
Tunable Privacy Risk Evaluation of
Generative Adversarial Networks

Bayrem KAABACHI∗ a,1, Farah BRIKI∗ a, Bogdan KULYNYCH a,
Jérémie DESPRAZ a, Jean Louis RAISARO a

a Biomedical Data Science Center, Lausanne University Hospital (CHUV) and
University of Lausanne, Switzerland

ORCiD ID: Bayrem Kaabachi https://orcid.org/0009-0002-7534-8493, Farah Briki
https://orcid.org/0009-0003-0517-0121, Bogdan Kulynych
https://orcid.org/0000-0001-5923-3931, Jean Louis Raisaro

https://orcid.org/0000-0003-2052-6133

Abstract. Generative machine learning models such as Generative Adversarial
Networks (GANs) have been shown to be especially successful in generating re-
alistic synthetic data in image and tabular domains. However, it has been shown
that such generative models, as well as the generated synthetic data, can reveal in-
formation contained in their privacy-sensitive training data, and therefore must be
carefully evaluated before being used. The gold standard method through which
such privacy leakage can be estimated is simulating membership inference attacks
(MIAs), in which an attacker attempts to learn whether a given sample was part of
the training data of a generative model. The state-of-the art MIAs against genera-
tive models, however, rely on strong assumptions (knowledge of the exact training
dataset size), or require a lot of computational power (to retrain many “surrogate”
generative models), which make them hard to use in practice. In this work, we pro-
pose a technique for evaluating privacy risks in GANs which exploits the outputs of
the discriminator part of the standard GAN architecture. We evaluate our attacks in
terms of performance in two synthetic image generation applications in radiology
and ophthalmology, showing that our technique provides a more complete picture
of the threats by performing worst-case privacy risk estimation and by identifying
attacks with higher precision than the prior work.
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1. Introduction

The sensitive nature of healthcare data presents a critical barrier to biomedical research.
Synthetic data generation is one of the possible technical solutions to this problem which
promises to enable privacy-preserving data sharing by releasing synthetic data instead
of the real records. When it comes to synthetic data generation, Generative Adversarial
Networks [1] have been shown to be effective tools that can recreate realistic samples
from image data (e.g., X-rays), or tabular data. The practical application of sharing syn-

1Corresponding Author: Bayrem Kaabachi, Rue du Bugnon 21, 1011 Lausanne, Switzerland. Email:
mohamed-beyrem.kaabachi@chuv.ch. The authors marked with * have contributed equally.

Digital Health and Informatics Innovations for Sustainable Health Care Systems
J. Mantas et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI240634

1233



thetic data in healthcare, however, is limited due to the difficulties in effectively mea-
suring residual privacy risks as required by strict regulatory frameworks such as GDPR
and HIPAA. Indeed, previous research indicates [2] that synthetic data is vulnerable to
membership inference attacks (MIAs): attacks in which an adversary aims to determine
whether a given record was part of the training dataset or not by observing the generative
model or the synthetic data. For example, if we have published a synthetic dataset gener-
ated from a cohort of patients with a sensitive health condition, an adversary could run a
MIA to determine if some targeted individuals were likely part of the training dataset. If
successful, this could lead to the unintended disclosure of the sensitive health condition
characterizing the dataset.

In this paper, we propose an efficient and flexible method to estimate such privacy
risks by building on an existing method called LOGAN [2], a GAN-specific attack that
also provides an efficient assessment of inference risks. LOGAN comes with two draw-
backs: (1) it assumes knowledge of the model’s training data size, and (2) allows neither
to set the false-positive rate (FPR) of an attack in advance, nor to evaluate the receiver-
operating characteristic (ROC) curve of the attack, which are the standard ways to assess
the privacy risk in the machine learning privacy community [3, 4]. In addition, MIAs
require a low FPR to be a realistic privacy threat [3] as a high FPR would mean the at-
tack often incorrectly identifies “non-member” data as “member” data, thus producing
unreliable results and leading to an overly conservative evaluation where the privacy risk
of releasing a synthetic dataset is not significant.

We thus extend LOGAN by introducing a tunable method for privacy risk assess-
ment. Our approach simulates various attack strategies at different levels of attack FPR,
allowing for the computation of the attack’s ROC curve as opposed to only a single num-
ber at an FPR that is unknown in advance. As such, our attack enables a data custodian
to choose the most appropriate strategy for estimating the risk of membership inference
based on the specific data sharing scenario.

Although there exists a growing body of work that studies MIAs on synthetic data
and synthetic data generation, we focus on LOGAN as other methods can be extremely
computationally expensive [4], or are effective only on tabular data due to the challenges
of applying density estimation to high-dimensional data [5].

2. Method

Threat Model We perform our evaluation from the point of view of a data custodian
who wants to release synthetic data. We aim to estimate privacy risk by simulating an at-
tack where the adversary can query the discriminator of the target GAN model. Addition-
ally, the attacker has access to a population D which closely mirrors the data distribution
of the training dataset.

Attack A GAN consists of two subnetworks: a generator which generates a synthetic
sample, and a discriminator which distinguishes between real and generated samples.
We propose a membership inference attack based on the framework introduced by Ye
et al. [6], which, like LOGAN [2], uses the discriminator output but leverages it in a
different way. The discriminator’s output is a useful feature to evaluate for MIAs, as it
can “overfit” to inputs that were part of training data. Following Ye et al. [6], we define
two possible worlds that any sample can belong to: the in world if it is a real sample from
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the training set, and out world if it is not. The attack runs a hypothesis test which aims to
determine to which of the two worlds a given sample belongs:

H0 : (θ ,z) where z ∼ Strain, H1 : (θ ,z) where z ∼ D , (1)

with Strain denoting the training dataset, and θ = T (Strain) the parameters of the trained
model. The attacker queries the discriminator output on a sample Dθ (z) and chooses
which hypothesis to reject if φ(θ ,z) � 1−Dθ (z) ≤ cα(θ), where cα(θ) is a threshold
function that depends on the target model θ and the parameter α , such that 0 ≤ α ≤ 1.
Notably, α can be determined solely by examining the discriminator output on samples
from the out world, by averaging over many H1 (out world) samples and relying on an
assumption that for the H0 (in world) samples the values of φ(θ ,z) = 1 − Dθ (z) are
lower. Concretely, the attacker sets cα(θ) such that the rate at which non-members are
incorrectly identified as members (false positives) equals the chosen FPR α:

Pr
z∼D

[φ(θ ,z)≤ cα(θ)] = α (2)

Algorithm 1 Tunable MIA against GANs

1: Sref ∼ Dn � Attack Phase

2: L ←{φ(θ ,z) | z ∈ Sref}
3: for i from 1 to k do

4: cα∗
i
← α∗

i -quantile of L

5: Stest ∼ Dn � Evaluation Phase

6: for i from 1 to k do

7: αi = Prz∼Stest [φ(θ ,z)≤ cα∗
i
(θ)]

8: βi = 1−Prz∼Strain [φ(θ ,z)≤ cα∗
i
(θ)]

The parameter α controls the
FPR of the attack and ensures that the
attack is tunable, which is a crucial
difference to LOGAN. In Algorithm
1, we present the procedure which
evaluates the privacy risk of a GAN
model by simulating the attack for
k target FPR values α∗

1 ,α
∗
2 , . . . ,α

∗
k .

During the attack phase, every pa-
rameter α∗

i is mapped to the corre-
sponding threshold cα∗

i
(θ) computed

to approximately satisfy Eq. (2) using a reference dataset sampled from D . During the
evaluation phase, we compute the false negative rate (FNR) βi of the attack for each
threshold cα∗

i
(θ) as well as the effective FPR αi computed on a test dataset Strain, an

independent sample from the data distribution D . Having measured both FNR and FPR
of the attack, we can report its success metrics such as accuracy and precision.

3. Experimental Evaluation

Datasets We test our privacy risk evaluation on the MedMNIST+ dataset which is a
collection of pre-processed medical image datasets. Specifically, we use ChestMNIST,
which contains chest X-ray images, OCTMNIST, which contains retinal optical coher-
ence tomography (OCT) images, and PneumoniaMNIST, which consists of chest X-ray
images specifically for pneumonia classification. Each subset is formatted into 64× 64
grayscale images for consistency and ease of use.

Generative Method and Baselines In our study, we focus on image data, and use a Deep
Convolutional GAN (DCGAN) [7]. This model extends the original GAN framework by
integrating convolutional layers that are well-suited for generating image data. On each
dataset, we train several DCGAN models with different random seeds, and compare our
privacy evaluation method to LOGAN [2].
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Table 1. Comparison of the highest achievable MIA risk across different datasets (±σ denotes std.)

Dataset Attack Balanced Accuracy Precision

PneumoniaMNIST LOGAN 0.732±0.081 0.732±0.081
Ours 0.740±0.089 0.791±0.058

ChestMNIST LOGAN 0.883±0.164 0.883±0.164
Ours 0.896±0.171 0.962±0.021

OCTMNIST LOGAN 0.821±0.109 0.821±0.109
Ours 0.831±0.111 0.873±0.069

Results Table 1 shows the effectiveness of the LOGAN attack against our method
across various medical imaging datasets, where we are selecting the best-performing val-
ues across multiple False Positive Rate (FPR) thresholds. We compute these scores with
four different GANs trained with different seeds, which results in different quality of
generation. In all cases, our approach enables us to identify an attack which achieves
significantly higher precision than LOGAN by controlling the false positive rate.

The comparison between our privacy risk estimation and LOGAN, as depicted in
Fig. 1 for PneumoniaMNIST, is representative of similar trends observed across other
datasets. It shows that our approach serves as a generalization of the LOGAN framework:
it delivers comparable attack performance at specific FPR thresholds that match the FPR
of LOGAN while also being able to simulate a broader spectrum of attack scenarios.
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(a) ROC curve: Overall Per-
formance.
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(b) Performance in low FPR
region.
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(c) Precision and recall.

Figure 1. Performance comparison of our privacy risk evaluation to LOGAN [2] on the PneumoniaMNIST
dataset. The × marks represent the performance of LOGAN—it is a special case of our generalized method.
Each line represents attack performance against a single generative model trained with a different random seed.

4. Discussion

A limitation of our attack is assuming that the adversary can query the discriminator of
the generative model. Indeed, the common practice is to release only the generator sub-
network (in the case of GANs), or limiting sharing to the synthetic dataset. The effective-
ness of our attack also depends on the quality and representativeness of the population
pool that the attacker has access to. If the attacker’s sample pool diverges significantly
from the model’s training data, the efficacy of the attack in identifying membership may
not be representative of the real risk generated by the model. Assuming strong adversar-
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ial capabilities such access to the discriminator and a representative “out” records pool,
however, is a standard approach [2] for evaluating privacy leakage.

5. Conclusions

Our approach presents a scalable attack methodology for estimating membership infer-
ence risk against GANs which is more flexible than prior work. It is computationally
efficient as it does not require training in any additional models. This efficiency enables
us to provide a comprehensive overview of multiple attack scenarios. We focus on low
false positive rate regions, which have been identified in prior research as critical for the
effective success of membership inference attacks [3]. Moreover, the adversarial model
in our attack has a reduced amount of prior knowledge compared to the baseline, as we
assume that the attacker does not know the exact number of samples, thereby simulating
a more realistic scenario.
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