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ABSTRACT

In this article, we focus on death-linked contingent claims (GMDBs) paying a random financial return at a
random time of death in the general case where financial returns follow a regime switching model with
two-sided phase-type jumps. We approximate the distribution of the remaining lifetime by either a series
of Erlang distributions or a Laguerre series expansion, whose capability to fit the tail of the observed
mortality data turns out to be much better than the commonly used series of exponential distributions.

More precisely, we develop a Laurent series expansion of the discounted Laplace transform of the subor-
dinated process at an Erlang distributed time, which leads to explicit formulae for European-type GMDB
as well as related risk measures such as the Value-at-Risk (VaR) and the Conditional-Tail-Expectation
(CTE). We further concentrate upon path-dependent GMDBs with lookback features like dynamic fund
protection or dynamic withdrawal benefits, by relying on a Sylvester equation approach. The advantage
of our approaches is that our results are of semi-closed form, avoiding numerical Fourier inversion or
Monte-Carlo simulation, leading to fast evaluation. This is necessary in risk-management, in particularly
for nested simulation in the framework of Solvency II. Several numerical experiments are included.

Our results have implications beyond life-insurance and GMDBs, namely in all situations where random-
ization or Erlangization replaces known quantities, like, for example, model parameters, by random vari-
ables. In Finance, it is for example well-known that a random maturity time leads to much more conve-
nient valuation formulas that well approximate its non-random counterpart.

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction and motivation

able annuities. For the two sources of risk, we try to be very gen-
eral and flexible: The underlying financial return process follows

In many disciplines, risk analysis and optimal control is based
on time-changed Markov processes, accounting for the fact that
- often - not only the underlying process itself is random but
also the time it is observed (see, e.g., Hieber & Scherer, 2012, Cui,
Kirkby, & Nguyen, 2019 and the references therein). This is also
the case in insurance, where contract payoffs depend on a financial
risk process while claim dates are random events like death or the
occurence of a claim or natural catastrophe. While the results in
this article can have many applications in different disciplines, the
focus is on death-linked insurance products, i.e. Guaranteed Min-
imum Death Benefits (GMDB) that pay a certain (random) finan-
cial payoff at the time of death, a feature often embedded in vari-
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a regime switching Brownian motion with two-sided phase-type
jumps (see also Asmussen, 2003, Jiang & Pistorius, 2008) while the
distribution of the random payment times can be approximated by
a series expansion. One of the pioneering works on regime switch-
ing models is Hamilton (1989) suggesting that financial models
should account for the cyclical pattern of boom and recession ob-
served in many financial time series. The idea of such models is
that model parameters may depend on a (typically small) number
of “phases” modelled by a Markov process. Just to mention few ex-
amples: These processes turn out to be convenient to discuss op-
timal consumption and control in Finance (see, e.g., Korn, Melnyk,
& Seifried, 2017, Jin, Liu, & Yang, 2020), pension fund modeling in
Insurance (see, e.g., Hainaut, 2014) or cyclical patterns in tempera-
ture modeling (see, e.g., Elias, Wahab, & Fang, 2014).

The distribution of a random payment date can be approxi-
mated by a Laguerre series expansion that is dense in the class of
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L2-distributions (see e.g. Zhang & Yong, 2019) or by combinations
of Erlang distributions. Technically, such Laguerre series expansions
can be linked to Erlang distributions. An Erlang random variable
Ty, with parameters N e N and p > 0 has the same distribution
as the sum of N independent exponential random variables. It has
density function

N-1
%ﬁ%ﬁ“‘ ™

Erlang distributions inherit many desirable features from the ex-
ponential distribution that is obtained as the special case N = 1.
Interestingly, a contingent claim that is due at a random expo-
nential time t; , can often be priced much easier than its fixed-
time counterpart. The reason for this is that in the class of regime
switching Brownian motion with two-sided phase-type jumps, it
is often the Laplace transform of the logarithmic returns that is
known analytically. For a fixed-time contingent claim, values or
higher-order moments require a numerical Laplace inversion algo-
rithm. In contrast, for a random contingent claim, these quantities
can just be expressed in terms of the known Laplace transform.
This was one reason why, in Finance, the idea appeared to “ran-
domize” the payment date of options, an approach named “Carr’s
randomization”, “Canadization” or “Erlangization”.

The suggestion is to approximate the option’s fixed maturity
time T by an Erlang distributed random variable with mean T and
standard deviation T/+/N for N €N, i.e. choose = T/N in (1). If
N is sufficiently high, this well approximates the original problem
with constant maturity T. With this modification, one can typically
approximate the finite horizon valuation problem by a (modified)
infinite horizon problem that is much easier to solve. An exam-
ple is the pricing of American options where randomization leads
to piecewise constant exercise boundaries. The pioneering work in
this direction is (Carr, 1998); for related applications to insurance
and risk theory we refer to, e.g., Asmussen & Albrecher (2010),
Chapter IX.8. In insurance applications, however, payment dates of
GMDBs are per se random. There is no necessity to approximate a
fixed payment date, that is we can use two-parametric Erlang dis-
tributions with small values of N. Being dense in the class of L2-
distributions, combinations of these Erlang random variables allow
to well approximate any death time distribution (or, more gener-
ally, any distribution of a random observation time).

This article establishes the links between (on first sight) quite
different strands of literature, namely Erlangization in Finance (e.g.
Carr, 1998, Deelstra, Latouche, & Simon, 2020), the discounted den-
sity approach for GMDB valuation (e.g. Gerber, Shiu, & Yang, 2012;
Gerber, Shiu, & Yang, 2015, Zhang & Yong, 2019) and the ma-
trix Wiener-Hopf factorisation (e.g. Jiang & Pistorius, 2008). Clos-
est to this article is Gerber et al. (2012, 2015) - pioneering work
on GMDB valuation that has been extended in several directions,
i.e. piecewise constant forces of mortality (Liang, Tsai, & Lu, 2016),
regime-switching jumps and volatility (Ai & Zhang, 2022; Cui,
Kirkby, & Nguyen, 2017; Siu, Yam, & Yang, 2015; Wang, Zhang,
& Yu, 2021; Zhang, Yong, & Yu, 2021), different types of payoffs
(Kirkby & Nguyen, 2021; Zhang & Yong, 2019) and different types
of random time approximations (Zhang & Yong, 2019).

We generalize these existing works to a more flexible finan-
cial market model including a regime-dependent interest rate and
two-sided phase-type jumps. This model class is very general and
allows to well approximate stochastic volatility or heavier, power-
type tails of the jump distributions, see, e.g., Mijatovi¢ & Pistorius
(2011), Cai & Kou (2011). This is useful also for stress testing or
risk management. Second, we do not rely on Fourier techniques
and instead provide computationally very convenient techniques
for valuation and the computation of higher-order moments that
are either closed-form or require solely to solve a certain type
of affine matrix equation called Sylvester equation. We demon-

ftw(t): , t>0.
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strate that this is usually significantly faster and easier to imple-
ment than Fourier or Laplace inversion algorithms. Given the com-
plexity of the models used, Fourier-based algorithms are typically
computationally more efficient than Monte-Carlo simulations (see,
e.g., Huang, Zhu, & Ruan, 2014, Benth, Deelstra, & Kozpinar, 2021,
Ai & Zhang, 2022). The computation of solvency capital require-
ments in insurance companies requires fast and accurate valuations
in base-case and stress scenarios. This typically requires the an-
nual re-valuation of the whole insurance portfolio with its embed-
ded options in different economic scenarios. If these re-valuations
are based on Monte-Carlo, one typically faces the problem of so-
called nested-simulations leading to huge computational efforts
(see, e.g., Bauer, Reuss, & Singer, 2012, Feng, Gan, & Zhang, 2022).
Our results provide the groundwork for these computations as well
as for risk management, efficient calibration, hedging and opti-
mal control of GMDBs. Further, applications in different disciplines,
where randomness in space and time is also relevant, might be
promising.

Related work on regime switching jump diffusion models ap-
pears in Finance on the valuation of (exotic) financial options with
a fixed payment date. Numerical valuation is typically based on
Laplace or Fourier inversion algorithms (see, e.g., Hieber, 2014,
Hieber, 2018, Ballotta, Deelstra, & Rayéee, 2017, Dong, Lv, & Wu,
2019, Le Courtois, Quittard-Pinon, & Su, 2020) or Monte-Carlo
schemes like the Brownian bridge algorithm (see, e.g., Hieber &
Scherer, 2010). In this strand of literature, the second part of this
article is closest to Deelstra et al. (2020) that adopts the random-
ization technique described earlier. While this approach requires a
lot of computational effort for high values of the Erlangization pa-
rameter N, we, in this article, exploit that payment dates are per
se random. Small values of N are then sufficient, speeding up com-
putations significantly.

The article is organized as follows: In Sections 2 and 3, we
introduce the model framework and the payoff of GMDBs. In
Section 4, we discuss how the distribution of remaining lifetime
can be calibrated to a series of Erlang distributions, respectively
a Laguerre series expansion. Sections 5 and 6 are the core of
the paper. In Section 5, we obtain the distribution of the return
at a random time ty, in terms of a (closed-form) Laurent se-
ries expansion, which is useful to derive any quantiles or mo-
ments of the return. As an example, we derive valuation meth-
ods for European-type GMDBs in our regime-switching model. In
Section 6, we study some path-dependent GMDBs, namely digital
and lookback GMDBs. In Section 7, we demonstrate how these re-
sults apply to dynamic fund protection and dynamic withdrawal
benefits. The obtained pricing formulae depend only on the solu-
tion to a series of Sylvester equations. In Section 8, we apply our
technique to a calibrated example and compare our techniques to
Fourier inversion algorithms.

Throughout, we use bold letters for vectors and matrices and
abbreviate by 1 a vector of ones of appropriate size, by 0 a ma-
trix of zeros of appropriate size and by e; a vector where the i-
th component is the Kronecker delta §;. A k x k identity matrix
is denoted by I, and the transpose of a matrix by ’. The matrix
exponential of a matrix B € Ck*k is defined via the power series
exp(B) := Y 2, B"/n!.

2. Model framework

We study GMDBs embedded in variable annuities where the
underlying risky asset prices are determined by
St = So €X (2)

with fixed initial price Sy € R, and X a Markov-modulated Brown-
ian motion (MMBM) with two-sided phase-type jumps and Xy = 0.
An MMBM with two-sided phase-type jumps is a stochastic
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process that appears in different “states” modulated by a Markov
process ¢:. The main properties of the process are the following
(see, e.g., Deelstra et al., 2020):

o The process ¢ = {¢;};=0 governs the diffusion states of the
process X. It is defined on a finite state space with M e N
phases, that is at any time t > 0, ¢; = j, where je S; :=

..... M}. When ¢ = j, the level X evolves like a Brow-
nian motion with drift d; € R and variance 62 > 0. We as-
sume that the process X; starts in a diffusion state and that
@ has initial distribution & ¢ RM*1,

e When ¢; = j € S5, two kinds of transitions are possible: in-
stantaneous transitions from j to a different diffusion state
veS, at a rate {Q},, or jumps. The rates {Q}j are col-
lected in the subgenerator matrix! Q. Jumps can be pos-
itive or negative; we group the different jumps in two
state spaces Sy ={s7.sJ.....sy} and S_={s].s;.....5n)
forn,meN.

o We write the dynamics of {X;};~¢ as:

t t t t
Xt =X0+/ d%ds—l—/ G[,,sst—l—/ ](;st;"”—/ ](;Sdes'f.
0 0 0 0
3)
In the diffusion state j e S5, the processes {Nt”}tzo and
{th'_}tzo define the arrival of jumps. More specifically, the
arrival rate of an upward jump k € S, (respectively k € S_
for a downward jump) is the constant {Wy } i (respectively
{Ws_} ). The jumps may be accompanied by a change in
diffusion state. If a jump k € S; appears, {V, s },; is the rate
at which the jump terminates and the process returns to the
diffusion state i € S5 (analogous the rate is {V_,};; after a
downward jump ke S_). If j]fr and ]j? represent the abso-
lute size of an upward and downward jump that occurred
in phase j, then for all i € S5 and x > 0,

P(J; € dx, ¢ =1 after the jump)

— 1 R, x

= m(wﬁe VW)ﬁ dx, (4)
P(J; € dx, ¢ =1 after the jump)

— # R_x

= W, 1), (W(,,e V,g)ﬁ dx. (5)

The upward jumps have phase-type distribution represented
by a subgenerator matrix R; € R™" on the state space S;,
and the downward jumps have phase-type distribution rep-
resented by a subgenerator matrix R € R™™ on the state
space S_.

o For later use, we also define the transition matrices W ¢
RMx(+m) gpd v ¢ RHM) =M,

The process does not contain an absorbing state, that is the
diagonal entries of Q are determined such that [Q W]1 =0.

Vio

W=[W, W,] V= [V_(,

In other words, (X,¢) can be seen as a Markov-modulated
Brownian motion with two-sided phase-type jumps, in which the
jumps can (but are not forced to) trigger a phase transition. When
¢ = j €Sy, the continuous part of X is a Brownian motion with
drift d; and variance ojz. In phase j, an upward jump occurs at rate

1 Subgenerator matrices have non-negative off-diagonal entries; rows sum up to
non-positive values. For a generator matrix, rows sum up to zero.
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(Ws41); and a downward jump occurs at rate (Ws_1);. Given
the vector of constants § := (6, 0@ . M) cRM we intro-
duce the process

6, = Z ou . lyj= Qo

JjeSs

where ¢; € S5 .

that is constant in each phase ¢;. Finally, we define © =
diag(0) s, . the drift D = diag(d;) jcs, and volatility matrix X =
diag(o}) jes, -

Let us present the regime switching Kou model as Example 2.1.
This allows a later comparison to Siu et al. (2015).

Example 2.1 (Regime switching Kou model). In Kou’s model, in
state j € Sy, the MMBM process X has dynamics

dX; = d;dt + o;dW; + dJ (6)
where {W;};5o denotes a standard Brownian motion and U[(j)}rzo is
an independent compound Poisson process with a constant arrival
rate A; > 0 and random double-exponential jump sizes

vi(dy) = (pjar_ je* ¥ 1yo+ (1 - pjay je ¥ 1,.0)dy,

where with probability p; €[0,1], jumps are negative. Pos-
itive and negative jump sizes are exponentially distributed
with intensity «, ;>0 and «_;>0, respectively, see also
Siu et al. (2015) for a more detailed introduction. In our
notation, the regime switching Kou model is obtained as
Vio = —Ry =diag(ey j)jes, V-0 = —R- =diag(e_ j) jes, Wo-
diag(pjrj)jes,» Woy =diag((1-pjijjes, and Q=Qg—
diag(W1) = Qg — diag(A})jcs,. Given the matrix Q introduced
earlier, the matrix Qg := Q + diag(W1) is a generator matrix.

For later use, we recall properties of generator matrices, see
Lemma 2.2.

Lemma 2.2 (Generator matrices).

(a) Let Qg be a generator matrix of size M x M and © be a di-
agonal matrix with real-valued entries ()5, . If 60 >0
for j € Sy, then Qg — O® is invertible. Furthermore, every eigen-
value of Qg is nonpositive.

(b) Let B > 0 and Q € RM*M be a matrix whose eigenvalues have
nonpositive real part. Then, Bl — Q is invertible and

/OOO e Plexp(Qt)dt = (Bly — Q).

Proof. See, for example, Mijatovic & Pistorius (2011), Asmussen
(2003), p. 55ft. O

3. GMDB payoff and discounted Laplace transform

We consider death-linked variable annuities whose benefits de-
pend on the individual’s remaining lifetime Ty. As an analoguous
application, one might consider a non-life insurance contract with
payments that occur at a random event time Ty. We assume that
the event time Ty is independent from the financial market, i.e. the
risky asset S and the Markov chain ¢. More details on the distri-
bution of Ty are given in Section 4. We are interested in evaluating
quantities of the form
]E|:e_I0TX G(WS)dsb(STX, TX, MTX, mu):l N (7)
where b is a payoff function and the running minimum and maxi-
mum of the process X; is defined as

M; : inf X;,
se[0,t]

sup Xs,
se[0,t]

(8)

m;
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respectively. If 8(s), for s > 0, is the (regime-dependent) risk-free
rate, this corresponds to the valuation of, for example, European,
digital and lookback options under a given risk-neutral measure.?
To derive (7), define, for S € R, the discounted Laplace transform
of the process X as:

¢ (B) = E[e* Jo 01 dsgpX: (9)
Lemma 3.1 states the discounted Laplace transform (9) for the
Markov-modulated Brownian motion with two-sided phase-type
jumps under some general existence condition. A proof of this re-
sult is, for completeness, included in Appendix A.

<ﬂo=j]-

Lemma 3.1 (Discounted Laplace transform: Markov-modulated
Brownian motion with two-sided phase-type jumps). Set ¢g = j €
Sy. Let Xar be the largest eigenvalue of the subgenerator matrix R,
that is A{ := max{\ : A eigenvalue of R, }. For B < —A{, the matrix
discounted Laplace transform (9) is given by

¢ (B) =€) exp (¥(B,O))1,
with Laplace exponent matrix:

(10)

¥ (B3,0)=Q+DB -0+ %):2,32 +Wo_(BIn—R)WV_,

~Wo. (Bl +R,) Voo (11)

Proof. See Appendix A. O

If the valuation is done with respect to a risk-neutral measure,

the process {e~/0¢“’dss,},_q is a martingale. This requires a mar-
tingale condition on the parameters, see Lemma 3.2.

Lemma 3.2 (Martingale condition). If the model parameters satisfy
the relation

¥(1,0)1=0, (12)

where W(B,©) is as in (11) with © = diag(6")) s, , then the pro-
cess {e~Jo0dss,} o is a martingale, that is

]E[e*/bt@(“’s’dsst | 0o = j] =Sp.

Proof. Note that qbéj)(l) =Sp and

I (1)

/ !
N =€j¥(1,0) exp(¥(1,0))1| =0

t=0 t=0
is true for each j if and only if ¥(1,®)1 =0. See also Deelstra
et al. (2020). O

Let us first continue Example 2.1, see Example 3.3.

Example 3.3 (Regime switching Kou model (continued)). Given the
Laplace exponent matrix

U(5.©) = Q+DF O+ 3 5B W, (Bl —R )V,
~Wo (Bly+R.) Vo
=Qy+DB-©+ %Ezﬂz

Ol+,j _

+Ai(1-p)——
]( pj)a+]_ﬂ

o
+ diag ( A;p;——1— Ai ),
g( ’p]a,‘j—kﬂ J)

2 Note that the risk neutral measure associated to a regime switching model is
not unique in general. When starting from the real-world probability measure, one
of the most common approaches is to use the regime switching random Esscher
transform to determine a risk neutral measure. This transform has the advantages
of preserving the (Markov-modulated) nature of the model and of minimising the
conditional relative entropy with respect to the historical measure (see e.g. Elliott,
Chan, & Siu, 2005 for details and Godin & Trottier, 2019 for a recent discussion).
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the martingale condition ¥(1, ®) 1 = 0 is simplified to:

ay j
A
Ol+,j—‘l J)

for j € Sy. In each phase j € Sy, this is the Black-Scholes drift mi-
nus the correction for jumps. In case of Kou’s model (M = 1), the
Laplace exponent is given by:

U(.©) = dif 0V + 20\F

+Aq <p1

We consider a second example where the downward jump dis-
tribution approximates heavier, power-type tails, see Example 3.4.

1 o
deQ(J)_zng_()\jpjm—i—)»j(l - Dpj) (13)

a_ 1

!
a1+ B + —pl)%1 ~3 —1>. (14)

Example 3.4 (Phase-type jump model). See also Robert & Boudec
(1997) and Deelstra et al. (2020) for a more detailed analysis and
motivation. We consider two diffusion phases (M = 2). The transi-
tion from phase 1 to phase 2 is defined by a more general phase-
type distribution with subgenerator matrix:

—(c+sa)  1/a  (1/a)? (1/ay!
b/a —b/a 0 0
R —| /a)? 0  —(b/a)? 0
: 0

(b/ayna-1 0 0 —(b/ayr-!

with ngeN, a>max(1,b), b,c>0 and sq=1/a+1/a?>+...+
1/a"~1, The other matrices are chosen as follows for parameters
A>0,¢1>0,0,>0, R =-% ¢o=1Vo =[1 0]

—1 0 q1 0 0
[o qz] Wo- [0 0 ol

w,, =|? V,=[0 -R1].
Q@ |’

Phase-type distributions can only approximate heavy-tailed distri-
butions. However, as Fig. 1 demonstrates, these approximations
can be pretty reasonable in practical applications. In the fig-
ure, the quantiles of a Pareto distribution with density f(x) =
ax% /x** ., o > 1, are compared to three phase-type approx-
imations with parameters (a,b,c,n,) and the distribution |X|,
where X ~ A/(0,1). The means of the distribution are chosen to
be equal to E[|X|] = /2/7 = axm/( — 1) = %21”;51 (%)[ see also
Deelstra et al. (2020).

Q

4. Distribution of remaining lifetime: approximation by Erlang
random variable

Having discussed the dynamics of the underlying risky asset
prices, this section deals with the random payment date Ty. As
mentioned in the introduction, it turns out that calculations are
surprisingly simple for an exponential or Erlang time 7y ,. In this
section, we show how any distribution of the payment date T, can
well be approximated by combinations of Erlang random variables.
This has theoretical foundation in the link to a Laguerre series ex-
pansion discussed in Section 4.2, see also Zhang & Yong (2019). In
the following, denote by fr, the density of the remaining lifetime
Tx.

4.1. Approximation by a combination of Erlang densities

We assume that the density function of the remaining lifetime
Tx can be approximated by a combination of Erlang densities:

Ky

Fr ()~ > By fr,, (0 =2 fr(6),

k=0

(15)
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[X], X~ N(0,1)
Phase-type, a=20, b=5, c=1.6, na=35

Phase-type, a=20, b=4, c=1.7, na=30
Phase-type, a=20, b=3, c=1.9, na=25

Pareto distribution, a=1.3, xm=0.18

Quantiles sample distribution

1 15 2
Quantiles |X|, X~ N(0,1)
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Phase-type, a=20, b=5, c=1.6, n_=35 )
Phase-type, a=20, b=4, c=1.7, na=30 |
Phase-type, a=20, b=3, c=1.9, na=25

Quantiles sample distribution

Pareto distribution, a=1.3, xm=0.18

0 . . . . . . . .
3 4 5 6 7 8 9

Quantiles Pareto distribution

Fig. 1. QQ-Plot comparing the quantiles of a Pareto(« = 1.3, xy = 0.18) distribution to the distribution of the absolute value of a standard normal distribution and different

phase-type approximations.

for constants Kz € N, B, € R with Zfio B = 1. A major property of
(finite) mixtures of Erlang distributions is the fact that they can
arbitrarily well approximate any distribution on [0, c0), see, e.g.,
p. 84 in Asmussen (2003). Exploiting that the remaining lifetime
Ty is independent of the risky asset, we can reduce the previously
introduced valuation problems to the valuation problem relative to
an Erlang distributed remaining lifetime. Exemplarily, in the case
of a European-type payoff b(Sr, ), this means that:

o0

0

Kp
]EI:€7 fOTx g(ws)dsb(sTx)] ~ Z Bk/ E[ef fé""””dsb(st)]fmk.ﬂk (t) dt
k=0

K
_ ki:B,{ w0 ep(s, )]
=0

for n;, € N and pu;, > 0. The special case of exponential random vari-
ables (n, = 1) is discussed and calibrated to a life table by Siu et al.
(2015).

4.2. Approximation by Laguerre series expansion

Laguerre functions are defined as

(¥
k
k=0

2 (N
\/;(k) : f‘l:kﬂ_u(t) s

for N=1,2,... and t > 0 and form a complete orthonormal basis
of square integrable functions on the positive real line. We can ex-
pand the density fr, € L*(R) as:

u Qut)

k!

N
=Y -2t

k=0

Ka

3 A W(t) =t fr,(0).

k=0

fr®) =) A Wi (t) ~

k=0

(16)

It is easy to show that this approximation by Laguerre series is
a special case of (15), see also Zhang & Yong (2019) for a more
detailed discussion. The advantage of the Laguerre series expansion
is that it allows for an error analysis of the truncation error, see the
more detailed discussion in Section 8. In the following, we focus on
the case where the remaining lifetime Ty is an Erlang distributed
random variable ty .

1222

5. European-type GMDBs and Laurent series expansion

Now, we consider European-type GMDBs. At time Ty = Ty ,, the
payoff is a function b of the risky asset price Sr,. The time-0 value
of this product is
m(so) _ ]El:e— forN.H O(WS)dsb(STN,N):I . (]7)
An example is a simple guarantee product with guarantee level
K > 0, that is b(STN‘M) = max(SfN.M —K,0). We want to first obtain
the density of Xy, = ln(STN# /So), the logarithmic return until a
(random) Erlang time 7y ,, independent of X.

The discounted Laplace transform of the subordinated process
Xoy 0 is known, see Lemma 5.1. To keep the paper self-contained,
we provide a short proof in the Appendix.

Lemma 5.1 (Laplace transform of Erlang-subordinated pro-
cess). Consider an Erlang random variable (1.v.) Ty ,. Assume that
B < -\ where A :=max{A : A eigenvalue of R, }. Further assume
that the eigenvalues of W(8, ®) have nonpositive real part only.” For
jeSs:

. _ N s) .
60 () = E[e o 60 dss ey, | o :]]
= ¢ (u" (uly - ¥(B.©)™")1. (18)
Proof. See Appendix B. O
Without regime switching (M = 1), (18) simplifies to
N
M gy — n )
oD (B) = (M NFe)) (19)

see, for example, Gerber, Shiu, & Yang (2013). In the general case
of M > 1, we expand qbgv)u (B) as a Laurent series, see Lemma 5.2.

Lemma 5.2 (Laurent series expansion of q%?u B)).

(a) The Laplace transform

¢ (B) =€) (1" (uly — ¥(B,©)) ™)1

3 This assumption is not restrictive as it is usually satisfied for reasonable param-
eter choices. In specific examples, it is possible to derive conditions that are easier
to check, Siu et al. (2015) propose for example i +r > minjcs, «;(B), where «;(8)
is introduced in our Example 5.4, Eq. (25).
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can be written as the quotient p(8)/q(B) of two polynomials
p(B) and q(B), where we assume (without loss of generality)
that p(B) and q(B) have no common roots.

Denote by {«;} and {B} the roots of the polynomial q(B) in
(a) with negative and positive real part, respectively.* We can
expand d)(” (B) in terms of its Laurent series:

—
=

WO =YY Gl T gy o0

i z=1 k z=1

The coefficients aj,, b, are uniquely determined solving:

(-1 . dN-

G = (g1 M Z((ﬂ a9 (B)). 1)
z N-
b = gy A = (BB #0,8). (22)

Proof.

(a) As the matrix inverse A~! can be expressed in terms of
the determinants and the subdeterminants of A, the entries
of the matrices (BI, +R;)~' and (—BI, +R_)~! are (quo-
tients of) polynomials, see Asmussen (2003), p. 83. The same
arguments show that (uly — (B, @))7l is the quotient of
two polynomials.

(b) The polynomial q(8) does not have a root with zero real
part. This can be seen as follows: For each purely imag-
inary z, it holds that |E[e”™u]| <E[|e™™n|] =E[1]=1
(see Gerber et al, 2013, p. 617). If p(B8) and q(B) have no
common roots, q has simple roots and the degree of q is
greater than the degree of p, it is possible to form a par-
tial fraction decomposition with Laurent series (21) and (22),
see, e.g., (1) in Eustice & Klamkin (1979).

O

If at least one of the s in the diagonal matrix @ is positive,
the Markov chain ¢ is absorbing. If the Markov chain is absorbed
at time t, we denote its state by ¢s = « for all s > t. Given one re-
alization of the time ty, and the evolution of the Markov chain
until that time, the probability that the chain has not moved to

TN‘ S . .
the absorbing state is e Jo™" 0%)ds wiith the results in Lemma 5.2,
we can apply the residue theorem and obtain the density of Xy,
given the initial state ¢ = j. If ® = 0, this density is a sum of Er-

lang densities:

ZZ( azz)(zlel)u x<0

iy, ®) =1 "5 (23)
;Zlbkz(z 1),e Bix x>0
kK Z=

Given the density (23), it is not only possible to estimate GMDB
values but also related risk measures like Value-at-Risk (VaR) and
Conditjonal—Tail-Expectation (CTE). If ©® #0, i.e. if at least one of
the (s is positive, the Markov chain is absorbing and the absorp-
tion probability is given by P(¢r,, =) =1- [, Fay,, %) dx with
erN (x) as in (23). In this case, the density of Xy, is composed
N .,
of a point mass at the absorbing state Py, =* and the (defec-
tive) density (23) of the “survived” paths. This concept of a (de-
fective) density allows to extend the discounted density approach

4 We assume these roots are simple roots. In case of equal roots, the following
expansion is easily modified.
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by Gerber et al. (2012, 2013) to regime switching models. To link
to this research and for illustrative purposes, Example 5.3 presents
the coefficients in (23) in the Black-Scholes model.

Example 5.3 (Black-Scholes model). In a Black-Scholes model with
d; =r—0?/2, the discounted Laplace transform is given by (19).
The (non-removable) singularities are then given by the roots of
the equation ¥(8, ©®) = w, i.e.

267 (r— %az)ﬁ _00 =0,  (24)

an equation that can be solved to

1 r 2 2(u+ M)
061—2—02—\/<0_2—2) tT e

1 r 2 2(u+06W)
ﬁ1_2_02+\/<02_2) T

With some algebra, it is easy to show that «q-8; =
M) /o2 We get forz=1,2,...,N

¥(5.©) - =10

—2(n+

(1Y dv N N
2= N1 4, ﬁ“((ﬁ “ (u—\v(ﬁ,(a))N)

(—1)NZ(217\,_211)< W )N
1y
=D - B1)

(o1 = BN-2 \ —To2(e
e B (s (Y
(Br —a)N 2\ B1 —ay w+om )
1 1

blz = a1z = (_1)2alz~

If (M =0, (23) defines a density; else the factor (u/(u +6M))HN
makes (23) a defective density. For the density of X7, , in a Black-
Scholes model, see (2.36) in Gerber et al. (2012).

We further demonstrate the procedure on how to obtain (23) in
the example of the regime switching Kou model, studied in detail
by Siu et al. (2015), see Example 5.4.

Example 5.4 (Regime switching Kou model (continued)). Consider
again the regime switching Kou model from Example 3.3. We dis-
cuss the case of M = 2 regimes. The general case of M regimes in,
for example, Siu et al. (2015), can be treated analoguously. Abbre-
viate

a1
G(B): = dip 09 + So?p?
o_j o
+rlp— 4+ (1—p)— 1 25
,(pja_,ﬁﬁ ( p,)aﬂ_ﬁ (25)
for j =1,2. Note that g;; := (Qp)j; is non-positive and define:

d(B) := (qu +x1(B) — )G+ k2(B) — ) — qu g2 -

With this, the Laplace transform from Lemma 5.1 is given by:°

00, B) = & (1" (st - ¥(8.©) ™)1
-N
/ ) — 0
- ¢ (u“(—Qo— [Kl(ﬂo " Kz(ﬂ)—u]) )1
-N

_ N( | qn —qu |_[k1(B)—p 0

=€ ((M ( |:*sz q22 :| [ 0 K2(B) *.Uvj|> >1
5 Note that the inverse of a 2 x 2 matrix is given by:

4. a b1 1 [d b
T lc d| T det(A)|-c a |



G. Deelstra and P. Hieber

-1
o N =9 —Kk1(B)+ 1 qu

=6 <(M ([ q22 —Q22—K2(ﬂ)+ﬂ] ) >1
o N =22 —12(B) + 1 —qn !

=6 <( ) <|: —q22 —qn —K1(ﬁ)+ﬂ] 1

a function that can indeed be written as a quotient of two polyno-
mials. For example, Siu et al. (2015) show that, given the condition
—0o<—0_y<-—0_5<0<a,q <0, <oo,the equation d(B) =
0 has 4 solutions with positive real part 81, 82, B3, B4 and 4 solu-
tions with negative real part oq, oy, or3, &y, ordered as —oo < oty <
a3 <oy <y <0< By <Py <PB3< By <oo, see Lemma A5 in the
Appendix of Siu et al. (2015). With these coefficients, the (defec-
tive) density of Xoy 0 is explicitly given by (21)-(23).

N

®
d(B)

Given initial state ¢ = j € Sy, (18) writes as:

_[TNR gs) g Xey  — [N 9@s) ds
E[C Jo : SSTN.;L:I = E[Soe o

= So€] (MN(MIM —w(, @))’”) 1.

Representing the (defective) density as in (23) allows us to value
European-type GMDBs in closed-form. The advantage of working
with (defective) densities is the fact that the discount rate is mod-
elled as an absorption rate of the Markov chain. With this idea,
values of European-type GMDBs with payoff b(S;), paid at an Er-
lang random time t = 7y, can be written as:

Vi)t = El:e*fowﬂ g(ws)dsb(srm‘)]
el ]

E[B[0- (1-¢ k" 0"%)

+ /Rb(Soe")fX,M (x) dx‘go, TN.,U-]]

_ X

- /R b(So€*) fx,,, () dx.

with the (defective) density foNu (x) from (23). Note that with
(26) we need to compute the integral with respect to the terminal
payoff only - the discount factor is “integrated” into the (defective)
density. Theorem 5.5 gives the final result.

(26)

Theorem 5.5 (European-type options). Consider European-type
GMDBs with payoff b(St), paid at an Erlang random time t = Ty .
Their fair value is given by

V(u,r):= ]E[e‘fbm'” G(WS)dsb(STN.u)]

N 0 x2—1 .
_ Xl: ; /W b(Soe") - (=) 57 € dx
N 00 XZ—]
+y Z/o b(Sp€e*) - bkzm e Pxdx. (27)

k z=1

Proof. Simply plug (23) into (26). The case of one state M =1 re-
lates to the discounted density approach by Gerber et al. (2012,
2013). In this case, one can derive much simpler relations between
the value with and without discount factor, see, e.g., (1.8) in Gerber
et al. (2013) or Example 5.3 above. Note that our case of a regime-
dependent discount factor leads to a dependence between discount
factor and asset value Sty, e O

Nicely, for many popular GMDBs, the integrals in (27) can be
solved analytically, see also, e.g., Gerber et al. (2012, 2013), Zhang
& Yong (2019) in the case of the Black-Scholes and Kou model. Let
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us just apply our results to an out-of-the money call GMDB, see
Example 5.6.

Example 5.6 (Out-of-the-money call option valuation). For b(S;) =
max(S; — K, 0), %i(h) > 1 and Sy < K, we obtain:

e z—1
C(h,2) : = / e‘h"ﬁ max(Sge* — K, 0)dx
0 —1)!
_ /oo e X (s~ K)dx
In(K/So) Z-Dnr"°

= So - n(In(K/So), h—1,2) — K- n(In(K/Sp), h, z) ,

where we use that for y > 0, we can apply partial integration to
obtain

z—1 z

,h,z:/oce"”‘de= ehy
n(y. h.z) | Z-1 ;

From (27), we finally obtain:

N
C(S0) 1= B[e k" 20b(55,,)] = ¥ " b C(Br.2)

k z=1

1 yi—l
he1=i (= 1)1

(28)

where the coefficients by, are given by (22) and B, are the (non-
removable) singularities with positive real part of ¢r, " (B). Note
that the singularities B, and the coefficients by, depend on the dis-
count factor via the matrix ©.

Similarly, one can value in-the-money call GMDBs. The corre-
sponding put options can easily be expressed using put-call parity.
Note that the valuation (27) does not require any inverse Laplace
transform. Instead, most common option types allow to solve the
integrals in (27) analytically. As Laplace inversion techniques may
be computationally expensive or require high-precision arithmetic
(see, for example, Hassanzadeh & Pooladi-Darvish, 2007 for a com-
parison of different algorithms), this is an advantage over the pric-
ing equations presented in, for example, Section 3.1 in Siu et al.
(2015). The closed-form density (23) allows also to easily compute
higher-order moments and other risk measures such as the Value-
at-Risk (VaR) and the Conditional-Tail-Expectation (CTE).

6. Path-dependent GMDBs and Sylvester equations

Deelstra et al. (2020) derive by randomization and fluidization
approximations for fixed-time European digital options, vanilla op-
tions and down-and-out options in a Markov-modulated Brownian
motion framework with two-sided phase-type jumps. For high val-
ues of N, replacing the fixed maturity time T by a Ty, u random

variable leads to accurate approximations of the option price. We
first want to point out that these results are useful in life insur-
ance when combined with the remaining lifetime approximations
presented in Section 4.

In this section, we further focus on more complex GMDB op-
tions (with maturity Ty), which may depend on the time-ty , max-

imum SOeMTN# or minimum Soemvau of the underlying risky as-
set process. A lookback GMDB, for example, returns an option on
the maximum of the asset value at time ty,. To evaluate such
a lookback option in the asset model with regime switching and
two-sided phase-type jumps, together with an Erlang distributed
death time, we follow Deelstra et al. (2020) and combine fluidiza-
tion (see, for example, Rogers, 1994, Jiang & Pistorius, 2008 or
Kijima & Siu, 2014) and Erlangization techniques (see, for exam-
ple, Asmussen & Albrecher, 2010, Ch. IX.8). Applications to dynamic
witdrawal benefits and dynamic fund protection are discussed in
Section 7. For the sake of the readability of the paper, we intro-
duce in the following subsections all necessary notations and no-
tions, and we include a derivation of the digital option formulae
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since these will be used for the evaluation of lookback options. We
include several examples and links to the literature.

6.1. Fluidization and Erlangization techniques

The idea of fluidization is to replace jumps in the process X; by
additional phases with zero volatility and slope 1 (positive jumps),
respectively —1 (negative jumps). We denote this approximating
process by Y; and introduce a new Markov chain § = {{t}¢>0 that
for { € S5 behaves as ¢ but has additional “jump states”, that is
£ €8 :=8; US_US;. The pairs (X, ¢¢) and (Y;, &) relate by the
random time

t
Tt) = / Iy,cs, ds.
0

that ticks whenever X; is in one of the diffusion states ¢; € Sy. As
the process X; starts in a diffusion state, the initial distribution of
the Markov chain ¢; is given by [m 0, 01, ], i.e. {o = ¢o. Time evolves
until this random time 7 (t) reaches the Erlang distributed time of
death 7y ,. With this construction, the distribution of X; is equal to
the distribution of Y1, for all times ¢ < 7y . This also implies
that the levels crossed by X on [0,t) are the same as the ones
crossed by Y on [0, 7-1(t)) and that Markov chains in diffusion
states agree: {1, = ¢ for t > 0. The advantage of introducing
the process Y is that it is a continuous process which significantly
simplifies the analysis of its maximum and first-passage time.

6.1.1. Exponential time tq ,

As in Section 5, we model an absorption at a rate 6(s) if the
process Y is in a diffusion state ¢s € Sy, i.e. the state space of ¢ is
indeed ¢ e SU for an absorption state . For © = diag(0")) s, .
the generator of the process Y is:

[ o 0 o0 o0
wy
G= ,  Where
0 P(O)
0
Q — [,LIM -0 W(H— W,_
o 0 R_

The matrix P(®) is organized as follows: The first M columns
(rows) refer to the diffusion states S, the next n columns (rows)
to the states S; and the last m columns (rows) to the states S_.
Quantities related to the hitting of an upper barrier are in the fol-
lowing marked by “+”, quantities related to the lower barrier by
“-". Define the upper (+) and lower (-) first-passage time of the
process Y by:

() :=inf{t >0|Y; =0, Yo=F%, {o =ie S},

for x> 0. For ie So US; and je Sy US_, we further introduce
the limiting cases limy o7y (i) = 77 (1)) =0 and limy_ o7, (j) =
75 () =0, respectively. For j € S, the Laplace transform is given by
)
1) o _rx W oles)ds
(B () = ]E[e o ]lfri“m:j]

i,j e So US_, respectively. For convenience, we also introduce the
parameterization:©

for x>0, i,jeS; US; and

U(]) U(l)
EY (x) :=exp (ULx) := exP([ W o X)) (30)
Uj:O Uﬂ:i

6 The dimension of these matrices are as follows: UY) ¢ RMM, gk ¢ gMxm,
U crmM g® ¢ gmam gk ¢ gin, gk) ¢ geM g &) ¢ grn,
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where exp(-) denotes the matrix exponential. Let us define the

matrices
.
My _ (gD _ — 50 gwods i

{‘I’i }ij - {Ei (0)}1‘1‘ - IE‘,|:e ’ ﬂfr;afl ’

forieS, jeS;US, and je Sy US_, respectively. Note that the
matrices \Il(i]) have a natural interpretation. To see why this is the
case, recall the definition of toi (j) from above. For j € S; US_, the
process Y is immediately absorbed (i.e. 7, (j) =0), ending up in
the same state CT(IU) = {o =j. In case of an upper jump je S,

absorption is uncertain. Proposition 6.1 derives a Sylvester equa-
tion to obtain the matrices U(il) and ‘Il(i”.

Proposition 6.1 (Sylvester equations: Exponential time 7y ,). The
matrices (¥, \Ilf), u, U(f)) are uniquely defined by a system of
Sylvester equations

T(U(}), v p@), 1‘)) -0

T(-UuP. ¥ P@O) £ D)=0, (31)
where
T(U,\II,‘P,2,13):%2-\11-U2+ﬁ~'11~u+P~\Il,
IM 0 IM 0
1) 1 1 1)
e N
0 In LA 10
_ [ o0 0] [D 0 o
Y=|10 0 O0|.D=|0 I, 0
0 0 0 0 0 -I,

Proof. e.g. Ivanovs (2010). In case of an upper jump j € Sy, ab-
sorption is uncertain and parameterized via [\Il(fg \Il(j,)] inw® O

Various numerical procedures are available in the literature to
solve (31) and obtain \Il(i” and US) numerically, see for instance
Gardiner, Laub, Amato, & Moler (1992), Breuer (2008) and Nguyen
& Poloni (2016). We can further relate the Sylvester Eq. (31) to the
matrix Wiener-Hopf factorization, see Remark 6.2 and Jiang & Pis-
torius (2008).

Remark 6.2 (Relation to matrix Wiener-Hopf factorization). In, for
example, Jiang & Pistorius (2008), the Laplace transform of the
first-passage time for a Markov-modulated Brownian motion with
two-sided phase type jumps is expressed in terms of the so-called
matrix Wiener-Hopf factorization (W*,G",W~,G™). This factor-
ization is obtained from (31) in Proposition 6.1 by simple matrix
permutation operations.’

6.1.2. Erlang time Ty,

Recall that an Erlang random variable with parameters u > 0
and N e N has the same distribution as the sum of N indepen-
dent exponential random variables with parameter u, see also (1).
In the following, we use a second phase e; € {1,2,...,N} denot-
ing the so-called Erlangization interval. The length of each Erlan-
gization interval is an Exp(w) random variable that ticks in the

7 The relation is obtained by exchanging the rows and columns of the upper jump
states and the diffusion states. This is done via the permutation matrices:

el 8] el

and the transpose P, P'. Comparing to (4.2) in Jiang & Pistorius (2008), we have
that W =P. W . P, ¢ =P, .UV . P, W =P. ¥ ¢ =UD, and Q, =
P.P(®)-P. The drift and volatility matrix are also transformed to P-D-P’ and
P.%.P, respectively.

I
0

0
In
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diffusion states ¢r = {1, € Sy only. After the N-th Erlangization
interval, the process is stopped. Given the subgenerator P(®) in
(29) and the matrix E of the same size, we define the new gener-
ator matrix of the process Y as

=t

0 0 0 0
0
G= _ , where (32)
0 P(O)
wly
0
P(O) = 0 0
P(©) = 0 PO) E .- : ’
0 0 P(©)
uly 0 0
== 0 0 0. (33)
0 0 o

Informally stated, the resulting Markov chain moves after an expo-
nential time 7, to a new Erlang interval. After N such intervals,
the process is absorbed. A first-passage can take place in any of
the Erlangization intervals k € {1,..., N}. We are interested in the
first passage transform matrices E:(tk) such that
TED 5 (s .

{[EP w0}, = E[e‘f° " L g e =i | (90 €0) = (i 1)] ’

(34)
forx>0,i,jeSs USy and i, j € Sy US_, respectively. The desired
blocks E(ik) (x) from (34) that constitute the matrix E.(x) are ob-
tained by a matrix exponential:

E.(x) = exp (ﬁix)

ENx) EPx EP® EM (x)
0 EPx EP® E{™V(x)

_| o 0 EP® EN?P® | (35)
0 0 0 E{ (x)

where the RM+mxM+m) matrices (UL, UP,..U™M) and the

RM+mxM+n) matrices (U, UP,..UM) are placed in two
Toeplitz matrices:
v’ u® uP uly
o ud uP u-v
~ 1 N-2
g.-| 0 o ul U2 (36)
0 0 (] ul

It will turn out that, for k=2,3, ...

(k)
ture U(ik) = |:U8”

as U(i]) in (29). Proposition 6.3 shows how to obtain ﬁi in (36).

, N, we obtain the matrix struc-

(k)
Ug{| with matrices that are of the same size

Proposition 6.3 (Sylvester equations: Erlang time. 7y ,) For k =

2,..., n, introduce
0y 0 0y 0
k) _ (k) (k) (k) _
it IO A S Sl I A
0 0, i, vl
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and use this to define the Toeplitz matrices:

WO WP W e
o v’ v v
.- 0 o vl v (37)
o o o ¥
The matrices U_, E,, ﬁ+ and E+ are determined via
T(0_. ¥_, $(®). %. D) =0,
Y(-0,. ¥..7(©).% D) =0, (38)

where Y (U, ¥, P, f, ﬁ) is as in (31), bl =Iy® f, D ::IN®5 and
® denotes the Kronecker product.

Proof. e.g. Ivanovs (2010). O

To solve the system (38), it is convenient to write the matrices
in their block structure. With some simplifications, Lemma 6.4 al-
lows to conveniently obtain the different matrices iteratively solv-
ing a series of Sylvester equations, see also Deelstra et al. (2020).

Lemma 6.4 (Iterative solution of Proposition 6.3). Introduce, for k =

(k) (k)
2,3,..., N, the matrices Z{ = |:U‘(’,g U‘(’ki)i| :
v el

For k =2, we obtain Z(iz) as the unique solution of the Sylvester
equation

USy F227°D 257 Woil 0, ,0|US U
() VAN A ug it M
‘I’:;:a qu U:ta Uij:
20X 0
=— 39
[z 0], -
and finally, for k > 3, we can uniquely solve for Zf) by the Sylvester
equation
UGy F2E7°D 22 Wos|m , ,m0[USe UL
) 0 +727| 7S )
‘II:FU R:F Uia Uii
k-1 ) py(k=1+1) ) pyk=1+1)
ulu ulu 00
+ oo~ oo oo~ o+t — . 40
ZZ: |:\I’$3,Uf,";l+l) \I,gzut(’k;l+1):| |:o 0] (40)
Proof. See Appendix C. O

Once the matrices \Il(i]) and U(i]) are known, the matrices

q’f) and Uﬂ‘), k > 2, are easily obtained by solving the Sylvester
equations (39)-(40), see, for example, Gardiner et al. (1992) for
details on a numerically efficient implementation. For simple cases,
it is possible to solve the Sylvester equations analytically, see
Example 6.6.

6.2. Digital GMDB

In this section, we consider the pricing of digital GMDBs that
pay one unit of currency if the risky asset S; drops below (exceeds)
the lower (upper) level B (H) before time ty ,. The time-0 value of
these products is

Pl_)G (507 B, W, N, .71') — ]El:e— jgN.M 9@s)ds ]]'Soem’N.u <B] , (41)
PEG(SO~ H, M, N, 7[) = E[e_forw pieds ﬂSgeM’N-u >H:| : (42)
The values of digital options PPS(Sy, B, u,N,m) and

PPG(Sp, H, u, N, i) are determined by:
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(1) Use Propositions 6.1 and Lemma 6.4 to determine (U(”,
U?....uM) to obtain U via (36) and E® via (35). We can

decompose the matrices Eg‘) as follows:

EXx) EX ()
E®(x) = ok ) 43
= [Ei";(x) Eiki(x)} 43)

(2) Using (43), Proposition 6.5 gives the value of digital options
in analytic form.

Note that the matrices - are used for an upper barrier dig-
ital option PP¢(Sy, H, i1, N, r) while the matrices -_ are used for
PPC(So, B, i1, N, 7).

Proposition 6.5 (Digital GMDBs). The value of a digital option
(41) with a risky asset S following dynamics (2), barrier level B < Sy
and Erlang-distributed payoff time T, = Ty, is

PP (S, B, u N, )

’ ) p(N—k+1)
=7 Z [ EX) ( E® (sp - b)] |:V?Nk+1)i| ’ (44)
where so :=In(Sp) and b := In(B). With ¥(, ©) as in Lemma 3.1:
( gN kH));eS{, _ E[e—j}fw.u §@s)ds | (Zo. €0) = (J, k):|
— Ny — (0, @) V1 (45)
(v:(ENikﬂ))jeSi _ E[e—fow.u 9@s)ds | (o, €0) = (Sj't’ k)]
= (—Ri)ilvio‘ v(()'N_k+1) > (46)

In(H), we obtain

J

Proof. See also Deelstra et al. (2020)3. Note that in (46), we
also allow for the possibility of initial jump states, that is ¢y € S.
For the discount factor, we can use Lemma 3.1 and 5.1 to get
(vf,N k“))]esg ¢§IJV) w1, (0)- Given that the current state is a
jump state, we further get (46). Using this, we obtain for x =
So—b>0and jeSy:

PP%(So, B, i, N, €))

= E[f Jp" 0w9ds g

For (42), i.e. an upper barrier H > Sg and h :=
PP%(So, H, i1, N, 1)
N
Y [EX(h-s0) EX(h-s0)] [
k=1

(N k+1)
(N—k+1)

(47)

Yo =, (%o, 0) = (J. 1)]

m
Soe N <B

N
N 0(9s)ds
= Z Z [e h ﬂ“r;(;'rer;(j)):(i*k)'

k=1ieS,US_

Yo = x, ($o. o) = (J, 1)]

N
TX (J)G(WS)dS]l
Z Z (o ()G (J)) (k)

ieS;US_

Yo = x, (¢o.0) = (J. 1)]

8 Remark that these results are derived in Deelstra et al. (2020) in order to ob-
tain approximations for European digitals with a fixed horizon. In this paper, we
focus first on digital GMDBs with a random payment date T, and later on lookback
GMDBs, where the pricing formulae will be useful. We therefore include a proof for
completeness.
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o9 (ps)d .

'ﬂ‘:[ KO | oy €)= (i k)]
N ) p(N—ktD)
ey [E¥) (so—~ EY (so—b)] [v(N k+1):|
P

where, in the last step, we used the memoryless property of the
exponential distribution. O

We look at Proposition 6.5 in the example of Kou's model
and an exponential death time 7y ,. In this case, the Sylvester
Eq. (31) can be solved analytically. Example 6.6 provides the de-
tails and links our result to Gerber et al. (2013).

Example 6.6 (Kou's model (continued)). Recall Kou’s model from
Example 3.3 (M =1) and assume that the interest rate is con-
stant, that is 8@ =r for all t > 0. The roots of ¥(B8,®) = i in
(14) are given by —oo < @y <y <0 < 1 < B2 < co. We can solve
the Sylvester Eq. (31) in this case analytically (see the Appendix for
the calculations):

g _ | % —Bi— B

+ o,
Assuming that we are initially in the diffusion state, we obtain
with z := h — s, initial distribution on the states m = e;, number

of Erlangization intervals N = 1:°

~Bf g B+ oy

(48)

V(z, u,N, )
) e
=n[EN(z) EY) (z)][ (1)i| =mexp (U"z) |:l*,f:|
E=

+—Bi-B

o

~BP B+ By —a

o[ )

] oy (Bt e o
i B f |0 1
e*ﬂzz — e*ﬁll
+ e
B1— B
.[0‘+—/31—/32 ~Bf +/31+,32—05+:|>|:;éjr:|
oy -0y T
Y P2 — B e Pz 4 B ,32 T ooz
w+r\fo-p1 oy Bo—B1 o
=: Bie P17 4 Bye~Fa
I (e B )
with constants By := gi(&;gg and By := 51 ((%2 Ogr; This expression

is the Laplace transform for the first-passage time in Kou’s model, see
Kou & Wang (2003). From this, we obtain:

PP¢(So, H, £, N, ) = So - V(h — S0, i, N, )

B
)
SOM+T|:B1<H + B,

S

O)ﬁz]

H

9 In the following, we use Sylvester’s formula (see Sylvester (1883)) that allows
to compute the matrix exponential of a diagonalizable matrix A with distinct eigen-

values Aq, Ay, ... Ayl
k
exp(A) = ) _eMA;, (49)
i=1
where A; := [T ﬁ(/i—)\jlk). The eigenvalues of the matrix UV are A, =
—p1 and Ay = —fs.
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6.3. Lookback GMDBs

Finally, we study standard lookback options. The time-ty , pay-
off of a floating-strike lookback GMDB is

b(Tn i Sty » May,,) = max (H, soe"”w) ~So,. - (50)

where H is the initial maximum of the risky asset, see also Siu
et al. (2015). Given (50), the time-0 value of this product is

P'®(So, B, jt, N, 77) = IEI:e*foTN# 045 b1y, Seu Moy, )] . (51

Again, we present the different steps to obtain P-B(Sy, B, u, N, 7):

(1) Use Propositions 6.1, 6.3, Lemma 6.4 for (US), Uf)....,U(iN))
to obtain U via (36).

(2) Determine vf,k), p®
(46).

(3) Proposition 6.7 expresses the price of a lookback option in
analytical form.

(k)

, v, for k=1,2,...,N, from (45) -

Note that, having solved the Sylvester equations in
Proposition 6.3, the price of a lookback GMDB is in analytical
form - there is no need for an additional numerical integration or
Laplace inversion. Proposition 6.7 gives the details.

Proposition 6.7 (Lookback GMDBs). The value of a lookback option
(51) with a risky asset S following dynamics (2) and satisfying the as-
sumption that A < —1 where A} := max{A : A eigenvalue of U},
upper level H > Sy and Erlang-distributed payoff time Ty, is

P*B(So,H, i, N, )
’ v(N)
o

(-(@ 1) Yo (@ +1)| "

+H 7' v s,

/4
0

So

o ey
0 vf:)

(52)
where l7+ as in (36), s :=1In(Sp), z :=In(H/Sy) and vf,k), vﬂr"), k =
1,2,..., N as in Proposition 6.5. I. is an identity matrix with the same
size as U, and exp(-) denotes the matrix exponential.

Proof. The first part follows Siu et al. (2015), Theorem 3.2, to price
floating-strike lookback put options for initial state j € Sy:

PB(So, H, i, N, €))
= E[e*fgx(’(%)ds(max (H. SOeMTx) - er> | (%o, €0) = (J, 1)]
=S -E[e‘fgxe(%)ds max (e, eMTx)> | (%o.€0) = (J. 1)] —So
=So .E[e*fffw“"’ds(e’v’fx — &)1y, - | (Zo. €0) = (J, 1)]
+50¢ - B[ 08 (5o, e) = (. )| - So
=So- /w emE[e—fJ”’““)dsnMTsz | (%o.€0) = (J. 1)] dm
:
+50¢ - E[e 08 (55, e) = (. )] 5o
:SO-/we“PfG(l,e“,pL,N,n)da
2

LH. EI:EffDTW 9(s)ds | (%o, €0) = (j, ]):I -5So,

where the last step is an application of Lemma 3.4 in Siu et al.
(2015) (partial integration) and we abbreviate z := In(H/Sy). Inter-
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estingly, it is possible to explicitly solve the integral in the lat-
ter equation. The key to this is to rewrite PP¢(So, H, u, N, ) from
Proposition 6.5 as follows:

N

e > [ES @

k=1

v(N—k+1)

G
P2(1,e% i, N, ej) U((IN—IH—])
+

EY (a)] [

’ v((erlﬂ)

(N=1+1)
~ v+
exp (U+a)

on

v((TN—N+1)
viN—NH )

co:

where (7+ is as in (36). The matrix l‘h is a subgenerator matrix
(see, for example, Definition 4.1 and Theorem 4.2 in Jiang & Pisto-
rius (2008)). Then, with the help of Lemma 2.2, we obtain:

/oo e exp ((La) da = /m exp ((IL +1)a)da
V4 V4

= —(ﬁ+ +I.)71 exp (((’j+ +I,)z).

From (45), assuming S satisfying the assumptions of Lemma 5.1,
recall that

N, s .
(v((jlv))jesu _ E[e*fo 1 9(s)ds | (%o, €0) = (J. 1)]
-N
—¢ (MN(MIM—\P(O,Q)) )1. (53)
With this, we obtain the value of a lookback GMDB :
PLB(507 H5 I’Lv N’ e])
e]' ! v((rN)
0 - -1 - v
=Sy <—<U++I,) )exp ((U+ +IA)Z)
0 vy
0 ()
+H- € vl —5,.
(]

Proposition 6.7 extends Siu et al. (2015) to a regime-dependent
interest rate, an Erlang distributed death time ty, and phase-
type jumps. The pricing equation is explicit and does not require a
Fourier inversion algorithm. The value depends solely on the solu-
tion of the Sylvester equations in Proposition 6.3. We demonstrate
this in Example 6.8 on the valuation of lookback GMDBs for an ex-
ponential death time. This allows us to relate Proposition 6.7 to the
results by Gerber et al. (2013) on Kou’s model.

Example 6.8 (Kou's model (continued)). Continuing Example 6.6,
we can use the term E[e‘rTN-/t]lMTNMZG] =V(a, u,N, ) to also
price variable annuities with a death benefit given by a floating
strike lookback option:

PLB(SOYHv Ww.N, ) =5, f eaE[efrrN_,L]lMTNuza] da

z

+H-E[e7™x] - S

m 5 Sg]Hlf'B‘ 3 ngHl—ﬂz
= +
wAr| B -1 2B -1
"
H—— —-5. 54
+ IR (54)

This equals (7.2) in Gerber et al. (2013).
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7. Dynamic fund protection and dynamic withdrawal benefits

Let S; be the value of a share of a mutual fund at time t and
let n; denote the number of units of the mutual fund in the in-
vestor’s account. Consider first an investor buying a fund share at
time 0, as well as the following "dynamic fund protection”, which
is assumed to be effective until the time of death and which guar-
antees that the account value will never fall below a fixed level L
with 0 <L <Sy. Indeed, in this case, as soon as the value of the
account falls below the guaranteed level L, the account is cred-
ited with a sufficient number of fund units so that the value of
the account remains equal to the guaranteed level L. Therefore, fol-
lowing Gerber et al. (2012) and Siu et al. (2015), n; needs to be
equal to

1, max L)
" 0<s<t 55 '

n; = max ( (55)
Assuming S; follows (2) with initial state j € Sy and considering
an Erlang distributed time of death variable ty ,, the expected dis-
counted value of this contract with dynamic fund protection (de-
noted by DFP) equals

DFP(So. L. . N, ) = [e*fo'”"‘ 0dsn S | (@0.€0) = (i 1)].
(56)

Let us define Q5 as an equivalent martingale measure of Q via the
Radon-Nikodym derivative

dos
dQ

— [foes)
e Jot SdSSf

S (57)

Fi

Then, one can easily check that under Q5 the process (X, @)
remains a Markov-modulated Brownian motion with two-sided
phase-type jumps. Analogous to (11), its discounted Laplace trans-
form is for B < —AJ — 1 given by

US(B,0)=Q°+DB-0O + %):2;32+W5(,_(,31m —R°)"'W5.,
-W5 (B, +R*,)"'V% (58)

for appropriate matrices Q5, DS, WS, VS RS_ and RS,.

Using this new measure, Proposition 7.1 determines the value of
the contract with dynamic fund protection by a matrix equation. In
contrast to Siu et al. (2015), the result does not contain an integral;
in contrast to Jin, Qian, Wang, & Yang (2016) no coupled system of
integro-differential equations need to be solved numerically.

Proposition 7.1 (Dynamic fund protection). The value of a contract
with dynamic fund protection (56) with a risky asset S following
dynamics (2) and satisfying the assumption that ka’s < —1, where

5 ~S
)\6’5 :=max{\ : A eigenvalue of U_}, lower level L < Sy and Erlang-
distributed payoff time Ty, is given by

DFP(So. L. . N, )

/

T
0 NS
) (— (u, +1A) )
0
0
1
1™
~S -
exp ( @ +I.)l) +5,, (59)
1(1)
(e
1w
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~S
where | :=1n(L/Sy), U_ is analogous as in (36) and expressed in
function of the matrices in (58). I. is an identity matrix with the same

~S
size as U_ and the column vector of ones is of length N(M + m).

Proof. The first part follows Siu et al. (2015), Section 3.4, to value
the contract with dynamic fund protection for initial state j € Sy:

DFP(So, L, 11, N, ;)

_ N ) L
:]E[e Jo" 090 ds gy (1, max —

I<t<ty, St

)STN.;L

(@o0. 0) = (j. 1)]

= u[e- i 0 ( max L ~1) Su, )| (g0 e0) = G D]+
I<t<ty, St +
L .
=So~E5[( max —71) (wo,eo)=(1,1)]+so,
I<t<tn, S[

+

where the last step is an application of the change of measure
in (57) and ES[-] denotes the expectation under Q°. Following the
lines of Siu et al. (2015), and the proof of Proposition 6.7 easily
leads to the result. O

A similar technique can be exploited in the settings of a dy-
namic withdrawal benefit. Indeed, let L denote a constant dividend
barrier with L > Sy. An investor in a dynamical withdrawal benefit
asks to receive benefits as soon as the fund reaches the level L. To
achieve this, a number n; of units of S; are sold to keep the ac-
count value at level L. Therefore, following Gerber et al. (2012) and
Siu et al. (2015), n¢ needs in this setting to be equal to

L
1. min L. 60
523‘255) (60)

ne = min(

and the expected discounted value of this contract with dynamic
withdrawal benefits (denoted by DWB) equals for a fund S; that
follows (2) with initial state j € Sy and random payoff time Ty =
N1

DWB(So, L, , N, ej)

- E|:efow"‘ "‘Wd‘(l — min (1, min £))SIN
OSSSTN.;L SS o
(9o, €0) = (J. 1)i|
_ E|:ef0w.u 0@s)ds <1 —  min A) STN,/L (‘va eo) = (], ])]
0<s<tn, Ss +

. L
min
O<s<ty, SS +

:SO~IE‘,5[<1— (61)
Proposition 7.2 (Dynamic withdrawal benefit). The value of a con-
tract with dynamic withdrawal benefit (61) with a risky asset S fol-
lowing dynamics (2), upper level L > Sy and Erlang-distributed payoff
time Ty, is given by

(%o €0) = (j. 1)] .

DWB(So, L, i, N, )

. 1
0 . 1 n W
L] (—(U+—I.> )exp((U+—1,)l) | +So.
0 131)
0 1£r1)
(62)

where | :=In(L/Sp), ﬁs_ analogous as in (36) expressed in function of

~S
the matrices in (58). I. is an identity matrix with the same size as U
and the column vector of ones is of length N(M + n).
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8. Numerical examples

In this section, we first show how a series of Erlang densi-
ties, respectively a Laguerre series expansion can be calibrated to
a life table, see Section 8.1. We give brief examples on applications
of European-type GMDBs (see Section 8.2) and lookback GMDBs
(see Section 8.3). Throughout, we measure computation time on a
1.70 GHz PC in seconds (s).

8.1. Calibration to a life table

As in, for example, Zhang & Yong (2019), we calibrate the ap-
proximations in Sections 4.1 and 4.2 to a life table, minimizing the
root mean squared error between the true data and the approxi-
mations, that is we solve

L

aArgming, », 1,)eR3 k=1,2,...K Z
t=1

Ky

F (t) — ZBk oo (63)

subject to Zfi 1B =1, where F(t) is the distribution function
corresponding to fr, () and the distribution function of an Erlang
random variable is Fy , (t) =1— P e (k.

For the Laguerre series expansion, we do not need to perform a
least-square minimization as in (63) to calibrate to a life table. In-
stead, we exploit that the optimal coefficients A, = (W (t), fr, (t))
in (16) can be computed explicitly. For a discrete life table, we ob-
tain:

A= (W), f1,0) = /21 2(")( 2)"

N w—x
~ /2 Z(k>( 210 Zt” “Hp(Ty e (t—1,t])
k (zm”‘“ F,(t —1) — F (t)
— ZM <) XN 7 xS
v Z N

tNe"“ fr,@®)dt

ZtN ;Lt< FTX(O) >’

see also Zhang & Yong (2019). Here, w denotes the maximum pos-
sible age in the life table and x the (current) age of the person. The
fact that Laguerre polynomials are uniformly bounded and form an
orthonormal basis allows to get theoretical bounds for the approx-
imation error. It holds that:

Z Ak’

k=Ky+1

see also Zhang & Su (2018) and Zhang & Yong (2019). We can use
this result to provide an upper bound for the total calibration er-
ror Yk, | fr(6) — fr, (O <L- Z}:‘;KAHAﬁ. These bounds are easy
to compute as the coefficients A; are available in closed-form. For
an example, we use the life table presented in Appendix 2.A of
Bowers, Gerber, Hickman, Jones, & Nesbitt (1997) with an initial
age x=30and t=1,2,...,L. We first follow Siu et al. (2015) and
calibrate this life table for L = 25. For the series of Erlang ran-
dom variables, we impose that n, < 6. This constraint hardly af-
fects the calibration performance. Small values of nj, will turn out
to be very convenient in Sections 8.2 and 8.3. Fig. 2 (left hand side)
gives the logarithm of the total mean squared errors Zle | fr, (£) —
fr(©12 and YL | fr, () — fr, (£)]? over time for Kz =5 terms (ex-
ponential, Erlang) and K4 = 15 terms (Laguerre expansion). In this
example, we obtain (for each t=1,2,...,L) an error bound for
Kq =15 terms of Y52 ,5A2 = 0.000060 and as a comparison, er-
ror bounds for K = 8 terms of Y 2°g A2 = 0.00113 and for K; = 20
of 332 ,; A2 = 0.000011. Assuming that the true distribution of re-
maining lifetime follows a parametric density like Makeham’s law
may allow to obtain improved error bounds with an exponential

|0 - Fr )|
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decay, see Zhang & Su (2018) and Zhang & Yong (2019) for more
details.

From the left hand side of Fig. 2, we observe that the sum of
Erlang densities leads to the best result. Already 5-8 terms lead to
very low total mean squared errors. For the Laguerre series expan-
sion many terms are necessary to reach the same accuracy. How-
ever, as mentioned above, the Laguerre series expansion has the
advantage that it is not necessary to solve a least-squares opti-
mization for the calibration as the coefficients are known explicitly,
see Zhang & Yong (2019). The right hand side of Fig. 2 leads to a
similar conclusion as the left hand side, now looking at the abso-
lute errors | fr, (t) — fo (®)| and |fg, (t) — fo (t)| for different values
oft=1,2,...,L

Solving the least-squares optimization (63) in the exponential
case (n, =1 for all k=1,2,...,L) turns out to be rather challeng-
ing. While, for L =25, we obtain a very good fit of the true life
table for ages [x,x + L], the tail of the life table for ages >x+L
is extrapolated very poorly (compare the red line in Fig. 3 to the
black line; the parameters used here are given by (42) in Siu et al.
(2015)). For higher values of L, this problem persists. As demon-
strated in the left hand side of Fig. 3, this can easily lead to nega-
tive survival probabilities or a survival probability exceeding 1 (see
also the Appendix of Asmussen, Laub, & Yang (2019) for a similar
discussion and additional references). In contrast, Erlang distribu-
tions seem to be much more flexible to adapt to the tail of the
mortality distribution, see the right hand side of Fig. 3. For later
reference, we provide one parameter set in the calibration for the
Erlang case with Kz =5 and L = 80:

fr,(t) ~ 8.809986 - f5.0286081 (t) + 7.952294 - f5 0190245 (t)
—3.305995 - f5y0.297787(t) —13.386357 - f6_04230329(t)
—+ 0.930071 - f3‘0.193571 (t) . (64)

8.2. European-type GMDBs

Following the first part of this article (Section 5), we discuss the
valuation of GMDBs whose payoff is an out-of-the-money call op-
tion with guaranteed benefit K. Following Siu et al. (2015), finan-
cial risk is modeled by a two-state regime switching Kou model
as introduced in Example 2.1. We take the parameter set from Siu
et al. (2015), i.e. Sp = 100, r = 0.05, 04 = 0.1, o, ; =40, a_ 1 = 60,
p1=025 A1 =2, 0,=04, a; =60, _5=70, pp =0.75, Ay =
0.5, and Qy =[-0.1 0.1;0.2 —0.2].

For our closed-form solutions, the implementation follows
Examples 5.4 and 5.6 in Section 5. For the general case of regime
switching jump diffusion models, Monte-Carlo simulations turn
out to be rather inefficient (see Tables 2-5 in Ai & Zhang, 2022 and
also Huang et al., 2014, Benth et al., 2021). That is why, we com-
pare our suggested closed-form expression to Fourier pricing that
is commonly used in related literature, see, e.g.,, Carr & Madan
(1999) for a general introduction and Siu et al. (2015), Theorem 3.1
for an application to the regime switching Kou model. This allows
us a comparison to Siu et al. (2015). In Table 1 we use the cal-
ibrated series (42) in Siu et al. (2015) of 5 exponential distribu-
tions for the distribution of remaining lifetime. Using put-call par-
ity, we obtain GMDB put prices given the corresponding GMDB

call prices (28) together with E[e”"™x] = (W) and R, (Sp) =

C(Sp) — Sp +KIE[e‘”NvM]. We compare our approximated life table
to the “true price” obtained from the discrete life table of Bowers
et al. (1997), linearly interpolating between successive annual grid

points:

w—.

Z

E,(t—1) - F, ()
F(0)

P\/(So,t)'i'R/(SO»t_l)

By (Sp) ~ 3
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Fig. 2. Logarithmic total mean squared error (left) and absolute error for the approximation of the density fr, (t) for t =1,2,...,25 (right).
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Fig. 3. True survival probability (the life table presented in Appendix 2.A of Bowers et al. (1997)) compared to its approximations, i.e. a series of exponential distributions
(left hand side) for different values of K and L and a series of Erlang distributions (right).

Table 1

Values of European-type GMDBs, out-of-the-money call options following Example 5.6 and the sum-
of-exponential remaining lifetime distribution (42) in Siu et al. (2015).

Fourier price R/ (Sp) time Our price R/ (Sp) time True price R/ (Sp)

Ypo=1 =2 Yo=1 =2 Ypo=1 =2
K=100 1.1928 1.8466 0.95s 1.1928 1.8466  0.0006s  1.8848  2.7624
K=105 13274  2.0281 094s 13274  2.0281 0.0006s  2.0823  3.0231
K =110 1.4728  2.2170 0.98s 14728 22170 0.0006s 2.2912  3.2928
K =115 1.6279  2.4129 1.23s  1.6279 24129 0.0006s 2.5113  3.5712
K=120 17918 2.6155 0.99s 17918 2.6155 0.0006s 2.7421  3.8580
K=125 19640 2.8245 1.02s  1.9640 2.8245 0.0006s  2.9831  4.1529
K=130 2.1438  3.0395 1.13s  2.1438 3.0395 0.0006s  3.2338  4.4555

where the price of a put option is obtained via Fourier pricing t =
1,2,...,0—X:

m@@:mkﬂmam—sﬁﬂ, (66)

To implement Fourier pricing, we follow the fast Fourier pricing
algorithm by Carr & Madan (1999) and use the Laplace transform
from Lemma 5.1. We choose the number of function evaluations in
the Fourier algorithm as 4096 as this allowed us to obtain all es-
timates in at least 5 digits of accuracy. Using Matlab, this leads to
a total computation time of around 1s for five evaluations of the
pricing equation. There might be ways to improve this implemen-
tation as Siu et al. (2015) report a lower number of 0.06s. Never-
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theless, the closed-form expression speeds up computation signif-
icantly and obtains one price almost instantly in around 0.0006s.
Both our closed-form expressions and the Fourier algorithm allow
to value GMDBs with different guarantee values K at almost no ad-
ditional cost.

As a second step, we use the series of Erlang distributions
(64) for the remaining lifetime. Table 2 gives the result, again com-
paring Fourier pricing to our closed-form solutions. The increase
in computation time for the closed-form solutions is mainly due
to the more complicated Laurent series expansion, i.e. the coef-
ficients (21) and (22). For the implementation, we use Matlab’s
symbolic toolbox for the derivatives. This implementation works
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Table 2
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Values of European-type GMDBs, out-of-the-money call options following Example 5.6 and the sum-

of-Erlang remaining lifetime distribution (64).

Fourier price P/ (So) time Our price B/ (Sp) time True price Py (So)
=1 =2 =1 @o=2 Yo=1 @o=2
K=100 1.8476  2.7552 0.4583s  1.8476  2.7552  0.0310s  1.8848  2.7624
K=105 2.0492  3.0207 0.4198s  2.0492  3.0207 0.0295s  2.0823  3.0231
K =110 2.2667  3.2964 0.4346s 22667  3.2964  0.0295s  2.2912  3.2928
K =115 24998  3.5819 0.4346s  2.4998 3.5819 0.0303s 2.5113  3.5712
K=120 27474 3.8767 0.4240s  2.7474  3.8767 0.0297s  2.7421 3.8580
K=125 3.0081 41805 0.5004s  3.0082 4.1805 0.0298s  2.9831 4.1529
K=130 3.2808 4.4929 0.4463s  3.2808 4.4929 0.0291s  3.2338  4.4555
Table 3
Values of Lookback GMDBs, for different strikes K and increasing jump risk a.
a=6 a=10 a=17 a=25 a=40 a=70 a=280
K =100 126.43 118.55 112.64  109.55 106.86  104.78  104.42
K =140 127.54  119.65 113.72 110.63 107.93 105.85 105.49
K =180 130.77 122.84 11690 113.80 111.09 109.00 108.64
K=220 13535 12739 12142 118.31 115.60  113.51 113.15
K =260 140.85 132.86 126.88 123.76  121.04 118.95 118.58
K=300 147.04 139.03 133.03 129.91 12719  125.09  124.72

quite well until around N =8 - a different approach to compute
(21) and (22) may significantly improve computation times for this
method. The prices obtained by Kz = 5 Erlang distributions approx-
imate true prices (65) much better than the exponential distribu-
tions in Table 1.

8.3. Lookback-type GMDBs

Next, we implement prices for lookback GMDBs implementing
Proposition 6.7 and solving the respective Sylvester equations nu-
merically. For the illustration, we use the phase-type jump model
from Example 3.4. The distribution of remaining lifetime is chosen
to be the Kz = 5-term Erlang distribution (64).

Table 3 gives the resulting prices for the parameter set used
in Deelstra et al. (2020), i.e. b=3,c=7.5n,=8, A =10, q; =1,
Gy =4, 01 =0.15, 05, =0.30, r=0.03, and Sy = 100. We vary the
parameter a to increase jump size volatility while keeping the ex-
pected jump size constant. Each price is obtained in less than 1s.
We observe that jump size volatility has a significant impact on the
prices of lookback GMDBs, a much stronger effect than for the dig-
ital, vanilla and down-and-out-call GMDBs considered by Deelstra
et al. (2020).

9. Conclusion

In a very general framework with regime switching returns
with two-sided phase-type jumps and a remaining lifetime dis-
tribution following a series of Erlang distributions, respectively a
Laguerre series expansion, we derive the Laplace transform of the
returns of several vanilla and exotic GMDB contracts. Contrasting
most of the related literature, our results do not rely on Fourier
inversion but are either purely analytical or based on the solution
of a class of affine matrix equations called Sylvester equations.

We demonstrated the usefulness of Laurent series expansions,
respectively Sylvester equations for the valuation of different types
of GMDBs. For European-type GMDBs the closed-form density of
the terminal payoff allows us also to derive higher-order moments
or quantiles to analyze and manage the contracts’ risks. We believe
that the techniques we use can be applied much broader, also for
a fast computation of hedging weights and Greeks of GMDBs. This
can be an interesting avenue for future research. Apart from this,
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more complex payoff features like Parisian ruin or Asian-type op-
tions may be promising extensions of this work.

10. Discussion and links to related literature

Motivated by the example of guaranteed minimum death ben-
efits (GMDB) in insurance, we discuss the valuation and risk man-
agement of cash-flows where both level and time of payment
are random. Random payment dates appear in different areas of
Operations Research (OR); the randomness may be due to credit
events, accidents, production failures or catastrophe- | weather-
related impacts (e.g. Brigo & Vrins, 2018, Scarf, Cavalcante, & Lopes
(2019)). In insurance, examples of random events include not only
life insurance contracts but also reinsurance treaties, cyber-risk or
operational-risk related contracts and the analysis of disruptive
new technologies that affect financial cash-flows.

Our results have strong links to derivative valuation in Finance
with deterministic payment dates (e.g. Cai, Song, & Kou, 2015,
Hieber, 2018, Deelstra et al., 2020, Kirkby, 2023). We adapt these
results to popular insurance payoffs where lookback-type payoffs
are more common components of (for example) dynamic with-
drawal benefits, than digital and barrier-like products covered in
articles with a stronger focus on financial derivatives (e.g. Deelstra
et al., 2020). Another difference is the parameter N of the Erlang
distributed random time: In Carr‘s randomization in Finance (e.g.
Carr, 1998, Deelstra et al., 2020), one chooses N — oo while for our
random payment dates values of N < 10 are sufficient. Note that
the parameter N determines the number of roots in the Laurent se-
ries expansion as well as the dimension of the Sylvester equations.
This parameter strongly affects the efficiency of the techniques in-
troduced in this article.

The advantage of our approach is the fact that - in a very gen-
eral model framework - we do not rely on Fourier inversion or
Monte-Carlo simulation but provide computationally very conve-
nient expressions that are either closed-form or depend on the
solutions of Sylvester equations. With respect to the literature on
equity-linked life insurance, we extend recent results for a Black-
Scholes model or double-exponential jump diffusion model (e.g.
Gerber et al., 2012, Gerber et al., 2013, Zhang & Yong, 2019, Zhang
et al., 2021) to the class of regime switching Brownian motion with
two-sided phase-type jumps. Laplace transforms in this model
class are typically more involved as they involve matrix exponen-
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tials. We demonstrate that this class allows to still derive a Laurent
series expansion of the Erlang-subordinated return density. This
leads to convenient valuation formulas for European-type GMDBs,
avoiding Fourier inversion algorithms as derived in, for example,
Siu et al. (2015).

From a more technical perspective, we hope that the links we
provide between the matrix Wiener-Hopf factorisation (e.g. Jiang
& Pistorius, 2008) and Carr‘s randomization to techniques like the
discounted density approach for GMDB analysis in insurance (e.g.
Gerber et al., 2012; Gerber et al., 2015, Zhang & Yong, 2019) are
interesting and foster a further exchange between different disci-
plines. We contribute to the tractability of regime switching mod-
els with the aim to further promote the use and application of
regime switching models in OR (see also Elias et al., 2014, Hain-
aut, 2014, Korn et al., 2017, Jin et al., 2020).

Our analysis has limitations and contains some simplifications
of reality. In further research, it may be interesting to look at
for example surrender risks or Asian-type payoffs. The impact of
model risk and model uncertainty for the products considered in
this article may also give novel insights.
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Appendix A. Proof of Lemma 3.1

We recall from (3) that the dynamics of the MMBM can be
written as

t t t t
X[:X0+/ d%ds+/ o¢5st+/ ]*SdeS**—f Jo AN (67)
0 0 0 0

decomposed of a diffusion part with standard Brownian motion By,
positive and negative jumps. Here, N/ and N}~ are Poisson pro-
cesses for the arrival of upper and lower jumps in the diffusion
state j € Sy. A jump at time ¢t may trigger an immediate phase
transition from ¢;_ = j € S; to ¢r = k € Sp. The generator matri-
ces R, and R_ in (4) and (5) have negative and real-valued eigen-
values. From Proposition 17.4 in Mijatovi¢ & Pistorius (2011), we

find that the expected value E[1, _j eﬂj? ‘gat_ = j] is bounded if
and only if 8 <—A$. If a jump appears at time t, we obtain from
(4) and (5) and Lemma 2.2 for f < —A}:

]E[]]‘(p[:k e'BJ;r | Pr— = ]]

f Pl dIP’(]j+ € dx, =Kk after the jump)
0

‘l o0
T (W d); /0 (WorePrtrv,,)  dx
1 -1
= —m<wa+(ﬂln +R+) V+a>jk» (68)
and
E[]lgo[:k e_ﬁj; ‘ Pr— = ]]

= / e i dP(J; € dx, ¢ =k after the jump)
0

1

_ = (—BI+R_)x
- (W(;J)j/o (W(,,e V,(,)jkdx
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- _(W%J)j(wg,( — Bln +R_)’1v,g)jk.

The upper or lower jumps arrive with intensity (Ws41); and
(W5 _1);, respectively. As a first step, let us consider the case of
one regime only (M=m=n=1, ¢ =1, Vt).

(69)

1.- 1.+
oV (B) : = E[e—ﬁlreﬁX[] :E[e-e,rema]rwlsr)fﬂ27;1 F+BYg Jr]
1.— 1.4+
— oldiB-00)t  ola?p _]E[e—ﬂ ol J;] -E[e" o Jr]
— p@B-O+302pt Vot Wot pet Viot-Woit (70)
where, for a Poisson process N; with intensity A, it holds that:

N,
E[eﬂziil]] — eMEE-)  With Q = — (W4 + W,_), we obtain
(11) and [QWsW,_]1=0.
For the general case, apply It6’s lemma to (67) to obtain the
dynamics of the discounted exponential process Y; := e~ /o fsds+BX::

t t
Yt — YO +/ (ﬂd(p _ Q((/’s) + 1[320'2 )YSdS + / 130—(,0 stBs
0 s 2 ©s 0 s

+ /[ (el —1)de5*+—/t (ePle — 1)dNg=~ .
0 0

For the case of multiple regimes (M > 1), introduce the vector
valued process Z; := (ZV(t), Z@(t),...,ZzM(t))’, where Z[(J) =
Ly=jYe for j € Sy. Consider a (small) time interval At and assume
(for now) that there are no jumps (Wys_ = W4 = 0). In this spe-
cial case, we denote the generator matrix Q by Qg to acknowledge
that Q¢1 = 0. Following, for example, Buffington & Elliott (2002),
Hieber (2017), we obtain

(71)

1
E[Z}), E[Z{"]
E[Z{},] E[Z™]

erac | EIZEV] ;
(QO +DB -0+ i):2/32)ds,

o

a system of differential equations that can, with ¢g = j, be solved
to

E[z"]

E[z™]

t S
]E[]l@:ﬂ?’ fo 9<W)ds+ﬁxt]

[, _ye™ 0" 09% ]
1
€; exp ((QO +DB-0© + 522,82)0 )

We refer the reader to Buffington & Elliott (2002) for more
details. Defining the random occupation time in [0,t] in state
J by Ti(0) = [ 1g_jds, T(®) := (F(0), T(0),.... Ty(t) and ¢ :=
&M, @ . M) the result rests on:

E[1y,— T | go = j] = €] exp (@ + diag(®))t) ex.  (72)

where (-, -) denotes the scalar product. Next, we extend this re-
sult to upper or lower jumps in state j € Sy arriving at the rates
(Ws41); and (W, _1);, respectively. The jump might trigger a
phase transition, accounted for by the matrices V., and V_,. The
expected change due to jumps in state j € Sy are then given by:

(B e dt) - E[Ly— P 1) o = J]),
+(P(;” e de) - E[Lp P =D [ = j]),

<W07('Blm - R_)ilv*(f - W¢7+(131n +R+)7]V+(r

E[Z™]

— diag (W, + Wg_)l))jk dt.
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We obtain, using that Q = Qg — diag (W +W,-)1) and com-
bining with the results from the diffusion case above:

E[Z{D,] E[z"] trat | EIZO]
A I +/ | ws, @)ds,
| EIZ),] Elz™]| E[zM™)]

an equation that can be solved to:

(EIZV]| [ ElLgme 07 ex]

... =€ exp (¥(B,O)t).
| B2 :

E[Ly, e~ 0 d5hX ]

With this, we immediately obtain (10).
Appendix B. Proof of Lemma 5.1

Using (9) and the fact that an Erlang r.v. is the sum of N in-
dependent and identically distributed Exp(u) r.v., we obtain the
vector:

T
E [ o N G@ds+BXy,

@Yo = 1]
@, (B) :

o
E[efff O ds+BXy, 0o = M]

E[exp (¥(B.0)- rN,M)] 1

e} th
(MN /
0

Note that the j-th entry of this vector is ¢§,]2M (B). The discounted

1
(N - 1)!91” exp (¥(B.O) - t) dt) 1.

characteristic function ¢§Qﬂ (B) exists for B < —A{, see Lemma 3.1.
We further apply Lemma 2.2(b) and in particular, the existence of
the inverse (uuly — ¥ (8, 9))_1. Applying integration by parts, we
obtain

-1
¢TN.[1 (/3) = M(MIM - ‘I’(ﬂv 9)) ¢TN71.[1 (ﬂ) s

B) = e;. @4, (B) in (18).

s

(73

an iteration that can be solved to ¢§{J)M

Appendix C. Proof of Lemma 6.4

Let us first prove the results concerning the iteration to obtain
Zﬂ‘) for k=2,3,...,N. The idea is to solve (38) backwards, starting
from the last block that equals Eq. (31) in Proposition 6.1. For the
second last row, we obtain for k = 2 that

:

1

3 0

0
| CCRUSVERTS

0
D 0
—({0 I
0 O

+P(©) - ¥ + {

0
0

](w9> U 4w g
_Im

0
0(=0.
0

The lowest block in this system of equation yields u;"g = U(i"i)r =0

for k > 2 (i.e. this confirms that the lowest blocks in Uﬂ‘) for k>2
is 0). The full system can be rewritten as follows:

v
0
0

132 ¢ 0y O
0 o [ngg Uf(fﬂufhr 0o 0 (U
o o/LO O ve gy
12 0
3 Sl uefus v
ul ul)|l o 0
0 0 +o ++

1234
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wly 0 D 0 @) @)
0 o0 v g
W,_
+ 1;) [v?  w?]=0.
Multiplying the first block by 2% 2, we obtain the Sylvester equa-
tion:
-2 )
[uglg _(21)): D 2% wg] [u%}) U%}
L\ 4 R_ L A A
u? U<2)j| by, [25%un, 0
+ oo at [y + 2251 —-0.
|:\Il(_2; ‘I’(_Z_')_ + 0 0

Continuing to solve (38) backwards, we obtain for k > 3:

1[Z 0] O qyke1-1)
2 0 0 U+ 'U+Jr -
0 0] =1

D 0 0 k
-0 I, 0 ‘I’Erl) ~U£rk+]7l) +P(O)- \Il(+k) —0.
0 0 -—I_|i=1

In this iteration, we assume that the matrices with an exponent
lower than k are already known. That is why, starting from k = 2,
in each iteration, the only unknown is Zﬁrk). Writing out this system

yields (40). The results concerning Z% are obtained analoguously.

Appendix D. Kou’s model and exponential death time

Kou’s model is obtainedas m=n=1,V,o =R, =a,,V_, =
—R_=o0_,Ws_=pA, Wy, =(1-p)Aand Q = —A.

1[e 0 , [d 0 o071 0
slo oWy -{o 1 off O 1 (ol
2 1 e))
0 o0 0 0o -1]lw® w®
“A—p-00 (A-pr  pr[ 1 0
+ oy 04 0 0 1
o 0 —o_ v W)

0
H -
0

Assume that US) has an eigenvalue 8 with corresponding eigen-
vector w whose first element is (without loss of generality) 1, we
obtain for w, € R:

%(75[32 — d1[3 0
0 —
wiop o wip

A= =00 4+ ppw )

il

a_(1-wd)
We can solve the second line to w, = & /(a4 + ). Denoting the
two eigenvalues of Uﬁr” by (-81) < (=B2) <0 (they exist as Uf)
is a generator matrix), their corresponding eigenvectors relate to
unit vectors as follows:

(1= p)A+ prw®
—a w1

(75)
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1

oy

1

(ENEE)
;ﬂ] ) (a+_ﬂ2)[_ﬂD

1
1
((_ﬂl)[ﬁ}

A —P2
j|,

(ay — B1)(ay — B2)
a (B —p1)

1
m((‘h— —,31)|:

From this, we obtain:

u® [0} I C e I C Ay o))
1 ay (B2 — B1)

1
oy
o —po

Wl L)

+B1+ B —ay

ol _1 _ _ 1
u: |:0i| = BB <( B1) (o 'B])I:oﬁil

1
2%
Q. —pP2

—(=B2) (a4 — ﬂz)[
_ |:Ol+—,31 —,32].

oy
—BP B+ By —ay

)

Summarizing, we obtain:

U = [Ou - Bi- P

} |

o, -0,
The last line in equation (74) reads as [\IJS.Z \PQ]US)—
a [ wh]+[a.  0]=0, or equivalently:
o_ 0
[0 wglg](ui”—[o a]) =[-e- 0] (76)

that can be solved as:!°

w07’
wh| = [Fa- ] o
* det (Uf) - [ 0

0
0

o_

)

—0- -0y %i&—,gl—ﬂ2+a+
-y o —o—p1— B
o Ot+—|—Ol_

- (B1 +Ol_)zﬂ2 +a_) |:—'B&—+ﬂz +pB1+ B —a+i| ’

where, in the last step, we have used that det(Uﬂr])) = B1B2. We

obtain:
o) ) -9
s =

From the first line of (75), we then obtain
1

501h% - d1ﬂ—u—9(”+k(p
V(-8,0)—u=0.

! (77)

o_

a —p

oy
0 1-p)——
+( p)a++ﬂ

_1)

In other words, the eigenvalues 8 of Uﬂr]) satisfy W(-8,0) =u
and are thus given by (-81), (—f2) with -, < -1 <0 and ® =
9, see (14) and Example 6.6.

10 Note that the inverse of a 2 x 2 matrix is given by:

ek 4 7]

bl 1
d| = deta)
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