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Endothelial nitric oxide synthase gene
transfer restores endothelium-dependent
relaxations and attenuates lesion formation
in carotid arteries in apolipoprotein 
E-deficient mice

� Abstract Nitric oxide (NO) and monocyte chemoattractant protein-1
(MCP-1) exert partly opposing effects in vascular biology. NO plays pleio-
tropic vasoprotective roles including vasodilation and inhibition of platelet
aggregation, smooth muscle cell proliferation, and endothelial monocyte
adhesion, the last effect being mediated by MCP-1 downregulation. Early
stages of arteriosclerosis are associated with reduced NO bioactivity and
enhanced MCP-1 expression. We have evaluated adenovirus-mediated gene
transfer of human endothelial NO synthase (eNOS) and of a N-terminal dele-
tion (8ND) mutant of the MCP-1 gene that acts as a MCP-1 inhibitor in arte-
riosclerosis-prone, apolipoprotein E-deficient (ApoE-/-) mice. Endothelium-
dependent relaxations were impaired in carotid arteries instilled with a
noncoding adenoviral vector but were restored by eNOS gene transfer (p <
0.01). A perivascular collar was placed around the common carotid artery to
accelerate lesion formation. eNOS gene transfer reduced lesion surface areas,
intima/media ratios, and macrophage contents in the media at 5-week follow-
up (p < 0.05). In contrast, 8ND–MCP-1 gene transfer did not prevent lesion
formation. In conclusion, eNOS gene transfer restores endothelium-depend-
ent vasodilation and inhibits lesion formation in ApoE-/- mouse carotids.
Further studies are needed to assess whether vasoprotection is maintained at
later disease stages and to evaluate the long-term efficacy of eNOS gene ther-
apy for primary arteriosclerosis.

� Key words NO synthase – MCP-1 – arteriosclerosis – endothelium –
apolipoprotein-E – mouse – gene therapy 
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Introduction

Endothelial nitric oxide (NO) synthase (eNOS) constitu-
tively produces NO, a potent vasodilator that mediates
pleiotropic vasoprotective effects such as inhibition of
endothelial leukocyte adhesion, suppression of platelet
aggregation, and negative regulation of vascular smooth
muscle cell (VSMC) proliferation [10, 31, 51]. Endothe-

lium-dependent vasodilation is impaired in hypercho-
lesterolemic animals and humans, suggesting that NO
bioactivity is decreased at early stages of vascular disease
[12, 43]. Administration of the NO precursor L-arginine
has been shown to correct endothelial dysfunction in
hypercholesterolemic patients [11]. Chronic dietary
administration of L-arginine induces regression of early
intimal lesions and attenuates progression of atheroscle-
rotic plaques in hypercholesterolemic mice and rabbits



K. Mujynya-Ludunge et al. 103
eNOS gene transfer into ApoE-/- mouse arteries

[1, 3]. Conversely, chronic administration of NO antag-
onists promotes lesion formation in hypercholes-
terolemic rabbits [7]. There is experimental and clinical
evidence to show that eNOS protein levels are decreased
in the endothelium overlying severe atherosclerotic
lesions in arteries [13, 27, 47] and diseased bypass grafts
[5]. However, reduced NO bioactivity has also been
described in association with normal or even increased
eNOS protein levels [2, 12]. These findings illustrate the
complexity of the mechanisms underlying the observed
decrease in NO bioactivity in diseased arteries.

Mice deficient in the apolipoprotein E gene (ApoE-/-)
provide a useful model for studying atherosclerosis in
that complex arterial lesions in this model mimic those
observed in humans [33]. Lesion formation is further
accelerated in ApoE/eNOS double-knockout mice com-
pared with ApoE-/- mice [20]. Conversely, reduced lesion
formation in a model of vascular remodeling [19], as well
as hypotension and reduced NO-elicited vasorelaxation
[28] have been reported in ApoE-/-/eNOS transgenic mice
that overexpress eNOS in the vascular endothelium, as
compared with ApoE-/- mice. In contrast, a recent study
[30] showed accelerated lesion formation in ApoE-/-/
eNOS transgenic mice, which was reversed by supple-
mentation with tetrahydrobiopterin, an important NO
cofactor.

Previous studies have demonstrated that eNOS gene
transfer improves vasodilation in endothelial dysfunc-
tion, while reducing neointimal hyperplasia in mechan-
ically injured arteries [9]. In vitro eNOS gene transfer
improved vasorelaxation in canine coronary arteries
during hypoxia [6] and carotid arteries from diabetic
rabbits [23] and eNOS-/- mice [21]. In vivo eNOS gene
transfer attenuated acute hypoxic pulmonary vasocon-
striction in rats [16] and improved carotid artery dilata-
tion in hypercholesterolemic rabbits [8, 35]. Further-
more, eNOS gene transfer inhibited hyperplastic neoin-
tima formation in balloon-injured rat carotid arteries 
[9, 17], pig coronary arteries [40], and atherosclerotic
ApoE-/- mouse carotid arteries [45]. However, eNOS gene
transfer has not been investigated in models of primary
arteriosclerosis that do not rely on mechanical endovas-
cular injury to promote lesion formation.

NO and monocyte chemoattractant protein-1 (MCP-
1) play partly opposing roles in vascular biology. MCP-1
is expressed in endothelial cells, VSMC, monocytes, and
adipocytes in response to inflammatory stimuli such as
TNF-�, IL-1�, and IL-4 [36]. MCP-1 expression is
detectable in aortas from hypercholesterolemic, but not
from normal, rabbits [48]. Downregulation of MCP-1
expression is a mechanism by which NO inhibits mono-
cyte adhesion to the endothelium [26, 37, 38, 49]. MCP-1
expressed by human aortic endothelial cells and VSMC
in response to minimally modified low-density lipopro-
tein (LDL) cholesterol accounts for virtually all of the
monocyte chemotactic activity under these conditions

[32]. Mice deficient in MCP-1 show abnormal monocyte
recruitment and cytokine expression [22]. Mice deficient
in the C-C chemokine receptor-2 (CCR2), the main
receptor for MCP-1, display reduced arterial lesion for-
mation with less macrophage infiltrates [4]. These find-
ings establish a central role for MCP-1 in atherogenesis,
while providing a rationale for anti–MCP-1 therapy.
Among MCP-1 inhibitors, N-terminally truncated MCP-
1 peptides have been shown to block MCP-1–mediated
monocyte chemotaxis with high efficacy both in vitro
and in vivo [14, 50]. Gene transfer of the 7 N-terminal
deletion (ND) mutant of the human MCP-1 gene inhib-
ited post-angioplasty neointima formation in rat and
monkey arteries [39]. Injection of the same gene con-
struct into remote muscles attenuated aortic lesion for-
mation and progression in ApoE-/- mice [15, 25]. How-
ever, arterial gene transfer of a MCP-1 inhibitor has not
been studied in the absence of angioplasty injury. There-
fore, we have evaluated arterial eNOS and anti–MCP-1
gene transfer-based approaches in carotid arteries in
ApoE-/- mice.

Methods

� Adenoviral vectors

The expression plasmid encoding human eNOS (pUC18-
eNOS) was kindly provided by Daniel Hayoz (Lausanne,
Switzerland). Generation of recombinant adenovirus
expressing Xpress-tagged human eNOS driven by the
cytomegalovirus (CMV) promoter was carried out by
homologous recombination between co-transformed
virusmid and the corresponding adenoviral transfer
plasmid in E. coli, as described [24]. The eNOS cDNA was
first subcloned into the pcDNA3.1/His-A vector (Invit-
rogen) allowing the insertion of the transgene into the 
E1 region of a cloned �E1,�E3 adenoviral backbone
(vmAdcDNA3) bearing an empty expression cassette
homologous to the one of pcDNA3.1/His. The transfer
plasmid pcDNA3.1/His-eNOS was digested with SalI, and
co-transformed with SwaI-linearized vmAdcDNA3 into
BJ5183. Recombinants were screened by colony PCR fol-
lowed by re-transformation of positive clones into strain
HB101, allowing for higher plasmid yields. Recombinant
virusmids were digested with PacI and transfected into
HER911 cells to generate recombinant adenovirus
AdCMV-eNOS. The cDNA sequence of human MCP-1
was kindly provided by Etienne Régulier (Lausanne,
Switzerland). The cDNA sequence corresponding to the
8ND mutant of the MCP-1 gene encoding a truncated
MCP-1 peptide lacking amino acid residues 1-8 was
obtained by PCR using site-directed deletion by overlap
extension. 8ND–MCP-1 cDNA was sequenced and sub-



cloned into the pcDNA3.1/A vector. Recombinant aden-
ovirus Ad.CMV-8ND–MCP-1 was generated by homolo-
gous recombination with the co-transfected, ClaI-
digested large fragment of a �E1,�E3-adenoviral vector
genome in human 293 cells. Recombinant adenovirus
Ad-BHG3 containing no transgene (Ad-Null) was used as
a control. Recombinant adenovirus Ad.CMV-EGFP con-
taining an enhanced green fluorescent protein (EGFP)
expression cassette [42] was used to assess arterial gene
transfer efficiency. Concentrated virus stocks were pre-
pared using two CsCl2 ultracentrifugation gradients and
stored in storage buffer (10 mmol/L Tris-HCl, pH 7.4, 1
mmol/L MgCl2, 10% glycerol). Virus titers of Ad.CMV-
eNOS, Ad.CMV-8ND–MCP-1, Ad-Null, and Ad.CMV-
EGFP stock solutions determined by plaque titration
assay were 2�1011, 6�1010, 1�1011, and 3�1011 plaque
forming units (PFU)/ml, respectively (virus particles/
PFU ratios ≈5-30).

� Mice

Animal work was approved by the local regulatory
authority and was performed in compliance with guide-
lines on animal experimentation at our institution. Male
C57BL/6J ApoE-/- mice [33] were purchased from Trans-
genic Alliance (France) and maintained on a 12-hour
light-dark cycle. They were fed standard chow until 18-
20 weeks of age when they underwent gene transfer and
were placed on a Western-type diet (Harlan TD88137,
21.2% total fat, 0.2% cholesterol) for 2 weeks, followed by
standard chow for 3 weeks.

� In vivo gene transfer

Gene transfer into mouse carotid arteries was performed
essentially as described [42]. Briefly, mice (n = 7/group)
were anesthetized by i.p. ketamine/xylazine. The left
carotid artery was surgically exposed, and a segment of
the common carotid artery was isolated by placement of
a vascular clamp on the proximal part of the artery, while
the internal carotid artery was ligated with a polypropy-
lene monofilament suture (7-0 Surgilene; Geck and
Davis) immediately after the bifurcation. The external
carotid artery was ligated 2-3 mm distally of the bifurca-
tion. A silicone catheter (.O12" I.D., .025 O.D.; Helix Med-
ical) was introduced into the common carotid artery
through an arteriotomy of the external carotid artery,
and blood was flushed out the common carotid artery by
injecting 0.3-0.4 ml M-199 medium (Gibco BRL). Virus
vector stocks were thawed and diluted with M-199
medium supplemented with 1 mg/ml purified mouse
albumin fraction V (Sigma) to the final concentration of
2�1010 PFU/ml. This concentration was chosen based on
our previous dose-response study [42]. A second catheter

was reintroduced, and vector containing medium was
instilled into the isolated common carotid segment. The
duration of the virus incubation period was 20 minutes.
Vector containing medium was then withdrawn and
blood flow was re-established through the common and
internal carotid arteries. To accelerate lesion formation,
a perivascular collar prepared from Silastic tubing
(inside diameter ≈0.3 mm; length ≈3 mm) was placed
around the central portion of the left common carotid
artery, as described by von der Thüsen et al. [44]. The col-
lar results in a modest reduction in vessel lumen (≈30%)
that does not limit blood flow but causes flow distur-
bances that accelerate lesion formation within 3-6 weeks
in ApoE-/- mice fed a Western-type diet [44, 45]. The axial
edges of the collar were approximated by placement of 
3 circumferential silk ties. Subsequently, the cervical
wound was closed.

� Detection of human eNOS and 8ND–MCP-1

Human eNOS protein in ApoE-/- carotid arteries instilled
in vivo with Ad.CMV-eNOS or Ad-Null (n = 3 each) was
detected by Western blotting. Briefly, crude protein
extracts were obtained by homogenizing snap-frozen
arteries in protein extraction buffer, as described [24].
Protein concentrations were measured by the Bradford
method. Protein samples (30 µg) were subjected to SDS-
PAGE and transferred to a PVDF membrane (Millipore).
Mouse anti-eNOS mAb (Transduction Lab.) and anti-
mouse alkaline phosphatase-conjugated secondary Ab
were used and visualized with Western Blue Stabilized
Substrate (Uptima). Signals were quantified densitomet-
rically by the NIH Image-1.62 software. NOS levels were
normalized against total actin levels. Human 8ND–MCP-
1 protein was measured by a commercially available
human MCP-1 ELISA kit (Biosource) that does not react
with endogenous mouse MCP-1 [15].

� Vascular reactivity studies

Vessel rings (≈3 mm in length) with intact endothelium
were cut from carotid arteries isolated from ApoE-/- mice
(18–20 weeks of age) fed a Western-type diet at day 5 after
in vivo gene transfer with Ad.CMV-eNOS or Ad-Null 
(n = 4 each). They were suspended in a modified Krebs-
Ringer bicarbonate solution (in mmol/L, NaCl 118, KCl
4.7, CaCl2 2.5, MgSO4 1.2, KH2PO4 1.2, NaHCO3 25, ede-
tate calcium disodium 0.026, and glucose 11.1) in a Multi-
Myograph System (Model 610M, Danish Myo Technol-
ogy A/S, Denmark). The carotid rings were contracted
with norepinephrine (0.3 µmol/L). Endothelium-
dependent and -independent relaxations were examined
with acetylcholine and sodium nitroprusside, respec-
tively.
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� Tissue harvesting and preparation

For histological analysis of arterial lesions, mice were
sacrificed by a lethal pentobarbital dose at 5 weeks after
gene transfer. In situ perfusion-fixation through the left
cardiac ventricle was performed by PBS instillation for 
5 minutes, followed by constant-pressure (80 mmHg)
infusion of 4% neutral buffered formalin for 10 minutes.
Subsequently, the perivascular collar was removed and
the carotid artery was harvested and kept in 4% forma-
lin for 24 hours. The specimens were embedded in OCT
compound (Tissue-Tek; Sakura Finetek) and snap-
frozen in liquid nitrogen. Five series of carotid cross-sec-
tions (n = 10 each) at 7 µm of thickness were cut at ~0.3
mm step intervals throughout the vessel segment sub-
jected to gene transfer.

� Histological and immunohistochemical analysis

Two series of arterial cross-sections were stained with
hematoxylin and eosin (H&E) and elastic/van Gieson for
optimal visualization of the internal elastic lamina.
Immunostaining for macrophages was performed on
additional sections using anti-mouse Mac-2 mAb
(Cedarlane) and a biotin-conjugated rabbit-anti-rat IgG
secondary Ab, followed by StreptABComplex/HRP and
DAB/H2O2 (Dako). Sections were counter-stained with
eosin. Images were acquired using a Hyper-HAD-Axio-
scop microscope and an Axiocam-MRcD camera (Zeiss).
Morphometric analysis of intima and media surface
areas was performed by the NIH Image-1.62 software.
The intima surface area was calculated by subtracting the
patent lumen area from the area encompassed by the
internal elastic lamina. The media surface area was meas-
ured as the area between the external and the internal

elastic lamina. The intima/media ratio was calculated by
dividing the intima surface area by the media surface
area. Macrophages in arterial lesions and in the media
were counted on Mac-2-immunostained sections, and
normalized by the respective surface areas.

� Measurement of plasma lipid levels

Serum total cholesterol and HDL-cholesterol (HDL-C)
were measured using commercially available kits (Cho-
lesterol RTU and HDL-Cholesterol Direct, BioMerieux).

� Statistical analysis

Statistical analysis of arterial relaxations was performed
by one-way ANOVA with Bonferroni post-test. Arterial
intima and media surface areas, intima/media ratios, and
macrophage contents are median values (range); they
were compared between either the eNOS or the
8ND–MCP-1 gene transfer group and the Ad-Null group
by the Mann-Whitney U test. Plasma lipid levels are
mean values + SEM; they were compared between groups
by ANOVA. A level of p < 0.05 was considered to be sig-
nificant.

Results

� Gene transfer efficiency

The efficiency of arterial gene transfer was assessed using
an EGFP expressing vector. Arteries (n=3) were har-
vested at 3 days after gene transfer, and EGFP expressing
cells were visualized on arterial sections under a fluores-
cence microscope. Approximately 10% of the endothelial
cells lining the vessel lumen, but virtually no VSMC in the
media, expressed EGFP at a histologically detectable level
(Fig. 1). No fluorescent cells were observed in arteries
instilled with Ad-Null.

� eNOS and 8ND–MCP-1 expression

Western blot analysis for eNOS protein was performed
on tissue extracts from mouse carotids harvested at 5
days after in vivo gene transfer with Ad.CMV-eNOS or
Ad-Null. The eNOS signal in eNOS gene-transduced
arteries was increased 2.3-fold compared with endoge-
nous eNOS expression in arteries instilled with Ad-Null
(Fig. 2). A human MCP-1 ELISA that recognizes human
8ND–MCP-1 but not mouse MCP-1 (15) detected 360
pg/gram of tissue after 8ND–MCP-1 gene transfer (Ad-
Null, <30 pg/gram of tissue).

Fig. 1 Fluorescence photomicrograph of a mouse carotid artery 3 days after in vivo
gene transfer with Ad.CMV-EGFP. Fluorescent, EGFP expressing endothelial cells lin-
ing the vessel lumen are shown (arrows). Three layers of elastic fibers in the media
exhibit auto-fluorescence (200x original magnification)



� eNOS gene transfer improves endothelium-dependent
relaxations

In carotid rings transduced with Ad-eNOS in vivo,
endothelium-dependent relaxations to acetylcholine
were markedly enhanced as compared to those instilled
with Ad-Null (Fig. 3, p < 0.01), while the responses to
sodium nitroprusside did not show significant differences
between the two groups. These data demonstrate that eNOS gene transfer improves endothelium-dependent

relaxations in ApoE-/- mouse carotid arteries.

� Morphometric analysis of gene-transduced arteries

Five weeks after gene transfer, arterial lesions had
appeared in all experimental groups (Fig. 4). Lesions
ranged from small intimal lesions, which were more fre-
quent in the Ad.CMV-eNOS group (n = 6; one additional
mouse died before completion of follow-up; Fig. 4B), to
atheromatous plaques rich in foam cells, which were
more frequent in the Ad-Null and Ad.CMV-8ND–MCP-
1 groups (n = 7 each; Fig. 4 A and C, respectively). Cho-
lesterol crystal clefts were seen occasionally in the last
two groups. In the Ad.CMV-eNOS, Ad.CMV-8ND–MCP-
1, and Ad-Null groups, intima surface area was 0.031
(0.002–0.068) mm2 (p < 0.05), 0.053 (0.015–0.152) mm2

(NS), and 0.073 (0.013–0.126) mm2, respectively; media
surface area was 0.058 (0.053–0.075) mm2, 0.053
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Fig. 2 Western blot analysis of eNOS gene expression in mouse carotids. A Ponceau
staining showing equal amounts of loaded protein in each lane. B eNOS signal; left
lane: in vivo Ad-Null administration (endogenous eNOS expression); middle lane: 
in vivo Ad.CMV-eNOS administration; right lane: in vitro positive control consisting
of endothelial cells (HUVECs) infected with Ad.CMV-eNOS (not for quantitative com-
parison). C Quantitative analysis of eNOS proetin levels in ApoE-/- carotids in vivo; 
Ad-Null (white column), Ad.CMV-eNOS (black column; n = 3 each)

Fig. 3 Endothelium-dependent and -independent relaxation responses to acetyl-
choline (left) and sodium nitroprusside (right), respectively, in ApoE-/- carotids
infused with Ad.CMV-eNOS (triangles) or Ad-Null (square symbols). Endothelium-
dependent relaxation is reduced in control arteries but is improved in eNOS gene-
transduced arteries

Fig. 4 Representative Mac-2 immunostained cross-sections of ApoE-/- carotids 5
weeks after gene transfer. Right panels are high-magnification fields from left pan-
els. Internal elastic laminae encompassing the lesions are drawn in black for better
visualisation; counter-staining with eosin. A Ad-Null; large, macrophage-rich
(brown; arrows) lesion containing cholesterol crystal clefts (*). B Ad.CMV-eNOS;
smaller lesion with less abundant macrophages (arrow). C Ad.CMV-8ND–MCP-1;
large lesion containing abundant foam cells (arrows)
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(0.044–0.089) mm2 (both NS), and 0.065 (0.043–0.095)
mm2; the intima/media ratio was 0.59 (0.17–0.95; p <
0.05), 1.07 (0.30–1.80; NS) and 1.22 (0.30–1.87), respec-
tively (Fig. 5).

� Macrophage content in eNOS gene-transduced arteries

Macrophage contents in the intima and media normal-
ized by the respective surface areas are shown in Fig. 6.
In the Ad.CMV-eNOS and Ad-Null groups, macrophages
in intimal lesions were 54 (2-101) and 146 (26-165; NS),
respectively. Macrophages in the media were less abun-
dant than in the intima and decreased in the Ad.CMV-

eNOS compared with the Ad-Null group: 19 (6-36) vs. 45
(28-102; p < 0.01), respectively.

� Plasma lipid levels

Differences in plasma total cholesterol and HDL-C
among groups were not statistically significant. One week
after gene transfer and onset of the Western-type diet,
total cholesterol in the Ad.CMV-eNOS, Ad.CMV-
8ND–MCP-1, and Ad-Null groups was 463 ± 28, 418 ± 34,
and 424 ± 84 mg/dl, while HDL-C was 64 ± 9, 54 ± 11, and
66 ± 11 mg/dl, respectively. Four weeks after gene trans-
fer, when rats were fed standard chow, total cholesterol
in the same groups was 248 ± 31, 323 ± 26 and 316 ± 47
mg/dl, while HDL-C was 40 ± 8, 37 ± 4, and 51 ± 3 mg/dl,
respectively.

Discussion

Many gene therapy approaches to arteriosclerosis have
focused on the systemic delivery of genes that encode
proteins involved in lipid metabolism. Alternatively,
genes that encode vasoprotective factors have been deliv-
ered directly to the vessel wall. Systemic and localized
gene transfer approaches are associated with distinct
advantages and disadvantages. In analogy to conven-
tional lipid-lowering drugs, systemic gene transfer of a
protein involved in lipid metabolism may affect athero-
sclerotic lesions spread throughout the arterial system.
However, systemic gene overexpression may also be
associated with systemic side effects, as exemplified by
hypotension as a result of systemic eNOS overexpression
[28]. Localized gene transfer into targeted vessels aims to
protect vessel segments where arteriosclerosis is most
likely to develop, or where its complications are most
likely to occur. Using this approach, we have evaluated
adenovirus-mediated in vivo eNOS and anti–MCP-1 gene
therapy in carotid arteries in arteriosclerosis-prone
ApoE-/- mice. Experimental and clinical evidence indi-
cates that the balance between eNOS and MCP-1 bioac-
tivities plays an important role in atherogenesis.
Endothelial NO activity is decreased at early stages of
atherosclerosis, frequently associated with decreased lev-
els of eNOS expression [13, 27, 47]. However, decreased
NO bioactivity has been observed also in diseased arter-
ies that show normal or even increased eNOS protein lev-
els [2, 12]. These findings illustrate the complexity of the
relationships between eNOS expression, NO bioactivity,
and atherogenesis.

The main findings of the present study are that eNOS
gene transfer improves endothelium-dependent relax-
ations and attenuates lesion formation in carotid arter-
ies in ApoE-/- mice. Studies from other groups showed

Fig. 5 Quantitative analysis of lesion size in ApoE-/- mouse carotids. A Intima sur-
face area; B Media surface area. C Intima/media ratio. Null, eNOS, and 8ND-MCP-1
refer to arteries instilled with the respective adenoviral vectors. Circles and hori-
zontal bars are individual and median values, respectively. p-values for differences
between each treatment group and the Ad-Null control group are shown

Fig. 6 Quantitative analysis of macrophage densities in ApoE-/- mouse carotids
instilled with Ad.CMV-eNOS or Ad-Null. A Intimal lesions. B Tunica media.
Macrophages are normalized by the respective surface areas. Circles and horizontal
bars are individual and median values, respectively. p-values for differences
between each treatment group and the Ad-Null control group are shown



impaired endothelium-dependent vasodilation in caro-
tid arteries in ApoE-/- mice fed a Western-type diet [12].
In the present study, we showed that in vivo eNOS gene
transfer into ApoE-/- mouse carotid arteries resulted in
increased eNOS expression levels and normalized relax-
ations to acetylcholine, suggesting exogenous eNOS was
functional. To the best of our knowledge, this is the first
report showing improved vasodilation by in vivo eNOS
gene transfer into ApoE-/- mouse arteries. These results
are in general agreement with previous data showing
improved endothelium-dependent relaxations by eNOS
gene transfer into pulmonary arteries in hypoxic rats [16]
and into carotid arteries in hypercholesterolemic rabbits
[8, 35].

Carotid arteries transduced with the eNOS gene
exhibited smaller lesions and lower macrophage con-
tents compared with control arteries. These findings are
consistent with previous data showing reduced vascular
adhesion molecule expression and decreased inflamma-
tory cell infiltration in eNOS gene-transduced arteries in
hypercholesterolemic rabbits [8, 35]. In addition, several
reports showed that eNOS gene transfer can reduce post-
angioplasty neointima formation in rat, pig and ApoE-/-

mouse arteries [9, 17, 40, 45]. However, these models are
characterized by mechanical endovascular injury result-
ing in endothelium denudation, medial cell necrosis, and
extensive VSMC proliferation. To the contrary, the
model used in the present study is characterized by
preserved endothelial integrity, as evidenced by the
histologically intact endothelial layer and the observed
relaxation responses to acetylcholine after eNOS gene
transfer.

eNOS gene transfer may mediate vasoprotection
through different biological mechanisms in different vas-
cular disease conditions. NO-mediated inhibition of
VSMC proliferation and platelet aggregation may play
central roles in reducing neointima formation post-
angioplasty, while NO-mediated regulation of VSMC dif-
ferentiation may be important in vascular remodelling of
venous bypass grafts [29, 46]. Regulation of vascular
adhesion molecules, of MCP-1 expression, and of vascu-
lar inflammation are primary mechanisms by which NO
protects vessels in the absence of mechanical endothelial
injury [10, 35]. However, eNOS overexpression may not
be invariably beneficial in diseased vessels. It is worth
noting that eNOS expression in the endothelium overly-
ing arterial lesions is reduced in the experimental model
used in the present study [44]. Moreover, common
carotid arteries (unlike the aorta and its branching sites)
did not show histological lesions at the time of gene
transfer. Under these conditions, eNOS gene transfer
may restore, at least in part, eNOS expression in this
model. Gene dosage is another important issue. While
moderate eNOS overexpression (≈2.3-fold increase) was
beneficial in the present study, exaggerated eNOS expres-
sion might be detrimental due to increased superoxide

and peroxynitrite formation, especially in disease condi-
tions that are associated with reduced bioavailability 
of NO cofactors (e.g., tetrahydrobiopterin) [30, 41].
“Uncoupling” of the NO synthase also involves perox-
ynitrite oxidation of tetrahydrobiopterin [37]. Our find-
ings of improved endothelium-dependent relaxations in
eNOS gene-transduced arteries indicates restored NO
bioactivity, thus suggesting that the bioavailability of NO
cofactors was not limiting in this model (although this
has not been directly measured). It is worth re-empha-
sizing that our results must be interpreted in the frame-
work to the experimental model used. As such, they are
not necessarily applicable to other models or conditions,
especially to more advanced stages of the disease.

The second gene construct tested was 8ND–MCP-1. A
biological link between MCP-1 and eNOS is supported by
observations that NO downregulates MCP-1 expression
in endothelial cells, thereby inhibiting monocyte adhe-
sion [26, 37, 38, 49]. Purified 8ND–MCP-1 peptide
inhibits with high efficacy MCP-1 binding and signalling
through the CCR2 receptor in vitro and MCP-1–medi-
ated monocyte accumulation in inflamed joints in a
mouse model of monocyte-rich arthritis in vivo [14]. In
the present study, 8ND–MCP-1 gene transfer did not pre-
vent lesion formation in carotid arteries in ApoE-/- mice.
Recently, two reports from Takeshita’s group showed
that systemic gene transfer of 7ND–MCP-1 (which differs
from 8ND–MCP-1 by a single residue) [50] reduces
lesion formation and progression in the aortic root in
ApoE-/- mice [15, 25]. A direct comparison of these data
with our results is precluded by methodological differ-
ences regarding the following aspects: (1) Gene transfer
vector (hemaggluting virus of Japan-liposomes vs.
adenovirus); (2) MCP-1 inhibitor (7ND vs. 8ND); (3)
Gene dosage (two doses vs. single dose); (4) Target ves-
sel (aortic root vs. carotid artery); (5) Atherogenic stim-
uli (Western-type diet vs. surgical manipulation and
perivascular collar); and (6) Route of gene administra-
tion (systemic vs. arterial gene transfer in the previous
and the present study, respectively). In spite of divergent
conclusions as to the efficacy of ND–MCP-1 gene therapy
in the respective models, however results from the previ-
ous [25] and the present study actually are not contra-
dictory. Indeed, mean values for inhibition of lesion sur-
face areas were similar in the two studies (≈30% and
27%, respectively). However, the decrease in lesion sur-
face area did not reach statistical significance in the pres-
ent study due to greater data variation. Surgical manip-
ulation of the target vessel and implantation of a perivas-
cular collar presumably contributed to inter-individual
variation which appears to be inherent to the model [44].
For comparison of ND–MCP-1 expression, we injected
our Ad.CMV-8ND–MCP-1 vector into remote muscles in
a separate group of mice according to the protocol used
in the two previous studies [15, 25]. Human ND–MCP-1
protein levels determined by ELISA in injected muscles
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at 1 and 4 weeks post-gene transfer (data not shown)
were comparable to those reported in the previous study
[15], suggesting 8ND–MCP-1 expression levels from our
adenoviral vector were adequate. It is conceivable that
systemic gene transfer of a secreted ND–MCP-1 peptide
may be more effective than direct arterial gene transfer
because it blocks the CCR2 receptor on circulating
monocytes. From the point of view of potential applica-
tions, however, systemic anti–MCP-1 gene therapy raises
safety concerns because monocyte/macrophage activi-
ties are important mechanisms against infection and
cancer.

Limitations of the present study include the short
follow-up time (5 weeks) and the use of a perivascular
collar. Because of the limited duration (≈2–6 weeks) of
adenovirus-mediated transgene expression in mouse
arteries [18, 42], it was necessary to stimulate arterial
lesion formation within this time frame in order to assess
the biological effects of the delivered genes. To achieve
this goal, we used a recently described model [44, 45]
based on a perivascular collar that acts by inducing flow
disturbances that accelerate lesion formation, while
maintaining blood flow. This model seemed highly
preferable compared to traditional balloon-injury mod-
els because it preserves endothelial integrity, as discussed
above.

Conclusion

eNOS gene transfer improved endothelium-dependent
relaxations and inhibited lesion formation in carotid
arteries in ApoE-/- mice. This is one of the first reports on
decreased lesion formation as a result of arterial gene
transfer of a protective factor in a primary arteriosclero-
sis model. A previous report [18] showed that aden-
ovirus-mediated gene transfer of heme oxygenase-1
(HO-1), an enzyme involved in iron metabolism and
cytoprotection, inhibits lesion formation in the aorta in
ApoE-/- mice (6-week follow-up). Of note, the same vec-
tor was ineffective when delivered systemically, which
emphasizes the role of localized gene delivery depending
on the therapeutic gene. Gene transfer vectors such as
adeno-associated virus (AAV) vectors that provide a
potential for prolonged transgene expression in the ves-
sel wall [34] could eventually achieve sustained thera-
peutic effects in vascular gene therapy. On the other
hand, NO donors with a very long half-life could offer an
alternate approach to eNOS gene therapy, which may
warrant further investigation in preclinical arterioscle-
rosis models.
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