundance increases from the small to the large intestine.
The two columns depict the different bacterial families and genera found in higher abundance and prevalence either in the
small or the large intestine. While the same phyla are found in both sites, the microbiota composition within each phylum
changes between the upper and lower part of the intestinal tract. Abbreviations: f, family; g, genus; p, phylum.
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show that the SIM is mostly composed of fast-growing primary fermenters such as
Streptococcaceae and Lactobacillaceae alongside secondary fermenters such as Veillonellaceae
[30,36,43,51,68]. In the colon and feces, obligateanaerobes, including Ruminococcaceae and
Lachnospiraceae, are found [30,36,43,51,68]. Furthermore, Clostridiaceae and Bacteroidaceae
are rarely found in the duodenum and jejunum and show increasing relative and absolute abun-
dances from the ileum to the feces [31,36,43,51]. Interestingly, Streptococcaceae and
Veillonellaceae are found in both the small and large intestine, but in lower relative abundances
in the feces [30,36,43,68].

Although, the GIT is often described as separate compartments, it is essential to emphasize that
the digestive tract is a continuum. In this sense, several taxa are found along the whole length of
the digestive tract, showing a transmission from the oral cavity to the intestines [69–71]. In healthy
individuals, the oral microbiota is dominated by Streptococcus, Haemophilus, Rothia, Neisseria,
Trends in Microbiology, October 2024, Vol. 32, No. 10 975
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and Veillonella alongside other bacterial genera such as Prevotella, Corynebacterium, Actinomyces,
Fusobacterium, Granulicatella, and Gemella depending on the oral niches and the individual [72].
These genera are observed throughout the whole length of the digestive tract, particularly in the
small intestine, albeit in different abundance depending on the compartment [53,69,70]. While
there are evident abundance and taxonomic differences at higher taxonomic ranks, it remains un-
clear if bacterial strains are continually transmitted and thus remain the same across thewhole length
of the digestive tract or if they locally adapt to their respective niches for long-term residency (Box 1).
A better understanding of the bacterial strains’ transmissionmechanisms and colonization dynamics
is of the outmost importance as ectopic colonization of oral bacteria is associated with several GIT
diseases [27,28,73].

Role of the small intestinal microbiota in nutrient metabolism
Microbiota and carbohydrate degradation
Carbohydrates are major components of human diets, yet only a fraction of them can be digested
using the body’s own 17 pancreatic enzymes [74]. The majority of dietary fibers are processed by
the intestinal microbiome through bacterially encoded enzymes degrading dietary glycans – carbo-
hydrate-active enzymes (CAZymes) [75]. CAZymes have attracted a lot of interest in fecal microbi-
ota studies [76], but their presence in the SIM has been scarcely explored. In 2012, Zoetendal et al.
observed an enrichment in genes related to carbohydrate metabolism in five ileostomy effluent
samples in comparison to fecal samples from two healthy subjects [25]. This suggests that simple
carbohydrates are primarily digested and absorbed in the small intestine [11]. More recently, using
six ileal and colonic stoma samples from cured colorectal cancer patients, Yilmaz et al. showed the
temporal dynamic of the intestinal microbiota and metabolites during fasted and fed states using
high-resolution untargeted mass-spectrometry. Interestingly, no changes in mono- and disaccha-
rides were detected after a meal, suggesting a direct and complete uptake of these compounds in
the small intestinal tract [24]. Thanks to the recent development of capsule devices collecting lumi-
nal contents from the small intestine and ascending colon, Shalon et al. evaluated the functional dif-
ferences between the intestinal and fecal microbiota in 15 healthy individuals and showed the
presence of CAZyme-encoding genes both in small intestinal and fecal samples (Figure 3) [7]. As
bacterial carbohydrate degradation is of major importance for the host, more studies characterizing
CAZymes in the SIM are needed, especially in the proximal part of the small intestine.
Box 1. Transmission of strains along the digestive tract

Clear differences exist at higher taxonomic ranks, from phylum to genus, between the different section of the GIT. How-
ever, the extend of bacterial transmission and colonization dynamics along the digestive tract remains largely
uncharacterized. Indeed, further evidence is needed to define if bacterial strains are continuously transmitted from the oral
cavity to the intestinal tract and thus remain the same across the whole length of the digestive tract or if they locally adapt to
their respective niches for long-term residency. Recently, Gough et al. analyzed Streptococcus salivarius strains inferred
from shotgun metagenomic data in 140 fecal samples from two different time points from a randomized control trial on
cotrimoxazole intake in HIV-positive Zimbabwean children. They found that the strains were more similar to each other
compared to reference strains derived from oral cavities from subjects from high-income countries, concluding that there
might be niche-specific microbe adaptations [70]. On the contrary, using 753 public and 182 newly sequenced saliva and
stool samples from 470 healthy and diseased individuals, Schmidt et al. suggested that microbial taxa flux from the oral
cavity to the lower GIT is extensive in healthy individuals, leading to connected strain populations along the digestive tract
[69]. Recently, Dubinsky et al. extended these observations in 21 healthy individuals by showing that even though three
common human intestinal species from the terminal ileum, cecum, and descending colon had a distinct genome, they
were interrelated and derived from a founder strain colonizing multiple sites [71]. While it is not excluded that these two
phenomena coexist, and might also be different according to specific bacterial taxa and the health state of their host, it
is crucial to better understand taxonomic variations along the digestive tract at lower taxonomic levels, especially as ec-
topic colonization of oral bacteria in the lower digestive tract has been previously associated with the exacerbation of sev-
eral gastrointestinal diseases [27,28,73].
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Figure 3. Effects of the small intestinal microbiota (SIM) on macro- and micronutrient metabolism. Bacteroides and Prevotella produce carbohydrate-active
enzymes (CAZymes) responsible for the degradation of carbohydrates in the small intestine. Lactate produced by lactic acid bacteria (LAB), such as Streptococcus, is
utilized by Veillonella to produced short-chain fatty acids (SCFAs). While free amino acids are made available by the digestion of peptides by pancreatic enzymes, the

(Figure legend continued at the bottom of the next page.)
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Lactic acid bacteria (LAB), such as streptococci, are major members of the SIM and produce lac-
tic acid as an end-product of simple carbohydrate fermentation [43,77,78]. Members of the SIM
further work synergistically to produce fermentation end-products: Veillonella is able to use lac-
tate as substrate, transforming it into the short-chain fatty acids acetate and propionate
(Figure 3) [25,43,79]. This cross-feeding likely explains the co-occurrence of these two taxa
and their high abundance in the small intestinal tract [25,80]. Overall, the role of LAB and
Veillonella in the small intestine, while not fully understood, is evidently important for carbohydrate
degradation and short-chain fatty acid production [81–83]. Ultimately, more experimental re-
search is needed to elucidate in detail the molecular mechanisms of small intestinal glycanmetab-
olism and unravel other taxa and taxonomic groups contributing to carbohydrate degradation.

Amino acid degradation, assimilation, and de novo synthesis
Amino acids (AAs) and peptides derived from ingested proteins are essential for human physiol-
ogy as well as for bacterial growth. In a recent metabolomic study on 15 healthy subjects using
ingestible capsules to sample the small intestine, Folz et al. showed that di- and tripeptide abun-
dance decreased along the length of the small intestine suggesting their absorption in this part of
the GIT [84]. Recent evidence suggests that the microbiota is able to both produce and metab-
olize AAs, even though the exact mechanisms and the net result between metabolism and anab-
olism are not yet fully elucidated [85,86]. For instance, in a randomized, cross-over, explorative
study during which 16 ileostomy patients consumed fermented milk products or a placebo, mi-
crobial metabolism was shifted towards AAs [87]. Bacterial species, including Fusobacterium,
Streptococcus, and Veillonella, have been reported to be able to assimilate and degrade AAs
(Figure 3) [88], generating smaller peptides and free AAs, which then become available to the
overall ecosystem and can be assimilated by the host and other bacterial species [89].

Additionally, bacterial species of the SIM might be able to carry out de novo AA synthesis
(Figure 3). Zoetendal et al. found an enrichment in pathways for AA metabolism in the small intes-
tine of five ileostomy patients in comparison to fecal samples from two healthy subjects [25]. Fur-
thermore, Van den Bogert et al. found evidence of anabolic pathways for AA synthesis in small
intestinal Streptococcus genomes [78]. The authors suggested that the limited availability of
AAs in the small bowel might promote bacterial de novo synthesis, thus benefiting the host as
well as cross-feeding bacteria within the intestinal ecosystem. More efforts are thus needed
to understand the interplay between AAs, the SIM, and the host, especially in the context of
a low-protein diet and insufficient nutrient intake.

Small intestinal microbiota, bile acids, and lipid metabolism
Dietary lipids constitute one of the main energy sources in humans [90]. In the duodenum, lipids
are emulsified by bile acids (BAs) and hydrolyzed by lipases before being absorbed in the jejunum
(Figure 1) [90]. Evidence from animal models indicates that the SIM is an essential actor in dietary
lipid digestion and absorption within the small intestine [91,92]. In mice, the consumption of a
high-fat diet (HFD) alters the SIM, including the microbial circadian clock, and leads to enhanced
lipid absorption in the small intestinal tract, thus promoting diet-induced obesity [91,93].
microbiota contributes to the pool of free amino acids by de novo synthesis. Streptococcus, Veillonella, and Fusobacterium have been shown to take up free amino acids
and use them for their ownmetabolism. Primary bile acids secreted in the duodenum are transformed into secondary bile acids by bacterial enzymes. The pool of bile acids
provides resistance against pathobiont infection. Lipids are emulsified by bile acids and hydrolyzed by pancreatic bacterial lipases before being absorbed. Lactobacillus
species increase fat storage via L-lactate production, and Escherichia coli increases lipid oxidation via acetate production. The microbiota plays an essential role in the
conversion of phylloquinone (vitamin K1) into menaquinone (vitamin K2) as well as in the biosynthesis of folate (vitamin B9). The absorption of cobalamin (vitamin B12) in
the ileum is reduced by members of the Bacteroides genus that compete with the host for B12 absorption. Cobalamin absorption was further shown to decrease
oxygen levels in the lumen, indirectly controlling Salmonella Typhimurium infection. Production of retinoic acid from dietary vitamin A by segmented filamentous bacteria
promotes defense against enteric infections.
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Conversely, in case of undernutrition and environmental enteric dysfunction (EED), expression of
genes implicated in lipid absorption is decreased in the duodenum, thus leading to reduced
serum lipid levels and stunting [94,95]. Additionally, Vonaesch et al. demonstrated that duodenal
bacterial isolates from stunted children from Madagascar and Central African Republic decrease
lipid absorption both in vitro and in a mouse model [27]. Previous work demonstrated a link be-
tween several small intestinal bacteria and lipid metabolism: Lactobacillus paracasei promotes fat
storage in enterocytes by producing L-lactate, while Escherichia coli promotes lipid oxidation by
producing acetate (Figure 3) [92,96]. Furthermore, lipid absorption in the ileum is influenced by
the presence of Clostridium ramosum, which upregulates the fatty acid translocase CD36 [97].
The expansion of Desulfovibrio and loss of Clostridia in the context of metabolic syndrome such
as obesity thus alters the expression level of cd36 and may lead to inappropriate lipid uptake
[98]. Finally, cd36 expression and lipid absorptionwere shown to be regulated by the circadian tran-
scription factor Nfil3, itself regulated by the microbiota, notably Gram-negative motile bacteria [99].

Inherent to lipid metabolism, BAs, synthetized in the liver, are conjugated with glycine or taurine be-
fore being secreted in the duodenum [100]. Microbial enzymes, such as bile salt hydrolase (BSH),
are known to increase the diversity of BAs bymodifying primary BAs into secondary BAs which are
reabsorbed in the ileum (Figure 3) [100]. Additionally, the increased BA diversity reduces inhibition
of the farnesoid X receptor in enterocytes which consequently inhibits BA synthesis in the liver,
making themicrobiota a regulator of both BAmetabolism and synthesis [101]. Consequently, alter-
ations of the BA pool mediated by the microbiota were associated with nutritional disorders such
as obesity and undernutrition [102,103]. Of note, deconjugation of taurocholic acid by BSH during
consumption of a diet high in milk promotes the expansion of the pathobiont Bilophila wadsworthia
[104]. By contrast, the pool of BAs provides resistance against pathobiont infections and pro-
foundly shapes the microbiota as taxa differ in their inherent tolerance to given BAs (Figure 3)
[100,105]. Taken together, these findings underscore the role of the microbiota in lipid and BAme-
tabolism in the small intestine. Understanding the precise interactions between the SIM, BAs, and
lipid absorption might lead to novel therapeutic strategies for the treatment of nutritional disorders.

Micronutrient synthesis by the small intestinal microbiota
Micronutrients are vitamins as well as minerals (calcium, iron, magnesium, phosphate) and trace
elements essential for human physiology and mostly acquired from exogenous sources [11].
Water-soluble vitamins, such as folate (B9) and menaquinone (K2), can be synthesized by intes-
tinal bacteria, while other micronutrients must be acquired from the diet (Figure 3) [11,106]. No-
tably, Magnúsdóttir et al. predicted in silico that B vitamins were produced by 40–65% of the
256 most prevalent intestinal bacteria [107]. Additionally, the microbiota can affect micronutrient
bioavailability and absorption [108]: ileal cobalamin (B12) absorption is reduced by anaerobic bac-
teria, particularly Bacteroides, through B12 capture by surface-exposed lipoproteins [109]. Con-
versely, minerals and vitamins also modulate the microbiota composition in the lower GIT, as
recently reviewed by Barone et al. [110]. Furthermore, dietary vitamins are involved in providing
colonization resistance against pathogens. Recent studies in mice demonstrated that coloniza-
tion by segmented-filamentous bacteria producing retinoic acid from dietary vitamin A promotes
innate defense against Citrobacter rodentium and provides protection against rotavirus (Figure 3)
[111,112]. B12 also indirectly controlsSalmonella Typhimurium infection by regulating oxygen levels
in the ileal lumen (Figure 3) [113]. Overall, much about the precise interactions between the SIM and
micronutrients as well as the consequences they have for the host remain to be elucidated.

The small intestinal microbiota and gastrointestinal diseases
Several medical conditions, such as inflammatory bowel disease (IBD), IBS, and coeliac disease
(CD), involve the small intestine. Changes in the intestinal microbiota in the context of IBD, IBS,
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Outstanding questions
What is the strain level composition of
the small intestinal microbiota (SIM)?

What are the differences in taxonomic
composition across geographies, age
groups, diets, and disease status?

What are the sources and colonization
dynamics of bacterial strains along the
length of the digestive tract in health
and disease-related contexts?

Can new, noninvasive, sampling
techniques allow to repeatedly
sample specific sections of the
digestive tract, thus allowing for
longitudinal analyses?

What is the taxonomic composition
of small intestinal oral bacterial
overgrowth (SIOBO) and coliform
small intestinal bacterial overgrowth
(SIBO)? What is the role of each
condition in health and disease?

What are the underlying molecular
mechanisms of nutrient–microbiota–
host interactions observed in the small
intestinal tract?

What is the metabolic potential and
metabolic activity of the SIM along the
small intestinal tract, in health as well
as in different disease states?

How can we rationally engineer the
small intestinal microbiota?
and CD have been covered at length in recent reviews [114–116]. These conditions have notably
been shown to co-occur with small intestinal bacterial overgrowth (SIBO) [117]. Traditionally,
SIBO has been defined as the presence of a bacterial count exceeding 105 colony-forming
units per ml in the small intestine [117]. Despite the risk of contamination, small intestinal aspirates
are considered as the gold standard procedure. However, noninvasive procedures, such as hy-
drogen or lactulose breath tests, are commonly used to diagnose SIBO, even though they lack
specificity and sensitivity [117]. Bacteria regularly identified in SIBO patients can be classified in
two subgroups, namely Gram-positive bacteria of oropharyngeal origin (termed here small in-
testinal oral bacterial overgrowth, SIOBO [27], also formerly referenced as upper aerodigestive
tract SIBO, UAT SIBO [118]) and coliform Gram-negative bacteria (coliform SIBO), character-
ized mainly by an increased abundance of members of the genera Escherichia and Klebsiella
[32,118].

SIOBO is observed in children suffering from linear growth delay as a consequence of undernutrition
(i.e., stunting) and is believed to drive local inflammation and increase gut permeability
[33,51,119,120]. In stunted children, ectopic colonization and overgrowth of oropharyngeal species,
including Lactobacillus, Streptococcus, Veillonella, Prevotella, and Gemella, have been observed in
the duodenumof stunted children and their absolute abundance has been linked to stunting severity
[28,51]. Ectopic oral bacteria colonization in the small intestinal tract has equally been described in
IBD [121]. While factors predisposing for SIOBO remain to be identified, SIOBO is clearly not due
to the overgrowth of a single species but rather to the overgrowth of a consortium of strains [51].

Moreover, it has been proposed that SIBO and SIOBOmay contribute to EED, a condition com-
monly characterized by villous atrophy, intestinal inflammation, malabsorption, and barrier dys-
function. This syndrome is highly prevalent in low- and middle-income countries and may
contribute to stunting [27,28,51,119,122]. However, the etiology of EED is not clearly defined,
and biomarkers of the different hallmarks are poorly correlated [123,124]. Overall, more research
is needed to precisely define the role of SIBO and SIOBO in stunting, EED, and other gastrointes-
tinal syndromes. A better knowledge of the source of the ectopically colonizing strains and the
mechanisms leading to inflammation and malabsorption will be crucial to rationally engineer the
microbiota in the future.

Concluding remarks and future perspectives
Due to challenges inherent to sampling, the small intestine has been less well characterized than
other parts of the digestive tract, and consequently many questions remain open in the field. Pre-
vious data obtained from samples collected from patients suffering from intestinal diseases are of
crucial importance yet need to be complemented with samples from healthy individuals. This will
allow to better understand the broader ecosystem of the healthy small intestinal tract and to dis-
entangle disease-associated signatures (see Outstanding questions).

Furthermore, studies characterizing the duodenum were conducted almost essentially
in the USA [7,30,32,38,41,46–48,53,56,65], China [19,23,29,34,44,60], Europe
[21,22,25,26,35,37,50,52,55,57–59,62–64], Australia [45], and Japan [17,20,36]. We
found no studies characterizing the duodenum from the South American continent, and
only two articles from the same study describing the duodenal microbiota composition
in Madagascar and the Central African Republic [27,51]. Finally, only a single study de-
scribed the duodenal microbiome in a lower-income Asian country, Bangladesh [28].
Even though the SIM composition remains widely similar across countries, this observation
highlights the biased knowledge we have about the SIM composition and the need of in-
cluding non-Western populations in future studies (see Outstanding questions).
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The recent advances in different omics techniques have so far been scarcely applied to study the
SIM. The widely used 16S rRNA gene amplicon sequencing allows reliable taxa identification only
at the genus level.While important conclusions can be drawn from this sequencingmethod,more
precise and deeper sequencing is necessary to obtain a finer picture of the microbiota composi-
tion in the small intestine, notably allowing to infer strain-level differences (see Outstanding ques-
tions). Furthermore, functional profiling, using both metagenomic and metatranscriptomic
sequencing, as well as metabolomic and metaproteomic approaches, will be essential to better
characterize the functional potential and activity of the SIM (see Outstanding questions). Finally,
we need experimental studies to elucidate the molecular mechanisms regulating nutrient metab-
olism. A combination of culture and multi-omics analyses will allow to better understand the inter-
play between the microorganisms, the nutrients, and the host, setting the bases to design
appropriate interventions rebalancing the SIM towards a healthy state.
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