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Engineering synthetic spatial patterns in microbial 
populations and communities 
Içvara Barbier*, Hadiastri Kusumawardhani# and  
Yolanda Schaerli$   

Spatial pattern formation is an important feature of almost all 
biological systems. Thanks to the advances in synthetic 
biology, we can engineer microbial populations and 
communities to display sophisticated spatial patterns. This 
bottom-up approach can be used to elucidate the general 
principles underlying pattern formation. Moreover, it is of 
interest for a plethora of applications, from the production of 
novel living materials to medical diagnostics. In this short 
review, we comment on the recent experimental advances in 
engineering the spatial patterns formed by microbes. We 
classify the synthetic patterns based on the input signals 
provided and the biological processes deployed. We highlight 
some applications of microbial pattern formation and discuss 
the challenges and potential future directions. 
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Introduction 
Spatial patterns are omnipresent across all scales of living 
entities, including patterns of proteins inside cells [1], of 
gene expression across embryonic tissues [2], and of 
colors in furs or skins [3]. Populations and communities 
of microorganisms also organize in spatial patterns. In
deed, spatial organization of microbial species shapes 
their interactions and the function of diverse 

microbiotas, for example in the gut, in wastewater 
treatment and in bioproduction [4–6]. 

The classical top-down approach to study natural pat
terns can be complemented with a bottom-up approach 
that leverages the design–build–test–learn cycle — the 
paradigm of synthetic biology [7,8]. This allows re
searchers to construct simplified patterning systems that 
are amenable to study or to modify naturally existing 
patterns. It facilitates the discovery and testing of gen
eral principles underlying complex patterning processes  
[9]. In addition, synthetic biology enables researchers to 
implement spatiotemporal patterns for novel applica
tions such as engineered living materials [10,11]. 

In this short review, we focus on the recent experimental 
works that use synthetic biology to produce spatial pat
terns in microbial populations and communities. First, 
we introduce the different inputs commonly used to 
engineer synthetic patterns (Figure 1a). Next, we ex
plore the different processes to interpret these inputs 
and convert them into spatial patterns (Figure 1b) and 
highlight some applications of such synthetic patterns. 
Finally, we discuss the remaining challenges in en
gineering pattern formation. 

Inputs for pattern formation 
Patterns can either be completely self-organizing or re
quire some external input information. Several modes to 
provide such an initial input have been applied in recent 
years (Figure 1a). The input can be very rich in in
formation, such as positioning the cells already in a 
spatial arrangement or providing a detailed motif with 
light, or it can also be of low information content such as 
the concentration gradient of a chemical inducer. Here, 
we briefly describe the different inputs used in synthetic 
biology to engineer spatial patterns. 

Physical prearrangement 
Prepositioning of cells in a spatial arrangement can be 
low-tech, such as simply plating the sender cells next to 
the receiver cells [12], or more sophisticated, such as 
using liquid-handling robots [13], meniscus-driven 
fluidic systems [14], or 3D printing [15–17]. The latter 
allows not only 2D patterning, but also the generation of 
3D structures, thanks to ink containing genetically en
gineered microbes [15–17]. 
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Premixed cultures 
Having a single bacterial population carrying all the same 
synthetic circuit often limits the complexity of the pat
terns that can be achieved because of the metabolic load, 
context-dependent effects, and incompatible molecular 
parts. Mixing multiple interacting strains resulting in a 
small microbial consortium can help address this issue 
through division of labor [18]. For example, mixing dif
ferent cell types harboring different adhesion interactions 
leads to the formation of patterned cell clusters without 
the need to engineer complex cell differentiation [19,20]. 
Similarly, Curatolo and colleagues engineered two popu
lations of motile Escherichia coli (E. coli) cells that can 
communicate with each other to reciprocally control their 
motilities, resulting in ring patterns [21]. 

Light 
Using light to control the activity of cells, that is, opto
genetics, is becoming increasingly important in the field 
of patterning. It enables a high level of precision and 
flexibility in both space and time [22–28]. Light can 
provide different amounts of information content. While 
most studies use light to provide a high level of initial 
spatial information, it can also be used to provide gra
dients as initial input. This kind of input could be ideal 
to study the patterning driven by diffusible signaling 
molecules, since different diffusion rates, half-lives, and 
dynamic changes can more easily be tested than with 
chemical molecules [29]. 

Chemical inducers 
Chemical molecules are very commonly used as input 
for engineered patterns. Examples include inducers 
from classical gene expression systems such as arabinose, 
(isopropyl ß-D-1-thiogalactopyranoside), and (anhy
drotetracycline), but also molecules from quorum-sen
sing systems and other small molecules derived from 
intracellular metabolites. These molecules can be added 
to the media [12,30,31] or produced by the bacteria  
[32–34], thus creating a self-regulating system. If they 
are deposited or produced locally, the forming spatial 
gradients can provide positional information, which is 
interpreted by the cells to give rise to patterns  
[30,31,35]. 

Compared to optogenetics and 3D printing methods, the 
use of chemical molecules has the disadvantage of being 
less precise and adjustable. For example, it is nontrivial 
to control their diffusion rates or to remove them on 
demand. On the other hand, this method requires less 
human intervention to achieve patterning, closely emu
lates natural patterning systems using diffusible mole
cules, and can lead to truly self-organized patterns. 

Others 
We summarized above the main inputs used for patterning 
in the last years. However, this list is not exhaustive. For 
example, electricity can also be coupled with cellular redox 
reactions to induce cell–cell signaling [36] or temperature 

Figure 1  
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Schematic representations of the different inputs and processes to engineer spatial patterns in microbial populations. Inputs (a) and processes (b) that 
have been applied for engineering patterns in microbial populations. Different inputs and processes may be combined to generate complex spatial 
patterns.   
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can be used to control gene expression and form patterns  
[37]. Cell morphology also plays an important role in the 
spatial patterning of microbial communities [19,38]. Other 
spatial organizations can be developed in the absence of 
external inputs, leading to genuine self-forming patterns  
[32,33,39,40]. In these studies, the differentiation between 
cells is initiated either by molecular noise [32,33] or by 
unstable initial states [39]. 

Processes for pattern formation 
After sensing the input signal, microbes need to process 
the received information in order to produce a spatial 
pattern. Here, we briefly discuss the different ways of 
information processing that have been used in recent 
studies (Figure 1b). However, engineered patterns with 
microorganisms rarely use only one process, but mostly 
use a combination of different mechanisms (Figure 2). 

Figure 2  
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Examples of engineered spatial patterns in synthetic microbial populations and communities. The combinations of input signals and processes used 
to produce the spatial patterns are indicated with the schemes of Figure 1. Pictures reproduced with permission from the cited publications.   
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Simple computation 
The most straightforward process is to use sensor ele
ments to translate the input into a biological output, 
such as the expression of a fluorescent reporter. 
Although easy to implement, a simple computation re
quires the input to contain already all of the patterning 
information. This is exemplified in a study carried out by 
Romano and colleagues, in which they engineered the 
transcription factor AraC to detect blue light instead of 
L-arabinose. This modification allowed a precise re
construction of complex light pictures by a lawn of 
bacteria expressing green fluorescent protein [27]. Sen
sing an external input is also a step used in combination 
with most of the other mechanisms described below. 

Advanced computation by gene regulatory networks 
The computation performed by gene-regulatory net
works enables transforming a simple input into a more 
complex output. The most iconic example is the for
mation of a stripe or ‘French flag’ pattern by feed-for
ward motifs starting from an input present as 
concentration gradient [35,41]. Another example of a 
patterning motif is the toggle switch. This gene-reg
ulatory network is composed of two nodes mutually re
pressing each other and allows the transformation of a 
continuous chemical gradient into a binary response with 
a sharp boundary [30,31]. 

Temporal patterns, such as oscillations, can also lead to 
periodic spatial motifs. For instance, E. coli cells carrying 
the ‘repressilator’, a network of three transcription fac
tors repressing each other in a closed loop producing 
temporal oscillations, show a ring pattern when grown in 
solid culture [42,43]. 

In ‘cybergenetics’, the computation is split between the 
cells and a computer, which takes the real-time mea
sured expression levels as input and produces in turn 
light signals that dynamically control the behavior of the 
cells. Using this cell-in-the-loop approach, Perkins and 
colleagues engineered a checkerboard pattern governed 
by lateral inhibition in a population of yeast cells [26]. 

Genetic rearrangement 
Cells can also be engineered to change their genetic 
architecture during the patterning process, leading to 
stable differentiated cell types. For example, Aditya and 
colleagues used blue light to induce the excision of a 
gene coding for a fluorescent marker with the Cre/lox 
system. In this way, spatial patterns composed of two 
differentiated yeast strains encoding and expressing 
distinct fluorescence reporters were formed in response 
to the projected light [22]. Plasmid segregation in E. coli 
was also used to break the symmetry and produce spatial 
patterns in growing colonies [39,44]. 

Motility 
Most synthetic patterns are visualized by reporter genes. 
However, spatial motifs can also be formed by mod
ulating the cell density. One way to influence the cell 
density is to spatially control the cell motility. Several 
studies controlling the motility of bacteria by light have 
reproduced images with cells. Different ways of inter
facing light with cell motility have been implemented, 
such as expressing proteorhodopsin, a light-driven 
proton pump powering the rotation of the flagellar motor  
[23,45], or modulating the expression of CheZ, a phos
phatase involved in controlling the flagella rotation in E. 
coli, with a light-inducible promoter [28]. One advantage 
of using light to control motility is that the images can be 
easily and rapidly reconfigured [45]. 

Adhesion 
Cell adhesion to surfaces or to other cells can also be 
used to control the position or arrangement of cells. 
Light has been used to promote cell surface adhesion, by 
modifying either the adhesion properties of the bacteria  
[25,46] or those of the surface [24]. Several natural and 
synthetic adhesins (including nanobodies/antigens and 
SpyTag/SpyCatcher) have been used to promote cell–
cell adhesion. The availability of multiple orthogonal 
adhesion systems with different strengths enabled the 
programming of patterns based on phase separation, 
differential adhesion, and sequential layering in liquid 
microbial cultures [19,20]. Cell-to-cell adhesion can also 
be controlled by light and was used to produce reversible 
cellular aggregation patterns [47]. Kan and colleagues 
combined intercellular adhesion with the previously 
described plasmid segregation system and showed that 
adhesion promoted elongation of naturally occurring 
fractal patterns at the boundary of cell lineages in bac
terial colonies [44]. 

Cell–cell communication 
Engineered cell–cell communication is an important 
element of many patterning endeavors. Most of the 
times, the communication is based on small diffusible 
molecules (mainly sourced from quorum-sensing sys
tems), but it can also take other forms, such as light [48] 
or phages [49]. Combining the cell’s production of small 
diffusible molecules with their sensing and ability to 
control gene expression allows the generation of patterns 
based on reaction-diffusion mechanisms [50]. Karig and 
colleagues engineered E. coli to produce and react to two 
quorum-sensing molecules: one activated the synthesis 
of both molecules, while the other inhibited the synth
esis of both. When grown as bacterial lawn, these E. coli 
strains displayed irregular spot patterns in the expression 
of fluorescent reporters that are consistent with sto
chastic Turing theory [33]. 

4 Systems and Synthetic Biology  

www.sciencedirect.com Current Opinion in Microbiology 67( 2022) 102149 



Cell growth and cell death 
Cell growth and cell death also influence cell densities 
and arrangements. One way of controlling them is with 
ecological interactions between species in microbial 
communities, such as predation, neutralism, cooperation, 
or competition [51]. Duran-Nebreda and colleagues 
combined growth inhibition, cell elongation, adhesion, 
and cell–cell communication via diffusible quorum- 
sensing molecules to engineer periodic patterns in 
forming bacterial colonies [32]. A Type VI secretion 
system (T6SS)-mediated killing mechanism was shown 
to drive phase separation in dense bacterial populations  
[52]. In combination with synthetic cell–cell adhesion, 
T6SS-mediated killing was also used to eliminate spe
cified target cells from a microbial community [53]. 

Applications 
Some of the above-described studies contributed to 
improving our understanding of the mechanisms in
volved in pattern formation that are also at play in nat
ural prokaryotic and/or eukaryotic patterning systems. 
Synthetic biology allows us to construct simplified ver
sions of complex natural patterning systems that are 
amenable to study. We can thus focus on the elements of 
interest, while avoiding confounding factors present in 
natural systems. It enables us to test and discover the 
general principles underlying complex patterning pro
cesses [9,54,55]. Other studies focused more on the en
gineering aspects of microbial spatial patterns, which 
have various potential applications ranging from pro
viding tools for biomedical research [56], enhancing 
bioproduction by division of labor [18,57], performing 
complex, distributed biocomputation [58,59], and pro
ducing patterned engineered living materials [10,11]. 
Here, we highlight a few of them. 

The work of Riglar and colleagues provides an example 
of how spatiotemporal pattern-forming bacteria can be 
used for biomedical research [56]. They used E. coli cells 
with engineered temporal oscillations as a marker of 
bacterial growth dynamics at the single-cell level in re
sponse to inflammation in a murine gut. After transi
tioning through the gut, cells recovered from the feces 
were plated and colonies with fluorescent ring patterns 
were formed. The positions of the fluorescent rings in a 
colony were indicative of the phase of the bacterium that 
seeded the colony, and thus allowed to infer the number 
of divisions that occurred in the gut. The analysis of 
multiple colonies also enabled to assess the growth 
variability among cells. 

Natural biomaterials created by living systems exhibit 
self-organization into patterns, and have the ability to 
sense and respond to their environmental conditions. 

The field of engineered living materials (ELM) aims to 
produce novel materials using genetically encoded 
functionalities. Several examples of spatiotemporal pat
terning in ELMs have been reported in recent years. 
Wang and colleagues produced patterned living miner
alized composites by combining light-inducible bacterial 
biofilm formation and biomimetic hydroxyapatite mi
neralization [60]. Curli fibers are the main proteinaceous 
extracellular component of E. coli biofilms and can be 
assembled into biodegradable bioplastic with self-repair 
ability [61]. A combination of genetic regulation of curli 
formation and spatial control by 3D printing successfully 
created patterned materials with potential applications 
in drug delivery, bioremediation, water filtration, metal 
ion sequestration, and civil engineering [17,62,63]. In 
bacterial cellulose-based ELMs, the formation of spatial 
patterns has been controlled by optogenetics and che
mical inducers [64,65]. Bacterial cellulose can be func
tionalized with enzymes to generate catalytic materials  
[64] or with growth factors for applications in tissue en
gineering [65]. Furthermore, the properties of ELMs, 
such as the ability to self-repair, viscoelasticity, and 
mechanical rigidity, can be further improved by pro
grammable cell–cell adhesion [66]. 

Conclusions and outlook 
The use of synthetic biology to engineer the spatial 
patterns in microbial populations and communities is a 
very active area of research. In this short review, we 
summarized the main inputs and processes that have 
recently been employed to generate synthetic patterns, 
and we also highlighted some applications of such pat
terns. Even though we focused on the experimental part, 
mathematical modeling also plays a crucial role in en
gineering spatial patterns [67]. 

Despite impressive progress, there are still challenges 
that remain to be addressed. For example, it would be 
desirable to be able to produce more complex patterns 
without relying on high-content inputs like light or 3D 
printing. We have several suggestions to achieve more 
sophisticated patterns without increasing the input 
complexity. One of them is to produce patterns relying 
on reaction-diffusion mechanisms, such as Turing pat
terns. They can generate complex periodic patterns that 
are completely self-organizing. Despite considerable 
efforts, synthetic Turing patterns have not been 
achieved yet. However, recent experimental [33,68] as 
well as theoretical progress [69] makes us hopeful that 
this achievement will soon be accomplished. Another 
promising approach would be to develop cell–cell con
tact-dependent signaling, which is an important process 
in natural pattern-forming systems. This form of com
munication is for example essential for lateral inhibition  
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[70], where a cell with a particular fate prevents its im
mediate neighboring cells from adopting the same fate, 
resulting in checkerboard patterns. While signaling 
based on synthetic Notch [71] is a powerful contact- 
dependent cell–cell communication platform in mam
malian synthetic biology [72,73], to the best of our 
knowledge, a bacterial analog that delivers something 
else than toxins [52,53] has not yet been exploited for 
synthetic pattern formation. 

Most of the literature covered here has been performed 
with the model organisms E. coli and Saccharomyces cer
evisiae. They are the most studied and well-understood 
microbes, and a plethora of tools to genetically modify 
them have been developed. However, the field would 
certainly benefit from expanding also to other organisms. 
For example, microbes already displaying a particular 
spatiotemporal pattern could be used as the basis to 
modify the pattern as desired. Establishing patterning 
tools in different organisms will help consolidate the 
knowledge gained so far, and real-world applications will 
benefit from a larger diversity of available ‘chassis’ that 
might potentially be more suitable [74]. 

Another limitation of synthetic pattern formation is that 
so far most of the studies focused on the patterns in 2D, 
but expanding to 3D would certainly be desirable. The 
field of ELM started to explore the third dimension 
using 3D printing, molding, and mineralization, and we 
expect to see further progress in near future [15,60,61]. 

So far, most microbial patterning projects have only 
combined few patterning processes. Combining multiple 
patterning mechanisms in a hierarchical manner, such as 
phase separation based on adhesion of two populations, 
followed by cell–cell communication between them and 
information processing by gene-regulatory networks, will 
open the doors to produce more complex spatial pat
terns, similar to what has already been achieved with 
mammalian cells [72,73]. To engineer such multistep 
patterning programs, the field will benefit from recent 
and future advances in synthetic biology, such as the use 
of artificial intelligence and whole-cell simulations [75]. 
In the future, machine learning may be implemented to 
design intricate gene-regulatory networks for a desired 
output [76]. 

We are confident that if the field addresses the chal
lenges described here, the research on engineering 
synthetic spatial patterns in microbial populations and 
communities will continue to thrive and to improve our 
understanding of natural pattern formation, as well as 
lead to numerous real-world applications. 
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