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Abstract

This paper is a survey of some classical contributions and recent progress in identifying op-
timal dividend payment strategies in the framework of collective risk theory. In particular,
available mathematical tools are discussed and some challenges are described that occur
under various objective functions and model assumptions. Finally, some open research prob-
lems in this field are stated.

AMS classification: 93E20, 62P05, 91B30, 60J25

1 Introduction

After the introduction of the classical collective risk model in 1903 by Lundberg [91] to describe
the free surplus process of an insurance portfolio, the probability of ruin of such a portfolio was
among the prime quantities of interest in this field. However, a trajectory of the surplus process
that does not lead to ruin in this model will exceed every finite level, which is typically unreal-
istic in practice. That is why in 1957 de Finetti [38] proposed another, economically motivated,
criterion to the actuarial world. Instead of focussing on the safety aspect (measured by the prob-
ability of ruin) he proposed to measure the performance of an insurance portfolio by the maximal
dividend payout that can be achieved over the lifetime of the portfolio. In particular, he proposed
to look for the expected discounted sum of dividend payments until the time of ruin, where the
discounting is with respect to some constant discount rate δ > 0. Whereas de Finetti himself
solved the problem to identify the optimal such dividend strategy in a very simple discrete ran-
dom walk model, since then many research groups have tried to address this optimality question
under more general and more realistic model assumptions and until nowadays this turns out to
be a rich and challenging field of research that needs the combination of tools from analysis,
probability and stochastic control. In contrast to typical control (and consumption) problems
in finance, in this insurance context a control action changes the value of the underlying, as the
dividend payments are subtracted from the current surplus, so that the problems have a quite
different flavor from their counterparts in mathematical finance. In this survey we would like
to collect some crucial ideas and developments in this field and in particular highlight the type
of mathematical techniques and challenges that occur in this field. Rather than attempting to
provide an encyclopedic list of references we will rather focus on methodological aspects and give
links to some classical and recent pertinent references. For a recent quite extensive collection of
references under a slightly different focus see Avanzi [13].

The above classical criterion is in line with the so-called Gordon model [57] which uses discounted
future dividend payments as an alternative to the general discounted cashflows method for val-
uating a company. At the same time this approach also was at debate. Miller & Modigliani [93]
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showed in a simple model with quite restrictive assumptions on the market, that when knowing
exactly the investment strategy of the company, the knowledge about future dividends is not
needed for evaluating the value of the company. However, the variety and complexity of more
sophisticated stochastic models for an insurance portfolio does not fit into the simple framework
of [93] (see also DeAngelo & DeAngelo [39, 40], Handley [60] and Frankfurter and Wood [44])
and it is widely believed that the discounted dividends approach (and variants of it) are still
useful also from an economic point of view.

In Section 2 we will briefly describe the classical collective risk model based on a compound
Poisson process and the diffusion model. These two models are the cornerstones of tractable
continuous-time processes to solve stochastic control problems in this context. Although the
diffusion model is not directly appealing as a model for insurance purposes, where clearly claims
will cause jumps in the surplus process, we indicate an argument why it is sometimes useful in
a certain approximative sense. Both the compound Poisson model and the diffusion model are
Markovian and hence the dynamic programming approach can be used directly to address the
problem of determining the optimal dividend strategy. In fact, it seems that all established solu-
tions of optimal dividend problems in the literature rely in one way or the other on the dynamic
programming principle. This solution procedure and its application are going to be described
in Section 5 and Section 6. A potential alternative could be the dual method, introduced for a
stochastic framework by Bismut [25], which works well for portfolio optimization problems in
finance (see Kramkov & Schachermayer [75] for the general case). But due to the intervention
of the control into the underlying surplus process, it seems that the resulting set of possible
trajectories is too restricted to make the dual method work for insurance problems.

The dynamic programming approach leads to the so-called Hamilton-Jacobi-Bellman equation,
which (depending on the underlying risk model) contains elements of a differential, partial differ-
ential or integro-differential equation. A solution to this equation is then not yet automatically
the optimal solution of the optimization problem, but a good guess for it that then has to be
verified in a separate step. The equation itself can be interpreted as the natural continuous
limit of the dynamic programming principle from discrete optimization (see Whittle [122]) which
postulates that an optimal policy for the whole time span also has to be the optimal one in each
small time step. A reference for discrete-time stochastic optimization is Bertsekas & Shreve [24].
For further references on optimal dividend results in discrete-time models we refer to Avanzi [13].

The remainder of this survey is organized as follows. Section 2 introduces the type of continuous-
time insurance risk models for which optimal dividend problems can typically be solved. Section 3
first discusses several possibilities of control actions on the insurance portfolio surplus process and
then introduces various kinds of dividend strategies that later turn out to be optimal under certain
objective functions. Furthermore references to literature that studies properties of the resulting
controlled surplus process are given. Section 4 deals with various criteria to measure the value of
dividend strategies and gives links to results that establish the optimality of respective strategies.
In Section 5 we then discuss the dynamic programming principle and typical mathematical
approaches to derive an equation for the value function of interest. Section 6 subsequently
summarizes the mathematical challenges in the step of verifying whether a candidate solution is
indeed the optimal solution. Finally, in Section 7 we conclude and state some open problems in
the field.

2



2 Collective Risk Models

In the following we will always use a probability space (Ω,F , P ) on which all stochastic quantities
are defined.

2.1 Cramér-Lundberg Model

The Cramér-Lundberg risk model (also called the classical risk model or compound Poisson
model) describes the free reserve R = (Rt)t≥0 in an insurance portfolio by a stochastic process
of the form

Rt = x+ ct−
Nt∑

k=1

Yk. (1)

The first ingredient is the deterministic initial capital x ≥ 0. The premiums are assumed to be
collected continuously over time with constant intensity c and the total claim amount at time
t is given by a compound Poisson process S = (St)t≥0 with St =

∑Nt
j=1 Yj , where the number

(Nt)t≥0 of claim occurrences up to time t ≥ 0 is a homogeneous Poisson process N = (Nt)t≥0

with intensity λ > 0, i.e. Nt ∼ Poi(λt). The claims are a sequence of positive independent
and identically distributed random variables {Yi}i∈N with distribution function FY . One crucial
assumption in the classical risk model is the independence of N and {Yi}i∈N.
As a consequence of the Poisson assumption for the claim counting processN , the inter-occurrence
times {Wi}i∈N with Wi = Ti − Ti−1 are independent and identically exponentially distributed,
{Wi}i∈N

iid∼ Exp(λ).

The process R as given in (1) lies in the intersection of the class of spectrally negative Lévy
processes and the class of Piecewise Deterministic Markov Processes (PDMP’s, see Davis [37]).
As a consequence it is itself a strong Markov process. Some of the results for R mentioned
later on will have mathematically natural extensions to the class of spectrally negative Lévy
processes. Whereas for actuarial applications the practical interpretation of this more general
process class is somewhat limited, using the general theory sometimes leads to a quite convenient
analysis (for instance in terms of scale functions), which is also applicable in the special case of
the Cramér-Lundberg model.

Definition 2.1. The time of ruin τ denotes the first entrance time of the reserve process R to
(−∞, 0),

τ = τ(x) = inf{t > 0 such that Rt < 0 | R0 = x}.
The probability of ultimate ruin is defined as

ψ(x) = P (τ(x) <∞).

The survival probability is U(x) = 1− ψ(x).

The so-called net profit condition requires to choose the premium intensity larger than the ex-
pected loss in a time interval of length 1, c > λµ = E(S1) where µ = E(Y1). A result from the
theory of random walks [105] shows that if c ≤ λµ = E(S1), ruin occurs almost surely, ψ(x) = 1.
If c > λµ, then P (limt→∞Rt = ∞) = 1.
The following operator which is applied to a suitable function g (for details see [37] or [105]) is
called the infinitesimal generator of the Markov process R,

Lg(x, t) = c
∂g

∂x
(x, t) I{x≥0} +

∂g

∂t
(x, t) + I{x≥0}λ

(∫ ∞

0
g(x− y, t)dFY (y)− g(x, t)

)
, (2)

which will be needed later on.

3



2.2 Diffusion Approximation of the Model

We will only give a brief illustration of the ideas of diffusion approximations for risk reserve
processes. Overviews and numerical comparisons of different types of approximations are given
in Grandell [58], Asmussen [11] and Schmidli [109].
Let b > 0 and a ∈ R be two constants, then a Markov process X which, for small h, fulfills

E(Xt+h −Xt | Ft) = ha,

E((Xt+h −Xt − ha)2 | Ft) = hb2,

with inifinitesimal drift a and variance b2, is of the form Xt = at+ bWt for a Brownian motion
Wt. Therefore X is called a Brownian motion with drift, or, loosely speaking, a diffusion process
with constant drift and volatility. The basic idea behind such an approximation is to define a
sequence of classical reserve processes, which converge weakly to some Brownian motion with
drift. Since for that special type of process explicit results for distributions of first hitting times
exist, these can be used as an approximation of the ruin probability of the classical reserve
process. But in addition to their tractability, also from an optimal stochastic control point of
view such approximations seem to be interesting. In [17] Bäuerle proves the convergence of values
and strategies of solutions to a dividend maximization problem solved by Schäl in [106] for a
PDMP risk reserve process to the value and optimal strategy of its diffusion approximation.
The following basic construction is due to Iglehart [71]. He defines a sequence of classical reserve
processes {R(n)}n∈N, where the components of the nth process are given by the initial capital
xn > 0, the premium intensity cn > 0 and independent identically distributed claim amounts
{Y (n)

i }i∈N with E(Y (n)
i ) := µn > 0 and Var(Y (n)

i ) := σ2
n > 0. The claim counting process

N is given by a renewal process with interclaim times {Wi}i∈N, see [58] or [105], for which
E(Wi) = 1

λ > 0 and

R
(n)
t = xn + cnnt− S

(n)
nt , t ∈ [0, 1],

S
(n)
nt =

Nnt∑

i=1

Y
(n)
i .

Note, that the distribution of the claim amounts may vary with n, whereas the claim counting
process stays the same for every R(n). The reference reserve process R for which the approxima-
tion is valid is

Rt = x+ ct−
Nt∑

i=1

Yi,

with E(Yi) := µ > 0 and Var(Yi) := σ2 > 0. Under some technical conditions (see [71]) the
sequence of classical reserve processes converges weakly to a stochastic process of the form

x+ Γ + σλ
1
2W,

where Γ = (Γt)t≥0 with Γt = (c− λµ)t and W = (Wt)t≥0 is a standard Brownian motion. Later
on we will sometimes refer to general diffusion processes, which will be solutions of stochastic
differential equations of the following type

dxt = µ(xt, t)dt+ σ(xt, t)dWt, x0 = x.

The infinitesimal generator for such a process is then given by

Lg(x, t) =
∂g

∂t
(x, t) + µ(x, t)

∂g

∂x
(x, t) +

σ(x, t)2

2
∂2g

∂x2
(x, t). (3)
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3 Model Extensions and Possibilities of Control

The classical risk model in Section 2.1 and its diffusion approximations in Section 2.2 suggest
two possibilities for an insurer to intervene in the surplus process, namely the choice of the initial
capital x and the choice of the premium intensity c (respectively the drift in the diffusion approx-
imation). In practice there will be more possibilities to influence and control the performance of
the insurance portfolio. In the following we will outline some of them.

3.1 Reinsurance and Investment

In 1995, Browne [30] started to apply methods from the theory of stochastic optimal control of
diffusion processes in the context of insurance. He considered a Brownian motion with drift as a
model for the surplus process and included the possibility for the insurer to invest some fraction
of the reserve dynamically over time into a financial asset, where the price of that financial
asset is modelled by a geometric Brownian motion (cf. Black and Scholes [26]). The goal is to
identify an investment strategy such that the probability of ruin of the controlled reserve process
is minimized. Hipp and Plum consider the same problem for a classical compound Poisson risk
reserve process in [63] and in a more general framework in [64]. In the context of the classical
model, the control variable is a real-valued càdlàg process A = (At)t≥0 adapted to the history
of the aggregate claims process S = (St)t≥0 and W = (Wt)t≥0, which is the standard Brownian
motion describing the price P of the financial asset with dPt = Pt(mdt+σdWt) and P0 = p. The
controlled reserve process RA (strategy A) is determined by the stochastic differential equation

dRA
t = (c+Atm)dt+AtσdWt − dSt, RA

0 = x.

The asymptotic behavior of the probability of ruin under the optimal investment strategy is e.g.
considered in Hipp and Schmidli [65], Gaier and Grandits [46] and Gaier et al. [47].
Another possibility to reduce the probability of ruin in the classical model is to use reinsurance.
Here the insurer passes on some of its premium income to a reinsurer, who in turn covers a certain
fraction of the occurred claims. Let a function b : [0,∞) → [0,∞) with 0 < b(z) ≤ z denote the
retained amount of the insurer for a claim of size z (such that the amount z− b(z) is covered by
the reinsurer). This constitutes a per-risk reinsurance coverage. The premium income kept by
the insurer is then cb(t) ≤ ct and depends on the specification of b. The controlled process Rb is
in this case given by

Rb
t = x+ cb(t)−

Nt∑

i=1

b(Yi).

Two well-studied types of reinsurance are proportional reinsurance, where b(z) = γz for some
γ ∈ (0, 1], and excess-of-loss (XL) reinsurance, where b(z) = min{z,M} for a retention level
M > 0. Schmidli [107] uses modern stochastic control theory to study the optimal choice of
dynamic proportional reinsurance to reduce the probability of ruin in the (otherwise) classical
risk model. Here dynamic refers to a strategy where the proportion γ = (γt)t≥0 is a predictable
process, adapted to {FRb

t− }t≥0, with respect to the history of Rb, e.g. at claim time Ti the
proportion has to be fixed using information only up to time Ti−. In [66] the same problem is
studied for dynamic XL-reinsurance by Hipp and Vogt. Schmidli [108] uses the results from [63]
and [107] to combine investment and dynamic reinsurance for the minimization of the probability
of ruin.
While in the diffusion setup it is sometimes possible to calculate quantities of interest explicitly
(see [30]), this is not the case in models including jumps of the reserve process. The above
mentioned papers dealing with the classical model give proofs of the existence of a minimal
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probability of ruin and the existence of an optimal strategy, but only provide ideas for their
numerical evaluation.

3.2 Dividends

Let us now define the so-called admissible dividend strategies. The filtration F = (Ft≥0), which
we are going to use, is always the one generated by the uncontrolled processes (in the diffusion
case by the driving Brownian motion, in the classical case by the compound Poisson process).
The basic idea for modeling a dividend policy is to introduce a stochastic process L = (Lt)t≥0 rep-
resenting the cumulated dividend payments up to time t. From the interpretation as a dividend
strategy, it is natural to impose the following four conditions on L:

(i) ruin does not occur due to dividend payments, i.e. ∆Lt ≤ RL
t (where RL

t denotes the
controlled risk process)

(ii) L0 = 0 and the paths of L are non-decreasing,

(iii) payments have to stop after the event of ruin,

(iv) decisions have to be fixed in a predictable way.

Condition (iv) gives reason to look at càglàd processes L, which are left-continuous with existing
limits from the right (Lt− = Lt). We hence call a dividend strategy L = {Lt}t≥0 admissible if it
is càglàd for all t ≥ 0 and fulfills (i), (ii) and (iii) above (in particular, Lt then is previsible, i.e.
Ft−-measurable). The controlled process in the compound Poisson model is defined via

RL
t = x+ ct−

Nt∑

k=1

Yk − Lt.

The càdlàg property of the reserve process and the càglàd property of the dividend process
imply that RL

t− 6= RL
t is always due to a claim and RL

t+ 6= RL
t is due to some (singular) dividend

payment. This càglàd assumption is for instance used in Azcue & Muler [15] and Albrecher &
Thonhauser [9] in a compound Poisson framework. Alternatively, it is also possible to consider
previsible càdlàg strategies L, which preserve the càdlàg property of the risk process for the
controlled process. But then – in order to allow lump sum payments at t = 0 (one has to take
L0− = 0) and to exclude payments at the time of ruin – the optimization criterion has to be
slightly modified (we will come back to that later on, see also Schmidli [111] and Mnif & Sulem
[94]). The essential difference between using a càdlàg or a càglàd control process is observing
the process after or before a possible dividend payment (cf. [111]).
If the uncontrolled risk process is a diffusion, the requirement that Lt is Ft−-measurable is
equivalent to requiring Lt to be adapted (i.e. Ft-measurable for all t ≥ 0). The controlled
diffusion process is

RL
t = x+

∫ t

0
µ(RL

s , s)ds+
∫ t

0
σ(RL

s , s) dWs − Lt.

This definition is in line with the one of Shreve et al. [112] and the one for general controlled
Markov processes presented in Fleming & Soner [43]. Again it is also possible to use càdlàg
controls instead, as is done for constant µ and σ by Asmussen & Taksar [12], see also [111].
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3.2.1 Analytic Properties of L

In many situations it is useful to restrict the general class of admissible controls further. A natural
subclass of admissible control strategies are the absolutely continuous ones. Such strategies L
admit an adapted nonnegative density process l = (ls)s≥0 such that

Lt =
∫ t

0
ls ds.

To avoid payments after ruin, one has to additionally require lt = 0 for t ≥ τL, where τL denotes
the time of ruin of RL. In order to exclude singularities, one usually assumes that the density
process is bounded, 0 ≤ ls < l∞ <∞ for all s ≥ 0. Note that this restricted type of control, now
determined by its density process, then does not include the possibility of lump sum payments
(i.e. jumps of L, which would be singularities of l). In Fleming & Soner [43] a complete picture
of admissible controls (or more generally admissible control systems) and the use of progressively
measurable control processes l = (ls)s≥0 for Markov diffusion processes can be found. Moreover
these authors give a construction how to move from a control represented by its – possibly un-
bounded – density, which a priori does not make sense, to its integrated representation L.
In some situations (examples will be given below) it can be shown that the singular parts of
a strategy do not contribute to the resulting wealth, and hence the absolutely continuous con-
trols are a sufficient choice for solving the general maximization problem. This restricted class
of controls is for instance considered in Asmussen & Taksar [12], Jeanblanc-Picqué & Shiryaev
[73], Schäl [106] and Gerber & Shiu [55]. In Schmidli [111] the solution of the restricted problem
in the Cramér-Lundberg model is shown to converge pointwise to the general solution as l∞ →∞.

In an insurance context the introduction of transaction costs charging the dividend payments
seems to be relatively new (although there is an early discussion by Porteus [101]) and up to now
mostly problems in a diffusion setup are solved, see for example Jeanblanc-Picqué & Shiryaev
[73], Paulsen [97] and Cadenillas et al. [32, 33]. For the compound Poisson risk reserve pro-
cess, the effect of transaction costs on the optimal control problem was recently investigated in
Thonhauser & Albrecher [119]. The inclusion of transaction costs naturally leads to another
restricted class of admissible strategies known as impulse controls. Let us assume that every
dividend payment is charged by proportional and fixed costs such that the shareholder receives
kz − K from a payment of size z (K > 0 and k ∈ (0, 1)). Then dividend strategies with an
absolutely continuous component lead to an unbounded negative payoff for the shareholder and
are consequently not appropriate. An impulse control S = {(τi, Zi)}i∈N is now instead a sequence
of increasing intervention times τi and associated control actions Zi, which fulfills the following
four conditions:

• 0 ≤ τi ≤ τi+1 a.s. for all i ∈ N,
• τi is a stopping time with respect to the filtration Ft = σ{RS

s− | s ≤ t} for t ≥ 0,

• Zi is measurable with respect to Fτi ,

• P (limi→∞ τi ≤ T ) = 0 for all T ≥ 0.

The controlled process RS = (RS
t )t≥0 based on an uncontrolled reserve R, is consequently given

by

RS
t = Rt −

∞∑

i=1

I{τi<t}Zi.

7



If the uncontrolled model has continuous sample paths, then the measurability condition on the
stopping times τi can of course be replaced by measurability with respect to the history of the
process. For further details on impulse controls for PDMPs and also on the existence of controlled
processes see Davis [37]. Other standard references in this context are Bensoussan & Lions [22]
and Øksendal & Sulem [95].

Remark 3.1. In the literature on optimal stochastic control one often encounters the concept
of relaxed (or generalized) controls, which goes back to Fleming [42] (for the deterministic case
see Young [123]). The basic idea is to enlarge the set of admissible controls (which take values
in a compact control space U) by defining the set of relaxed controls consisting of the set of
measurable functions m : [0,∞) → P (U) (where P (U) denotes the set of probability measures
on U). In other words, one allows for stochastic strategies and a classical control u ∈ U then
corresponds to a Dirac measure δu. For instance, if the drift of a controlled diffusion depends
continuously on the control u ∈ U , then, applying a relaxed control mt, one gets the process

Rm
t = x+

∫ t

0

∫

U
µ(s, u)ms(du) ds+

∫ t

0
σ(s) dWs.

A natural question is now whether such a randomization of strategies can substantially increase
the value of the objective function in the stochastic control problem (as it is for instance the
case for the value of non-cooperative deterministic games in game theory). In general, in the
diffusion case the so-called chattering lemma states that for any relaxed control there exists a
simple control approximating the relaxed one arbitrarily closely (i.e. U is dense in the set of
relaxed controls, see Kushner [77] for an overview and Davis [37] for a short comment on the
introduction of randomized strategies in the PDMP case). Explicit calculations for certain simple
randomized dividend strategies in a compound binomial risk model are given in Tan & Yang [117]
and Landriault [82].
The concept of relaxed strategies can in any case often be helpful for proving the existence of
an optimal control (at least in the relaxed sense), when there exists no simple optimal strategy,
maximizing or minimizing a given cost functional.

3.2.2 Some Particular Control Strategies

We will conclude this section by introducing some concrete well-known strategies that will turn
out to be optimal in certain situations.

• Threshold strategies
As an example for an absolutely continuous control fix a threshold level b > 0 and choose
a Markovian density process ls = l(x) = a I{x>b} with a > 0. The cumulated dividend
payments process is then given by

Lt =
∫ t∧τL

0
a I{Rs−≥b} ds.

Such a strategy pays out dividends continuously at a rate a whenever the current reserve
is above level b (cf. Figure 1).
The articles by Gerber & Shiu [55]), Frostig [45] and Lin & Pavlova [85] deal with such a
strategy in the classical model and Gerber & Shiu [49] in the diffusion model. Kyprianou
and Loeffen [78] discuss the existence of spectrally negative Lévy processes controlled by a
threshold strategy.
An extension of the threshold strategy is to fix multiple thresholds bi and associated in-
tensities ai. Kerekhesha [74], Zhou [124], Albrecher & Hartinger [4] and Lin & Sendova
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Figure 1: A sample path of the Cramér-Lundberg model under a control of threshold type

[86] study properties of the resulting risk reserve process in the classical model, see also
Badescu et al. [16].

• Barrier strategies
For a fixed barrier height b ≥ 0, the cumulated dividend payments are described by

Lt = (x− b)I{x>b} +
∫ t∧τL

0
c I{RL

t−=b} dt.

Such a strategy pays out all the reserve above b immediately at t = 0+ (representing a
singular component in the strategy) and subsequently all incoming premiums that lead to
a surplus above b are immediately distributed as dividends. For t > 0 the controlled risk
process is hence reflected at b and there are obvious connections to concepts of first hitting
times of the process at b from below and the local time of the process at b (cf. Figure 2).
This intuitively natural strategy for profit participation in the risk process was first pro-
posed by de Finetti [38] in 1957 and he showed that a certain barrier strategy maximizes
expected discounted dividend payments if the underlying risk reserve process is modelled
as a simple random walk. For further situations in which barrier strategies turn out to
be optimal we refer to Section 4. There are many papers in the literature that deal with
specific properties of the risk reserve process resulting from a barrier strategy. For instance,
Paulsen & Gjessing [99] investigate the effect of barrier strategies on risk processes in an
economic environment. Irbäck [72] studies asymptotic results for high horizontal barriers.
Gerber & Shiu [54] calculate the moments of the expected dividends for an underlying
diffusion process. Leung et al. [83] deal with finite horizon problems in the presence of a
horizontal barrier and a geometric Brownian motion. Cai et al. [34] study an Ornstein-
Uhlenbeck model including credit and debit interest. Lin et al. [87] discuss properties of
the classical risk reserve process controlled by a barrier strategy by means of the so-called
expected discounted penalty function. For the more general spectrally negative Lévy pro-
cesses, Avram et al. [14], Renaud & Zhou [103] and Kyprianou & Palmowski [80] use scale
functions for calculating functionals of the expected discounted dividends under a barrier
strategy. In the compound Poisson model, Højgaard [67] determines optimal premium pay-
ment schemes such that expected discounted dividend payments under a barrier strategy
are maximized.
Time-dependent barriers were studied in Gerber [52], Siegl & Tichy [113] and Albrecher et
al. [5] for the linear case and in Alegre et al. [10] and Albrecher & Kainhofer [7] for the
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Figure 2: A sample path of the Cramér-Lundberg model under a control of barrier type
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Figure 3: A sample path of the Cramér-Lundberg model under a control of band type

non-linear case (see also Garrido [48] for the diffusion model). In [51], it was shown that
barrier dividend payments constitute a complete family of Pareto-optimal dividends.

• Band strategies
When studying the classical reserve process, Gerber [50] showed that for general optimality
one needs another type of strategy called band strategy. Such a strategy is characterized
by three sets A, B and C which partition the state space of the reserve process. Each set
is associated with a certain dividend payment action for the current reserve x as follows: if
the current surplus x ∈ A, then every incoming premium is paid out; if x ∈ B, then a lump
sum is paid out moving the current reserve to the closest point in A that is smaller than
x; if x ∈ C then no dividend is paid. It is possible that several disjoint intervals belong to
B and C and create a band structure for (Rt, t) over R+ × R+. For further discussions on
these type of strategies see also Bühlmann [31], where also other general thoughts about
dividend policies can be found. In Figure 3 a sample path of the risk process with a band
strategy given by A = {b0, b1}, B = (b0, a] ∪ (b1,∞) and C = (a, b1) is illustrated.

• A simple type of impulse strategy
Fix two levels b1 and b2 with 0 ≤ b1 < b2 and use the following rules for dividend payments:
if the surplus is above or equal b2, then pay out the amount b2 − b1 immediately; if the
surplus is below b2, do nothing until the reserve reaches the level b2 again. Let θn

b2
denote
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Figure 4: A sample path of the Cramér-Lundberg model under an impulse control

the nth time that the process hits b2 from below. Then the payoff of such a dividend
strategy is given by

Lt = (x− b1)I{x≥b2} +
∞∑

n=1

(b2 − b1)I{θn
b2

<t<τS},

when starting with initial capital x ≥ 0 (cf. Figure 4).
Such a dividend strategy naturally appears for diffusion risk reserve processes and transac-
tion costs for dividend payments (cf. Jeanblanc-Piqué & Shiryaev [73] for a simple diffusion
model with constant drift and volatility, Cadenillas et al. [33] for a mean-reverting diffu-
sion process, Paulsen [97] for general diffusion processes; Cadenillas et al. [32] also take
proportional reinsurance into account).
For risk models with jumps and an impulse strategy of the above type, the literature is still
scarce. For the case of spectrally negative Lévy risk processes see Loeffen [90]. Thonhauser
& Albrecher [119] study the Cramér-Lundberg model with both proportional and fixed
transaction costs and also discuss the role of these simple impulse strategies.

Another somewhat intuitive payout scheme for profit participation is to pay a certain proportion
of the premium income whenever it represents new gains (i.e. whenever the risk process is in a
running maximum). Although there are no criteria known under which such a payment strategy
is optimal, it leads to surprisingly simple identities between the survival probability with and
without those payments and has another natural interpretation in terms of tax payments on
profits of the insurance business (cf. Albrecher & Hipp [6] and Albrecher et al. [1, 8]).

4 Value Functions

Let us now consider in more detail ways to measure the value of a certain dividend strategy L.
Let δ > 0 denote a constant discount factor (this can be interpreted as reflecting the preference
of shareholders to receive dividend payments earlier rather than later during the lifetime of the
reserve process, see e.g. Borch [29]). The index x in the notation Ex will indicate in the following
that the initial capital is x, i.e. P (RL

0 = x) = 1.
The classical performance measure for a certain dividend strategy L (in this context going back
to de Finetti [38]), is the expected value of discounted future dividend payments

VL(x) = Ex

(∫ τL

0
e−δt dLt

)
. (4)
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If instead of càglàd processes Lt one defines càdlàg processes to be admissible (cf. Section 3.2),
then (4) has to be modified to

V L(x) = Ex

(∫ τL−

0−
e−δt dLt

)
.

The associated optimization problem then consists of finding

V (x) = sup
L∈Π

VL(x) (5)

and an optimal admissible strategy L∗ such that V (x) = VL∗(x) holds. The set of admissible
controls denoted by Π will vary depending on the generality one aims at. For obtaining explicit
solutions and simple decision rules, one may want to focus on barrier or threshold strategies;
for solving the problem in a general form one will want to deal with general càglàd cumulated
dividend processes as specified in the previous section.
The general problem for the classical Cramér-Lundberg risk reserve process was first solved by
Gerber in [50] via a limit of an associated discrete problem and later on by means of stochastic
control theory by Azcue & Muler [15], who also included a general reinsurance strategy as a
second control possibility. See also Schmidli [111] and Mnif & Sulem [94] who allow for addi-
tional dynamic XL-reinsurance and Albrecher & Thonhauser [9] for a reserve process under a
force of interest. For all these cases in general a band strategy turns out to be optimal among
all admissible strategies.
For the particular case of exponentially distributed claim amounts, the band strategy collapses
to a barrier strategy (this was proven by Gerber [50] in 1969 as a by-product of the general
characterization). In Albrecher & Thonhauser [9] it is shown that the optimality of barrier
strategies in the classical model with exponential claims still holds if there is a constant force of
interest. Recently, Loeffen [88] showed that barrier strategies maximize the expected discounted
dividend payments until ruin also for general spectrally negative Lévy risk processes with com-
pletely monotone jump density (and Kyprianou et al. [79] relaxed this condition on the jump
densities to log-convexity). This for instance establishes the optimality of barrier strategies in the
Cramér-Lundberg model with Pareto claim sizes. However, despite this collection of sufficient
conditions for the optimality of barrier strategies, explicit necessary conditions on the model
parameters are still not available up to now.
In the general diffusion setup the optimal dividend problem (5) was completely solved by Shreve
et al. [112] and a barrier strategy was identified to be optimal. The special case of constant drift
and diffusion coefficient was then solved again by slighty different means in Jeanblanc-Piqué &
Shiryaev [73] and Asmussen & Taksar [12] (Radner & Shepp [102] study the situation where the
drift and volatility can also be controlled within a discrete set of possible values). In addition to
the dividend control, Højgaard & Taksar [68, 69] also considered the possibility of proportional
reinsurance and optimal investment. For an overview on this and variants of these problems for
diffusion processes see Taksar [116].
If one wants to maximize (4) over the set of absolutely continuous controls with a bounded in-
tensity, then a threshold strategy turns out to be optimal in a diffusion risk model (cf. Asmussen
& Taksar [12]) as well as in the compound Poisson risk model with exponentially distributed
jumps and a < c (cf. Gerber & Shiu [55]).

Motivated by optimal consumption problems from mathematical finance (see e.g. Merton [92]),
Hubalek & Schachermayer [70] propose a value function measuring the expected discounted utility
of a dividend stream and discuss the related optimization problem for a diffusion risk reserve pro-
cess. They show that under so-called Inada conditions on the utility function u : [0,∞) → [0,∞)
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(namely u′(0) = ∞ and u′(∞) = 0), the optimal strategy has to be absolutely continuous. The
value of a strategy L is then defined by

VL(x) = Ex

(∫ τL

0
e−δsu(ls) ds

)
. (6)

Although the measurement of a utility of a density may seem strange at a first glance, this can
be motivated by interpreting the problem as a limit of a discrete model, where the cumulated
utility of the payments from each time step is considered (cf. Borch [29]). Another utility-based
approach is due to Grandits et al. [59], who propose to measure a strategy by its expected (in
their case exponential) utility of the cumulated discounted dividend payments,

VL(x) = Ex

(
u

(∫ τL

0
e−δt dLt

))
. (7)

For a diffusion model a certain time-dependent barrier strategy turns out to be optimal. How-
ever, the concrete form of this barrier is difficult to obtain, as it is given through a defining
integral equation.

When including transaction costs, the inclusion of a utility per payment seems to be natural
(e.g. u(z) = 1

γ (kz − K)γ with γ ∈ (0, 1]). Then the value of an admissible impulse strategy
S = {(τi, Zi)}i∈N is measured by

VS(x) = Ex

( ∞∑

i=1

e−δτiu(Zi)I{τi<τS}

)
. (8)

The corresponding optimization problem is considered in Paulsen [97] for a general diffusion
process, in Jeanblanc-Picqué & Shiryaev [73] for the constant drift and volatility case and in
Cadenillas et al. [33] for a mean-reverting diffusion. Thonhauser & Albrecher [119] characterize
the value function according to (8) for the classical model. In a similar way as for general càglàd
controls, Loeffen [90] proves that a simple impulse strategy, as introduced in Section 3.2, is opti-
mal for spectrally negative Lévy risk processes when there are fixed transaction costs with each
dividend payment, γ = 1 and the density of the jump distribution is log-convex.

Of course there are various possibilities to extend the definition of the value function. We
now mention two more examples that may be of particular interest for insurance issues. The
first one introduces some sort of reward for avoiding early ruin, modelled by a discounted stream
of payments with density Λ > 0 until ruin and a corresponding value function

VL(x) = Ex

(∫ τ

0
e−δt dLt +

∫ τ

0
e−δtΛ dt

)
. (9)

The additional parameter Λ can be used for balancing between safety and profit in the portfolio
(alternatively, one can interpret the additional summand as a certain discounted penalty at ruin,
cf. Gerber et al. [53]; for the special case of expected time to ruin (δ = 0) see Borch [28]). For
this value function, Shreve et al. [112] and Boguslavskaya [27] identify the optimality of barrier
strategies in diffusion models, and in [27] also the inclusion of transaction costs is investigated.
Thonhauser & Albrecher [118] establish the optimality of barrier strategies under (9) for the
classical risk model with exponentially distributed claim amounts. For recent extensions to
general Lévy risk models see Loeffen [89] and for an inclusion of additional investment possibilities
see Wang & Zhang [121].
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Another approach is to allow for capital injections from the shareholders when the surplus falls
below zero to make it again positive and avoid bankruptcy. Dickson & Waters [41] and Gerber et
al. [56] assumed that the deficit at ruin has to be paid by the shareholders and hence looked at
choosing an optimal barrrier that minimizes the expected difference between discounted dividend
payments until ruin and deficit at ruin for a compound Poisson model. Assume now more
generally that these capital injections can occur at any point in time with the goal that the
surplus does not become negative and denote by Z = (Zt)t≥0 the injection process. Then the
controlled process is of the form

RL,Z
t = x+ ct−

Nt∑

n=1

Yt − Lt + Zt.

The value of such a control pair (L,Z) can naturally be defined by

VL,Z(x) = Ex

(∫ ∞

0
e−δt dLt − θ

∫ ∞

0
e−δt dZt

)
,

where θ > 1 is a weight for the expected discounted capital injections. The associated general
maximization problem was recently solved in Kulenko & Schmidli [76] for the classical risk
model, see also Avram et al. [14]. It turns out that the optimal strategy is now for arbitrary
claim size distributions a barrier strategy and injections should only take place when the process
is negative. Shreve et al. [112] solved the analogous problem for a general diffusion process. He
& Liang [61] deal with this problem in a diffusion framework allowing general dividend strategies
and including transaction costs on the reinvestments, and Paulsen [98] investigates the diffusion
setup when both dividend payments and reinvestments are charged by transaction costs.
The idea of putting different constraints on the probability of ruin of the controlled reserve
process is used in Paulsen [96] for a general diffusion model and Bayraktar & Young [18] for a
diffusion model and a utility criterion on the value of a strategy. Hipp [62] solves such a problem
in a discrete framework. When fixing a dividend strategy, Bayraktar & Young [19, 20] use an
investment control possibility for minimizing the probability of ruin of the controlled diffusion
reserve process.

5 The Dynamic Programming Approach

In the following sections we will describe in more detail the nature of the mathematical challenges
when trying to identify optimal control strategies in an insurance environment. We will start
with a discussion of the dynamic programming approach, which is at the heart of the solution of
most dividend maximization problems in a Markovian environment (for a general overview see
Fleming & Soner [43] and Schmidli [111]).

The dynamic programming principle has its origin in discrete-time optimization (see e.g. [122])
and basically states that one tries to behave optimally in a first time interval and then optimally
from there on. In continuous time this leads to a so-called Hamilton-Jacobi-Bellman (HJB)
equation. Typically the derivation of this equation for V (x) involves several assumptions that
are difficult to verify directly. Hence the usual procedure is to derive the equation heuristically
and finally prove separately (in a so-called verification step) that its solution is indeed the required
value function of the optimal control problem. This verification step can consist of two alternative
procedures: either one can show that the value function indeed fulfills the HJB equation (by
justifying all steps in the derivation of the equation rigorously), or one is able to show that
the obtained solution of the HJB equation actually dominates the values of all other possible
strategies (usually by martingale arguments).
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5.1 Non-Singular Controls - the Classical Case

Let Π be a set of admissible strategies and R be one of the risk reserve processes introduced
before. The value function V (x) of the maximization problem is said to fulfill the dynamic
programming principle if for any stopping time γ the equation

V (x) = sup
L∈Π

Ex

(∫ τL∧γ

0
e−δsdLs + e−δ(τ∧γ)V (RL

τL∧γ)

)
(10)

holds. In other words, maximizing the dividend payments in an interval [0, γ) and from there on
continuing in an optimal way is equivalent to maximizing the payments over the whole lifetime
of the reserve process. Now replace γ by some small h > 0 and suppose that a certain admissible
control L admits a density process l = (lt)t≥0 which is constant for t ∈ [0, h). Then clearly

V (x) ≥ Ex

(
l

∫ h∧τL

0
e−δt dt+ e−δ(h∧τL)V (RL

h∧τL)

)
. (11)

Dividing (11) by h and subtracting V (x) results in

0 ≥ 1
h
Ex

(
l

∫ h∧τL

0
e−δt dt+ e−δ(h∧τL)V (RL

h∧τL)− V (x)

)
. (12)

We now want to take the limit h → 0 and assume that V is in the domain of the generator
Ll of the reserve controlled by the constant dividend density l (at this point, several other
assumptions enter that make the derivation heuristic). For the compound Poisson model this
generator (compare with (2)) is for instance given by

Llg(x) = (c− l)g′(x)− λg(x) + λ

∫ x

0
g(x− y) dFY (y). (13)

One then arrives at

0 ≥ LlV (x)− δV (x) + l.

Suppose now that in (10) the supremum is attained for a strategy L∗ (again assumed to be
absolutely continuous but now not necessarily constant in [0, h)), so that (12) holds with equality:

0 =
1
h
Ex

( ∫ h∧τL∗

0
e−δtl∗t dt+ e−δ(h∧τL∗ )V (RL∗

(h∧τL∗ ))− V (x)

)
.

This indicates that

0 = sup
l

{
LlV (x)− δV (x) + l

}
(14)

should hold. All this is under the assumption that interchanging limit and expectation, and
taking the supremum is allowed. Equation (14) is called the Hamilton-Jacobi-Bellman (HJB)
equation associated with the dividend maximization problem

V (x) = sup
L∈Πac

Ex

(∫ τL

0
e−δt lt dt

)
, (15)

where Πac denotes the set of absolutely continuous admissible strategies (a solution of (15) is
given in [110]).
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For a diffusion risk reserve process (constant drift µ, volatility σ > 0 and generator (3)), the
HJB equation corresponding to (15) is given by

0 = sup
0≤l≤l∞

{
(µ− l)V ′(x) +

σ2

2
V ′′(x)− δV (x) + l

}
, V (0) = 0, (16)

(see e.g. [12]) and the one corresponding to (6) with u(l) = lα

α and α ∈ (0, 1), by

0 = sup
0≤l

{
(µ− l)V ′(x) +

σ2

2
V ′′(x)− δV (x) + u(l)

}
, V (0) = 0, (17)

(cf. [70]), where due to the Inada conditions in the utility framework the upper bound l∞ does
not need to be specified.
When the reserve process is given by a diffusion, V (0) = 0 is an obvious initial condition for the
HJB equation, because when starting in 0 the driving Brownian motion immediately becomes
negative with probability 1 (see Rogers & Williams [104]) and there will be no future dividend
payments. In contrast, there is no obvious initial value in the compound Poisson model, because
there is a positive probability for the reserve to recover from the value 0. We will see later how
this fact influences the mathematical characterization of a solution of the maximization problem.

Remark 5.1. From the statement of the HJB equation (14), we immediately get that a candidate
solution suggests a Markov control as the optimal strategy, i.e. the density only depends on the
present state x of the process (and not on the whole filtration up to a certain time t). This
means lt = l(Rt) with

l(x) := argmaxl

{
LlV (x)− δV (x) + l

}
.

Further note that classical dividend maximization problems are stated as infinite-time horizon
optimization problems and therefore stationary controls are natural (for an exception see [59]).
The common notation of specifying the HJB equation through the value function V (x) is, due to
its heuristic derivation, a bit misleading, as one still needs to check by the verification arguments
whether the actual value function indeed satisfies the HJB equation.

5.2 The Singular Control Case

Let us now drop the assumption of absolute continuity of L, i.e. we deal with the case of general
admissible controls, so that the density process l = (ls)s≥0 of a dividend strategy L is not
necessarily bounded. Focussing on the classical model and now plugging in the generator of the
controlled reserve (13) into (14) explicitly, we obtain

0 = sup
l≥0

{
(1− V ′(x)) l + cV ′(x)− (λ+ δ)V (x) + λ

∫ x

0
V (x− y) dFY (y)

}
. (18)

One immediately observes that in the case of V ′(x) < 1 for some x ≥ 0 the local maximizer l∗(x)
and more generally (18) is unbounded, so that both quantities do not make sense any more. On
the other hand, in the case of V ′(x) > 1 we get l∗(x) = 0 and

0 = c V ′(x)− (λ+ δ)V (x) + λ

∫ x

0
V (x− y) dFY (y).

Restricting to 1−V ′(x) ≤ 0 for all x ≥ 0, we hence obtain the following rewritten HJB equation

0 = max
{

1− V ′(x), cV ′(x)− (λ+ δ)V (x) + λ

∫ x

0
V (x− y) dFY (y)

}
. (19)
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The following observations also motivate heuristically the form of equation (19). First suppose
that at some point x ≥ 0 it is optimal to pay a (possibly very small) lump sum dividend h > 0
and then continue with capital x− h (or stop if x = 0), so that V (x) = h+ V (x− h) which for
h→ 0 indicates V ′(x) = 1. Secondly, if waiting and not paying dividends in some small interval
around x ≥ 0 is optimal, one obtains the second part of the right side of (19).

For diffusion risk reserve processes with constant drift µ > 0 and constant volatility σ > 0 one
obtains along the same lines of arguments

0 = max
{

1− V ′(x), µV ′(x) +
σ2

2
V ′′(x)− δV (x)

}
, V (0) = 0. (20)

For the value function (7) and exponential utility function u(z) = (1−e−γz)/γ, the corresponding
HJB equation for the singular control problem then is

0 = max{Vt(x, t) + µVx(x, t) +
σ2

2
Vxx(x, t),−Vx(x, t) + e−δt(1− γV (x, t)}, V (0, t) = 0.

Here it turns out necessary to use the additional time variable t ≥ 0 (for details see [59]).

5.3 The Impulse Control Case

Let us first consider the compound Poisson model. For the value function (8) in the impulse
control framework, we first observe that at points x ≥ 0 where it would be optimal to intervene,
we should have MV (x) = V (x), where the operator

MV (x) := sup
y admissible

{u(y) + V (x− y)},

gives the value of the best admissible intervention at the reserve level x. On the other hand, if
it would be optimal not to intervene in an open interval around the point x, then conditioning
on the first claim occurrence in a small time interval [0, h] and letting h→ 0 will result in

cV ′(x) + λ

(∫ x

0
V (x− y) dFY (y)− V (x)

)
− δV (x) = 0.

These observations heuristically motivate the so-called quasi-variational inequalities (QVI):

cV ′(x) + λ

(∫ x

0
V (x− y) dFY (y)− V (x)

)
− δV (x) ≤ 0,

MV − V ≤ 0,(
cV ′(x) + λ

(∫ x

0
V (x− y) dFY (y)− V (x)

)
− δV (x)

)
(MV − V ) = 0,

or equivalently

max
{
cV ′(x) + λ

(∫ x

0
V (x− y) dFY (y)− V (x)

)
− δV (x),MV − V

}
= 0. (21)

For a rigorous treatment cf. [119]. For a diffusion model one just needs to replace the generator
accordingly and arrives at a similar equation (see [33] or [73]). The dynamic approach for
stochastic impulse control problems was introduced by Bensoussan & Lions [21, 22].

17



6 Discussion of the HJB equation - Verification Arguments

In the previous section we saw how one can (heuristically) derive the HJB equation associated
with a given stochastic optimization problem. Now we want to link a solution of this equation
to the value function of the optimization problem. Crucial questions in this context are: Which
types of solutions exist? Is the value function a solution? Is the solution unique?

In general there are two ways to obtain a solution for the optimization problem based on the
HJB equation.

• It is possible to prove that there exists a unique solution to the HJB equation of the
given dividend maximization problem. In the ideal case it is also possible to construct
an explicit solution. Then a so-called verification theorem is needed that states that this
solution dominates all other values that can be achieved by admissible strategies, and that
a strategy obtained by this solution is admissible (and hence optimal). We then get that
this unique solution of the HJB equation is the value function.

• It is possible to show that there exist solutions (in some sense) of the HJB equation, but
uniqueness is doubtful. Then a precise characterization of the value function is needed and
one has to prove that the value function indeed fulfills the HJB equation by verifying that
all steps in the derivation of the HJB equation are actually justified.

Once the value function is determined one has to identify the corresponding dividend payment
strategy that realizes this value function (this is often non-trivial and it may even happen that
such a strategy does not exist, see e.g. Shreve et al. [112, Th.4.3]).

Remark 6.1. As an alternative to the above full characterization of the optimization problem
(the “analytic way”), another quite common (Bensoussan et al. [23] call it “probabilistic”) ap-
proach in the literature is to maximize a certain value function over a (small) restricted class
of admissible strategies, say barrier type strategies or simple impulse controls (cf. Avram et al.
[14], Loeffen [90, 88], Gerber & Shiu [54, 55]). Then in some cases it is possible to verify by
comparison that the – within the restricted class – optimal strategy is also optimal within the
bigger class of general admissible strategies.

6.1 There is a unique solution

In some cases it is possible to calculate an explicit solution to the HJB equation (e.g. for (16) and
(20), cf. [12, 112]), whereas in other cases it is only possible to prove the existence of a classical
solution (e.g. for (17), cf. [70]). Classical solution in this context means that the solution is as
regular as required by the equation (note that the crucial points in that respect are the junction
points of the various parts of the equation).

In many cases an explicit solution can be obtained along the following lines of argument: One
can reformulate the HJB equation (14) as

0 = sup
l

{LV (x)− δV (x) + l (1− V ′(x))
}
, (22)

where L is the generator of the uncontrolled reserve process given in Section 2 (for notational
convenience we restrict ourselves here to the absolutely continuous case).
It follows that the optimal action with current reserve x depends on whether 1− V ′(x) is larger
than zero or equal to zero. A first approach often is to assume that V (x) is concave, in which
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case there will only be one switching point x0 such that V ′(x) > 1 for x < x0 and V ′(x) ≤ 1 for
x ≥ x0. This then immediately suggests the control

l∗(x) =
{

0 x < x0,
l∞ x ≥ x0,

(23)

where x0 still has to be determined. The principle of smooth fit suggests a method to determine
x0. It states that the value function should be sufficiently regular at the free boundary x0

(sometimes also called decision boundary, cf. Peskir & Shiryaev [100] and Kyprianou & Surya
[81]), i.e.

Vl(x0) = Vr(x0),
V ′l (x0) = V ′r (x0) = 1,

where Vl and Vr denote the solutions of the HJB equation for x < x0 and x ≥ x0 under the
concavity assumption (in the diffusion case one has the additional assumption V ′′l (x0) = V ′′r (x0)).
These conditions allow for the calculation of the individual parts of the solution and an implicit
determination of the crucial point x0. In the diffusion setup it follows by easy calculations that
actually x0 is the only value of x for which one can paste Vl and Vr such that the resulting
function is twice differentiable.
The form of the problem indicated by the concavity assumption on the candidate value function
is called free boundary value problem. In Whittle [122] there are some conditions when a value
function is twice differentiable at the optimal decision boundary. When the guess on the concavity
of V and the smooth-fit conditions were successful to obtain a solution of (22), then it remains
to verify that this solution is indeed the value function (the verification step). The basic idea in
the verification theorem is often that for an arbitrary admissible strategy L with density process
l = (ls)s≥0, the process e−δ(t∧τL)V (RL

t∧τL), by virtue of an (appropriate) Itô-formula and the
dynamic programming principle, leads to a supermartingale that then can be compared to a
martingale resulting from the process e−δ(t∧τL∗ )V (RL∗

t∧τL∗ ) with strategy L* given by (23). This
then establishes V (x) ≥ VL(x) for any other strategy L and V (x) = VL∗(x).
The mentioned martingale properties are usually established by a suitable application of the
Itô formula (or its extension for jumps, respectively). In particular, one has to make sure that
differentiability properties of V needed in the Itô formula actually hold (this is for instance
automatically the case if the construction of the solution via the smooth-fit principle succeeds).
This step can sometimes require considerable technical expertise.
Davis [37] considers the verification theorem as the mathematical motivation of the HJB equation.

6.2 There is no unique solution

For dividend maximization problems (4) in the classical risk model with arbitrary claim size
distribution, some difficulties may arise. This problem was first solved by Gerber [50] via a
discretization and taking the continuous-time limit. As already mentioned, he identified band
strategies to be optimal in this context. Only recently Azcue & Muler [15] used the dynamic
programming approach to obtain the HJB equation (19) for this problem (they also included a
dynamic reinsurance possibility, see also Schmidli [110]).
The two main difficulties which arise when looking at (19) are the question of differentiability and
uniqueness of a solution. The uniqueness question is really crucial, because when starting with
a wrong solution to (19) the construction of an associated admissible strategy fails. There are
certain parameter constellations (e.g. huge λ) such that the simple linear function f(x) = x+ c

δ
solves (19) but the associated strategy attaining this value (which is pay out the initial capital
x and subsequently all incoming premiums ignoring potential ruin) is of course not admissible.
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This problem is mainly due to the missing initial value for the HJB equation. As one can in this
case usually not find a solution that is sufficiently differentiable, one has to introduce other non-
classical solution concepts, for instance viscosity solutions. For the latter, one replaces a function
around a problematic point x ≥ 0 locally by smooth functions that upperbound and lowerbound
(respectively) the original function V . If V can be approximated from below (above) such that
the HJB equation becomes an inequality bigger (smaller) than zero for the approximating func-
tion, one calls V a viscosity subsolution (supersolution, respectively). If both approximations
are possible, V is called a viscosity solution. This extended solution concept was first introduced
in Crandall & Lions [36], see also Crandall et al. [35]. For PDMPs this notion was used by
Soner [114]. Schmidli [110] uses weak solutions as a further alternative solution concept. For a
mixed stochastic control problem that arises in a real options situation in a diffusion framework,
where one has to choose between paying dividends or investing, viscosity solutions were recently
employed by Vath et al. [120].

Let us now sketch the derivation of the solution of the HJB equation

max
{

1− V ′(x), c V ′(x)− (δ + λ)V (x) + λ

∫ x

0
V (x− y)dFY (y)

}
= 0. (24)

It is possible to obtain directly from the definition (5) of V and the definition of the general
admissible strategies from Section 3.2 that V is absolutely continuous and linearly bounded.
The further characterization splits into two steps.
First a so-called comparison result (if a viscosity supersolution is bigger than a viscosity subso-
lution in zero then this relation holds over R+) is needed and in a second step one shows that
every viscosity supersolution is dominating the value function (this is done in a similar way as
one proves a verification theorem). Because V is both a super- and subsolution, it has to be the
smallest viscosity solution fulfilling a linear growth condition.
Now it only remains to determine the dividend strategy associated to the correct solution V to
(24). In the above example it turns out to be a band strategy defined by the sets

• A = {x ∈ [0,∞) | c − (δ + λ)V (x) + λ
∫ x
0 V (x− y)dFY (y) = 0},

• B = {x ∈ (0,∞) | V ′(x) = 1 and c − (δ + λ)V (x) + λ
∫ x
0 V (x− y)dFY (y) < 0},

• C = (A ∪ B)c.

In [110] an algorithmic procedure for obtaining V is described, in [15] and [9] explicit examples
are constructed which demonstrate the necessity of an extended solution concept. A policy
iteration algorithm for a related problem is constructed in [94].

7 Conclusion and Open Problems

It turned out that the complete solution of the seemingly simple problem of determining opti-
mal dividend strategies for insurance risk processes requires advanced techniques from analysis,
probability and stochastic control. Although the understanding of the problem in the classical
risk model as well as in the diffusion model has now reached a certain state of matureness, there
are still open questions.

• As discussed in Section 4, a barrier-type strategy turns out to be the optimal choice in
several model situations, but even for the classical risk model there are still no explicit
criteria on the model parameters available that are both necessary and sufficient for a
barrier strategy to be optimal. Similarly, necessary and sufficient conditions for a threshold
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strategy to be optimal are still unknown. Furthermore, a rigorous numerical analysis for the
determination of the optimal strategies for given parameter values needs to be developed.

• The research on dividend maximization problems under transactions costs and/or under
utility criteria in the classical model is just starting to develop. For the case of transaction
costs, up to now a complete characterization of the value function and some numerical
ideas have been developed [119], but a formal description of a strategy that is in general
optimal is not available yet.

• Optimal dividend strategies under additional constraints on the probability of ruin (see
e.g. Hipp [62] for a particular case) and in general under constraints on the trajectories
of the controlled process, seem to be a very hard problem for a risk reserve process with
jumps.

Furthermore, there are a wealth of open problems under modified model assumptions. In this
context, a particular line of potential future research is to consider the optimal dividend problem
when the Poisson claim number process is replaced by a general renewal process, i.e. the Sparre
Andersen risk model [115]. Li & Garrido [84] study properties of the renewal risk reserve process
under a barrier strategy and Albrecher et al. [2] calculate the moments of the expected discounted
dividend payments under a barrier strategy in this framework, but Albrecher & Hartinger [3] show
that even in the case of Erlang(2) distributed interclaim times and exponentially distributed
claim amounts a horizontal barrier strategy is not optimal anymore, as it can be outperformed
by a strategy that depends on the time elapsed since the previous claim occurrence. It is still
an open problem to identify optimal dividend strategies in this model. One can markovize the
Sparre Andersen model by extending the dimension of the state space of the risk process, taking
into account the time that has elapsed since the last claim occurrence. A reasonable strategy
should also depend on this additional variable. But correspondingly also the dimension of the
associated HJB equation will be extended which considerably increases the difficulties one is
facing when analytically approaching this equation.
Finally, for risk reserve processes modelled by general spectrally negative Lévy processes, Loeffen
[88] and Avram et al. [14] study the dividend optimization problem from a probabilistic point
of view. It is still open to approach and solve this problem in this general setup by means of
stochastic optimal control.

Acknowledgement: We would like to thank Ronnie Loeffen for a careful reading of the
manuscript.
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