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Detection of quadratic phase 
coupling by cross‑bicoherence 
and spectral Granger causality 
in bifrequencies interactions
Takeshi Abe 1,5,6, Yoshiyuki Asai 1,2,5, Alessandra Lintas 3,4 & Alessandro E. P. Villa 4,6*

Quadratic Phase Coupling (QPC) serves as an essential statistical instrument for evaluating nonlinear 
synchronization within multivariate time series data, especially in signal processing and neuroscience 
fields. This study explores the precision of QPC detection using numerical estimates derived from 
cross-bicoherence and bivariate Granger causality within a straightforward, yet noisy, instantaneous 
multiplier model. It further assesses the impact of accidental statistically significant bifrequency 
interactions, introducing new metrics such as the ratio of bispectral quadratic phase coupling and 
the ratio of bivariate Granger causality quadratic phase coupling. Ratios nearing 1 signify a high 
degree of accuracy in detecting QPC. The coupling strength between interacting channels is identified 
as a key element that introduces nonlinearities, influencing the signal-to-noise ratio in the output 
channel. The model is tested across 59 experimental conditions of simulated recordings, with each 
condition evaluated against six coupling strength values, covering a wide range of carrier frequencies 
to examine a broad spectrum of scenarios. The findings demonstrate that the bispectral method 
outperforms bivariate Granger causality, particularly in identifying specific QPC under conditions 
of very weak couplings and in the presence of noise. The detection of specific QPC is crucial for 
neuroscience applications aimed at better understanding the temporal and spatial coordination 
between different brain regions.

Keywords  Nonlinear interactions, Higher-order spectral analysis, Multivariate time series, EEG, Causal 
dependency

Abbreviations
GC	� Granger causality
QPC	� Quadratic phase coupling
RBQPC	� Ratio of bispectral quadratic phase coupling
RGQPC	� Ratio of bivariate Granger causality quadratic phase coupling

The detection of nonlinear interrelations in multivariate time series is a crucial challenge in analyzing com-
plex systems across diverse fields, including neuroscience, environmental science, economics, and engineering. 
Nonlinear signals can be characterized by higher-order statistics in both the time domain (such as higher-order 
cumulants) and the frequency domain (such as the Fourier transform of higher-order cumulants, leading to 
higher-order spectra)1–4. The inherent complexity of nonlinear dynamics means that interactions can be subtle, 
often obscured by noise or non-stationary signals. This subtlety requires careful methodological consideration 
to accurately distinguish causality from mere correlation in observed interrelations, thereby avoiding erroneous 
conclusions about the system’s underlying dynamics.
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The analysis of time series by wavelet transforms provides insights into both time and frequency domains 
simultaneously5–8. This dual perspective is crucial for detecting nonlinear interactions that may vary over time. 
Alternatively, information-theoretic approaches quantify the flow of information between variables, capturing 
nonlinear dependencies through concepts such as mutual information, transfer entropy, and symbolic dynamics. 
Among these, mutual information (MI), especially when combined with Fourier transform surrogates, is par-
ticularly effective at distinguishing between linear and nonlinear interrelations and at detecting various forms of 
nonlinear interactions9. These interactions, potentially occurring at any order, offer insights into the underlying 
dynamics and interactions of systems—insights that are not accessible through linear analysis alone—including, 
but not limited to, phase synchronization, amplitude modulation, and more complex dynamics such as quadratic 
or higher-order phase coupling.

Phase coupling is a phenomenon where the phase (timing) of oscillations in one signal becomes correlated 
with the phase of oscillations in another signal. This implies that the two signals are not only correlated in their 
amplitudes but also in their timing. Quadratic Phase Coupling (QPC) goes a step further by capturing higher-
order phase relationships between signals. It quantifies how the product of the instantaneous phases of two 
signals is related, indicating nonlinear phase interactions. The presence of QPC in a system, especially when 
compared to the detection of general nonlinearities is particularly noteworthy to detect the synchronization of 
biological rhythms or the modulation of signals in electronic and optical systems10–12. This is especially useful 
in fields like neuroscience, where understanding the phase relationships between neuronal signals detected by 
QPC might correlate with certain cognitive states, pathological conditions, or responses to stimuli and functional 
brain connectivity13–20.

Cross-bicoherence is a statistical measure used to assess phase coupling or nonlinear interactions between 
different frequency components in multivariate time series data. It is an extension of the bicoherence, which is 
a measure of the second-order spectral density of a signal. Cross-bicoherence specifically quantifies the degree 
to which the phases of two different signals at distinct frequencies are nonlinearly coupled or synchronized21–23. 
Establishing significance thresholds is essential for making reliable inferences about phase coupling in experi-
mental data, particularly in applications such as neuroscience, where understanding brain connectivity and 
synchronization is of paramount importance. Several approaches have been carried out to develop statistical 
tests. Analytical methods assume specific statistical distributions for the cross-bicoherence values under the 
null hypothesis that its ground-truth value is zero24,25. Computational approaches include bootstrap resampling 
and permutation methods generating a large number of resampled datasets from the original data26 and Monte 
Carlo simulations generating surrogate data that mimic the statistical properties of the experimental data to 
create a null distribution27. By comparing the observed cross-bicoherence with the null distribution, statistical 
significance can be determined.

An alternative way to detect QPC is represented by bivariate Granger causality. The traditional Granger cau-
sality (GC) test is used to quantitative measuring whether one time series can predict another time series and 
to assess the magnitude of causal effects28,29. It can identify the direction of causality, thus determining which 
of the two time series leads in terms of causality30. Furthermore, GC goes beyond linear relationships, enabling 
the detection of nonlinear interactions between time series variables31. However, the conventional pairwise 
method for analyzing GC may not effectively differentiate between direct causal influences originating from one 
time series and indirect influences that operate through a third time series. This problem has been overcome by 
deriving a conditional GC in the frequency domain32–34. Such bivariate GC specifically determines the causal 
influence between two variables while accounting for the potential influence of other variables35. The correspond-
ing statistics evaluation of significance include parametric tests36,37, nonparametric tests38 and various bootstrap 
testing approaches34,39. Nevertheless, estimation bias resulting from perturbations in observed time series data 
may generate potentially misleading statistically significant values, thus challenging true evidence of QPC even 
when considering the theoretical null distribution of the statistics.

The objective of this study is to identify specific QPC produced by the carrying frequencies of interacting 
channels within a basic, noisy instantaneous multiplier model. Our analysis revolves around examining the 
impact of a pair of interacting time series exhibiting varying degrees of coupling strength to a third time series. 
These time series represent stationary stochastic processes simulating experimental brain signals driven by inde-
pendent oscillatory inputs, along with added noise. Our primary contribution lies in establishing a computational 
framework for the assessment of QPC detection. We utilize two analytical techniques: cross-bicoherence analysis 
and bivariate Granger causality. In both cases, we introduce an empirical Bayes method for the significance 
testing of the null hypothesis, specifically focusing on assessing whether the statistics are zero at given pairs of 
frequencies, known as bifrequencies. To evaluate the accuracy of QPC detection, we employ a false discovery 
rate inference methodology. This approach involves comparing the bifrequencies associated with significant 
statistics derived from the experimental time series to those expected from the phase coupling of the interacting 
channels’ carrying frequencies. Our findings indicate that the detection of specific QPC by cross-bicoherence 
analysis outperforms that by bivariate Granger causality, particularly in the presence of noise and when dealing 
with weak coupling among the interacting channels. We also discuss the potential applications of our results in 
the context of characterizing interaction networks, especially in the field of neuroscience.

Results
A three‑channel model of bifrequencies interaction
We consider a simple model with three distinct channels labeled X1 , X2 , and X3 . Each channel receives input 
signals that are periodic, each one with its unique frequency denoted as Fi (measured in Hz). The input signals 
are represented by three functions I1(t, ν) (a triangular wave), I2(t, ν) (a rectangular wave), and I3(t, ν) (a cosine 
wave) as a function of continuous time t ( t ∈ R ) and a sample index ν . The use of triangular and rectangular 
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waveforms is meant to endow our model with two advantageous properties. Firstly, the power distribution of 
these waveforms is more varied than that of pure sinusoids, thus being more closely mimicking the power-law 
spectrum commonly observed in nature. Secondly, the expected signal-to-noise ratio for each channel can be 
derived analytically (as detailed in the “Supplementary Material”), allowing for a more detailed analysis of the 
model’s performance in different conditions.

For each sample ν , the initial phase parameter ωi = ωi(ν) of each signal Ii is given a random shift. This shift 
follows a uniform distribution over the interval [0, 2π) , meaning the initial phase parameter can be any value 
between 0 and just under 2π radians, with all values within this range being equally probable. The periodic 
functions Ii are defined as follows:

An independent white noise is added to each channel ( ξ1 , ξ2 , ξ3 ), following a standard Gaussian distribution 
(mean µ = 0 , standard deviation σ = 1 ). In addition, channel X3 receives an input from interacting channels 
X1 and X2 depending on a coupling strength W(1,2) (Fig. 1). The following equations define the three-channel 
model as a set of stochastic processes:

The detection of specific QPC was tested for distinct bifrequencies (F1, F2) of channels X1 and X2 in the set 
of values [(70/2π) , (80/2π) , (120/2π) , (150/2π) , (230/2π) , (50− 10/2π)] . We divided the parameter value of 
the frequency by constant 2π in order to cancel out the 2π in the argument of the trigonometric function in Eqs. 
(1–3). The carrying frequency F3 of channel X3 was chosen in the same set of frequency values, but distinct from 
F1 , F2 , and F1 + F2 . The coupling strengths W(1,2) were chosen in the set [0.025, 0.050, 0.075, 0.150, 0.300, 0.750], 
ranging from weak to strong. Three time series of 64000 points were generated for an experimental condition 
defined by each set of parameters.

Each time series was created by merging 128 independent epochs, with each epoch corresponding to a 5-sec-
ond interval sampled at 100 Hz. Each epoch contained an independent input signal phase parameters and white 
noise. Four 5-second epochs of the three-dimensional time series ( X1 , X2 , X3 ) are depicted in Fig. 2. It should 
be noted that the X1 and X2 time series are identical in panels Fig. 2A and C, as well as in panels Fig. 2B and D. 
The differences observed in the respective X3 time series are solely attributed to a different coupling strength, 
W(1,2) , between the interacting signals X1 and X2 . Interestingly, a strong coupling strength leads to an overall 

(1)I1(t, ν) = 2 asin(sin(2πF1t + ω1(ν)));

(2)I2(t, ν) =

{
1 0 ≤ (2πF2t + ω2(ν)) mod 2π < π;
−1 otherwise

(3)I3(t, ν) = cos(2πF3t + ω3(ν)).

(4)X1(t, ν) = I1(t, ν)+ ξ1(t, ν);

(5)X2(t, ν) = I2(t, ν)+ ξ2(t, ν);

(6)X3(t, ν) = W(1,2)X1(t, ν)X2(t, ν)+ I3(t, ν)+ ξ3(t, ν).

Figure 1.   A three-channel model of bifrequencies interaction. (A) Schematic diagram of the model with input 
signal Ii , noise ξi , and output Xi corresponding to channel i. (B) The corresponding block diagram.
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amplification of the output signal X3 in a nonlinear way, along with a predominant presence of frequency F3 car-
ried by channel 3. In total, 354 experimental conditions were examined (59 conditions for each value of coupling 
strength). For each condition we computed the RBQPC (i.e., the ratio of bispectral quadratic phase coupling) and 
the RGQPC (i.e., the ratio of bivariate Granger causality quadratic phase coupling).

Quadratic phase coupling computed by cross‑bicoherence and by Granger causality
We investigated how cross-bicoherence and bivariate GC were comparable in detecting quadratic phase coupling 
in two sectors of the cross-bicoherence domain for various coupling strengths(Fig. 3). Figure 3A,B illustrates the 
detection of QPC in sector QI with F1 = (120/2π) , F2 = (70/2π) , and F3 = (80/2π) , and Fig. 3C,D illustrates 
the detection of QPC in sector QII with F1 = (50− 10/2π) , F2 = (230/2π) , and F3 = (150/2π) . Both methods 
show an increase in spurious values that affect the detection of specific QPC. In cross-bicoherence significance 
maps, these spurious values are represented by an increase in black bins along the axis corresponding to car-
rier frequencies F1 and F2 , with an increase in coupling strength between the interacting channels X1 and X2 
(Fig. 3A,C). In median unconditional bivariate GC spectrum, these spurious values are represented by an increase 
in overall significant causal dependency values and more specifically by a shift of the peak in this curve towards 
the value of the carrier frequency F3 of channel X3 , represented by the blue labels and blue arrows (Fig. 3B,D).

Building upon the preceding findings, the subsequent comparison of the specific QPC detection methods 
involves a two-way analysis of variance. This analysis incorporates the ratio of specific QPC as dependent vari-
able, with three primary factors under consideration: method (consisting of 2 levels, “bispectral” and “bivariate 
GC”), coupling strength (comprising 5 levels, namely [0.025, 0.050, 0.075, 0.150, 0.300, 0.750]) and sector Q 
(consisting of 2 levels, QI and QII ). In this analysis, we have omitted the outlier values of the dependent vari-
ables, specifically, those with specific QPC ratios equal to zero or equal to 1. Both distributions of the indices 
show significant difference between variances across factor levels (Levene’s test F(11, 292) = 6.62 , p < .001 and 
F(11, 229) = 4.20 , p < .001 for RBQPC and RGQPC , respectively). Therefore, the homogeneity of variances in 
the different factor levels cannot be assumed. The assumption of normality of the QPC ratios is not supported 

Figure 2.   Four 5-second epochs of the three dimensional time series ( X1 , X2 , X3 ) for small coupling W(1,2) 
(panels A, C) and large coupling W(1,2) (panels B, D). (A, B) Experimental condition with carrying frequencies 
F1 = (120/2π) ≈ 19.1 Hz, F2 = (70/2π) ≈ 11.1 Hz, and F3 = (80/2π) ≈ 12.7 Hz. (C, D) Experimental 
condition with carrying frequencies F1 = (50− 10/2π) ≈ 48.4 Hz, F2 = (230/2π) ≈ 36.6 Hz, and 
F3 = (150/2π) ≈ 23.9 Hz.
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by the Shapiro-Wilk test ( p < .001 for both RBQPC and RGQPC ). Then, our data did not meet the assumptions 
of the parametric ANOVA. As an alternative we run a three-way ANOVA on the ranks of QPC ratios. The 
method and the coupling strength W(1,2) are very significant factor variables ( F(1, 521) = 37.249 , p < .001 and 
F(5, 521) = 44.753 , p < .001 , respectively) as illustrated by Fig. 4 for both methods. The values of RBQPC were 
larger than RGQPC at any tested values of coupling strength (Wilcoxon tests, always p < .001 with a large effect 
size). Notice that the curve of RBQPC is non-monotonic (Fig. 4A) with a median peak value of 0.497 occurring 
with W(1,2) = 0.050 , whereas the curve of RBGPC is monotonically decreasing (Fig. 4B) with a median peak value 
of 0.119 at W(1,2) = 0.025 . It is also worth noting that in the three-way ANOVA the main factor sector Q is not 
significant ( F(1, 521) = 1.906 , p = .168).

Effect of coupling strength between interacting channels on signal‑to‑noise ratio
The signal-to-noise ratio (SNR) for any non-zero frequency of the input periodic signals Xi , is computed as

where , P(Xi ,ξi) and Pξi correspond to the average (normalized) power for the signal and for the noise, respectively. 
In the three-channel model, the analytical solution for the computation of the signal-to-noise ratio yields (see 
Supplementary Material, section S1):

(7)SNRXi = P(Xi,ξi)/Pξi ,

(8)SNRX1 =
π2

3
;

Figure 3.   Examples of a three-channel model of bifrequencies interaction (Fig. 1) from channels (X1,X2) to 
channel X3 in the 0–50 Hz range with cross-channel coupling strength varying from weak to strong (from left to 
right). Panels in rows (A) and (C) show the cross-bicoherence significance maps with only those bifrequencies 
(black bins) characterized by cross-bicoherence values different from zero ( b2ijk , q < .05 ). Panels in rows (B) 
and (D) show the median unconditional bivariate Granger causality spectrum in a semi-logarithmic scale 
with a grey area corresponding to the integration over the curve of all significant values (with a threshold of 
significance represented by the dashed line) and a black area corresponding to the integration for the spectral 
interval of interest. (A, B) Analyses falling in sector QI at bifrequencies F1 = (120/2π) , F2 = (70/2π) indicated 
by the red labels and F3 = (80/2π) indicated by the blue label and arrow (i.e., F1 ≈ 19.1 Hz, F2 ≈ 11.1 Hz, 
F3 ≈ 12.7 Hz). (C, D) Analyses falling in sector QII at bifrequencies F1 = (50− 10/2π) , F2 = (230/2π) 
indicated by the red labels and F3 = (150/2π) indicated by the blue label and arrow (i.e., F1 ≈ 48.4 Hz, 
F2 ≈ 36.6 Hz, F3 ≈ 23.9 Hz). In the plots, f1 and f2 correspond to the bifrequency coordinates of frequency 
parameters (F1, F2).
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In all 354 conditions examined, the SNRs of both experimental time series X1 and X2 consistently exceeded their 
respective expected values (Wilcoxon signed rank test, p < .001 for both X1 and X2 ). Conversely, in channel 
X3 , we observed that for 342 out of 354 conditions, the experimental SNR was consistently smaller than its cor-
responding expected value (Wilcoxon signed rank test, p < .001 ). This observed effect displayed a non-linear 
pattern, which was contingent on the coupling strength parameter W(1,2) (Kruskal–Wallis one-way ANOVA 
χ2

(5) = 97.426 , p < .001).
The ratio [SNRX3 ]/SNRX3 of the experimental SNR divided by its analytical prediction (the expected value 

of the SNR) can be termed the SNR Efficiency. Higher values of SNR Efficiency (greater than 1) would indi-
cate better-than-expected performance, whereas values less than 1 would suggest inefficiency. Figure  5A 
plots SNR Efficiency against the coupling strength and shows that SNR Efficiency is consistently underesti-
mated (one-way Welch ANOVA with the coupling weights as factor and SNR Efficiency as dependent variable: 
F(5, 150.85) = 10.140 , p < .001 ). The underestimation of the numerical SNR of channel X3 in comparison with 
its expected value is rather a positive finding; it indicates that our evaluation of RBQPC or RGQPC as statistics of 
QPC is favorably conservative. The observed decrease of SNR Efficiency with increasing coupling strength indi-
cates that the discrepancy between the numerical value and its analytically expected counterpart widens as the 
coupling strength increases. It is noteworthy that the expected value, as derived analytically and detailed in the 
“Supplementary Material”, approaches an asymptotic limit. Conversely, the numerical value is influenced by the 
intrinsic amplitude of channel X3 , which itself is augmented with an increase in the coupling strength between 
the interacting channels X1 and X2.

The subsequent analysis focused on assessing how the SNR Efficiency in channel X3 affected the detection of 
specific QPC by either bispectral analysis or bivariate Granger causality. Figure  5B illustrates that the values of 
RBQPC consistently surpassed those of RGQPC , regardless of the SNR Efficiency (Wilcoxon signed rank test with 
continuity correction, p < .001 with a large effect size). Kendall’s rank correlation test revealed a statistically 
significant nonlinear dependence between the SNR Efficiency and both the novel specific indices we introduced, 
namely RBQPC and RGQPC.

Discussion
Quadratic Phase Coupling is essential for uncovering nonlinear interactions and complex relationships within 
multivariate time series data. Its application spans across multiple fields, including neuroscience, engineering, 
biology, and signal processing, where understanding nonlinear behaviors is crucial for making meaningful inter-
pretations and improving modeling techniques. QPC can reveal how different brain regions or neurons interact 
nonlinearly during various cognitive tasks or in different brain states and thus can contribute for advancing our 
knowledge of brain functional connectivity, as shown in evoked potentials and EEG recordings40–44, local field 
potentials45–47, and magnetoencephalography46,48. The current study has introduced a straightforward interac-
tion network model, exemplified by a noisy instantaneous multiplier showcasing characteristic QPC, specific to 

(9)SNRX2 = 1;

(10)SNRX3 =

(
2

3
π2 + 2

)
W2

(1,2) +
1

2
.

Figure 4.   Effect of coupling strength between interacting channels X1 and X2 on the method chosen to detect 
quadratic phase coupling. The curves are centered on the medians of each group. The violin plots show the 
kernel probability density of the data at different values. (A) Ratio of bispectral quadratic phase coupling 
( RBQPC ) as a function of the coupling strength W(1,2) between X1 and X2 . (B) Ratio of bivariate Granger causality 
Quadratic Phase Coupling ( RGQPC ) as a function of the coupling strength. For graphical purpose the overlay of 
points has been limited by adding a random horizontal jitter equal to 0.05.
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the carrying frequencies of the interacting channels. Our investigation revolved around examining bifrequency 
interactions originating from two channels (X1,X2) to a third channel (X3) within the frequency range of 0–50 Hz 
range and varying the cross-channel coupling strength from weak to strong.

As the coupling strength between two interacting time series increases, we observe the emergence of spurious 
values that decrease the value of the new indices RBQPC and RGQPC (Fig. 4). This outcome might seem counter-
intuitive at first glance; one would typically expect the coupling parameter to solely enhance the significance of 
nonlinearity in the third series, X3 , rather than introducing anomalies. Indeed, as anticipated, we do observe 
increased cross-bicoherence and bivariate Granger causality across a broader band of bifrequencies for larger cou-
pling strengths W(1,2), because these estimators quantify the QPC at any bifrequency (Fig. 3). However, stronger 
coupling also amplifies the likelihood that non-zero values of the estimators become significant, affecting not only 
to the signal’s component at the carrying frequency but also to the noise components ξi , present in the channels 
X1 and X2 . These noise components exhibit a constant spectral density, except in the vicinity of the interacting 
bifrequencies F1 and F2 . The characteristic of the new indices presented in this study is their dependency on the 
bispectral specificity of the coupling. Specifically, RBQPC more effectively distinguishes coupling concentrated at 
a specific bifrequency and coupling distributed over a wider bispectral region than RGQPC.

In interacting networks, linear causal relationships revealed by Granger causality were initially applied in the 
field of econometrics28, and extended to study network interactions in biology, for example for determining the 
preferred direction of gene regulatory networks49 and metabolic networks50,51. However, the nonlinearity within 
interacting processes makes it difficult to apply parametric approaches for the characterization of recurring 
processes, such as threshold autoregressive moving average models that have been widely applied to financial 
time series analysis52. Concerns were raised that incorrect conceptual interpretation of causality approaches may 
lead to highly counterintuitive and potentially misleading results53. Observational noise can result in spurious 
causality detections, prompting the development of more rigorous estimations of Granger causality that have 
been successfully applied in experimental contexts in recent years37,54–59. Bivariate Granger causality, in particular, 
has proven highly effective in providing insights into how different signals influence each other’s phases48,60. This 
type of analysis is especially relevant in neuroscience, where the coupling of oscillatory activities at different 
frequencies between brain regions is crucial for the formation of functional networks. Other methods specifically 
sensitive to non-linear interactions (i.e., QPC) were developed and applied to EEG analysis61,62 However, desig-
nations of phase coupling and cross-frequency coupling may be misleading because effects of synchronization 
should be clearly distinguished from effects of signal transfer (propagation)41,60,63.

In situations where a signal contains harmonic components or intermodulation (where two or more frequen-
cies mix to create new frequencies), higher-order spectral analyses prove valuable. They help distinguish these 
components and unveil their interrelationships. An alternative approach to Granger causality, aimed at gaining 
deeper insights into the characteristics of complex signals that go beyond what traditional power spectra and 
cross-spectra can reveal, encompasses methods such as the bispectrum and higher-order cumulants. When 
estimating parameters within the cross-bispectrum, it is assumed that the time series represent realizations of 
locally stationary processes, even when weak stationarity is present3,21,25. This approach relies on the fact that 
the bispectrum of a linear Gaussian process equals zero. Surrogate data can be used to test the null hypothesis 
that the original data were generated by a linear Gaussian process and QPC analysis is employed to detect and 
measure phase coupling that doesn’t adhere strictly to linear relationships64. To address potential issues related 

Figure 5.   (A) Effect of coupling strength between interacting channels X1 and X2 on SNR Efficiency of channel 
X3 . The plot includes the result for all 354 conditions and for graphical purpose the overlay of points has been 
limited by adding random horizontal and vertical jitters of 0.005 and 0.002, respectively. (B) Effect of SNR 
Efficiency observed in channel X3 on the novel specific indices of QPC associated with interacting channels X1 
and X2 . The values of RBQPC are generally larger than RGQPC at any value of the SNR Efficiency. The dashed lines 
correspond to trend lines computed according to Pearson’s correlation. For graphical purpose the overlay of 
points has been limited by adding a random horizontal and vertical jitter equal to 0.008.
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to mixing artifacts, robust solutions have also been suggested65. However, it’s important to note that the station-
arity condition is a strong assumption. It implies that the probabilistic structure remains unchanged even when 
there is a significant time shift. This assumption can introduce bias when computing cross-bicoherence66. To 
tackle non-stationarity, wavelet analysis has been employed7,67. A specific method, the general harmonic wave-
let transform-based bicoherence using phase randomization, was developed to measure the co-modulation of 
oscillations between different frequency bands at various sleep stages68. It’s noteworthy that the simultaneous 
multiplier examined in our current study represents a model of frequency mixers. In this model, channel X2 
plays the role of the local oscillator, assuming that the input of channel X1 is akin to the input to a mixer. This 
model, by definition, is stationary. If we view the system generating these processes as a digital filter, then cross-
bicoherence analysis reveals the filter’s properties. Consequently, our model provides an ideal framework for 
comparing the accuracy of specific QPC detection between cross-bispectrum and bivariate Granger causality.

The study of neural interactions and their implications for cognitive functions and neurological disorders 
underscores the importance of detecting specific patterns of QPC. Such detection is crucial for neuroscience 
applications aimed at better understanding the temporal and spatial coordination between different brain regions. 
In clinical neuroscience research, identifying aberrant QPC patterns, such as in the study of epilepsy, could help 
pinpoint the epileptogenic zones responsible for initiating and propagating seizure activity13,44,69–71. This informa-
tion is critical for guiding surgical interventions or developing targeted neuromodulation therapies. Similarly, in 
Alzheimer’s disease, altered QPC patterns could serve as early biomarkers for disease progression or indicators of 
therapeutic intervention efficacy, thereby aiding in early diagnosis and the evaluation of treatments45,72–74. In the 
future, the detection of QPC could play a key role in neurorehabilitation, where understanding the reorganization 
of neural networks following injury or in response to therapy is paramount. Analyzing changes in QPC patterns 
in EEG or magnetoencephalography recordings before and after rehabilitation interventions could assess the 
neural basis of recovery and functional improvement, potentially leading to more personalized and effective 
rehabilitation strategies. Furthermore, by identifying specific QPC patterns from participants engaged in tasks 
requiring sustained attention or memory manipulation, the brain rhythms and dynamic networks activated 
during these cognitive processes could be elucidated.

In conclusion, cross-bicoherence is a valuable tool for detecting and quantifying phase coupling in multivari-
ate time series data, especially in situations where nonlinear interactions are expected. We presented a simple 
model exemplifying how higher-order spectral analysis helps identify and mitigate interference, and enhance the 
detection of weak signals in noisy environments. QPC can uncover hidden patterns or relationships that might 
be missed by linear methods and an innovative computational approach was developed to evaluate the accuracy 
of QPC detection using different and complementary approaches. Our results revealed that cross-bicoherence, 
in comparison to a similar metric derived from bivariate Granger causality, offers several advantages. Notably, 
cross-bicoherence exhibits enhanced capability in detecting specific QPC resulting from the weak coupling of 
the interacting channels, demonstrating greater robustness against input noise.

Methods
Cross‑bicoherence analysis
In this work, we consider a three-dimensional real vector X at time t as a particular multivariate time series or 
a realization of stochastic process that has polyspectra1,3,75,

where Xi(t) , Xj(t) , and Xk(t) are three time series comparable to experimental brain signals. In particular, let 
us assume that X(t) is jointly stationary over the time period of observation and X̃i(f ) , X̃j(f ) , and X̃k(f ) are the 
corresponding discrete Fourier transform at frequency f of each time series. After an appropriate preprocessing 
if necessary, we can assume that each time series is of mean µ = 0 and variance σ 2 = 1 without loss of generality. 
For any two time series Xi(t) , Xj(t) , the cross-spectrum at frequency f is estimated by:

where the superscript ( ∗ ) stands for the complex conjugate transpose. For a single time series Xi(t) , the bispec-
trum at two frequencies f1 and f2 is estimated by:

For a three-dimensional time series X(t), the cross-bispectrum at frequencies f1 for Xi and f2 for Xj is estimated 
by the third joint moments of these processes:

The sample statistics of the magnitude-squared cross-bicoherence b̂2ijk simply referred to as cross-bicoherence, 
is a normalization of the cross-bispectrum as follows, where �·� denotes the sample average (i.e., expected value 
of the sample):

X(t) =



Xi(t)
Xj(t)
Xk(t)




(11)Ĉij(f ) = X̃i(f )X̃
∗
j (f )

(12)B̂i(f1, f2) = X̃i(f1)X̃i(f2)X̃
∗
i (f1 + f2).

(13)B̂ijk(f1, f2) = X̃i(f1)X̃j(f2)X̃
∗
k (f1 + f2)
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It always holds that 0 ≤ b̂2ijk(f1, f2) ≤ 1 as the Cauchy–Schwarz inequality guarantees the upper bound. The values 
of cross-bicoherence can be used to interpret the interaction of Xi and Xj on Xk (i.e., how well Xk corresponds to Xi 
and Xj ) at each bifrequencies pair (f1, f2) . The estimation method used in the present work has been implemented 
and publicly available as an R package called rhosa76. Notice that the distribution of the estimated bicoherence 
converges to a noncentral χ 2distribution, if the null hypothesis holds that its genuine value is zero77. Furthermore, 
it can be approximated by a χ 2distribution24.

Estimation of a significance threshold based on the false discovery rate
We introduce a novel estimation of significant non-zero cross-bicoherence based on the false discovery rate 
(FDR) approach78–80. The estimation of significant non-zero cross-bicoherence is done on a large number of 
bins and a usual Type I Error equivalent to a confidence level of 95% ( p = 0.05 ) would imply that 5% of all tests 
result in false positives. While p = 0.05 is acceptable for one test, it is not in case of a multiple testing problem. 
In FDR, q-values (or adjusted p-values) are determined for the tests that result in a discovery (i.e., a significant 
result), such that q = 0.05 implies that 5% of significant tests (and not 5% of all tests) will result in false positives. 
Then, a cutoff q = 0.05 will result in fewer false positives than a cutoff p = 0.05.

In our novel procedure, we fit a two-class mixture distribution to the raw values of the cross-bicoherence for 
a given q-value. Assuming that F is the probability density of the cross-bicoherence in the trapezoidal domain 
of bifrequencies, we sought

where F0(x) is a χ 2distribution following the null hypothesis of zero cross-bicoherence; FA(x) is an alternative 
distribution; p0 is the fraction of the statistic governed by the null hypothesis. The fitting is done by the mode 
matching method81 (which also provides a one-side test of the (positive) right-tail FDR against the empirical 
null distribution), with a fitting interval p0 = [0, 0.9] and bin width � = 0.001 . Hence, we denote b2ijk(f1, f2) the 
non-zero estimated cross-bicoherences significant to FDR with the assumption of a threshold q = 0.05 of FDR 
for each significance testing.

Ratio of bispectral quadratic phase coupling ( RBQPC)
In a quadratic system, QPC occurs when the second-order nonlinearities of interacting Xi(t) and Xj(t) at bifre-
quencies (f1, f2) (for Xi and Xj , respectively) contribute to the power of Xk(t) . Given the symmetries in the 
distorted hexagonal cross-bicoherence domain82–84 (Fig. 6A), the QPC must be observed in the corresponding 
sector Q(f1, f2) if the sum of the two interacting frequencies exceeds the Nyquist frequency (i.e., f1 + f2 > fNyquist ). 
According to the three mutually exclusive conditions on bifrequencies (f1, f2) , the sectors Q(f1, f2) are defined 
as follows (Fig. 6B):

(14)b̂2ijk(f1, f2) =

〈∣∣∣B̂ijk(f1, f2)
∣∣∣
2
〉

〈∣∣X̃i(f1)X̃j(f2)
∣∣2
〉〈∣∣X̃∗

k (f1 + f2)
∣∣2
〉 .

(15)F(x) = p0F0(x)+ [1− p0]FA(x)

Q(f1, f2) =

{
QI if (f1 + f2) ≤ fNyquist ;
QII if (f1 + f2) > fNyquist and f1 > f2 ;
QIII if (f1 + f2) > fNyquist and f1 ≤ f2 .

Figure 6.   (A) The domain of cross-bicoherence corresponds to the distorted hexagon, surrounded by dashed 
lines. (B) The three sectors QI , QII , and QIII in the principal domain of cross-bicoherence of real-valued time 
series.
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The accuracy of experimental recordings is generally limited by the fact that measurements of brain activity 
is indirect. Small time delays and shifts in frequencies may be artificially produced by the recording techniques. 
Hence, an interaction occurring at bifrequencies (f1, f2) is extended to a neighborhood of interest G(f1, f2; d) , such 
that g1 ∈ [f1 − d, f1 + d] and g2 ∈ [f2 − d, f2 + d] , defined by the positive value d in frequency unit.

We introduce a novel index designed to quantify the quadratic phase coupling in the bispectral domain that 
is specifically associated with the carrying frequencies of the input signals from interacting channels. This index 
is distinct from a generic estimator, which can be influenced by significant non-zero values that are affected 
by noise components, ξ1 and ξ2 , present in those channels. The ratio of bispectral quadratic phase coupling 
RBQPC(f1, f2; d) is defined as the numerical integration of significant (i.e., q ≤ 0.05 ) cross-bicoherences in the 
neighborhood of interest divided by all significant cross-bicoherences in the relevant sector of bifrequencies 
(i.e., (g1, g2) ∈ Q(f1, f2)):

Notice that G(f1, f2; d) ⊂ Q(f1, f2) and RBQPC(f1, f2; d) is upper bounded to 1.
The frequency range (or bandwidth) of the spectrum is determined by the sampling frequency and, for a 

given sampling frequency, the spectral resolution �f  (or resolution frequency) is determined by the number 
of points acquired in the recorded time series85,86. For example, an experiment acquiring 500 points at 100 Hz 
would yield an experimental frequency resolution �f = 100/500 Hz, i.e. �f = 0.2 Hz. Then, an actual frequency 
resolution �f = 0.25 Hz in the bispectral domain of cross-bicoherence was determined as being the closest 
fractional value of power two.

This computation is illustrated by the analysis of a test data set formed by three artificially generated time 
series ( X1 , X2 , X3 ), recorded from 128 simulation runs of 5 seconds epochs sampled at 100 Hz. For time series 
formed by merging multiple epochs of the same duration, the Welch’s approach to frequency domain estimations 
is applied87 with an overlap of 50% for two consecutive data epochs. In this example, each time series is driven by 
a distinct periodic input ( F1 = 8.5 Hz, F2 = 10.5 Hz, F3 = 9.5 Hz) and the sources are interconnected. In particu-
lar, we compute RBQPC(f1, f2; d) with RBQPC(8.5, 10.5; 0.5) (i.e. a neighborhood of interest of 0.5 Hz around each 
frequency that participates to the interaction). In this case, the interaction occurs in the sector QI (Fig. 7A). The 
estimation of a significance threshold based on FDR allows to plot a cross-bicoherence significance map (Fig. 7B) 
showing all bifrequencies characterized by cross-bicoherence values different from zero ( b2ijk  ). In this example, 

the sum of all significant cross-bicoherences in the sector QI is equal to 
∑

(g1,g2)∈Q(8.5,10.5)
b2ijk(g1, g2) = 10.906 

(Fig. 7C). We considered the bifrequencies neighborhood of interest G(f1 ∈ [8, 9], f2 ∈ [10, 11]) . The sum of all 
significant cross-bicoherences in this neighborhood of interest is equal to 

∑
(g1,g2)∈G(8.5,10.5;0.5)

b2ijk(g1, g2) = 3.604 
(Fig. 7D). Hence, in this example RBQPC = 3.604/10.906 = 0.330.

Bivariate Granger causality in the frequency‑domain
In the time-domain, the unconditional GC yields information on the strength of the causal dependency between 
two time series Xi(t) and Xj(t)

30,33. The GC of Xj on Xi compares a first model where the value of Xi at time t is a 
linear weighted sum of its own past history (i.e., a linear vector autoregressive model, VAR)

with a second model where the value of Xi at time t is a linear weighted sum of its own and of Xj histories

where p and q are the lag orders of two models, and am , bm , cm are real coefficients of the VARs, and ηt , εt are 
terms corresponding to the residual errors. In other words, the GC of Xj on Xi measures if past values of Xj yield 
information that predicts the next Xi values better than solely the past Xi history does.

In the frequency-domain, the Fourier representations of multivariate time series X(t) can be used to define GC 
with a spectral decomposition under some regularity conditions88. Let GCS(Xi, Xj, f ) denote the spectral GC of Xi 
on Xj at frequency f. For a bivariate stochastic process Xij(t) = [Xi(t),Xj(t)] (defined as the point-wise product 
of Xi(t) and Xj(t) at each time step t) in presence of a third time series Xk(t) , it is possible to extend the GC in 
the frequency-domain by defining the unconditional bivariate GC spectrum BGCSij→k(f ) = GCS(XiXj ,Xk , f ) . 
It measures the strength of the causal dependency of Xij on Xk.

In our practical implementation, the parameters of the vector autoregressive models (VAR(l) models) are 
computed using the vars R package89. The VAR’s lag order l is selected according to the Schwarz Criterion (SC) 
(also called Bayesian information criterion, BIC)90 among other criteria because it offers the best probability 
of choosing the simplest possible model for large time series91. In principle, the smaller the SC value the better 
the fit of the model. However, very long time series are more likely to be overfitted and large lag orders could be 

(16)RBQPC(f1, f2; d) =

∑

(g1,g2)∈G(f1,f2;d)

b2ijk(g1, g2)

∑

(g1,g2)∈Q(f1,f2)

b2ijk(g1, g2)
.

(17)Xi(t) =

p∑

m=1

amXi(t −m)+ εt

(18)Xi(t) =

q∑

m=1

bmXi(t −m)+

q∑

m=1

cmXj(t −m)+ ηt
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incorrectly selected: the lowest SC value could be associated with lag orders without giving much more informa-
tion about model fit. Hence, an heuristic approach is aimed to avoid overfitting: instead of choosing the VAR’s 
lag order l corresponding to the lowest SC, we select the lag order l corresponding to 95% of the lowest SC value 
with parameter lag.max = 50.

The estimation of BGCSij→k follows the bootstrap method as implemented in grangers R package34. The 
nboots parameter (corresponding to the number of bootstrap series) is determined following the experimental 
spectral resolution �f  , i.e. nboots =

√
�f × 1000 . We estimate the q-values of FDR from the set of p-values 

simultaneously calculated for all of Fourier frequencies in (0, fNyquist) , using the R package called qvalue and 
setting the parameter pfdr = TRUE for a more robust FDR estimation92,93. In case the variance of bootstrapped 
p-values is too small, the Benjamini-Hochberg procedure is used as a conservative alternative by setting the 
parameter lambda = 0 for an estimation of the proportion of true null p-values. Following the FDR level of 
significance q < .05 for BGCSij→k , we compute the value of causal dependency corresponding to the threshold 
θ which determines the significant values of the bivariate GC spectrum. With the Welch’s approach (with 50% 
overlap) for time series formed by merging multiple epochs of same duration, we compute the median BGCSij→k 
and the median value of threshold θ across all Welch’s data segments.

Figure 7.   Three time series X1 , X2 , X3 are recorded simultaneously (see text for more details). Estimation of 
the effect of quadratic phase coupling between X1,X2 for interacting bifrequencies ( F1 = 8.5 Hz, F2 = 10.5 Hz) 
on X3 . The panels on the left side refer to the evaluation of the cross-bicoherence phase coupling and the panels 
on the right side refer to the evaluation of the bivariate Granger causality in the frequency-domain. (A) All 
cross-bicoherence values are computed in the sector QI . (B) The cross-bicoherence significance map, showing 
all bifrequencies (black bins) characterized by significant cross-bicoherence values. (C) The cross-bicoherence 
plot, showing all significant cross-bicoherence values whose sum is equal to 10.906 in this example. (D) The 
cross-bicoherence plot for the bifrequencies neighborhood of interest ( f1 ∈ [8, 9] , f2 ∈ [10, 11] ) (enlargement 
centered at a green cross mark), shows that the sum of these significant values is equal to 3.604, which yields 
RBQPC = 0.330 (i.e., 3.604/10.906). (E) For the same data, the median unconditional bivariate GC spectrum 
measures the strength of the causal dependency of the bivariate process X1,2 on X3 computed with the optimal 
VAR’s lag model, that is a VAR(7) model in this example. (F) A threshold value θ = 0.0301 is calculated to 
determine the significant values of Granger causality in the frequency domain. (G) The integration over the 
curve shows that the sum of all significant values is equal to 0.552. (H) For the spectral interval of interest 
( f ∈ [18, 20] ), the sum of all significant values is equal to 0.128, which yields RGQPC = 0.233 (i.e., 0.128/0.552).
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Ratio of bivariate Granger causality quadratic phase coupling ( RGQPC)
Following the same approach determining RBQPC , we consider QPC occurring when a nonlinear inter-
action between Xi(t) and Xj(t) at bifrequencies (f1, f2) produces a peak at frequency f in the uncondi-
tional bivariate GC spectrum BGCSij→k(f ) computed for the optimal VAR’s lag order l. For an exten-
sion to experimental data, we consider the interaction at frequency f (determined by bifrequencies 
(f1, f2) ) occurring within a spectral interval of interest (f1, f2; d) (similar to the neighborhood of inter-
est for the cross-bicoherence). Then, f ∈ [(f1 + f2)− 2d, (f1 + f2)+ 2d] if (f1 + f2) ≤ fNyquist and 
f ∈ [fNyquist − (f1 + f2)− 2d, fNyquist − (f1 + f2)+ 2d] if (f1 + f2) > fNyquist because of aliasing.

We introduce a novel index designed to quantify the quadratic phase coupling associated with Granger cau-
sality in a specific bivariate process. This index focuses on the carrying frequencies of the interacting channels, 
X1 and X2 . The ratio of bivariate Granger causality quadratic phase coupling RGQPC(f1, f2; d) is defined by the 
fraction of causal effects of the bivariate process Xij at a frequency f given Xk(t):

where BGCSij→k(f ) is the significantly non-zero value of the bivariate GC spectrum from Xij to Xk at frequency 
f. Notice that RGQPC(f1, f2; d) is upper bounded to 1.

This is illustrated in Fig. 7 using the same time series used to illustrate the computations for the cross-
bicoherence. The median unconditional bivariate GC spectrum is calculated with a VAR(7) model, (i.e. VAR’s 
lag order l = 7 ) and nboots = 447 (Fig. 7E). For this example, the median threshold value of 113 Welch’s data 
segments of 500 data points each is θ = 0.0301035 (Fig. 7F). The sum of all significant values of unconditional 
GC is equal to 

∑
f ∈(f1,f2;d)

BGCS1,2→3(f ) = 0.552 (Fig. 7G). The spectral interval of interest of the unconditional 
GC spectrum ( f ∈ [18, 20] ) is determined by bifrequencies ( f1 = 8.5, f2 = 10.5 ). The sum of all significant values 
of unconditional GC in this spectral interval is equal to 

∑
f ∈(f1,f2;d)

BGCS1,2→3(f ) = 0.128 (Fig. 7H). In this 
example RGQPC = 0.128/0.552 = 0.233.

Data availibility
The time series that support the results of this study are available from the corresponding author upon reason-
able request.
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