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a b s t r a c t 

In this article, we focus on death-linked contingent claims (GMDBs) paying a random financial return at a 

random time of death in the general case where financial returns follow a regime switching model with 

two-sided phase-type jumps. We approximate the distribution of the remaining lifetime by either a series 

of Erlang distributions or a Laguerre series expansion, whose capability to fit the tail of the observed 

mortality data turns out to be much better than the commonly used series of exponential distributions. 

More precisely, we develop a Laurent series expansion of the discounted Laplace transform of the subor- 

dinated process at an Erlang distributed time, which leads to explicit formulae for European-type GMDB 

as well as related risk measures such as the Value-at-Risk (VaR) and the Conditional-Tail-Expectation 

(CTE). We further concentrate upon path-dependent GMDBs with lookback features like dynamic fund 

protection or dynamic withdrawal benefits, by relying on a Sylvester equation approach. The advantage 

of our approaches is that our results are of semi-closed form, avoiding numerical Fourier inversion or 

Monte-Carlo simulation, leading to fast evaluation. This is necessary in risk-management, in particularly 

for nested simulation in the framework of Solvency II. Several numerical experiments are included. 

Our results have implications beyond life-insurance and GMDBs, namely in all situations where random- 

ization or Erlangization replaces known quantities, like, for example, model parameters, by random vari- 

ables. In Finance, it is for example well-known that a random maturity time leads to much more conve- 

nient valuation formulas that well approximate its non-random counterpart. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction and motivation 

In many disciplines, risk analysis and optimal control is based 

n time-changed Markov processes, accounting for the fact that 

often – not only the underlying process itself is random but 

lso the time it is observed (see, e.g., Hieber & Scherer, 2012 , Cui,

irkby, & Nguyen, 2019 and the references therein). This is also 

he case in insurance, where contract payoffs depend on a financial 

isk process while claim dates are random events like death or the 

ccurence of a claim or natural catastrophe. While the results in 

his article can have many applications in different disciplines, the 

ocus is on death-linked insurance products, i.e. Guaranteed Min- 

mum Death Benefits (GMDB) that pay a certain (random) finan- 

ial payoff at the time of death, a feature often embedded in vari- 
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ble annuities. For the two sources of risk, we try to be very gen- 

ral and flexible: The underlying financial return process follows 

 regime switching Brownian motion with two-sided phase-type 

umps (see also Asmussen, 2003, Jiang & Pistorius, 2008 ) while the 

istribution of the random payment times can be approximated by 

 series expansion. One of the pioneering works on regime switch- 

ng models is Hamilton (1989) suggesting that financial models 

hould account for the cyclical pattern of boom and recession ob- 

erved in many financial time series. The idea of such models is 

hat model parameters may depend on a (typically small) number 

f “phases” modelled by a Markov process. Just to mention few ex- 

mples: These processes turn out to be convenient to discuss op- 

imal consumption and control in Finance (see, e.g., Korn, Melnyk, 

 Seifried, 2017, Jin, Liu, & Yang, 2020 ), pension fund modeling in 

nsurance (see, e.g., Hainaut, 2014 ) or cyclical patterns in tempera- 

ure modeling (see, e.g., Elias, Wahab, & Fang, 2014 ). 

The distribution of a random payment date can be approxi- 

ated by a Laguerre series expansion that is dense in the class of 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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2 -distributions (see e.g. Zhang & Yong, 2019 ) or by combinations 

f Erlang distributions. Technically, such Laguerre series expansions 

an be linked to Erlang distributions. An Erlang random variable 

N,μ with parameters N ∈ N and μ > 0 has the same distribution 

s the sum of N independent exponential random variables. It has 

ensity function 

f τN,μ
(t) = 

μ(μt) N−1 

(N − 1)! 
e −μt , t > 0 . (1) 

rlang distributions inherit many desirable features from the ex- 

onential distribution that is obtained as the special case N = 1 . 

nterestingly, a contingent claim that is due at a random expo- 

ential time τ1 ,μ can often be priced much easier than its fixed- 

ime counterpart. The reason for this is that in the class of regime 

witching Brownian motion with two-sided phase-type jumps, it 

s often the Laplace transform of the logarithmic returns that is 

nown analytically. For a fixed-time contingent claim, values or 

igher-order moments require a numerical Laplace inversion algo- 

ithm. In contrast, for a random contingent claim, these quantities 

an just be expressed in terms of the known Laplace transform. 

his was one reason why, in Finance, the idea appeared to “ran- 

omize” the payment date of options, an approach named “Carr’s 

andomization”, “Canadization” or “Erlangization”. 

The suggestion is to approximate the option’s fixed maturity 

ime T by an Erlang distributed random variable with mean T and 

tandard deviation T / 
√ 

N for N ∈ N , i.e. choose μ = T /N in (1) . If

is sufficiently high, this well approximates the original problem 

ith constant maturity T . With this modification, one can typically 

pproximate the finite horizon valuation problem by a (modified) 

nfinite horizon problem that is much easier to solve. An exam- 

le is the pricing of American options where randomization leads 

o piecewise constant exercise boundaries. The pioneering work in 

his direction is ( Carr, 1998 ); for related applications to insurance 

nd risk theory we refer to, e.g., Asmussen & Albrecher (2010) , 

hapter IX.8. In insurance applications, however, payment dates of 

MDBs are per se random. There is no necessity to approximate a 

xed payment date, that is we can use two-parametric Erlang dis- 

ributions with small values of N. Being dense in the class of L 2 -

istributions, combinations of these Erlang random variables allow 

o well approximate any death time distribution (or, more gener- 

lly, any distribution of a random observation time). 

This article establishes the links between (on first sight) quite 

ifferent strands of literature, namely Erlangization in Finance (e.g. 

arr, 1998 , Deelstra, Latouche, & Simon, 2020 ), the discounted den- 

ity approach for GMDB valuation (e.g. Gerber, Shiu, & Yang, 2012; 

erber, Shiu, & Yang, 2015, Zhang & Yong, 2019 ) and the ma- 

rix Wiener-Hopf factorisation (e.g. Jiang & Pistorius, 2008 ). Clos- 

st to this article is Gerber et al. (2012, 2015) – pioneering work 

n GMDB valuation that has been extended in several directions, 

.e. piecewise constant forces of mortality ( Liang, Tsai, & Lu, 2016 ), 

egime-switching jumps and volatility ( Ai & Zhang, 2022; Cui, 

irkby, & Nguyen, 2017; Siu, Yam, & Yang, 2015; Wang, Zhang, 

 Yu, 2021; Zhang, Yong, & Yu, 2021 ), different types of payoffs 

 Kirkby & Nguyen, 2021; Zhang & Yong, 2019 ) and different types 

f random time approximations ( Zhang & Yong, 2019 ). 

We generalize these existing works to a more flexible finan- 

ial market model including a regime-dependent interest rate and 

wo-sided phase-type jumps. This model class is very general and 

llows to well approximate stochastic volatility or heavier, power- 

ype tails of the jump distributions, see, e.g., Mijatovi ́c & Pistorius 

2011) , Cai & Kou (2011) . This is useful also for stress testing or

isk management. Second, we do not rely on Fourier techniques 

nd instead provide computationally very convenient techniques 

or valuation and the computation of higher-order moments that 

re either closed-form or require solely to solve a certain type 

f affine matrix equation called Sylvester equation. We demon- 
1219
trate that this is usually significantly faster and easier to imple- 

ent than Fourier or Laplace inversion algorithms. Given the com- 

lexity of the models used, Fourier-based algorithms are typically 

omputationally more efficient than Monte-Carlo simulations (see, 

.g., Huang, Zhu, & Ruan, 2014, Benth, Deelstra, & Kozpinar, 2021, 

i & Zhang, 2022 ). The computation of solvency capital require- 

ents in insurance companies requires fast and accurate valuations 

n base-case and stress scenarios. This typically requires the an- 

ual re-valuation of the whole insurance portfolio with its embed- 

ed options in different economic scenarios. If these re-valuations 

re based on Monte-Carlo, one typically faces the problem of so- 

alled nested-simulations leading to huge computational efforts 

see, e.g., Bauer, Reuss, & Singer, 2012, Feng, Gan, & Zhang, 2022 ). 

ur results provide the groundwork for these computations as well 

s for risk management, efficient calibration, hedging and opti- 

al control of GMDBs. Further, applications in different disciplines, 

here randomness in space and time is also relevant, might be 

romising. 

Related work on regime switching jump diffusion models ap- 

ears in Finance on the valuation of (exotic) financial options with 

 fixed payment date. Numerical valuation is typically based on 

aplace or Fourier inversion algorithms (see, e.g., Hieber, 2014, 

ieber, 2018, Ballotta, Deelstra, & Rayéee, 2017, Dong, Lv, & Wu, 

019, Le Courtois, Quittard-Pinon, & Su, 2020 ) or Monte-Carlo 

chemes like the Brownian bridge algorithm (see, e.g., Hieber & 

cherer, 2010 ). In this strand of literature, the second part of this 

rticle is closest to Deelstra et al. (2020) that adopts the random- 

zation technique described earlier. While this approach requires a 

ot of computational effort for high values of the Erlangization pa- 

ameter N, we, in this article, exploit that payment dates are per 

e random. Small values of N are then sufficient, speeding up com- 

utations significantly. 

The article is organized as follows: In Sections 2 and 3 , we 

ntroduce the model framework and the payoff of GMDBs. In 

ection 4 , we discuss how the distribution of remaining lifetime 

an be calibrated to a series of Erlang distributions, respectively 

 Laguerre series expansion. Sections 5 and 6 are the core of 

he paper. In Section 5 , we obtain the distribution of the return 

t a random time τN,μ in terms of a (closed-form) Laurent se- 

ies expansion, which is useful to derive any quantiles or mo- 

ents of the return. As an example, we derive valuation meth- 

ds for European-type GMDBs in our regime-switching model. In 

ection 6 , we study some path-dependent GMDBs, namely digital 

nd lookback GMDBs. In Section 7 , we demonstrate how these re- 

ults apply to dynamic fund protection and dynamic withdrawal 

enefits. The obtained pricing formulae depend only on the solu- 

ion to a series of Sylvester equations. In Section 8 , we apply our 

echnique to a calibrated example and compare our techniques to 

ourier inversion algorithms. 

Throughout, we use bold letters for vectors and matrices and 

bbreviate by 1 a vector of ones of appropriate size, by 0 a ma-

rix of zeros of appropriate size and by e j a vector where the i -

h component is the Kronecker delta δ ji . A k × k identity matrix 

s denoted by I k and the transpose of a matrix by ′ . The matrix 

xponential of a matrix B ∈ C 

k ×k is defined via the power series 

xp ( B ) := 

∑ ∞ 

n =0 B 

n /n ! . 

. Model framework 

We study GMDBs embedded in variable annuities where the 

nderlying risky asset prices are determined by 

 t = S 0 e 
X t , (2) 

ith fixed initial price S 0 ∈ IR + and X a Markov-modulated Brown- 

an motion (MMBM) with two-sided phase-type jumps and X 0 = 0 . 

n MMBM with two-sided phase-type jumps is a stochastic 
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rocess that appears in different “states” modulated by a Markov 

rocess ϕ t . The main properties of the process are the following 

see, e.g., Deelstra et al., 2020 ): 

• The process ϕ = { ϕ t } t≥0 governs the diffusion states of the 

process X . It is defined on a finite state space with M ∈ N

phases, that is at any time t > 0 , ϕ t = j, where j ∈ S σ :=
{ 1 , 2 , . . . , M} . When ϕ t = j, the level X evolves like a Brow-

nian motion with drift d j ∈ IR and variance σ 2 
j 

> 0 . We as- 

sume that the process X t starts in a diffusion state and that 

ϕ 0 has initial distribution π ∈ IR 

M×1 . 
• When ϕ t = j ∈ S σ , two kinds of transitions are possible: in-

stantaneous transitions from j to a different diffusion state 

v ∈ S σ at a rate { Q } jv , or jumps. The rates { Q } jv are col-

lected in the subgenerator matrix 1 Q . Jumps can be pos- 

itive or negative; we group the different jumps in two 

state spaces S + = { s + 
1 
, s + 

2 
, . . . , s + n } and S − = { s −

1 
, s −

2 
, . . . , s −m 

}
for n, m ∈ N . 

• We write the dynamics of { X t } t≥0 as: 

X t = X 0 + 

∫ t 

0 

d ϕ s d s + 

∫ t 

0 

σϕ s d B s + 

∫ t 

0 

J + ϕ s d N 

ϕ s , + 
s −

∫ t 

0 

J −ϕ s d N 

ϕ s , −
s .

(3) 

In the diffusion state j ∈ S σ , the processes { N 

j, + 
t } t≥0 and

{ N 

j, −
t } t≥0 define the arrival of jumps. More specifically, the 

arrival rate of an upward jump k ∈ S + (respectively k ∈ S −
for a downward jump) is the constant { W σ+ } jk (respectively 

{ W σ−} jk ). The jumps may be accompanied by a change in 

diffusion state. If a jump k ∈ S + appears, { V + σ } ki is the rate

at which the jump terminates and the process returns to the 

diffusion state i ∈ S σ (analogous the rate is { V −σ } ki after a 

downward jump k ∈ S −). If J + 
j 

and J −
j 

represent the abso- 

lute size of an upward and downward jump that occurred 

in phase j, then for all i ∈ S σ and x ≥ 0 , 

P 

(
J + 

j 
∈ d x, ϕ = i after the jump 

)
= 

1 

( W σ+ 1 ) j 

(
W σ+ e R + x V + σ

)
ji 

d x , (4) 

P 

(
J −

j 
∈ d x, ϕ = i after the jump 

)
= 

1 

( W σ−1 ) j 

(
W σ−e R −x V −σ

)
ji 

d x . (5) 

The upward jumps have phase-type distribution represented 

by a subgenerator matrix R + ∈ R 

n ×n on the state space S + , 
and the downward jumps have phase-type distribution rep- 

resented by a subgenerator matrix R − ∈ R 

m ×m on the state 

space S −. 
• For later use, we also define the transition matrices W ∈ 

R 

M×(n + m ) and V ∈ R 

(n + m ) ×M : 

W = 

[
W σ+ W σ−

]
, V = 

[
V + σ
V −σ

]
. 

The process does not contain an absorbing state, that is the 

diagonal entries of Q are determined such that [ Q W ] 1 = 0 . 

In other words, (X, ϕ) can be seen as a Markov-modulated 

rownian motion with two-sided phase-type jumps, in which the 

umps can (but are not forced to) trigger a phase transition. When 

 = j ∈ S σ , the continuous part of X is a Brownian motion with

rift d j and variance σ 2 
j 

. In phase j, an upward jump occurs at rate
1 Subgenerator matrices have non-negative off-diagonal entries; rows sum up to 

on-positive values. For a generator matrix, rows sum up to zero. 

m

M

1220 
 W σ+ 1 ) j and a downward jump occurs at rate ( W σ−1 ) j . Given 

he vector of constants θ := (θ (1) , θ (2) , . . . , θ (M) ) ∈ R 

M , we intro-

uce the process 

t = 

∑ 

j∈S σ
θ ( j) · 1 ϕ t = j = θ (ϕ t ) , where ϕ t ∈ S σ . 

hat is constant in each phase ϕ t . Finally, we define � = 

iag (θ ( j) ) j∈S σ , the drift D = diag (d j ) j∈S σ and volatility matrix � = 

iag (σ j ) j∈S σ . 

Let us present the regime switching Kou model as Example 2.1 . 

his allows a later comparison to Siu et al. (2015) . 

xample 2.1 (Regime switching Kou model) . In Kou’s model, in 

tate j ∈ S σ , the MMBM process X has dynamics 

 X t = d j d t + σ j d W t + d J ( j) 
t , (6) 

here { W t } t≥0 denotes a standard Brownian motion and { J ( j) 
t } t≥0 is

n independent compound Poisson process with a constant arrival 

ate λ j ≥ 0 and random double-exponential jump sizes 

j (d y ) = 

(
p j α−, j e 

α−, j y 1 y< 0 + (1 − p j ) α+ , j e 
−α+ , j y 1 y ≥0 

)
d y , 

here with probability p j ∈ [0 , 1] , jumps are negative. Pos- 

tive and negative jump sizes are exponentially distributed 

ith intensity α+ , j > 0 and α−, j > 0 , respectively, see also 

iu et al. (2015) for a more detailed introduction. In our 

otation, the regime switching Kou model is obtained as 

 + σ = −R + = diag (α+ , j ) j∈S σ , V −σ = −R − = diag (α−, j ) j∈S σ , W σ− = 

iag (p j λ j ) j∈S σ , W σ+ = diag ((1 − p j ) λ j ) j∈S σ and Q = Q 0 −
iag ( W 1 ) = Q 0 − diag (λ j ) j∈S σ . Given the matrix Q introduced 

arlier, the matrix Q 0 := Q + diag ( W 1 ) is a generator matrix. 

For later use, we recall properties of generator matrices, see 

emma 2.2 . 

emma 2.2 (Generator matrices) . 

(a) Let Q 0 be a generator matrix of size M × M and � be a di- 

agonal matrix with real-valued entries (θ ( j) ) j∈S σ . If θ ( j) > 0 

for j ∈ S σ , then Q 0 − � is invertible. Furthermore, every eigen- 

value of Q 0 is nonpositive. 

(b) Let β > 0 and Q ∈ R 

M×M be a matrix whose eigenvalues have 

nonpositive real part. Then, βI M 

− Q is invertible and ∫ ∞ 

0 

e −βt exp ( Q t)d t = ( βI M 

− Q ) 
−1 

. 

roof. See, for example, Mijatovi ́c & Pistorius (2011) , Asmussen 

2003) , p. 55ff. �

. GMDB payoff and discounted Laplace transform 

We consider death-linked variable annuities whose benefits de- 

end on the individual’s remaining lifetime T x . As an analoguous 

pplication, one might consider a non-life insurance contract with 

ayments that occur at a random event time T x . We assume that 

he event time T x is independent from the financial market, i.e. the 

isky asset S and the Markov chain ϕ. More details on the distri- 

ution of T x are given in Section 4 . We are interested in evaluating

uantities of the form 

 

[ 
e −

∫ T x 
0 θ (ϕ s ) d s b ( S T x , T x , M T x , m T x ) 

] 
, (7) 

here b is a payoff function and the running minimum and maxi- 

um of the process X t is defined as 

 t := sup 

s ∈ [0 ,t] 

X s , m t := inf 
s ∈ [0 ,t] 

X s , (8) 
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espectively. If θ (ϕ s ) , for s ≥ 0 , is the (regime-dependent) risk-free 

ate, this corresponds to the valuation of, for example, European, 

igital and lookback options under a given risk-neutral measure. 2 

o derive (7) , define, for β ∈ R , the discounted Laplace transform 

f the process X as: 

( j) 
t (β) := E 

[ 
e −

∫ t 
0 θ

(ϕ s ) d s e βX t 

∣∣∣ϕ 0 = j 

] 
. (9) 

emma 3.1 states the discounted Laplace transform (9) for the 

arkov-modulated Brownian motion with two-sided phase-type 

umps under some general existence condition. A proof of this re- 

ult is, for completeness, included in Appendix A . 

emma 3.1 (Discounted Laplace transform: Markov-modulated 

rownian motion with two-sided phase-type jumps) . Set ϕ 0 = j ∈ 

 σ . Let λ+ 
0 

be the largest eigenvalue of the subgenerator matrix R + , 
hat is λ+ 

0 
:= max { λ : λ eigenvalue of R + } . For β < −λ+ 

0 
, the matrix 

iscounted Laplace transform (9) is given by 

( j) 
t (β) = e ′ j exp ( �(β, �) t ) 1 , (10) 

ith Laplace exponent matrix: 

(β, �) = Q + D β − � + 

1 

2 

�2 β2 + W σ−(βI m 

− R −) −1 V −σ

−W σ+ ( βI n + R + ) 
−1 

V + σ . (11) 

roof. See Appendix A . �

If the valuation is done with respect to a risk-neutral measure, 

he process { e − ∫ t 0 θ
(ϕ s ) d s S t } t≥0 is a martingale. This requires a mar- 

ingale condition on the parameters, see Lemma 3.2 . 

emma 3.2 (Martingale condition) . If the model parameters satisfy 

he relation 

(1 , �) 1 = 0 , (12) 

here �(β, �) is as in (11) with � = diag (θ ( j) ) j∈S σ , then the pro-

ess { e − ∫ t 0 θ
(ϕ s ) d s S t } t≥0 is a martingale, that is 

 

[
e −

∫ t 
0 θ

(ϕ s ) d s S t 
∣∣ϕ 0 = j 

]
= S 0 . 

roof. Note that φ( j) 
0 

(1) = S 0 and 

∂φ( j) 
t (1) 

∂t 

∣∣∣∣
t=0 

= e ′ j �(1 , �) · exp 

(
�(1 , �) t 

)
1 

∣∣∣∣
t=0 

! = 0 

s true for each j if and only if �(1 , �) 1 = 0 . See also Deelstra

t al. (2020) . �

Let us first continue Example 2.1 , see Example 3.3 . 

xample 3.3 (Regime switching Kou model (continued)) . Given the 

aplace exponent matrix 

(β, �) = Q + D β − � + 

1 

2 

�2 β2 + W σ−(βI M 

− R −) −1 V −σ

−W σ+ ( βI M 

+ R + ) 
−1 

V + σ

= Q 0 + D β − � + 

1 

2 

�2 β2 

+ diag 

(
λ j p j 

α−, j 

α−, j + β
+ λ j (1 − p j ) 

α+ , j 

α+ , j − β
− λ j 

)
, 
2 Note that the risk neutral measure associated to a regime switching model is 

ot unique in general. When starting from the real-world probability measure, one 

f the most common approaches is to use the regime switching random Esscher 

ransform to determine a risk neutral measure. This transform has the advantages 

f preserving the (Markov-modulated) nature of the model and of minimising the 

onditional relative entropy with respect to the historical measure (see e.g. Elliott, 

han, & Siu, 2005 for details and Godin & Trottier, 2019 for a recent discussion). 

4

T

1221 
he martingale condition �(1 , �) 1 = 0 is simplified to: 

 j = θ ( j) −1 

2 

σ 2 
j −
(

λ j p j 
α−, j 

α−, j + 1 

+ λ j (1 − p j ) 
α+ , j 

α+ , j −1 

−λ j 

)
(13) 

or j ∈ S σ . In each phase j ∈ S σ , this is the Black-Scholes drift mi-

us the correction for jumps. In case of Kou’s model ( M = 1 ), the

aplace exponent is given by: 

(β, �) = d 1 β − θ (1) + 

1 

2 

σ1 
2 β2 

+ λ1 

(
p 1 

α−, 1 

α−, 1 + β
+ (1 − p 1 ) 

α+ , 1 
α+ , 1 − β

− 1 

)
. (14) 

We consider a second example where the downward jump dis- 

ribution approximates heavier, power-type tails, see Example 3.4 . 

xample 3.4 (Phase-type jump model) . See also Robert & Boudec 

1997) and Deelstra et al. (2020) for a more detailed analysis and 

otivation. We consider two diffusion phases ( M = 2 ). The transi- 

ion from phase 1 to phase 2 is defined by a more general phase- 

ype distribution with subgenerator matrix: 

 − = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

−(c + s a ) 1 /a (1 /a ) 2 · · · (1 /a ) n a −1 

b/a −b/a 0 · · · 0 

(b/a ) 2 0 −(b/a ) 2 · · · 0 

. . . 0 

(b/a ) n a −1 0 0 · · · −(b/a ) n a −1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

ith n a ∈ N , a > max (1 , b) , b, c > 0 and s a = 1 /a + 1 /a 2 + . . . +
 /a n a −1 . The other matrices are chosen as follows for parameters 

> 0 , q 1 > 0 , q 2 > 0 , R + = −λ, ϕ 0 = 1 , V + σ = 

[
λ 0 

]
: 

Q = 

[
−q 1 0 

0 −q 2 

]
, W σ− = 

[
q 1 0 · · · 0 

0 0 · · · 0 

]
, 

W σ+ = 

[
0 

q 2 

]
, V −σ = 

[
0 −R −1 

]
. 

hase-type distributions can only approximate heavy-tailed distri- 

utions. However, as Fig. 1 demonstrates, these approximations 

an be pretty reasonable in practical applications. In the fig- 

re, the quantiles of a Pareto distribution with density f (x ) = 

x αm 

/x α+1 1 x ≥x m , α > 1 , are compared to three phase-type approx- 

mations with parameters (a, b, c, n a ) and the distribution | X| ,
here X ∼ N (0 , 1) . The means of the distribution are chosen to

e equal to E [ | X| ] = 

√ 

2 /π = αx m 

/ (α − 1) = 

1 
c 

∑ n a −1 
l=0 

(
1 
b 

)l 
, see also

eelstra et al. (2020) . 

. Distribution of remaining lifetime: approximation by Erlang 

andom variable 

Having discussed the dynamics of the underlying risky asset 

rices, this section deals with the random payment date T x . As 

entioned in the introduction, it turns out that calculations are 

urprisingly simple for an exponential or Erlang time τN,μ. In this 

ection, we show how any distribution of the payment date T x can 

ell be approximated by combinations of Erlang random variables. 

his has theoretical foundation in the link to a Laguerre series ex- 

ansion discussed in Section 4.2 , see also Zhang & Yong (2019) . In

he following, denote by f T x the density of the remaining lifetime 

 x . 

.1. Approximation by a combination of Erlang densities 

We assume that the density function of the remaining lifetime 

 x can be approximated by a combination of Erlang densities: 

f T x (t) ≈
K B ∑ 

k =0 

B k · f τn k ,μk 
(t) =: ˆ f T x (t) , (15) 
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Fig. 1. QQ-Plot comparing the quantiles of a Pareto( α = 1 . 3 , x M = 0 . 18 ) distribution to the distribution of the absolute value of a standard normal distribution and different 

phase-type approximations. 
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3 This assumption is not restrictive as it is usually satisfied for reasonable param- 

eter choices. In specific examples, it is possible to derive conditions that are easier 

to check, Siu et al. (2015) propose for example μ + r > min j∈S σ κ j (β) , where κ j (β) 

is introduced in our Example 5.4 , Eq. (25) . 
or constants K B ∈ N , B k ∈ R with 

∑ K B 
k =0 

B k = 1 . A major property of

finite) mixtures of Erlang distributions is the fact that they can 

rbitrarily well approximate any distribution on [0 , ∞ ) , see, e.g., 

. 84 in Asmussen (2003) . Exploiting that the remaining lifetime 

 x is independent of the risky asset, we can reduce the previously 

ntroduced valuation problems to the valuation problem relative to 

n Erlang distributed remaining lifetime. Exemplarily, in the case 

f a European-type payoff b(S T x ) , this means that: 

 

[ 
e −

∫ T x 
0 θ (ϕ s ) d s b ( S T x ) 

] 
≈

K B ∑ 

k =0 

B k 

∫ ∞ 

0 

E 

[ 
e −

∫ t 
0 θ

(ϕ s ) d s b ( S t ) 

] 
f τn k ,μk 

(t) d t 

= 

K B ∑ 

k =0 

B k · E 

[ 
e −

∫ τn k ,μk 
0 

θ (ϕ s ) d s b 
(
S τn k ,μk 

)] 
, 

or n k ∈ N and μk > 0 . The special case of exponential random vari-

bles ( n k = 1 ) is discussed and calibrated to a life table by Siu et al.

2015) . 

.2. Approximation by Laguerre series expansion 

Laguerre functions are defined as 

N (t) = 

√ 

2 μ e −μt ·
N ∑ 

k =0 

(−1) k 
(

N 

k 

)
(2 μt) k 

k ! 

= 

N ∑ 

k =0 

(−2) k 

√ 

2 

μ

(
N 

k 

)
· f τk +1 ,μ

(t) , 

or N = 1 , 2 , . . . and t > 0 and form a complete orthonormal basis

f square integrable functions on the positive real line. We can ex- 

and the density f T x ∈ L 2 (R + ) as: 

f T x (t) = 

∞ ∑ 

k =0 

A k · �k (t) ≈
K A ∑ 

k =0 

A k · �k (t) =: ˜ f T x (t) . (16) 

t is easy to show that this approximation by Laguerre series is 

 special case of (15) , see also Zhang & Yong (2019) for a more

etailed discussion. The advantage of the Laguerre series expansion 

s that it allows for an error analysis of the truncation error, see the 

ore detailed discussion in Section 8 . In the following, we focus on 

he case where the remaining lifetime T x is an Erlang distributed 

andom variable τN,μ. 
1222 
. European-type GMDBs and Laurent series expansion 

Now, we consider European-type GMDBs. At time T x = τN,μ, the 

ayoff is a function b of the risky asset price S T x . The time-0 value 

f this product is 

 V (S 0 ) = E 

[ 
e −

∫ τN,μ
0 

θ (ϕ s ) d s b 
(
S τN,μ

)] 
. (17) 

n example is a simple guarantee product with guarantee level 

 ≥ 0 , that is b(S τN,μ
) = max (S τN,μ

− K, 0) . We want to first obtain

he density of X τN,μ
= ln (S τN,μ

/S 0 ) , the logarithmic return until a 

random) Erlang time τN,μ, independent of X . 

The discounted Laplace transform of the subordinated process 

 τN,μ
is known, see Lemma 5.1 . To keep the paper self-contained, 

e provide a short proof in the Appendix. 

emma 5.1 (Laplace transform of Erlang-subordinated pro- 

ess) . Consider an Erlang random variable (r.v.) τN,μ. Assume that 

≤ −λ+ 
0 

where λ+ 
0 

:= max { λ : λ eigenvalue of R + } . Further assume 

hat the eigenvalues of �(β, �) have nonpositive real part only. 3 For 

j ∈ S σ : 

( j) 
τN,μ

(β) = E 

[ 
e 

− ∫ τN,μ
0 

θ (ϕ s ) d s + βX τN,μ

∣∣∣ϕ 0 = j 

] 
= e ′ j 

(
μN ( μI M 

− �(β, �) ) 
−N 
)

1 . (18) 

roof. See Appendix B . �

Without regime switching ( M = 1 ), (18) simplifies to 

(1) 
τN,μ

(β) = 

(
μ

μ − �(β, �) 

)N 

, (19) 

ee, for example, Gerber, Shiu, & Yang (2013) . In the general case 

f M ≥ 1 , we expand φ( j) 
τN,μ

(β) as a Laurent series, see Lemma 5.2 . 

emma 5.2 (Laurent series expansion of φ( j) 
τN,μ

(β) ) . 

(a) The Laplace transform 

φ( j) 
τN,μ

(β) = e ′ j 
(
μN ( μI M 

− �(β, �) ) 
−N 
)

1 
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5 Note that the inverse of a 2 × 2 matrix is given by: 
can be written as the quotient p(β) /q (β) of two polynomials 

p(β) and q (β) , where we assume (without loss of generality) 

that p(β) and q (β) have no common roots. 

(b) Denote by { αi } and { βk } the roots of the polynomial q (β) in

(a) with negative and positive real part, respectively. 4 We can 

expand φ( j) 
τN,μ

(β) in terms of its Laurent series: 

φ( j) 
τN,μ

(β) = 

∑ 

i 

N ∑ 

z=1 

a iz 
(αi − β) z 

+ 

∑ 

k 

N ∑ 

z=1 

b kz 

(βk − β) z 
. (20) 

The coefficients a iz , b kz are uniquely determined solving: 

a iz = 

(−1) z 

(N − z)! 
lim 

β→ αi 

d 

N−z 

d βN−z 

(
(β − αi ) 

N · φ( j) 
τN,μ

(β) 
)
, (21) 

b kz = 

(−1) z 

(N − z)! 
lim 

β→ βk 

d 

N−z 

d βN−z 

(
(β − βk ) 

N · φ( j) 
τN,μ

(β) 
)
. (22) 

roof. 

(a) As the matrix inverse A 

−1 can be expressed in terms of 

the determinants and the subdeterminants of A , the entries 

of the matrices (βI n + R + ) −1 and (−βI m 

+ R −) −1 are (quo- 

tients of) polynomials, see Asmussen (2003) , p. 83. The same 

arguments show that 
(
μI M 

− �(β, �) 
)−1 

is the quotient of 

two polynomials. 

(b) The polynomial q (β) does not have a root with zero real 

part. This can be seen as follows: For each purely imag- 

inary z, it holds that 
∣∣E 

[
e 

zX τN,μ
] ∣∣ ≤ E 

[∣∣e zX τN,μ
∣∣] = E [1] = 1

(see Gerber et al., 2013 , p. 617). If p(β) and q (β) have no

common roots, q has simple roots and the degree of q is 

greater than the degree of p, it is possible to form a par- 

tial fraction decomposition with Laurent series (21) and (22) , 

see, e.g., (1) in Eustice & Klamkin (1979) . 

�

If at least one of the θ ( j) s in the diagonal matrix � is positive, 

he Markov chain ϕ is absorbing. If the Markov chain is absorbed 

t time t , we denote its state by ϕ s = � for all s ≥ t . Given one re-

lization of the time τN,μ and the evolution of the Markov chain 

ntil that time, the probability that the chain has not moved to 

he absorbing state is e −
∫ τN,μ

0 
θ (ϕ s ) d s . With the results in Lemma 5.2 , 

e can apply the residue theorem and obtain the density of X τN,μ

iven the initial state ϕ 0 = j. If � = 0 , this density is a sum of Er-

ang densities: 

f X τN,μ
(x ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

∑ 

i 

N ∑ 

z=1 

(−a iz ) 
x z−1 

(z−1)! 
e −αi x , x < 0 

∑ 

k 

N ∑ 

z=1 

b kz 
x z−1 

(z−1)! 
e −βk x , x ≥ 0 

(23) 

iven the density (23) , it is not only possible to estimate GMDB 

alues but also related risk measures like Value-at-Risk (VaR) and 

onditional-Tail-Expectation (CTE). If � � = 0 , i.e. if at least one of 

he θ ( j) s is positive, the Markov chain is absorbing and the absorp- 

ion probability is given by P 

(
ϕ τN,μ

= � 
)

= 1 − ∫ 
R 

f X τN,μ
(x ) d x with

f X τN,μ
(x ) as in (23) . In this case, the density of X τN,μ

is composed

f a point mass at the absorbing state ϕ τN,μ
= � and the (defec-

ive) density (23) of the “survived” paths. This concept of a (de- 

ective) density allows to extend the discounted density approach 
4 We assume these roots are simple roots. In case of equal roots, the following 

xpansion is easily modified. 

A

1223 
y Gerber et al. (2012, 2013) to regime switching models. To link 

o this research and for illustrative purposes, Example 5.3 presents 

he coefficients in (23) in the Black-Scholes model. 

xample 5.3 (Black-Scholes model) . In a Black-Scholes model with 

 1 = r − σ 2 / 2 , the discounted Laplace transform is given by (19) .

he (non-removable) singularities are then given by the roots of 

he equation �(β, �) = μ, i.e. 

(β, �) − μ = 

1 

2 

σ 2 β2 + 

(
r − 1 

2 

σ 2 
)
β − θ (1) − μ = 0 , (24) 

n equation that can be solved to 

1 = 

1 

2 

− r 

σ 2 
−
√ (

r 

σ 2 
− 1 

2 

)2 

+ 

2(μ + θ (1) ) 

σ 2 
, 

1 = 

1 

2 

− r 

σ 2 
+ 

√ (
r 

σ 2 
− 1 

2 

)2 

+ 

2(μ + θ (1) ) 

σ 2 
. 

ith some algebra, it is easy to show that α1 · β1 = −2(μ + 

(1) ) /σ 2 . We get for z = 1 , 2 , . . . , N: 

 1 z = 

(−1) z 

(N − z)! 
lim 

β→ α1 

d 

N−z 

d βN−z 

( 

(β − α1 ) 
N μN (

μ − �(β, �) 
)N 

) 

= (−1) z 
(−1) N−z 

(
2 N−z−1 

N−1 

)
(α1 − β1 ) N−z 

(
μ

− 1 
2 
σ 2 (α1 − β1 ) 

)N 

= (−1) z 

(
2 N−z−1 

N−1 

)
(β1 − α1 ) N−z 

(
−α1 β1 

β1 − α1 

)N 

·
(

μ

μ + θ (1) 

)N 

, 

 1 z = 

1 

(−1) N 
1 

(−1) N−z 
a 1 z = (−1) z a 1 z . 

f θ (1) = 0 , (23) defines a density; else the factor (μ/ (μ + θ (1) )) N 

akes (23) a defective density. For the density of X τN,μ
in a Black- 

choles model, see (2.36) in Gerber et al. (2012) . 

We further demonstrate the procedure on how to obtain (23) in 

he example of the regime switching Kou model, studied in detail 

y Siu et al. (2015) , see Example 5.4 . 

xample 5.4 (Regime switching Kou model (continued)) . Consider 

gain the regime switching Kou model from Example 3.3 . We dis- 

uss the case of M = 2 regimes. The general case of M regimes in,

or example, Siu et al. (2015) , can be treated analoguously. Abbre- 

iate 

j (β) : = d j β − θ ( j) + 

1 

2 

σ 2 
j β

2 

+ λ j 

(
p j 

α−, j 

α−, j + β
+ (1 − p j ) 

α+ , j 

α+ , j − β
− 1 

)
(25) 

or j = 1 , 2 . Note that q j j := ( Q 0 ) j j is non-positive and define: 

(β) := ( q 11 + κ1 (β) − μ) ( q 22 + κ2 (β) − μ) − q 11 q 22 . 

ith this, the Laplace transform from Lemma 5.1 is given by: 5 

( j) 
τN,μ

(β) = e ′ j 
(
μN 
(
μI M − �(β, �) 

)−N 
)

1 

= e ′ j 

(
μN 

(
− Q 0 −

[
κ1 (β) − μ 0 

0 κ2 (β) − μ

])−N )
1 

= e ′ j 

((
μN 

(
−
[

q 11 −q 11 

−q 22 q 22 

]
−
[
κ1 (β) −μ 0 

0 κ2 (β) − μ

])−N )
1 
 

−1 := 

[
a b 

c d 

]−1 

= 

1 

det (A ) 

[
d −b 

−c a 

]
. 
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t

= e ′ j 

((
μN 

([
−q 11 − κ1 (β) + μ q 11 

q 22 −q 22 − κ2 (β) + μ

]−1 )N )
1 

= e ′ j 

((
μ

d(β) 

)N 
([

−q 22 − κ2 (β) + μ −q 11 

−q 22 −q 11 − κ1 (β) + μ

]N ))
1 , 

 function that can indeed be written as a quotient of two polyno- 

ials. For example, Siu et al. (2015) show that, given the condition 

∞ < −α−, 2 < −α−, 2 < 0 < α+ , 1 < α+ , 2 < ∞ , the equation d(β) =
 has 4 solutions with positive real part β1 , β2 , β3 , β4 and 4 solu-

ions with negative real part α1 , α2 , α3 , α4 , ordered as −∞ < α4 <

3 < α2 < α1 < 0 < β1 < β2 < β3 < β4 < ∞ , see Lemma A.5 in the

ppendix of Siu et al. (2015) . With these coefficients, the (defec- 

ive) density of X τN,μ
is explicitly given by (21) –(23) . 

Given initial state ϕ 0 = j ∈ S σ , (18) writes as: 

 

[ 
e −

∫ τN,μ
0 

θ (ϕ s ) d s S τN,μ

] 
= E 

[ 
S 0 e 

X τN,μ
−∫ τN,μ

0 
θ (ϕ s ) d s 

] 
= S 0 e 

′ 
j 

(
μN 
(
μI M 

− �(1 , �) 
)−N 
)

1 . 

epresenting the (defective) density as in (23) allows us to value 

uropean-type GMDBs in closed-form. The advantage of working 

ith (defective) densities is the fact that the discount rate is mod- 

lled as an absorption rate of the Markov chain. With this idea, 

alues of European-type GMDBs with payoff b(S t ) , paid at an Er- 

ang random time t = τN,μ, can be written as: 

 (μ, r) : = E 

[ 
e −

∫ τN,μ
0 

θ (ϕ s ) d s b 
(
S τN,μ

)] 
= E 

[ 
E 

[ 
e −

∫ τN,μ
0 

θ (ϕ s ) d s b 
(
S 0 e 

X τN,μ

) ∣∣∣ϕ, τN,μ

] ] 
= E 

[ 
E 

[ 
0 ·
(
1 − e −

∫ τN,μ
0 

θ (ϕ s ) d s 
)

+ 

∫ 
R 

b 
(
S 0 e 

x 
)

f X τN,μ
(x ) d x 

∣∣∣ϕ, τN,μ

] ] 
= 

∫ 
R 

b 
(
S 0 e 

x 
)

f X τN,μ
(x ) d x , (26) 

ith the (defective) density f X τN,μ
(x ) from (23) . Note that with 

26) we need to compute the integral with respect to the terminal 

ayoff only – the discount factor is “integrated” into the (defective) 

ensity. Theorem 5.5 gives the final result. 

heorem 5.5 (European-type options) . Consider European-type 

MDBs with payoff b(S t ) , paid at an Erlang random time t = τN,μ.

heir fair value is given by 

 (μ, r) : = E 

[ 
e −

∫ τN,μ
0 

θ (ϕ s ) d s b 
(
S τN,μ

)] 
= 

∑ 

i 

N ∑ 

z=1 

∫ 0 

−∞ 

b(S 0 e 
x ) · (−a iz ) 

x z−1 

(z − 1)! 
e −αi x d x 

+ 

∑ 

k 

N ∑ 

z=1 

∫ ∞ 

0 

b(S 0 e 
x ) · b kz 

x z−1 

(z − 1)! 
e −βk x d x . (27) 

roof. Simply plug (23) into (26) . The case of one state M = 1 re-

ates to the discounted density approach by Gerber et al. (2012, 

013) . In this case, one can derive much simpler relations between 

he value with and without discount factor, see, e.g., (1.8) in Gerber 

t al. (2013) or Example 5.3 above. Note that our case of a regime-

ependent discount factor leads to a dependence between discount 

actor and asset value S τN,μ
. �

Nicely, for many popular GMDBs, the integrals in (27) can be 

olved analytically, see also, e.g., Gerber et al. (2012, 2013) , Zhang 

 Yong (2019) in the case of the Black-Scholes and Kou model. Let 
1224 
s just apply our results to an out-of-the money call GMDB, see 

xample 5.6 . 

xample 5.6 (Out-of-the-money call option valuation) . For b(S t ) = 

ax (S t − K, 0) , 
 (h ) > 1 and S 0 ≤ K, we obtain: 

(h, z) : = 

∫ ∞ 

0 

e −hx x z−1 

(z − 1)! 
max (S 0 e 

x − K, 0)d x 

= 

∫ ∞ 

ln (K/S 0 ) 
e −hx x z−1 

(z − 1)! 
(S 0 e 

x − K)d x 

= S 0 · η
(

ln (K/S 0 ) , h − 1 , z 
)

− K · η
(

ln (K/S 0 ) , h, z 
)
, 

here we use that for y ≥ 0 , we can apply partial integration to 

btain 

(y, h, z) = 

∫ ∞ 

y 

e −hx x z−1 

(z − 1)! 
d x = 

z ∑ 

i =1 

e −hy 1 

h 

z+1 −i 

y i −1 

(i − 1)! 
. 

rom (27) , we finally obtain: 

(S 0 ) := E 

[ 
e −

∫ τN,μ
0 

θs d s b 
(
S τN,μ

)] 
= 

∑ 

k 

N ∑ 

z=1 

b kz C(βk , z) , (28) 

here the coefficients b kz are given by (22) and βk are the (non- 

emovable) singularities with positive real part of φτN,μ
(β) . Note 

hat the singularities βk and the coefficients b kz depend on the dis- 

ount factor via the matrix �. 

Similarly, one can value in-the-money call GMDBs. The corre- 

ponding put options can easily be expressed using put-call parity. 

ote that the valuation (27) does not require any inverse Laplace 

ransform. Instead, most common option types allow to solve the 

ntegrals in (27) analytically. As Laplace inversion techniques may 

e computationally expensive or require high-precision arithmetic 

see, for example, Hassanzadeh & Pooladi-Darvish, 2007 for a com- 

arison of different algorithms), this is an advantage over the pric- 

ng equations presented in, for example, Section 3.1 in Siu et al. 

2015) . The closed-form density (23) allows also to easily compute 

igher-order moments and other risk measures such as the Value- 

t-Risk (VaR) and the Conditional-Tail-Expectation (CTE). 

. Path-dependent GMDBs and Sylvester equations 

Deelstra et al. (2020) derive by randomization and fluidization 

pproximations for fixed-time European digital options, vanilla op- 

ions and down-and-out options in a Markov-modulated Brownian 

otion framework with two-sided phase-type jumps. For high val- 

es of N, replacing the fixed maturity time T by a τN, 
μ
N 

random 

ariable leads to accurate approximations of the option price. We 

rst want to point out that these results are useful in life insur- 

nce when combined with the remaining lifetime approximations 

resented in Section 4 . 

In this section, we further focus on more complex GMDB op- 

ions (with maturity T x ), which may depend on the time- τN,μ max- 

mum S 0 e 
M τN,μ or minimum S 0 e 

m τN,μ of the underlying risky as- 

et process. A lookback GMDB, for example, returns an option on 

he maximum of the asset value at time τN,μ. To evaluate such 

 lookback option in the asset model with regime switching and 

wo-sided phase-type jumps, together with an Erlang distributed 

eath time, we follow Deelstra et al. (2020) and combine fluidiza- 

ion (see, for example, Rogers, 1994 , Jiang & Pistorius, 2008 or 

ijima & Siu, 2014 ) and Erlangization techniques (see, for exam- 

le, Asmussen & Albrecher, 2010 , Ch. IX.8). Applications to dynamic 

itdrawal benefits and dynamic fund protection are discussed in 

ection 7 . For the sake of the readability of the paper, we intro- 

uce in the following subsections all necessary notations and no- 

ions, and we include a derivation of the digital option formulae 
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7 The relation is obtained by exchanging the rows and columns of the upper jump 

states and the diffusion states. This is done via the permutation matrices: 

P + σ := 

[
0 I n 

I M 0 

]
, P := 

[
P + σ 0 

0 I m 

]

ince these will be used for the evaluation of lookback options. We 

nclude several examples and links to the literature. 

.1. Fluidization and Erlangization techniques 

The idea of fluidization is to replace jumps in the process X t by 

dditional phases with zero volatility and slope 1 (positive jumps), 

espectively −1 (negative jumps). We denote this approximating 

rocess by Y t and introduce a new Markov chain ζ = { ζt } t≥0 that 

or ζ ∈ S σ behaves as ϕ but has additional “jump states”, that is 

∈ S := S σ ∪ S − ∪ S + . The pairs (X t , ϕ t ) and (Y t , ζt ) relate by the

andom time 

 (t) = 

∫ t 

0 

1 ϕ s ∈S σ d s , 

hat ticks whenever X t is in one of the diffusion states ϕ t ∈ S σ . As

he process X t starts in a diffusion state, the initial distribution of 

he Markov chain ζt is given by [ π 0 n 0 m 

] , i.e. ζ0 = ϕ 0 . Time evolves

ntil this random time T (t) reaches the Erlang distributed time of 

eath τN,μ. With this construction, the distribution of X t is equal to 

he distribution of Y T −1 (t) for all times t < τN,μ. This also implies 

hat the levels crossed by X on [0 , t) are the same as the ones

rossed by Y on [0 , T −1 (t)) and that Markov chains in diffusion

tates agree: ζT −1 (t) = ϕ t for t ≥ 0 . The advantage of introducing 

he process Y is that it is a continuous process which significantly 

implifies the analysis of its maximum and first-passage time. 

.1.1. Exponential time τ1 ,μ

As in Section 5 , we model an absorption at a rate θ (ζs ) if the

rocess Y is in a diffusion state ζs ∈ S σ , i.e. the state space of ζ is

ndeed ζ ∈ S ∪ � for an absorption state � . For � = diag (θ ( j) ) j∈S σ ,

he generator of the process Y is: 

G = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

∣∣∣ 0 0 0 

μI M 

∣∣∣
0 

∣∣∣ P( �) 

0 

∣∣∣

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, where 

P( �) := 

[ 

Q − μI M 

− � W σ+ W σ−
V + σ R + 0 

V −σ 0 R −

] 

. (29) 

he matrix P( �) is organized as follows: The first M columns 

rows) refer to the diffusion states S σ , the next n columns (rows) 

o the states S + and the last m columns (rows) to the states S −.

uantities related to the hitting of an upper barrier are in the fol- 

owing marked by “+”, quantities related to the lower barrier by 

-”. Define the upper (+) and lower (-) first-passage time of the 

rocess Y by: 

±
x (i ) := inf { t > 0 | Y t = 0 , Y 0 = ∓x, ζ0 = i ∈ S} , 
or x ≥ 0 . For i ∈ S σ ∪ S + and j ∈ S σ ∪ S −, we further introduce

he limiting cases lim x → 0 τ
+ 
x (i ) = τ+ 

0 
(i ) = 0 and lim x → 0 τ

−
x ( j) = 

−
0 

( j) = 0 , respectively. For j ∈ S , the Laplace transform is given by

 E 

(1) 
± (x ) } i j := E 

[
e −

∫ τ±
x (i ) 

0 
θ (ϕ s ) d s 1 ζ

τ±
x (i )= j 

]
for x ≥ 0 , i, j ∈ S σ ∪ S + and

, j ∈ S σ ∪ S −, respectively. For convenience, we also introduce the 

arameterization: 6 

 

(1) 
± (x ) := exp 

(
U 

(1) 
± x 
)

:= exp 

([
U 

(1) 
σσ U 

(1) 
σ±

U 

(1) 
±σ U 

(1) 
±±

]
x 

)
, (30) 
6 The dimension of these matrices are as follows: U (k ) 
σσ ∈ R M×M , U (k ) 

σ− ∈ R M×m , 

 

(k ) 
−σ ∈ R m ×M , U (k ) 

−− ∈ R m ×m , U (k ) 
σ+ ∈ R M×n , U (k ) 

+ σ ∈ R n ×M , U (k ) 
++ ∈ R n ×n . 

a

t

P

P

1225 
here exp ( · ) denotes the matrix exponential. Let us define the 

atrices 

�(1) 
±
}

i j 
= 

{
E 

(1) 
± (0) 

}
i j 

= E 

[
e −

∫ τ±
0 

(i ) 

0 
θ (ϕ s ) d s 1 ζτ±

0 
(i ) 

= j 

]
, 

or i ∈ S , j ∈ S σ ∪ S + and j ∈ S σ ∪ S −, respectively. Note that the

atrices �(1) 
± have a natural interpretation. To see why this is the 

ase, recall the definition of τ±
0 

( j) from above. For j ∈ S σ ∪ S −, the

rocess Y is immediately absorbed (i.e. τ−
0 

( j) = 0 ), ending up in 

he same state ζτ−
0 

( j) = ζ0 = j. In case of an upper jump j ∈ S + ,
bsorption is uncertain. Proposition 6.1 derives a Sylvester equa- 

ion to obtain the matrices U 

(1) 
± and �(1) 

± . 

roposition 6.1 (Sylvester equations: Exponential time τ1 ,μ) . The 

atrices ( �(1) 
− , �(1) 

+ , U 

(1) 
− , U 

(1) 
+ ) are uniquely defined by a system of 

ylvester equations 

ϒ
(

U 

(1) 
− , �(1) 

− , P( �) , ˆ �, ˆ D 

)
= 0 , 

ϒ
(

− U 

(1) 
+ , �(1) 

+ , P( �) , ˆ �, ˆ D 

)
= 0 , (31) 

here 

ϒ
(
U , �, P , ˆ �, ˆ D 

)
= 

1 

2 

ˆ � · � · U 

2 + 

ˆ D · � · U + P · � , 

�(1) 
− = 

[ 

I M 

0 

�(1) 
+ σ �(1) 

+ −
0 I m 

] 

, �(1) 
+ = 

[ 

I M 

0 

0 I n 

�(1) 
−σ �(1) 

−+ 

] 

, 

ˆ � = 

[ 

�2 
0 0 

0 0 0 

0 0 0 

] 

, ˆ D = 

[ 

D 0 0 

0 I n 0 

0 0 −I m 

] 

. 

roof. e.g. Ivanovs (2010) . In case of an upper jump j ∈ S + , ab-

orption is uncertain and parameterized via [ �(1) 
+ σ �(1) 

+ −] in �(1) 
− . �

Various numerical procedures are available in the literature to 

olve (31) and obtain �(1) 
± and U 

(1) 
± numerically, see for instance 

ardiner, Laub, Amato, & Moler (1992) , Breuer (2008) and Nguyen 

 Poloni (2016) . We can further relate the Sylvester Eq. (31) to the

atrix Wiener-Hopf factorization, see Remark 6.2 and Jiang & Pis- 

orius (2008) . 

emark 6.2 (Relation to matrix Wiener-Hopf factorization) . In, for 

xample, Jiang & Pistorius (2008) , the Laplace transform of the 

rst-passage time for a Markov-modulated Brownian motion with 

wo-sided phase type jumps is expressed in terms of the so-called 

atrix Wiener-Hopf factorization ( W 

+ , G 

+ , W 

−, G 

−) . This factor- 

zation is obtained from (31) in Proposition 6.1 by simple matrix 

ermutation operations. 7 

.1.2. Erlang time τN,μ

Recall that an Erlang random variable with parameters μ > 0 

nd N ∈ N has the same distribution as the sum of N indepen- 

ent exponential random variables with parameter μ, see also (1) . 

n the following, we use a second phase e t ∈ { 1 , 2 , . . . , N} denot-

ng the so-called Erlangization interval. The length of each Erlan- 

ization interval is an Exp (μ) random variable that ticks in the 
nd the transpose P ′ + σ , P ′ . Comparing to (4.2) in Jiang & Pistorius (2008) , we have 

hat W 

+ = P · �(1) 
+ · P ′ + σ , G + = P + σ · U (1) 

+ · P ′ + σ , W 

− = P · �(1) 
− , G − = U (1) 

− , and Q u = 

 · P(�) · P ′ . The drift and volatility matrix are also transformed to P · ˆ D · P ′ and 

 · ˆ � · P ′ , respectively. 
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iffusion states ϕ t = ζT −1 (t) ∈ S σ only. After the N-th Erlangization 

nterval, the process is stopped. Given the subgenerator P( �) in 

29) and the matrix � of the same size, we define the new gener- 

tor matrix of the process Y as 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

∣∣∣ 0 0 0 

0 

∣∣∣
. . . 

∣∣∣
0 

∣∣∣ ˜ P ( �) 

μI M 

∣∣∣
0 

∣∣∣

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, where (32) 

˜ P ( �) := 

⎡ ⎢ ⎢ ⎢ ⎣ 

P( �) � 0 · · · 0 

0 P( �) � · · ·
. . . 

. . . · · · . . . 
. . . �

0 0 · · · · · · P( �) 

⎤ ⎥ ⎥ ⎥ ⎦ 

, 

� := 

[ 

μI M 

0 0 

0 0 0 

0 0 0 

] 

. (33) 

nformally stated, the resulting Markov chain moves after an expo- 

ential time τ1 ,μ to a new Erlang interval. After N such intervals, 

he process is absorbed. A first-passage can take place in any of 

he Erlangization intervals k ∈ { 1 , . . . , N} . We are interested in the

rst passage transform matrices E 

(k ) 
± such that 

E 

(k ) 
± (x ) 

}
i j 

= E 

[ 
e −

∫ τ±
x (i ) 

0 
θ (ϕ s ) d s 1 (ϕ τ±

x (i ) 
,e τ±

x (i ) 
)=( j,k ) 

∣∣∣ (ϕ 0 , e 0 ) = (i, 1) 
] 

, 

(34) 

or x ≥ 0 , i, j ∈ S σ ∪ S + and i, j ∈ S σ ∪ S −, respectively. The desired

locks E 

(k ) 
± (x ) from (34) that constitute the matrix E ±(x ) are ob- 

ained by a matrix exponential: 

E ±(x ) = exp 

(
˜ U ±x 

)

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

E 

(1) 
± (x ) E 

(2) 
± (x ) E 

(3) 
± (x ) · · · E 

(N) 
± (x ) 

0 E 

(1) 
± (x ) E 

(2) 
± (x ) · · · E 

(N−1) 
± (x ) 

0 0 E 

(1) 
± (x ) · · · E 

(N−2) 
± (x ) 

. . . 
. . . 

. . . 
. . . 

. . . 

0 0 0 · · · E 

(1) 
± (x ) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (35) 

here the R 

(M+ m ) ×(M+ m ) matrices ( U 

(1) 
− , U 

(2) 
− ,..., U 

(N) 
− ) and the 

 

(M+ n ) ×(M+ n ) matrices ( U 

(1) 
+ , U 

(2) 
+ ,..., U 

(N) 
+ ) are placed in two 

oeplitz matrices: 

˜ 

 ± = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

U 

(1) 
± U 

(2) 
± U 

(3) 
± · · · U 

(N) 
±

0 U 

(1) 
± U 

(2) 
± · · · U 

(N−1) 
±

0 0 U 

(1) 
± · · · U 

(N−2) 
±

. . . 
. . . 

. . . 
. . . 

. . . 

0 0 0 · · · U 

(1) 
±

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (36) 

t will turn out that, for k = 2 , 3 , . . . , N, we obtain the matrix struc-

ure U 

(k ) 
± = 

[
U 

(k ) 
σσ U 

(k ) 
σ±

0 0 

]
with matrices that are of the same size 

s U 

(1) 
± in (29) . Proposition 6.3 shows how to obtain 

˜ U ± in (36) . 

roposition 6.3 (Sylvester equations: Erlang time. τN,μ) For k = 

 , . . . , n , introduce 

(k ) 
− = 

[ 

0 M 

0 

�(k ) 
+ σ �(k ) 

+ −
0 0 m 

] 

, �(k ) 
+ = 

[ 

0 M 

0 

0 0 n 

�(k ) 
−σ �(k ) 

−+ 

] 
1226 
nd use this to define the Toeplitz matrices: 

 ± = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

�(1) 
± �(2) 

± �(3) 
± · · · �(N) 

±
0 �(1) 

± �(2) 
± · · · �(N−1) 

±
0 0 �(1) 

± · · · �(N−2) 
±

. . . 
. . . 

. . . 
. . . 

. . . 

0 0 0 · · · �(1) 
±

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (37) 

he matrices ˜ U −, ˜ �−, ˜ U + and ˜ �+ are determined via 

ϒ
(
˜ U −, ˜ �−, ˜ P ( �) , ˜ �, ˜ D 

)
= 0 , 

ϒ
(

− ˜ U + , ˜ �+ , ˜ P ( �) , ˜ �, ˜ D 

)
= 0 , (38) 

here ϒ( U , �, P , ̂ �, ̂ D ) is as in (31) , ˜ � := I N �
̂ �, ˜ D := I N �

̂ D and

denotes the Kronecker product. 

roof. e.g. Ivanovs (2010) . �

To solve the system (38) , it is convenient to write the matrices 

n their block structure. With some simplifications, Lemma 6.4 al- 

ows to conveniently obtain the different matrices iteratively solv- 

ng a series of Sylvester equations, see also Deelstra et al. (2020) . 

emma 6.4 (Iterative solution of Proposition 6.3) . Introduce, for k = 

 , 3 , . . . , N, the matrices Z 

(k ) 
± = 

[
U 

(k ) 
σσ U 

(k ) 
σ±

�(k ) 
∓σ �(k ) 

∓±

]
. 

For k = 2 , we obtain Z 

(2) 
± as the unique solution of the Sylvester 

quation [
U 

(1) 
σσ ∓ 2 �−2 

D 2 �−2 
W σ∓

�(1) 
∓σ R ∓

]
Z 

(2) 
± + Z 

(2) 
±

[
U 

(1) 
σσ U 

(1) 
σ±

U 

(1) 
±σ U 

(1) 
±±

]
= −

[
2 μ�−2 

0 

0 0 

]
, (39) 

nd finally, for k ≥ 3 , we can uniquely solve for Z 

(k ) 
± by the Sylvester 

quation [
U 

(1) 
σσ ∓ 2 �−2 

D 2 �−2 
W σ∓

�(1) 
∓σ R ∓

]
Z 

(k ) 
± + Z 

(k ) 
±

[
U 

(1) 
σσ U 

(1) 
σ±

U 

(1) 
±σ U 

(1) 
±±

]
+ 

k −1 ∑ 

l=2 

[
U 

(l) 
σσU 

(k −l+1) 
σσ U 

(l) 
σσU 

(k −l+1) 
σ±

�(l) 
∓σU 

(k −l+1) 
σσ �(l) 

∓σU 

(k −l+1) 
σ±

]
= 

[
0 0 

0 0 

]
. (40) 

roof. See Appendix C . �

Once the matrices �(1) 
± and U 

(1) 
± are known, the matrices 

(k ) 
± and U 

(k ) 
± , k ≥ 2 , are easily obtained by solving the Sylvester 

quations (39) –(40) , see, for example, Gardiner et al. (1992) for 

etails on a numerically efficient implementation. For simple cases, 

t is possible to solve the Sylvester equations analytically, see 

xample 6.6 . 

.2. Digital GMDB 

In this section, we consider the pricing of digital GMDBs that 

ay one unit of currency if the risky asset S t drops below (exceeds) 

he lower (upper) level B ( H) before time τN,μ. The time-0 value of 

hese products is 

 

DG 
− (S 0 , B, μ, N, π) = E 

[ 
e −

∫ τN,μ
0 

θ (ϕ s ) d s 1 
S 0 e 

m τN,μ <B 

] 
, (41) 

 

DG 
+ (S 0 , H, μ, N, π) = E 

[ 
e −

∫ τN,μ
0 

θ (ϕ s ) d s 1 
S 0 e 

M τN,μ >H 

] 
. (42) 

he values of digital options P DG − (S 0 , B, μ, N, π) and 

 

DG + (S 0 , H, μ, N, π) are determined by: 
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9 In the following, we use Sylvester’s formula (see Sylvester (1883) ) that allows 

to compute the matrix exponential of a diagonalizable matrix A with distinct eigen- 

values λ1 , λ2 , . . . , λk : 
(1) Use Propositions 6.1 and Lemma 6.4 to determine ( U 

(1) 
± , 

U 

(2) 
± ,..., U 

(N) 
± ) to obtain 

˜ U ± via (36) and E 

(k ) 
± via (35) . We can 

decompose the matrices E 

(k ) 
± as follows: 

E 

(k ) 
± (x ) = 

[
E 

(k ) 
σσ (x ) E 

(k ) 
σ±(x ) 

E 

(k ) 
±σ (x ) E 

(k ) 
±±(x ) 

]
. (43) 

(2) Using (43) , Proposition 6.5 gives the value of digital options 

in analytic form. 

Note that the matrices ·+ are used for an upper barrier dig- 

tal option P DG + (S 0 , H, μ, N, π) while the matrices ·− are used for

 

DG − (S 0 , B, μ, N, π) . 

roposition 6.5 (Digital GMDBs) . The value of a digital option 

41) with a risky asset S following dynamics (2) , barrier level B < S 0 
nd Erlang-distributed payoff time T x = τN,μ is 

 

DG 
− (S 0 , B, μ, N, π) 

= π
N ∑ 

k =1 

[
E 

(k ) 
σσ (s 0 − b) E 

(k ) 
σ−(s 0 − b) 

][ν(N−k +1) 
σ

ν(N−k +1) 
−

]
, (44) 

here s 0 := ln (S 0 ) and b := ln (B ) . With �(β, �) as in Lemma 3.1 : 

ν(N−k +1) 
σ

)
j∈S σ = E 

[ 
e −

∫ τN,μ
0 

θ (ϕ s ) d s 
∣∣ (ζ0 , e 0 ) = ( j, k ) 

] 
= μN−k +1 ( μI M 

− �(0 , �) ) 
−N+ k −1 

1 , (45) 

ν(N−k +1) 
±

)
j∈S ± = E 

[ 
e −

∫ τN,μ
0 

θ (ϕ s ) d s 
∣∣ (ζ0 , e 0 ) = (s ±

j 
, k ) 
] 

= ( −R ±) 
−1 V ±σν(N−k +1) 

σ , (46) 

or (42) , i.e. an upper barrier H > S 0 and h := ln (H) , we obtain 

 

DG 
+ (S 0 , H, μ, N, π) 

= π
N ∑ 

k =1 

[
E 

(k ) 
σσ (h − s 0 ) E 

(k ) 
σ+ (h − s 0 ) 

][ν(N−k +1) 
σ

ν(N−k +1) 
+ 

]
. (47) 

roof. See also Deelstra et al. (2020) 8 . Note that in (46) , we

lso allow for the possibility of initial jump states, that is ζ0 ∈ S . 

or the discount factor, we can use Lemma 3.1 and 5.1 to get 

ν(N−k +1) 
σ

)
j∈S σ := φ( j) 

τN−k +1 ,μ
(0) . Given that the current state is a 

ump state, we further get (46) . Using this, we obtain for x =
 0 − b > 0 and j ∈ S σ : 

P DG 
−
(
S 0 , B, μ, N, e j 

)
= E 

[ 
e −

∫ τN,μ
0 

θ (ϕ s ) d s 1 
S 0 e 

m τN,μ <B 

∣∣∣Y 0 = x, (ζ0 , e 0 ) = ( j, 1) 
] 

= 

N ∑ 

k =1 

∑ 

i ∈S σ ∪S −
E 

[ 
e −

∫ τN,μ
0 

θ (ϕ s ) d s 1 (ζτ−
x ( j) 

,e τ−
x ( j) 

)=(i,k ) 

∣∣
Y 0 = x, (ζ0 , e 0 ) = ( j, 1) 

] 
= 

N ∑ 

k =1 

∑ 

i ∈S σ ∪S −
E 

[ 
e −

∫ τ−
x ( j) 

0 
θ (ϕ s ) d s 1 (ζτ−

x ( j) 
,e τ−

x ( j) 
)=(i,k ) 

∣∣
Y 0 = x, (ζ0 , e 0 ) = ( j, 1) 

] 

8 Remark that these results are derived in Deelstra et al. (2020) in order to ob- 

ain approximations for European digitals with a fixed horizon. In this paper, we 

ocus first on digital GMDBs with a random payment date T x and later on lookback 

MDBs, where the pricing formulae will be useful. We therefore include a proof for 

ompleteness. 

e

w

−

1227
·E 

[
e 

− ∫ τN,μ

τ−
x ( j) 

θ (ϕ s ) d s ∣∣ (ζτ−
x ( j) , e τ−

x ( j) ) = (i, k ) 

]
= e j 

N ∑ 

k =1 

[
E 

(k ) 
σσ (s 0 − b) E 

(k ) 
σ−(s 0 − b) 

][ν(N−k +1) 
σ

ν(N−k +1) 
−

]
, 

here, in the last step, we used the memoryless property of the 

xponential distribution. �

We look at Proposition 6.5 in the example of Kou’s model 

nd an exponential death time τ1 ,μ. In this case, the Sylvester 

q. (31) can be solved analytically. Example 6.6 provides the de- 

ails and links our result to Gerber et al. (2013) . 

xample 6.6 (Kou’s model (continued)) . Recall Kou’s model from 

xample 3.3 ( M = 1 ) and assume that the interest rate is con-

tant, that is θ (ϕ t ) = r for all t ≥ 0 . The roots of �(β, �) = μ in

14) are given by −∞ < α1 < α2 < 0 < β1 < β2 < ∞ . We can solve

he Sylvester Eq. (31) in this case analytically (see the Appendix for 

he calculations): 

 

(1) 
+ = 

[
α+ − β1 − β2 −β1 β2 

α+ 
+ β1 + β2 − α+ 

α+ −α+ 

]
. (48) 

ssuming that we are initially in the diffusion state, we obtain 

ith z := h − s 0 , initial distribution on the states π = e 1 , number

f Erlangization intervals N = 1 : 9 

V (z, μ, N, π) 

= π
[
E 

(1) 
σσ (z) E 

(1) 
σ+ (z) 

][ν(1) 
σ

ν(1) 
+ 

]
= π exp 

(
U 

(1) 
+ z 
)[ μ

μ+ r 
μ

μ+ r 

]
= π exp 

([
α+ − β1 − β2 −β1 β2 

α+ 
+ β1 + β2 − α+ 

α+ −α+ 

]
z 

)
[ μ

μ+ r 
μ

μ+ r 

]
= [ 1 0 ] 

(
β1 e 

−β2 z − β2 e 
−β1 z 

β1 − β2 

[
1 0 

0 1 

]
+ 

e −β2 z − e −β1 z 

β1 − β2 

·
[
α+ − β1 − β2 −β1 β2 

α+ 
+ β1 + β2 − α+ 

α+ −α+ 

])[
μ

μ+ r 
μ

μ+ r 

]
= 

μ

μ + r 

(
β2 

β2 − β1 

α+ − β1 

α+ 
e −β1 z + 

β1 

β2 − β1 

β2 − α+ 
α+ 

e −β2 z 

)
=: 

μ

μ + r 

(
B 1 e 

−β1 z + B 2 e 
−β2 z 

)
ith constants B 1 := 

β2 (α+ −β1 ) 
α+ (β2 −β1 ) 

and B 2 := 

β1 (β2 −α+ ) 
α+ (β2 −β1 ) 

. This expression 

s the Laplace transform for the first-passage time in Kou’s model, see 

ou & Wang (2003) . From this, we obtain: 

 

DG 
+ ( S 0 , H, μ, N, π) = S 0 · V (h − s 0 , μ, N, π) 

= S 0 
μ

μ + r 

[
B 1 

(
S 0 
H 

)β1 

+ B 2 

(
S 0 
H 

)β2 
]

. 
xp ( A ) = 

k ∑ 

i =1 

e λi A i , (49) 

here A i := 

∏ k 
j=1 , j � = i 

1 
λi −λ j 

(
A − λ j I k 

)
. The eigenvalues of the matrix U (1) 

+ are λ1 = 

β1 and λ2 = −β2 . 
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This equals (7.2) in Gerber et al. (2013) . 
.3. Lookback GMDBs 

Finally, we study standard lookback options. The time- τN,μ pay- 

ff of a floating-strike lookback GMDB is 

(τN,μ, S τN,μ
, M τN,μ

) = max 
(
H, S 0 e 

M τN,μ

)
− S τN,μ

, (50) 

here H is the initial maximum of the risky asset, see also Siu 

t al. (2015) . Given (50) , the time-0 value of this product is 

 

LB (S 0 , B, μ, N, π) = E 

[ 
e −

∫ τN,μ
0 

θ (ϕ s ) d s b(τN,μ, S τN,μ
, M τN,μ

) 
] 

. (51) 

gain, we present the different steps to obtain P LB (S 0 , B, μ, N, π) : 

(1) Use Propositions 6.1, 6.3, Lemma 6.4 for ( U 

(1) 
± , U 

(2) 
± ,..., U 

(N) 
± ) 

to obtain 

˜ U ± via (36) . 

(2) Determine ν(k ) 
σ , ν(k ) 

− , ν(k ) 
+ , for k = 1 , 2 , . . . , N, from (45) –

(46) . 

(3) Proposition 6.7 expresses the price of a lookback option in 

analytical form. 

Note that, having solved the Sylvester equations in 

roposition 6.3 , the price of a lookback GMDB is in analytical 

orm – there is no need for an additional numerical integration or 

aplace inversion. Proposition 6.7 gives the details. 

roposition 6.7 (Lookback GMDBs) . The value of a lookback option 

51) with a risky asset S following dynamics (2) and satisfying the as- 

umption that ˜ λ+ 
0 

< −1 where ˜ λ+ 
0 

:= max { λ : λ eigenvalue of ˜ U + } , 
pper level H > S 0 and Erlang-distributed payoff time τN,μ is 

 

LB (S 0 , H, μ, N, π) 

= S 0 

⎡ ⎢ ⎢ ⎣ 

π
0 

· · ·
0 

0 

⎤ ⎥ ⎥ ⎦ 

′ (
−
(

˜ U + + I ·
)−1 )

exp 

(
( ˜ U + + I ·) z 

)⎡ ⎢ ⎢ ⎢ ⎣ 

ν(N) 
σ

ν(N) 
+ 
· · ·
ν(1) 

σ

ν(1) 
+ 

⎤ ⎥ ⎥ ⎥ ⎦ 

+ H · π′ ν(N) 
σ − S 0 , (52) 

here ˜ U + as in (36) , s 0 := ln (S 0 ) , z := ln (H/S 0 ) and ν(k ) 
σ , ν(k ) 

+ , k =
 , 2 , . . . , N as in Proposition 6.5 . I · is an identity matrix with the same

ize as ˜ U + and exp ( · ) denotes the matrix exponential. 

roof. The first part follows Siu et al. (2015) , Theorem 3.2, to price

oating-strike lookback put options for initial state j ∈ S σ : 

P LB (S 0 , H, μ, N, e j ) 

= E 

[ 
e −

∫ T x 
0 θ (ϕ s ) d s 

(
max 

(
H, S 0 e 

M T x 

)
− S T x 

) ∣∣ (ζ0 , e 0 ) = ( j, 1) 
] 

= S 0 · E 

[ 
e −

∫ T x 
0 θ (ϕ s ) d s max 

(
e z , e M T x 

)) ∣∣ (ζ0 , e 0 ) = ( j, 1) 
] 

− S 0 

= S 0 · E 

[ 
e −

∫ T x 
0 θ (ϕ s ) d s 

(
e M T x − e z 

)
1 M T x ≥z 

∣∣ (ζ0 , e 0 ) = ( j, 1) 
] 

+ S 0 e 
z · E 

[ 
e −

∫ T x 
0 θ (ϕ s ) d s 

∣∣ (ζ0 , e 0 ) = ( j, 1) 
] 

− S 0 

= S 0 ·
∫ ∞ 

z 

e m E 

[ 
e −

∫ T x 
0 θ (ϕ s ) d s 1 M T x ≥m 

∣∣ (ζ0 , e 0 ) = ( j, 1) 
] 

d m 

+ S 0 e 
z · E 

[ 
e −

∫ T x 
0 θ (ϕ s ) d s 

∣∣ (ζ0 , e 0 ) = ( j, 1) 
] 

− S 0 

= S 0 ·
∫ ∞ 

z 

e a P DG 
+ (1 , e a , μ, N, π) d a 

+ H · E 

[ 
e −

∫ τN,μ
0 

θ (ϕ s ) d s 
∣∣ (ζ0 , e 0 ) = ( j, 1) 

] 
− S 0 , 

here the last step is an application of Lemma 3.4 in Siu et al.

2015) (partial integration) and we abbreviate z := ln (H/S ) . Inter- 
0 

1228 
stingly, it is possible to explicitly solve the integral in the lat- 

er equation. The key to this is to rewrite P DG + (S 0 , H, μ, N, π) from

roposition 6.5 as follows: 

 

DG 
+ (1 , e a , μ, N, e j ) = e j 

N ∑ 

k =1 

[
E 

(k ) 
σσ (a ) E 

(k ) 
σ+ (a ) 

][ν(N−k +1) 
σ

ν(N−k +1) 
+ 

]

= 

⎡ ⎢ ⎢ ⎣ 

e j 
0 

· · ·
0 

0 

⎤ ⎥ ⎥ ⎦ 

′ 

exp 

(
˜ U + a 

)⎡ ⎢ ⎢ ⎢ ⎣ 

ν(N−1+1) 
σ

ν(N−1+1) 
+ 

· · ·
ν(N −N +1) 

σ

ν(N −N +1) 
+ 

⎤ ⎥ ⎥ ⎥ ⎦ 

, 

here ˜ U + is as in (36) . The matrix ˜ U + is a subgenerator matrix 

see, for example, Definition 4.1 and Theorem 4.2 in Jiang & Pisto- 

ius (2008) ). Then, with the help of Lemma 2.2 , we obtain: 

 ∞ 

z 

e a exp 

(
˜ U + a 

)
d a = 

∫ ∞ 

z 

exp 

(
( ˜ U + + I ·) a 

)
d a 

= −
(
˜ U + + I ·

)−1 
exp 

(
( ˜ U + + I ·) z 

)
. 

rom (45) , assuming β satisfying the assumptions of Lemma 5.1 , 

ecall that 

ν(N) 
σ

)
j∈S σ = E 

[ 
e −

∫ τN,μ
0 

θ (ϕ s ) d s 
∣∣ (ζ0 , e 0 ) = ( j, 1) 

] 
= e ′ j 

(
μN 
(
μI M 

− �(0 , �) 
)−N 
)

1 . (53) 

ith this, we obtain the value of a lookback GMDB : 

 

LB (S 0 , H, μ, N, e j ) 

= S 0 

⎡ ⎢ ⎢ ⎣ 

e j 
0 

· · ·
0 

0 

⎤ ⎥ ⎥ ⎦ 

′ (
−
(

˜ U + + I ·
)−1 )

exp 

(
( ˜ U + + I ·) z 

)⎡ ⎢ ⎢ ⎢ ⎣ 

ν(N) 
σ

ν(N) 
+ 
· · ·
ν(1) 

σ

ν(1) 
+ 

⎤ ⎥ ⎥ ⎥ ⎦ 

+ H · e ′ j ν
(N) 
σ − S 0 . 

�

Proposition 6.7 extends Siu et al. (2015) to a regime-dependent 

nterest rate, an Erlang distributed death time τN,μ and phase- 

ype jumps. The pricing equation is explicit and does not require a 

ourier inversion algorithm. The value depends solely on the solu- 

ion of the Sylvester equations in Proposition 6.3 . We demonstrate 

his in Example 6.8 on the valuation of lookback GMDBs for an ex- 

onential death time. This allows us to relate Proposition 6.7 to the 

esults by Gerber et al. (2013) on Kou’s model. 

xample 6.8 (Kou’s model (continued)) . Continuing Example 6.6 , 

e can use the term E 

[
e −rτN,μ1 M τN,μ

≥a 

]
= V (a, μ, N, π) to also

rice variable annuities with a death benefit given by a floating 

trike lookback option: 

 

LB (S 0 , H, μ, N, · ) = S 0 ·
∫ ∞ 

z 

e a E 

[
e −rτN,μ1 M τN,μ

≥a 

]
d a 

+ H · E 

[
e −rτN,μ

]
− S 0 

= 

μ

μ + r 

[
B 1 

S 
β1 

0 
H 

1 −β1 

β1 − 1 

+ B 2 

S 
β2 

0 
H 

1 −β2 

β2 − 1 

]
+ H 

μ

μ + r 
− S 0 . (54) 
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. Dynamic fund protection and dynamic withdrawal benefits 

Let S t be the value of a share of a mutual fund at time t and

et n t denote the number of units of the mutual fund in the in-

estor’s account. Consider first an investor buying a fund share at 

ime 0, as well as the following ”dynamic fund protection”, which 

s assumed to be effective until the time of death and which guar- 

ntees that the account value will never fall below a fixed level L 

ith 0 ≤ L ≤ S 0 . Indeed, in this case, as soon as the value of the

ccount falls below the guaranteed level L , the account is cred- 

ted with a sufficient number of fund units so that the value of 

he account remains equal to the guaranteed level L . Therefore, fol- 

owing Gerber et al. (2012) and Siu et al. (2015) , n t needs to be

qual to 

 t = max 

(
1 , max 

0 ≤s ≤t 

L 

S s 

)
. (55) 

ssuming S t follows (2) with initial state j ∈ S σ and considering 

n Erlang distributed time of death variable τN,μ, the expected dis- 

ounted value of this contract with dynamic fund protection (de- 

oted by DFP) equals 

F P (S 0 , L, μ, N, e j ) = 

[ 
e −

∫ τN,μ
0 

θ (ϕ s ) d s n τN,μ
S τN,μ

∣∣∣ (ϕ 0 , e 0 ) = ( j, 1) 
] 
. 

(56) 

et us define Q 

S as an equivalent martingale measure of Q via the 

adon-Nikodym derivative 

dQ 

S 

dQ 

∣∣∣∣
F t 

:= 

e −
∫ t 

0 θ
(ϕ s ) d s S t 

S 0 
. (57) 

hen, one can easily check that under Q 

S the process (X, ϕ) 

emains a Markov-modulated Brownian motion with two-sided 

hase-type jumps. Analogous to (11) , its discounted Laplace trans- 

orm is for β < −λ+ 
0 

− 1 given by 

S (β, �) = Q 

S + D 

S β − � + 

1 

2 

�2 β2 + W 

S 
σ−(βI m 

− R 

S −) −1 V 

S −σ

−W 

S 
σ+ (βI n + R 

S + ) −1 V 

S + σ (58)

or appropriate matrices Q 

S , D 

S , W 

S , V 

S , R 

S − and R 

S + . 
Using this new measure, Proposition 7.1 determines the value of 

he contract with dynamic fund protection by a matrix equation. In 

ontrast to Siu et al. (2015) , the result does not contain an integral;

n contrast to Jin, Qian, Wang, & Yang (2016) no coupled system of 

ntegro-differential equations need to be solved numerically. 

roposition 7.1 (Dynamic fund protection) . The value of a contract 

ith dynamic fund protection (56) with a risky asset S following 

ynamics (2) and satisfying the assumption that ˜ λ−,S 
0 

< −1 , where 

˜ −,S 
0 

:= max { λ : λ eigenvalue of ˜ U 

S 

−} , lower level L < S 0 and Erlang- 

istributed payoff time τN,μ is given by 

F P (S 0 , L, μ, N, π) 

= L 

⎡ ⎢ ⎢ ⎣ 

π
0 

· · ·
0 

0 

⎤ ⎥ ⎥ ⎦ 

′ (
−
(

˜ U 

S 

− + I ·
)−1 )

exp 

(
− ( ˜ U 

S 

− + I ·) l 
)⎡ ⎢ ⎢ ⎢ ⎣ 

1 

(N) 
σ

1 

(N) 
−
· · ·

1 

(1) 
σ

1 

(1) 
−

⎤ ⎥ ⎥ ⎥ ⎦ 

+ S 0 , (59) 
1229 
here l := ln (L/S 0 ) , ˜ U 

S 

− is analogous as in (36) and expressed in 

unction of the matrices in (58) . I · is an identity matrix with the same 

ize as ˜ U 

S 

− and the column vector of ones is of length N(M + m ) . 

roof. The first part follows Siu et al. (2015) , Section 3.4, to value

he contract with dynamic fund protection for initial state j ∈ S σ : 

F P (S 0 , L, μ, N, e j ) 

= E 

[ 
e −

∫ τN,μ
0 

θ (ϕ s ) d s max 

(
1 , max 

1 ≤t≤τN,μ

L 

S t 

)
S τN,μ

∣∣∣
(ϕ 0 , e 0 ) = ( j, 1) 

] 
= E 

[ 
e −

∫ τN,μ
0 

θ (ϕ s ) d s 
(

max 
1 ≤t≤τN,μ

L 

S t 
− 1 

)
+ 

S τN,μ

) ∣∣∣(ϕ 0 , e 0 ) = ( j, 1) 
] 

+ S 0 

= S 0 · E 

S 
[ (

max 
1 ≤t≤τN,μ

L 

S t 
− 1 

)
+ 

∣∣∣(ϕ 0 , e 0 ) = ( j, 1) 
] 

+ S 0 , 

here the last step is an application of the change of measure 

n (57) and E 

S [ ·] denotes the expectation under Q 

S . Following the 

ines of Siu et al. (2015) , and the proof of Proposition 6.7 easily

eads to the result. �

A similar technique can be exploited in the settings of a dy- 

amic withdrawal benefit. Indeed, let L denote a constant dividend 

arrier with L ≥ S 0 . An investor in a dynamical withdrawal benefit 

sks to receive benefits as soon as the fund reaches the level L . To

chieve this, a number n t of units of S t are sold to keep the ac-

ount value at level L . Therefore, following Gerber et al. (2012) and 

iu et al. (2015) , n t needs in this setting to be equal to 

 t = min 

(
1 , min 

0 ≤s ≤t 

L 

S s 

)
, (60) 

nd the expected discounted value of this contract with dynamic 

ithdrawal benefits (denoted by DWB) equals for a fund S t that 

ollows (2) with initial state j ∈ S σ and random payoff time T x = 

N,μ

DW B (S 0 , L, μ, N, e j ) 

= E 

[
e −

∫ τN,μ
0 

θ (ϕ s ) d s 
(

1 − min 

(
1 , min 

0 ≤s ≤τN,μ

L 

S s 

))
S τN,μ

∣∣∣
(ϕ 0 , e 0 ) = ( j, 1) 

]
= E 

[
e −

∫ τN,μ
0 

θ (ϕ s ) d s 
(

1 − min 

0 ≤s ≤τN,μ

L 

S s 

)
+ 

S τN,μ

∣∣∣ (ϕ 0 , e 0 ) = ( j, 1) 

]
= S 0 · E 

S 
[ (

1 − min 

0 ≤s ≤τN,μ

L 

S s 

)
+ 

∣∣∣ (ϕ 0 , e 0 ) = ( j, 1) 
] 

. (61) 

roposition 7.2 (Dynamic withdrawal benefit) . The value of a con- 

ract with dynamic withdrawal benefit (61) with a risky asset S fol- 

owing dynamics (2) , upper level L ≥ S 0 and Erlang-distributed payoff

ime τN,μ is given by 

W B (S 0 , L, μ, N, π) 

= L 

⎡ ⎢ ⎢ ⎣ 

π
0 

· · ·
0 

0 

⎤ ⎥ ⎥ ⎦ 

′ (
−
(

˜ U 

S 

+ − I ·
)−1 )

exp 

(
( ˜ U 

S 

+ − I ·) l 
)⎡ ⎢ ⎢ ⎢ ⎣ 

1 

(N) 
σ

1 

(N) 
+ 
· · ·

1 

(1) 
σ

1 

(1) 
+ 

⎤ ⎥ ⎥ ⎥ ⎦ 

+ S 0 , 

(62) 

here l := ln (L/S 0 ) , ˜ U 

S 

− analogous as in (36) expressed in function of 

he matrices in (58) . I · is an identity matrix with the same size as ˜ U 

S 

+ 
nd the column vector of ones is of length N(M + n ) . 
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. Numerical examples 

In this section, we first show how a series of Erlang densi- 

ies, respectively a Laguerre series expansion can be calibrated to 

 life table, see Section 8.1 . We give brief examples on applications 

f European-type GMDBs (see Section 8.2 ) and lookback GMDBs 

see Section 8.3 ). Throughout, we measure computation time on a 

.70 GHz PC in seconds (s). 

.1. Calibration to a life table 

As in, for example, Zhang & Yong (2019) , we calibrate the ap- 

roximations in Sections 4.1 and 4.2 to a life table, minimizing the 

oot mean squared error between the true data and the approxi- 

ations, that is we solve 

rgmin (B k ,n k ,μk ) ∈ R 3 ,k =1 , 2 , ... , K B 

L ∑ 

t=1 

∣∣∣F T x (t) −
K B ∑ 

k =1 

B k · F τn k ,μk 
(t) 

∣∣∣2 , (63) 

ubject to 
∑ K B 

k =1 
B k = 1 , where F T x (t) is the distribution function 

orresponding to f T x (t) and the distribution function of an Erlang 

andom variable is F τN,μ
(t) = 1 −∑ N−1 

k =1 
1 
k ! 

e −μt (μt) k . 

For the Laguerre series expansion, we do not need to perform a 

east-square minimization as in (63) to calibrate to a life table. In- 

tead, we exploit that the optimal coefficients A k = 〈 �k (t) , f T x (t) 〉
n (16) can be computed explicitly. For a discrete life table, we ob- 

ain: 

 k = 

〈
�k (t) , f T x (t) 

〉
= 

√ 

2 μ
k ∑ 

N=0 

(
k 

N 

)
(−2 μ) 

N 

N! 

∫ ω−x 

0 

t N e −μt f T x (t)d t 

≈
√ 

2 μ
k ∑ 

N=0 

(
k 

N 

)
(−2 μ) 

N 

N! 

ω−x ∑ 

t=1 

t N e −μt P 

(
T x ∈ (t − 1 , t] 

)
= 

√ 

2 μ
k ∑ 

N=0 

(
k 

N 

)
(−2 μ) 

N 

N! 

ω−x ∑ 

t=1 

t N e −μt 

(
F T x (t − 1) − F T x (t) 

F T x (0) 

)
, 

ee also Zhang & Yong (2019) . Here, ω denotes the maximum pos- 

ible age in the life table and x the (current) age of the person. The

act that Laguerre polynomials are uniformly bounded and form an 

rthonormal basis allows to get theoretical bounds for the approx- 

mation error. It holds that: 

f T x (t) − ˜ f T x (t) 
∣∣2 ≤ ∞ ∑ 

k = K A +1 

A 

2 
k , 

ee also Zhang & Su (2018) and Zhang & Yong (2019) . We can use

his result to provide an upper bound for the total calibration er- 

or 
∑ L 

t=1 | f T x (t) − ˜ f T x (t) | 2 ≤ L ·∑ ∞ 

k = K A +1 A 

2 
k 
. These bounds are easy 

o compute as the coefficients A k are available in closed-form. For 

n example, we use the life table presented in Appendix 2.A of 

owers, Gerber, Hickman, Jones, & Nesbitt (1997) with an initial 

ge x = 30 and t = 1 , 2 , . . . , L . We first follow Siu et al. (2015) and

alibrate this life table for L = 25 . For the series of Erlang ran-

om variables, we impose that n k ≤ 6 . This constraint hardly af- 

ects the calibration performance. Small values of n k will turn out 

o be very convenient in Sections 8.2 and 8.3 . Fig. 2 (left hand side)

ives the logarithm of the total mean squared errors 
∑ L 

t=1 | f T x (t) −
ˆ f T x (t) | 2 and 

∑ L 
t=1 | f T x (t) − ˜ f T x (t) | 2 over time for K B = 5 terms (ex-

onential, Erlang) and K A = 15 terms (Laguerre expansion). In this 

xample, we obtain (for each t = 1 , 2 , . . . , L ) an error bound for

 A = 15 terms of 
∑ ∞ 

k =16 A 

2 
k 

= 0 . 0 0 0 060 and as a comparison, er-

or bounds for K A = 8 terms of 
∑ ∞ 

k =9 A 

2 
k 

= 0 . 00113 and for K A = 20

f 
∑ ∞ 

k =21 A 

2 
k 

= 0 . 0 0 0 011 . Assuming that the true distribution of re-

aining lifetime follows a parametric density like Makeham’s law 

ay allow to obtain improved error bounds with an exponential 
1230 
ecay, see Zhang & Su (2018) and Zhang & Yong (2019) for more 

etails. 

From the left hand side of Fig. 2 , we observe that the sum of

rlang densities leads to the best result. Already 5–8 terms lead to 

ery low total mean squared errors. For the Laguerre series expan- 

ion many terms are necessary to reach the same accuracy. How- 

ver, as mentioned above, the Laguerre series expansion has the 

dvantage that it is not necessary to solve a least-squares opti- 

ization for the calibration as the coefficients are known explicitly, 

ee Zhang & Yong (2019) . The right hand side of Fig. 2 leads to a

imilar conclusion as the left hand side, now looking at the abso- 

ute errors | f T x (t) − ˆ f T x (t ) | and | f T x (t ) − ˜ f T x (t) | for different values

f t = 1 , 2 , . . . , L . 

Solving the least-squares optimization (63) in the exponential 

ase ( n k = 1 for all k = 1 , 2 , . . . , L ) turns out to be rather challeng-

ng. While, for L = 25 , we obtain a very good fit of the true life

able for ages [ x, x + L ] , the tail of the life table for ages ≥ x + L

s extrapolated very poorly (compare the red line in Fig. 3 to the 

lack line; the parameters used here are given by (42) in Siu et al.

2015) ). For higher values of L , this problem persists. As demon- 

trated in the left hand side of Fig. 3 , this can easily lead to nega-

ive survival probabilities or a survival probability exceeding 1 (see 

lso the Appendix of Asmussen, Laub, & Yang (2019) for a similar 

iscussion and additional references). In contrast, Erlang distribu- 

ions seem to be much more flexible to adapt to the tail of the 

ortality distribution, see the right hand side of Fig. 3 . For later 

eference, we provide one parameter set in the calibration for the 

rlang case with K B = 5 and L = 80 : 

f T x (t) ≈ 8 . 809986 · f 6 , 0 . 286081 (t) + 7 . 952294 · f 6 , 0 . 190245 (t) 

− 3 . 305995 · f 5 , 0 . 297787 (t) − 13 . 386357 · f 6 , 0 . 230329 (t) 

+ 0 . 930071 · f 3 , 0 . 193571 (t) . (64) 

.2. European-type GMDBs 

Following the first part of this article ( Section 5 ), we discuss the 

aluation of GMDBs whose payoff is an out-of-the-money call op- 

ion with guaranteed benefit K. Following Siu et al. (2015) , finan- 

ial risk is modeled by a two-state regime switching Kou model 

s introduced in Example 2.1 . We take the parameter set from Siu 

t al. (2015) , i.e. S 0 = 100 , r = 0 . 05 , σ1 = 0 . 1 , α+ , 1 = 40 , α−, 1 = 60 ,

p 1 = 0 . 25 , λ1 = 2 , σ2 = 0 . 4 , α+ , 2 = 60 , α−, 2 = 70 , p 2 = 0 . 75 , λ2 =
 . 5 , and Q 0 = [ −0 . 1 0 . 1 ; 0 . 2 − 0 . 2] . 

For our closed-form solutions, the implementation follows 

xamples 5.4 and 5.6 in Section 5 . For the general case of regime

witching jump diffusion models, Monte-Carlo simulations turn 

ut to be rather inefficient (see Tables 2–5 in Ai & Zhang, 2022 and

lso Huang et al., 2014, Benth et al., 2021 ). That is why, we com-

are our suggested closed-form expression to Fourier pricing that 

s commonly used in related literature, see, e.g., Carr & Madan 

1999) for a general introduction and Siu et al. (2015) , Theorem 3.1 

or an application to the regime switching Kou model. This allows 

s a comparison to Siu et al. (2015) . In Table 1 we use the cal-

brated series (42) in Siu et al. (2015) of 5 exponential distribu- 

ions for the distribution of remaining lifetime. Using put-call par- 

ty, we obtain GMDB put prices given the corresponding GMDB 

all prices (28) together with E 

[
e −rτN,μ

]
= 

(
μ

μ+ r 
)N 

and P V (S 0 ) = 

(S 0 ) − S 0 + KE 

[
e −rτN,μ

]
. We compare our approximated life table 

o the “true price” obtained from the discrete life table of Bowers 

t al. (1997) , linearly interpolating between successive annual grid 

oints: 

 V (S 0 ) ≈
ω−x ∑ 

t=1 

(
F T x (t − 1) − F T x (t) 

F T x (0) 

)
· P V (S 0 , t) + P V (S 0 , t − 1) 

2 

, 

(65) 
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Fig. 2. Logarithmic total mean squared error (left) and absolute error for the approximation of the density f T x (t) for t = 1 , 2 , . . . , 25 (right). 

Fig. 3. True survival probability (the life table presented in Appendix 2.A of Bowers et al. (1997) ) compared to its approximations, i.e. a series of exponential distributions 

(left hand side) for different values of K and L and a series of Erlang distributions (right). 

Table 1 

Values of European-type GMDBs, out-of-the-money call options following Example 5.6 and the sum- 

of-exponential remaining lifetime distribution (42) in Siu et al. (2015) . 

Fourier price P V (S 0 ) time Our price P V (S 0 ) time True price P V (S 0 ) 

ϕ 0 = 1 ϕ 0 = 2 ϕ 0 = 1 ϕ 0 = 2 ϕ 0 = 1 ϕ 0 = 2 

K = 100 1.1928 1.8466 0.95s 1.1928 1.8466 0.0006s 1.8848 2.7624 

K = 105 1.3274 2.0281 0.94s 1.3274 2.0281 0.0006s 2.0823 3.0231 

K = 110 1.4728 2.2170 0.98s 1.4728 2.2170 0.0006s 2.2912 3.2928 

K = 115 1.6279 2.4129 1.23s 1.6279 2.4129 0.0006s 2.5113 3.5712 

K = 120 1.7918 2.6155 0.99s 1.7918 2.6155 0.0006s 2.7421 3.8580 

K = 125 1.9640 2.8245 1.02s 1.9640 2.8245 0.0006s 2.9831 4.1529 

K = 130 2.1438 3.0395 1.13s 2.1438 3.0395 0.0006s 3.2338 4.4555 

w  

1

P

a

f

t

t

a

p

t

t

i

B

t

d

(

p

i

t

fi

s

here the price of a put option is obtained via Fourier pricing t =
 , 2 , . . . , ω − x : 

 V (S 0 ) = E 

[
e −rt max (K − S t , 0) 

]
. (66) 

To implement Fourier pricing, we follow the fast Fourier pricing 

lgorithm by Carr & Madan (1999) and use the Laplace transform 

rom Lemma 5.1 . We choose the number of function evaluations in 

he Fourier algorithm as 4096 as this allowed us to obtain all es- 

imates in at least 5 digits of accuracy. Using Matlab, this leads to 

 total computation time of around 1s for five evaluations of the 

ricing equation. There might be ways to improve this implemen- 

ation as Siu et al. (2015) report a lower number of 0.06s. Never- 
1231 
heless, the closed-form expression speeds up computation signif- 

cantly and obtains one price almost instantly in around 0.0 0 06s. 

oth our closed-form expressions and the Fourier algorithm allow 

o value GMDBs with different guarantee values K at almost no ad- 

itional cost. 

As a second step, we use the series of Erlang distributions 

64) for the remaining lifetime. Table 2 gives the result, again com- 

aring Fourier pricing to our closed-form solutions. The increase 

n computation time for the closed-form solutions is mainly due 

o the more complicated Laurent series expansion, i.e. the coef- 

cients (21) and (22) . For the implementation, we use Matlab’s 

ymbolic toolbox for the derivatives. This implementation works 
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Table 2 

Values of European-type GMDBs, out-of-the-money call options following Example 5.6 and the sum- 

of-Erlang remaining lifetime distribution (64) . 

Fourier price P V (S 0 ) time Our price P V (S 0 ) time True price P V (S 0 ) 

ϕ 0 = 1 ϕ 0 = 2 ϕ 0 = 1 ϕ 0 = 2 ϕ 0 = 1 ϕ 0 = 2 

K = 100 1.8476 2.7552 0.4583s 1.8476 2.7552 0.0310s 1.8848 2.7624 

K = 105 2.0492 3.0207 0.4198s 2.0492 3.0207 0.0295s 2.0823 3.0231 

K = 110 2.2667 3.2964 0.4346s 2.2667 3.2964 0.0295s 2.2912 3.2928 

K = 115 2.4998 3.5819 0.4346s 2.4998 3.5819 0.0303s 2.5113 3.5712 

K = 120 2.7474 3.8767 0.4240s 2.7474 3.8767 0.0297s 2.7421 3.8580 

K = 125 3.0081 4.1805 0.5004s 3.0082 4.1805 0.0298s 2.9831 4.1529 

K = 130 3.2808 4.4929 0.4463s 3.2808 4.4929 0.0291s 3.2338 4.4555 

Table 3 

Values of Lookback GMDBs, for different strikes K and increasing jump risk a . 

a = 6 a = 10 a = 17 a = 25 a = 40 a = 70 a = 80 

K = 100 126.43 118.55 112.64 109.55 106.86 104.78 104.42 

K = 140 127.54 119.65 113.72 110.63 107.93 105.85 105.49 

K = 180 130.77 122.84 116.90 113.80 111.09 109.00 108.64 

K = 220 135.35 127.39 121.42 118.31 115.60 113.51 113.15 

K = 260 140.85 132.86 126.88 123.76 121.04 118.95 118.58 

K = 300 147.04 139.03 133.03 129.91 127.19 125.09 124.72 
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uite well until around N = 8 – a different approach to compute 

21) and (22) may significantly improve computation times for this 

ethod. The prices obtained by K B = 5 Erlang distributions approx- 

mate true prices (65) much better than the exponential distribu- 

ions in Table 1 . 

.3. Lookback-type GMDBs 

Next, we implement prices for lookback GMDBs implementing 

roposition 6.7 and solving the respective Sylvester equations nu- 

erically. For the illustration, we use the phase-type jump model 

rom Example 3.4 . The distribution of remaining lifetime is chosen 

o be the K B = 5 -term Erlang distribution (64) . 

Table 3 gives the resulting prices for the parameter set used 

n Deelstra et al. (2020) , i.e. b = 3 , c = 7 . 5 , n A = 8 , λ = 10 , q 1 = 1 ,

 2 = 4 , σ1 = 0 . 15 , σ2 = 0 . 30 , r = 0 . 03 , and S 0 = 100 . We vary the

arameter a to increase jump size volatility while keeping the ex- 

ected jump size constant. Each price is obtained in less than 1s. 

e observe that jump size volatility has a significant impact on the 

rices of lookback GMDBs, a much stronger effect than for the dig- 

tal, vanilla and down-and-out-call GMDBs considered by Deelstra 

t al. (2020) . 

. Conclusion 

In a very general framework with regime switching returns 

ith two-sided phase-type jumps and a remaining lifetime dis- 

ribution following a series of Erlang distributions, respectively a 

aguerre series expansion, we derive the Laplace transform of the 

eturns of several vanilla and exotic GMDB contracts. Contrasting 

ost of the related literature, our results do not rely on Fourier 

nversion but are either purely analytical or based on the solution 

f a class of affine matrix equations called Sylvester equations. 

We demonstrated the usefulness of Laurent series expansions, 

espectively Sylvester equations for the valuation of different types 

f GMDBs. For European-type GMDBs the closed-form density of 

he terminal payoff allows us also to derive higher-order moments 

r quantiles to analyze and manage the contracts’ risks. We believe 

hat the techniques we use can be applied much broader, also for 

 fast computation of hedging weights and Greeks of GMDBs. This 

an be an interesting avenue for future research. Apart from this, 
1232 
ore complex payoff features like Parisian ruin or Asian-type op- 

ions may be promising extensions of this work. 

0. Discussion and links to related literature 

Motivated by the example of guaranteed minimum death ben- 

fits (GMDB) in insurance, we discuss the valuation and risk man- 

gement of cash-flows where both level and time of payment 

re random. Random payment dates appear in different areas of 

perations Research (OR); the randomness may be due to credit 

vents, accidents, production failures or catastrophe- / weather- 

elated impacts (e.g. Brigo & Vrins, 2018 , Scarf, Cavalcante, & Lopes 

2019) ). In insurance, examples of random events include not only 

ife insurance contracts but also reinsurance treaties, cyber-risk or 

perational-risk related contracts and the analysis of disruptive 

ew technologies that affect financial cash-flows. 

Our results have strong links to derivative valuation in Finance 

ith deterministic payment dates (e.g. Cai, Song, & Kou, 2015, 

ieber, 2018, Deelstra et al., 2020, Kirkby, 2023 ). We adapt these 

esults to popular insurance payoffs where lookback-type payoffs 

re more common components of (for example) dynamic with- 

rawal benefits, than digital and barrier-like products covered in 

rticles with a stronger focus on financial derivatives (e.g. Deelstra 

t al., 2020 ). Another difference is the parameter N of the Erlang 

istributed random time: In Carr‘s randomization in Finance (e.g. 

arr, 1998, Deelstra et al., 2020 ), one chooses N → ∞ while for our

andom payment dates values of N ≤ 10 are sufficient. Note that 

he parameter N determines the number of roots in the Laurent se- 

ies expansion as well as the dimension of the Sylvester equations. 

his parameter strongly affects the efficiency of the techniques in- 

roduced in this article. 

The advantage of our approach is the fact that - in a very gen- 

ral model framework - we do not rely on Fourier inversion or 

onte-Carlo simulation but provide computationally very conve- 

ient expressions that are either closed-form or depend on the 

olutions of Sylvester equations. With respect to the literature on 

quity-linked life insurance, we extend recent results for a Black- 

choles model or double-exponential jump diffusion model (e.g. 

erber et al., 2012, Gerber et al., 2013, Zhang & Yong, 2019, Zhang 

t al., 2021 ) to the class of regime switching Brownian motion with 

wo-sided phase-type jumps. Laplace transforms in this model 

lass are typically more involved as they involve matrix exponen- 
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ials. We demonstrate that this class allows to still derive a Laurent 

eries expansion of the Erlang-subordinated return density. This 

eads to convenient valuation formulas for European-type GMDBs, 

voiding Fourier inversion algorithms as derived in, for example, 

iu et al. (2015) . 

From a more technical perspective, we hope that the links we 

rovide between the matrix Wiener-Hopf factorisation (e.g. Jiang 

 Pistorius, 2008 ) and Carr‘s randomization to techniques like the 

iscounted density approach for GMDB analysis in insurance (e.g. 

erber et al., 2012; Gerber et al., 2015, Zhang & Yong, 2019 ) are

nteresting and foster a further exchange between different disci- 

lines. We contribute to the tractability of regime switching mod- 

ls with the aim to further promote the use and application of 

egime switching models in OR (see also Elias et al., 2014, Hain- 

ut, 2014, Korn et al., 2017, Jin et al., 2020 ). 

Our analysis has limitations and contains some simplifications 

f reality. In further research, it may be interesting to look at 

or example surrender risks or Asian-type payoffs. The impact of 

odel risk and model uncertainty for the products considered in 

his article may also give novel insights. 
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ppendix A. Proof of Lemma 3.1 

We recall from (3) that the dynamics of the MMBM can be 

ritten as 

 t = X 0 + 

∫ t 

0 
d ϕ s d s + 

∫ t 

0 
σϕ s d B s + 

∫ t 

0 
J + ϕ s d N 

ϕ s , + 
s −

∫ t 

0 
J −ϕ s d N 

ϕ s , −
s (67) 

ecomposed of a diffusion part with standard Brownian motion B t , 

ositive and negative jumps. Here, N 

j, + 
t and N 

j, −
t are Poisson pro- 

esses for the arrival of upper and lower jumps in the diffusion 

tate j ∈ S σ . A jump at time t may trigger an immediate phase

ransition from ϕ t− = j ∈ S σ to ϕ t = k ∈ S σ . The generator matri-

es R + and R − in (4) and (5) have negative and real-valued eigen- 

alues. From Proposition 17.4 in Mijatovi ́c & Pistorius (2011) , we 

nd that the expected value E [ 1 ϕ t = k e 
βJ + 

j 
∣∣ϕ t− = j] is bounded if

nd only if β ≤ −λ+ 
0 

. If a jump appears at time t , we obtain from

4) and (5) and Lemma 2.2 for β ≤ −λ+ 
0 

: 

 

[
1 ϕ t = k e 

βJ + 
j 

∣∣ϕ t− = j 
]

= 

∫ ∞ 

0 

e βJ + 
j d P 

(
J + 

j 
∈ d x, ϕ = k after the jump 

)
= 

1 

( W σ+ 1 ) j 

∫ ∞ 

0 

(
W σ+ e (βI n + R + ) x V + σ

)
jk 

d x 

= − 1 

( W σ+ 1 ) j 

(
W σ+ 

(
βI n + R + 

)−1 
V + σ

)
jk 

, (68) 

nd 

E 

[
1 ϕ t = k e 

−βJ −
j 

∣∣ϕ t− = j 
]

= 

∫ ∞ 

0 

e −βJ −
j d P 

(
J −

j 
∈ d x, ϕ = k after the jump 

)
= 

1 

( W σ−1 ) j 

∫ ∞ 

0 

(
W σ−e (−βI n + R −) x V −σ

)
jk 

d x 
1233 
= − 1 

( W σ−1 ) j 

(
W σ−

(
− βI m 

+ R −
)−1 

V −σ

)
jk 

. (69) 

he upper or lower jumps arrive with intensity ( W σ+ 1 ) j and 

 W σ−1 ) j , respectively. As a first step, let us consider the case of 

ne regime only ( M = m = n = 1 , ϕ t = 1 , ∀ t). 

(1) 
t (β) : = E 

[ 
e −θ1 t e βX t 

] 
= E 

[ 
e −θ1 t e β(d 1 t+ σ1 B t ) −β

∑ N 1 , −
t 

j=1 
J −
1 

+ β∑ N 1 , + 
t 

j=1 
J + 
1 

] 
= e (d 1 β−θ1 ) t · e 

1 
2 σ

2 
1 β

2 t · E 

[ 
e −β

∑ N 1 , −
t 

j=1 
J −
1 

] 
· E 

[ 
e β

∑ N 1 , + 
t 

j=1 
J + 
1 

] 
= e (d 1 β−θ1 + 1 2 σ

2 
1 β

2 ) t · e 
W σ−
β−R − V −σ t −W σ−t · e 

− W σ+ 
β+ R + V + σ t −W σ+ t 

, (70) 

here, for a Poisson process N t with intensity λ, it holds that: 

 

[
e 
β
∑ N t 

j=1 
J ] = e λt(E [ e βJ ] −1) . With Q = −( W σ+ + W σ−) , we obtain 

11) and [ Q W σ+ W σ−] 1 = 0 . 

For the general case, apply Itô’s lemma to (67) to obtain the 

ynamics of the discounted exponential process Y t := e −
∫ t 

0 θs d s + βX t : 

 t = Y 0 + 

∫ t 

0 

(
βd ϕ s − θ (ϕ s ) + 

1 

2 

β2 σ 2 
ϕ s 

)
Y s d s + 

∫ t 

0 

βσϕ s Y s d B s 

+ 

∫ t 

0 

(
e βJ + ϕ s − 1 

)
d N 

ϕ s , + 
s −

∫ t 

0 

(
e βJ −ϕ s − 1 

)
d N 

ϕ s , −
s . (71) 

or the case of multiple regimes ( M > 1 ), introduce the vector 

alued process Z t := (Z (1) (t) , Z (2) (t ) , . . . , Z (M) (t )) ′ , where Z 
( j) 
t :=

 ϕ t = j Y t for j ∈ S σ . Consider a (small) time interval � t and assume

for now) that there are no jumps ( W σ− = W σ+ = 0 ). In this spe-

ial case, we denote the generator matrix Q by Q 0 to acknowledge 

hat Q 0 1 = 0 . Following, for example, Buffington & Elliott (2002) , 

ieber (2017) , we obtain 

 

 

E [ Z (1) 
t+ � t ] 
. . . 

E [ Z (M) 
t+ � t ] 

⎤ ⎦ = 

⎡ ⎣ 

E [ Z (1) 
t ] 

. . . 

E [ Z (M) 
t ] 

⎤ ⎦ 

+ 

∫ t+ � t 

t 

⎡ ⎣ 

E [ Z (1) 
s ] 

. . . 

E [ Z (M) 
s ] 

⎤ ⎦ 

′ (
Q 0 + D β − � + 

1 

2 

�2 β2 
)

d s ,

 system of differential equations that can, with ϕ 0 = j, be solved 

o 
 

 

E [ Z (1) 
t ] 

. . . 

E [ Z (M) 
t ] 

⎤ ⎦ = 

⎡ ⎣ 

E [ 1 ϕ t =1 e 
− ∫ t 0 θ

(ϕ s ) d s + βX t ] 
. . . 

E [ 1 ϕ t = M 

e −
∫ t 

0 θ
(ϕ s ) d s + βX t ] 

⎤ ⎦ 

= e ′ j exp 

((
Q 0 + D β − � + 

1 

2 

�2 β2 
)
t 

)
. 

e refer the reader to Buffington & Elliott (2002) for more 

etails. Defining the random occupation time in [0 , t] in state 

j by T j (t) = 

∫ t 
0 1 ϕ s = j d s , T (t) := (T 1 (t) , T 2 (t ) , . . . , T M 

(t )) and ζ :=
ζ (1) , ζ (2) , . . . , ζ (M) ) , the result rests on: 

 

[
1 ϕ t = k e 

〈 ζ, T (t) 〉 ∣∣ϕ 0 = j 
]

= e ′ j exp 

(
( Q + diag ( ζ)) t 

)
e k , (72) 

here 〈 · , · 〉 denotes the scalar product. Next, we extend this re- 

ult to upper or lower jumps in state j ∈ S σ arriving at the rates

 W σ+ 1 ) j and ( W σ−1 ) j , respectively. The jump might trigger a 

hase transition, accounted for by the matrices V + σ and V −σ . The 

xpected change due to jumps in state j ∈ S σ are then given by: (
P 

(
J j 

+ ∈ d t 
)

· E 

[
1 ϕ t = k (e βJ j 

+ − 1) 
∣∣ϕ t− = j 

])
jk 

+ 

(
P 

(
J j 

− ∈ d t 
)

· E 

[
1 ϕ t = k (e −βJ j 

− − 1) 
∣∣ϕ t− = j 

])
jk 

= 

(
W σ−

(
βI m 

− R −
)−1 V −σ − W σ+ 

(
βI n + R + 

)−1 V + σ

− diag 
(
( W σ+ + W σ−) 1 

))
jk d t . 
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W

b⎡⎣
a⎡⎣
W

A

 

d

v

�

N

c

W

t

o

�

a

A

Z  

f  

s

T

f  

i

M

t

C

I

l  

i

y

A

 

−

A

v

o⎛⎜⎝

 

W  

t

i

u

e obtain, using that Q = Q 0 − diag 
(
( W σ+ + W σ−) 1 

)
and com- 

ining with the results from the diffusion case above: 
 

 

E [ Z (1) 
t+ � t ] 
. . . 

E [ Z (M) 
t+ � t ] 

⎤ ⎦ = 

⎡ ⎣ 

E [ Z (1) 
t ] 

. . . 

E [ Z (M) 
t ] 

⎤ ⎦ + 

∫ t+ � t 

t 

⎡ ⎣ 

E [ Z (1) 
s ] 

. . . 

E [ Z (M) 
s ] 

⎤ ⎦ 

′ 

�(β, �)d s , 

n equation that can be solved to: 
 

 

E [ Z (1) 
t ] 

. . . 

E [ Z (M) 
t ] 

⎤ ⎦ = 

⎡ ⎣ 

E [ 1 ϕ t =1 e 
− ∫ t 0 θ

(ϕ s ) d s + βX t ] 
. . . 

E [ 1 ϕ t = M 

e −
∫ t 

0 θ
(ϕ s ) d s + βX t ] 

⎤ ⎦ = e ′ j exp 

(
�(β, �) t 

)
. 

ith this, we immediately obtain (10) . 

ppendix B. Proof of Lemma 5.1 

Using (9) and the fact that an Erlang r.v. is the sum of N in-

ependent and identically distributed Exp (μ) r.v., we obtain the 

ector: 

τN,μ
(β) : = 

⎡ ⎢ ⎣ 

E 

[ 
e 

− ∫ τN,μ
t θ (ϕ s ) d s + βX τN,μ

∣∣ϕ 0 = 1 

] 
. . . 

E 

[ 
e 

− ∫ τN,μ
t θ (ϕ s ) d s + βX τN,μ

∣∣ϕ 0 = M 

] 
⎤ ⎥ ⎦ 

= E 

[ 
exp 

(
�(β, �) · τN,μ

)] 
1 

= 

(
μN 

∫ ∞ 

0 

t N−1 

(N − 1)! 
e −μt exp 

(
�(β, �) · t 

)
d t 

)
1 . 

ote that the j-th entry of this vector is φ( j) 
τN,μ

(β) . The discounted 

haracteristic function φ( j) 
τN,μ

(β) exists for β ≤ −λ+ 
0 

, see Lemma 3.1 . 

e further apply Lemma 2.2 (b) and in particular, the existence of 

he inverse 
(
μI M 

− �(β, �) 
)−1 

. Applying integration by parts, we 

btain 

τN,μ
(β) = μ

(
μI M 

− �(β, �) 
)−1 

�τN−1 ,μ
(β) , (73) 

n iteration that can be solved to φ( j) 
τN,μ

(β) = e ′ 
j 
�τN,μ

(β) in (18) . 

ppendix C. Proof of Lemma 6.4 

Let us first prove the results concerning the iteration to obtain 

 

(k ) 
+ for k = 2 , 3 , . . . , N. The idea is to solve (38) backwards, starting

rom the last block that equals Eq. (31) in Proposition 6.1 . For the

econd last row, we obtain for k = 2 that 

1 

2 

[ 

�2 
0 

0 0 

0 0 

] (
U 

(1) 
+ · U 

(2) 
+ + U 

(2) 
+ · U 

(1) 
+ 
)

−
[ 

D 0 0 

0 I n 0 

0 0 −I m 

] (
�(1) 

+ · U 

(2) 
+ + �(2) 

+ · U 

(1) 
+ 
)

+ P( �) · �(2) 
+ + 

[ 

μI M 

0 

0 0 

0 0 

] 

= 0 . 

he lowest block in this system of equation yields U 

(k ) 
±σ = U 

(k ) 
±± = 0 

or k ≥ 2 (i.e. this confirms that the lowest blocks in U 

(k ) 
± for k ≥ 2

s 0 ). The full system can be rewritten as follows: [ 

1 
2 
�2 

0 

0 0 

0 0 

] [
U 

(2) 
σσ U 

(2) 
σ+ 

0 0 

]
U 

(1) 
+ + 

[ 

0 M 

0 

0 0 n 

�(2) 
−σ �(2) 

−+ 

] 

U 

(1) 
+ 

+ 

[ 

1 
2 
�2 

0 

0 0 

0 0 

] [
U 

(1) 
σσ U 

(1) 
σ+ 

U 

(1) 
+ σ U 

(1) 
++ 

][
U 

(2) 
σσ U 

(2) 
σ+ 

0 0 

]

1234
+ 

[ 

μI M 

0 

0 0 

0 0 

] 

+ 

[ 

D 0 

0 I n 

�(1) 
−σ �(1) 

−+ 

] [
U 

(2) 
σσ U 

(2) 
σ+ 

0 0 

]

+ 

[ 

W σ−
0 

R −

] [
�(2) 

−σ �(2) 
−+ 
]

= 0 . 

ultiplying the first block by 2 �−2 , we obtain the Sylvester equa- 

ion: [
U 

(1) 
σσ − 2 �−2 

D 2 �−2 
W σ−

�(1) 
−σ R −

][
U 

(2) 
σσ U 

(2) 
σ+ 

�(2) 
−σ �(2) 

−+ 

]
+ 

[
U 

(2) 
σσ U 

(2) 
σ+ 

�(2) 
−σ �(2) 

−+ 

]
U 

(1) 
+ + 

[
2 �−2 μI M 

0 

0 0 

]
= 0 . 

ontinuing to solve (38) backwards, we obtain for k ≥ 3 : 

1 

2 

[ 

�2 
0 

0 0 

0 0 

] 

k ∑ 

l=1 

U 

(l) 
+ · U 

(k +1 −l) 
+ 

−
[ 

D 0 0 

0 I + 0 

0 0 −I −

] 

k ∑ 

l=1 

�(l) 
+ · U 

(k +1 −l) 
+ + P( �) · �(k ) 

+ = 0 . 

n this iteration, we assume that the matrices with an exponent 

ower than k are already known. That is why, starting from k = 2 ,

n each iteration, the only unknown is Z 

(k ) 
+ . Writing out this system 

ields (40) . The results concerning Z 

(k ) 
− are obtained analoguously. 

ppendix D. Kou’s model and exponential death time 

Kou’s model is obtained as m = n = 1 , V + σ = −R + = α+ , V −σ =
R − = α−, W σ− = pλ, W σ+ = (1 − p) λ and Q = −λ. 

1 

2 

[ 

σ 2 
1 0 

0 0 

0 0 

] (
U 

(1) 
+ 
)2 −

[ 

d 1 0 0 

0 1 0 

0 0 −1 

] [ 

1 0 

0 1 

�(1) 
−σ �(1) 

−+ 

] 

U 

(1) 
+ 

+ 

[ −λ − μ − θ (1) (1 − p) λ pλ
α+ −α+ 0 

α− 0 −α−

] [ 

1 0 

0 1 

�(1) 
−σ �(1) 

−+ 

] 

= 

[ 

0 

0 

0 

] 

. (74) 

ssume that U 

(1) 
+ has an eigenvalue β with corresponding eigen- 

ector w whose first element is (without loss of generality) 1, we 

btain for w 2 ∈ R : 

 

 

 

⎡ ⎢ ⎣ 

1 
2 
σ 2 

1 β
2 − d 1 β 0 

0 −β

�(1) 
−σ β �(1) 

−+ β

⎤ ⎥ ⎦ 

+ 

⎡ ⎢ ⎣ 

−λ − μ − θ (1) + pλ�(1) 
−σ (1 − p) λ + pλ�(1) 

−+ 
α+ −α+ 

α−(1 − �(1) 
−σ ) −α−�(1) 

−+ 

⎤ ⎥ ⎦ 

⎞ ⎟ ⎠ 

[
1 

w 2 

]

= 

[ 

0 

0 

0 

] 

. (75)

e can solve the second line to w 2 = α+ / (α+ + β) . Denoting the

wo eigenvalues of U 

(1) 
+ by (−β1 ) < (−β2 ) < 0 (they exist as U 

(1) 
+ 

s a generator matrix), their corresponding eigenvectors relate to 

nit vectors as follows: 
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F

U

U

S

U

T

α[
t[

w  

o[
F

0

I

a

θ

A

R

A

A

A

A

B

B  

B  

B  

B

B

B

C

C  

C

C

C

C

D

D  

E  

E  

E  

F

G  

G  

G  

G  

G

H

H

H

H

− (α+ − β1 )(α+ − β2 ) 

α+ (β2 − β1 ) 

([
1 

α+ 
α+ −β1 

]
−
[

1 

α+ 
α+ −β2 

])
= 

[
0 

1 

]
, 

1 

β2 − β1 

(
(α+ − β1 ) 

[
1 

α+ 
α+ −β1 

]
− (α+ − β2 ) 

[
1 

α+ 
α+ −β2 

])
= 

[
1 

0 

]
. 

rom this, we obtain: 

 

(1) 
+ 

[
0 

1 

]
= − (α+ − β1 )(α+ − β2 ) 

α+ (β2 − β1 ) 

(
(−β1 ) 

[
1 

α+ 
α+ −β1 

]
−(−β2 ) 

[
1 

α+ 
α+ −β2 

])
= 

[
−β1 β2 

α+ 
+ β1 + β2 − α+ 

−α+ 

]
, 

 

(1) 
+ 

[
1 

0 

]
= 

1 

β2 − β1 

(
(−β1 )(α+ − β1 ) 

[
1 

α+ 
α+ −β1 

]
−(−β2 )(α+ − β2 ) 

[
1 

α+ 
α+ −β2 

])
= 

[
α+ − β1 − β2 

α+ 

]
. 

ummarizing, we obtain: 

 

(1) 
+ = 

[
α+ − β1 − β2 −β1 β2 

α+ 
+ β1 + β2 − α+ 

α+ −α+ 

]
. 

he last line in equation (74) reads as 
[
�(1) 

−σ �(1) 
−+ 
]
U 

(1) 
+ −

−
[
�(1) 

−σ �(1) 
−+ 
]

+ 

[
α− 0 

]
= 0 , or, equivalently: 

�(1) 
−σ �(1) 

−+ 
](

U 

(1) 
+ −

[
α− 0 

0 α−

])
= 

[
−α− 0 

]
(76) 

hat can be solved as: 10 

�(1) 
−σ

�(1) 
−+ 

]′ 
= 

[
−α− 0 

] 1 

det 

(
U 

(1) 
+ −

[
α− 0 

0 α−

])
[
−α− − α+ 

β1 β2 

α+ 
− β1 − β2 + α+ 

−α+ α+ − α− − β1 − β2 

]
= 

α−
(β1 + α−)(β2 + α−) 

[
α+ + α−

−β1 β2 

α+ 
+ β1 + β2 − α+ 

]′ 
, 

here, in the last step, we have used that det ( U 

(1) 
+ ) = β1 β2 . We

btain: 

�(1) 
−σ �(1) 

−+ 
][ 1 

α+ 
α+ + β

]
= 

α−
α− − β

. (77) 

rom the first line of (75) , we then obtain 

 = 

1 

2 

σ 2 
1 β

2 − d 1 β−μ−θ (1) + λ
(

p 
α−

α− − β
+ (1 − p) 

α+ 
α+ + β

− 1 

)
= �(−β, �) − μ = 0 . 

n other words, the eigenvalues β of U 

(1) 
+ satisfy �(−β, �) = μ

nd are thus given by (−β1 ) , (−β2 ) with −β2 < −β1 < 0 and � = 

(1) , see (14) and Example 6.6 . 
10 Note that the inverse of a 2 × 2 matrix is given by: 

 

−1 := 

[
a b 

c d 

]−1 

= 

1 

det (A ) 

[
d −b 

−c a 

]
. 

H

H

H
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