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In natural populations, dispersal tends to be limited so that individuals are in local competition with
their neighbours. As a consequence, most behaviours tend to have a social component, e.g. they can
be selfish, spiteful, cooperative or altruistic as usually considered in social evolutionary theory. How
social behaviours translate into fitness costs and benefits depends considerably on life-history features,
as well as on local demographic and ecological conditions. Over the last four decades, evolutionists
have been able to explore many of the consequences of these factors for the evolution of social beha-
viours. In this paper, we first recall the main theoretical concepts required to understand social
evolution. We then discuss how life history, demography and ecology promote or inhibit the evolution
of helping behaviours, but the arguments developed for helping can be extended to essentially any
social trait. The analysis suggests that, on a theoretical level, it is possible to contrast three critical
benefit-to-cost ratios beyond which costly helping is selected for (three quantitative rules for the evol-
ution of altruism). But comparison between theoretical results and empirical data has always been
difficult in the literature, partly because of the perennial question of the scale at which relatedness
should be measured under localized dispersal. We then provide three answers to this question.
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1. INTRODUCTION
Many of the behaviours expressed by an individual
during its lifetime are statistically influenced by its
genes. The change in allele frequency in a population
over time is generally referred to as evolution (Fisher
1930; Wright 1931; Haldane 1932). There are four
fundamental evolutionary forces resulting in a change
in allele frequency: natural selection, which favours
those genes conferring to their carriers higher vital
rates (fecundity and/or survival; Caswell 2000) than
alternative genes; random genetic drift, which results
in fluctuations of allele frequency owing to sampling
effects in finite populations; recombination, which
reshuffles genes within individuals; and mutation,
which introduces new genetic material into the popu-
lation (Crow & Kimura 1970; Bürger 2000;
Kirkpatrick et al. 2002; Ewens 2004). Understanding
the ultimate factors driving the evolution of a behav-
iour boils down to understanding how the
demographic forces (selection and genetic drift) and
the organismal ones (recombination and mutation)
interact to drive the changes in the gene pool under-
pinning the behaviour and how the resulting changes
feed back on the evolutionary forces themselves.

Most natural populations do not consist of a ran-
domly mixing gene pool. Instead, they tend to
consist of a series of demes connected by dispersal,
the level of which depends on the geographic distance
and the environmental conditions between demes.
Such population subdivision has important conse-
quence for the evolution of behaviours and other
phenotypes. The change of allele frequency in the
population then depends on the interactions between
the evolutionary forces at a local scale (the scale of
the deme when space is discrete), instead of the forces
interacting at the global, total population scale, with
dispersal tuning the magnitude of this effect.

Many of the behaviours expressed by one individual
also affect the vital rates of others. Such traits are
called ‘social traits’ in evolutionary biology and were
classified by Hamilton (1964a, 1970) into four cat-
egories: selfishness, spite, cooperation and altruism
(see also the introduction to this volume, Brosnan &
Bshary 2010). In a subdivided population, where
local population size tends to be small, essentially
any behaviour expressed by one individual is likely to
affect the vital rates of another. This is a consequence
of the fact that resource availability follows a conserva-
tion law, implying that the gains or losses in resources
to one individual are balanced by the losses or gains to
others. Most life-history behaviours, such as dispersal,
sex ratio or senescence, may then have a social
component.

In natural populations, the vital rates of one indi-
vidual are thus likely to depend on the phenotype of
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others and, therefore, on the distribution of genotypes
within and between demes. The force of directional
selection on an allele affecting a social behaviour will
thus be determined by how the evolutionary forces
interact at a local scale. In order to understand how
evolution shapes sociality, it is thus necessary to under-
stand how life-history (or life cycle) features affect this
local interaction.

A particular class of social behaviours has received a
lot of attention over the last decades: helping behav-
iours by which individuals tend to increase the vital
rates of recipients (cooperation and altruism). In this
paper, we first recall the main theoretical concepts
usually used to formalize the evolution of helping
behaviours in the presence of local interactions. We
focus on inclusive fitness theory as it allows us to con-
veniently address the evolution of the diversity of social
traits considered by behavioural ecologists. We then
discuss how life cycle features promote or inhibit the
force of directional selection (inclusive fitness effect)
on helping and compare the outcomes for the evol-
ution of this trait for a large number of models
developed over the last decades.

This analysis leads us to distinguish three types of
quantitative outputs for the selective pressure on
costly helping behaviours (altruism), which are charac-
terized by the critical benefit-to-cost ratio beyond
which helping is selected for in evolutionary models
(three quantitative rules for the evolution of helping).
While we highlight the effect on selective outcomes
of varying the assumptions of various models, we do
not discuss here directly the empirical relevance of
endorsing different assumptions. Although different
empirical studies favour different scenarios, we find it
difficult to reach firm conclusions for each empirical
model and the more so to obtain a global picture.
However, we discuss how the relatedness coefficients
involved in inclusive fitness calculations can be esti-
mated empirically under localized dispersal, and
provide three answers to the perennial question of
the scale at which relatedness should be measured.

Although we focus on the consequences of limited
dispersal, family structured populations involving a
stage of complete dispersal, and which have often
been the main focus for understanding the evolution
castes in insects and communal breeding (Wilson
1975; Bourke & Franks 1995; Clutton-Brock 2002),
can be seen as special cases of spatially structured
populations. Hence, the arguments developed below
can be thought to apply to both family and structured
population settings and can be extended to essentially
any trait, as substantial literature on sex ratio (e.g.
Hardy 2002; West 2009), dispersal (e.g. Ronce
2007) or foraging (e.g. Giraldeau & Caraco 2000)
demonstrates.

2. ESSENTIAL BIOLOGICAL FEATURES
In order to discuss the factors promoting or inhibiting
the evolution of helping behaviours, we assume that
the population consists of a discrete number of indi-
viduals, which reproduce at different positions in
space. The population can typically be envisioned as
a certain number (possibly infinite) of demes located

in a one-, two- or three-dimensional habitat, where
each deme consists of one or more individuals. We
consider that there are three types of baseline biologi-
cal events that affect the individuals in this population:

— Reproduction and survival. Each adult individual in
the population may reproduce and the number of
offspring produced by an individual is a variable
that can take different values (i.e. a random
variable). Hence, the number of offspring pro-
duced by an individual follows some probability
distribution, for instance, a Poisson or a negative-
binomial distribution. After reproduction, an
individual may either die or survive to the next
reproductive period and survival induces overlap-
ping generations.

— Competition. Resources come in finite supply so
that competition for resources used for reproduc-
tion and survival occurs between the individuals
within and/or between demes. Competition may
occur for abiotic resources (space) or for biotic
resources (those that can be transformed into
gametes). The main consequence of competition
is that the population is regulated at some point
or another during the life cycle.

— Dispersal. Each individual, adult or newborn, may
either stay in its deme (natal deme for the off-
spring) or disperse to another spatial position
where it may or may not reproduce. The distance
of dispersal from the current to the new spatial
position follows some distribution; for instance, a
geometric or an exponential distribution if disper-
sal is localized. Dispersal results in gene flow in
the population and it shifts competition from
being local to being global. Dispersal, therefore,
tends to reduce competition between neighbours.

The reproduction, survival, competition and dispersal
events experienced by an individual may all depend on
its interactions with others. Hence, the fitness of a
focal individual, which is defined here as the total
number of its descendants after one full iteration of
the life cycle of the organism (thus including itself
through survival and its offspring in order to have a
full count of genotype frequencies over one life cycle
iteration), depends not only on the focal individual’s
phenotype (and thus genotype) but also on the pheno-
type of others. Understanding how behavioural effects
translate into allele dynamics thus requires a careful
account of how such effects convert into fitness costs
and benefits. To that aim, we now introduce the
notions of fitness function, gradient of selection,
relatedness and local competition.

3. THEORETICAL SURVIVAL KIT
(a) Selection strength and gene action
Since we are mainly interested in the effect of life his-
tory and demographic features for the evolution of a
focal phenotype (e.g. provisioning of care to offspring,
probability of becoming a worker, strategy in a multi-
move game, learning rule for imitating neighbours,
etc.), we endorse the most minimalist genetic assump-
tions. In particular, we consider that a single locus
controls the expression of the focal phenotype, that
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gene action is additive and that only two alleles segre-
gate in the population. Those individuals that carry a
mutant allele express a mutant phenotype denoted
z†, while those individuals that carry a wild-type, resi-
dent allele express a phenotype denoted z, whose
magnitude differs from that of the mutant phenotype
(a list of symbols is given in table 1).

The above assumptions are implicit in most models
of social evolution considered by behavioural ecolo-
gists, which, therefore, ignore (for worthy reasons)
the complexity introduced by adding recombination
and mutation. These assumptions allow one to expli-
citly evaluate the evolutionary dynamics of a focal
phenotype in the presence of the demographic forces
(selection and genetic drift) under a very large class
of biological scenarios involving social interactions.
Moreover, models involving phenotypic gradient
approximations, where gene action is additive,
remain often the most useful simple approximations
for evolution of traits with a multilocus genetic basis.

In the light of the continued confusion about inclu-
sive fitness theory, it is worthwhile to emphasize that
the above assumptions are not integral to the theory,
which can actually take into account any strength of
selection and gene action (Queller 1992; Frank
1997; Gardner et al. 2007; Roze & Rousset 2008);
rather, they are only the most useful simplifications
used by behavioural ecologists. Further, the concepts
and techniques reviewed below remain quite useful
when the assumptions are relaxed, such as when
there is dominance in diploid populations, a multi-
locus basis of the trait or stronger selection is
considered, and various forms of frequency depend-
ence result from the departures of the simplest
assumptions (Ajar 2003; Roze & Rousset 2004;
Lessard & Ladret 2007; Lehmann et al. 2007;
Rousset & Roze 2007).

(b) Notions of fitness function and selection
gradient
(i) Fitness in a panmictic population
Suppose that the phenotype under focus represents the
expression of an act of helping, which reduces the level
of competitiveness (varying between 0 and 1) placed
into the extraction of a common resource. Higher com-
petitiveness is assumed to result in a cost to others
because it may cause fights or scrambles between inter-
actants (e.g. social carnivores fighting over a kill). We
consider that the number of offspring produced by a
focal individual is given by z†(K2 z), where K is a con-
stant. Thus, the number of offspring produced increases
with the level of competitiveness z† of the focal individual
and decreases with the average level of competitiveness z
expressed by the individuals in the population.

If the population is panmictic and of constant and
very large size (say infinite), the fitness of a focal indi-
vidual is given by the expected number of offspring it
produces, z†(K 2 z), relative to the expected number
z(K 2 z) of offspring produced by an average indi-
vidual in the population:

w ¼ z†
z
; ð3:1Þ

which is equal to unity when everybody carries the
same phenotype (when z† ¼ z).

(ii) Selection gradient in a panmictic population
The change in the frequency p over one generation of
the mutant allele (frequency of individuals expressing
phenotype z†), which results in a small phenotypic
deviation d relative to the phenotype expressed by indi-
viduals carrying the resident allele, and causes
selection to be weak, can be written as

Dp ¼ dpð1$ pÞSðzÞ; ð3:2Þ

Table 1. List of symbols.

symbol definition

N deme size
m migration rate of a juvenile
ma migration rate of an adult individual
s survival probability of an adult individual to the next generation
sv coefficient of variation of the fecundity distribution
sd survival probability of a deme to the next generation
p frequency of the mutant allele in the population
z† phenotype of a focal individual
z0 average phenotype among the deme-mates of a focal individual
z average phenotype in the population
C phenotypic effect of the mutant allele on the vital rate(s) of the focal individual
B phenotypic effect of the mutant allele on the vital rate(s) of individuals in the focal deme (either including

or excluding the focal individual depending on the situations)
l decay rate of a phenotypic effect of intensity B across generations
2c change in the fitness of a focal individual stemming from him expressing the mutant allele
b change in the fitness of the focal individual stemming from all its deme-mates expressing the mutant allele
R relatedness between a focal individuals and a randomly sampled deme-mate
FST Wright’s measure of population structure; in this paper R ¼ FST

S(z) gradient of selection on the focal phenotype in a panmictic population
SIF(z) inclusive fitness effect: gradient of selection in the presence of interactions between relatives
S̃IF(z) localized gradient of selection
k threshold fecundity (or survival) cost-to-benefit ratio C/B under which selection favors the mutant allele
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where p(1 2 p) is the genetic variance in the popu-
lation and S(z) is the force of directional selection on
the phenotype (selection gradient), which is frequency
independent in the presence of additive gene action
(Rousset 2004). The selection gradient is given by
S(z) ¼ @w/@z†, the partial derivative of the fitness
function with respect to the mutant phenotype evalu-
ated at the resident value (at z† ¼ z). Hence, the fate
of a mutant allele depends only on the effect of its
expression by the carrier on its fitness and its speed
of advance depends on the genetic variance in the
total population.

By a gradual, step-by-step transformation caused by
the successive invasion of mutant alleles resulting in
different phenotypic values from resident alleles fixed
in the population, the focal phenotype will progres-
sively converge to an equilibrium point (e.g.
Eshel 1996; Geritz et al. 1997); namely, a candidate
evolutionarily stable strategy (Maynard-Smith 1982).
For the example of competitiveness, the selection
gradient is positive for all values of z between 0 and
1: S(z) ¼ 1/z. Assuming that the ecological dynamics
reach an equilibrium before new mutations arise (e.g.
Vincent & Brown 2005), successive invasion of
mutants will then cause competitiveness to increase
until the point where the population will eventually
go extinct because the fecundity of individuals is
lower than unity (K 2 z, 1).

The competitiveness example shows that, even in an
elementary scenario driven by frequency-independent
selection at the genetic level, the mean fecundity of
the population does not increase with time. Further,
despite the fact that in every generation, individuals
with higher fitness better transmit their genes to the
next generation, selection does not increase the mean
fitness of individuals in the population over evolution-
ary time. Claims to the contrary must refer to concepts
of fitness other than the number of settled offspring
measured by w.

(c) Notions of inclusive fitness effect and
relatedness
(i) Fitness in a structured population
In the competitiveness model, the selection gradient
on the phenotype z depends only on the change in
the fitness of a focal individual resulting from them
expressing the mutant allele, although the phenotype
under focus has a social component. We now intro-
duce the concept of inclusive fitness effect, where
various categories of actors expressing the mutant
allele may change the fitness of a focal individual. To
that end, we introduce a reference life cycle, where
individuals live in a population with an infinite
number of demes, each of finite size N (Wright’s infin-
ite island model, Wright 1931), and where social
interactions occur between individuals within demes
(Taylor 1992a). Each individual in a deme produces
a large number of offspring (ideally infinite), offspring
disperse independently of each other with probability
m to some new random deme. In each deme, only N
offspring reach adulthood.

Individuals that bear the mutant allele express an
act (or a series of actions during their lifetime) that

reduces their reference fecundity by some cost C,
and which increases the summed fecundities of their
neighbours by B. Importantly, both C and B can
take both positive and negative values, and we refer
to §7 for a more detailed interpretation of these two
variables. A focal individual then produces a relative
number 1 þ Bz0 2 Cz† of offspring, where z0 is the
average phenotype in the focal deme, excluding
the focal individual. A fraction 1 2 m of these
offspring remain philopatric and then compete with
(12 m)[1 þ (B2 C)z0

R] juveniles produced in the
focal deme, where z0

R ¼ z†/N þ (N 2 1)z0/N is the
average phenotype in the focal deme including
the focal individual, which takes into account the
fact that the focal individual contributes to focal
patch productivity in proportion to 1/N.

The focal individual’s philopatric offspring compete
against (a relative number) m[1 þ (B2 C)z] immi-
grant juveniles, where z is the average phenotype in
the population. Finally, a complementary fraction m
of the offspring of the focal individual disperse, in
which case they compete only against juveniles pro-
duced in other demes by individuals with phenotype
z. Collecting all terms then gives the fitness of the
focal individual as a function of all phenotypes

w ¼ ð1$mÞð1þ Bz0 $ Cz†Þ
ð1$mÞ½1þ ðB$ CÞzR0 ' þm½1þ ðB$ CÞz'

þmð1þ Bz0 $ Cz†Þ
½1þ ðB$ CÞz'

: ð3:3Þ

Comparing this fitness function with equation (3.1)
illustrates that it depends not only on the phenotype z†
of the focal individual and the average phenotype z in
the population, but also on the average phenotype z0
of the neighbours of the focal individual in its deme.

Regardless of the exact demographic assumptions,
when dispersal is limited and demes are of small size,
genetic drift will result in fluctuations of allele frequen-
cies within demes. Two individuals from the same
deme are then more likely to carry the same genotypes
(and thus express similar phenotypes) than are two
individuals sampled from different demes. In other
words, relatedness between group members is likely
to build up (Hamilton 1971). This consequence of
local genetic drift must be taken into account when
evaluating the force of directional selection on the
focal phenotype.

(ii) Inclusive fitness effect
The change in the frequency p over one generation of
the mutant allele can now be written as

Dp ¼ dpð1$ pÞSIFðzÞ; ð3:4Þ

where

SIFðzÞ ¼
@w

@z†
þ @w

@z0
R ð3:5Þ

is the so-called inclusive fitness effect, and it depends
on three terms (Hamilton 1964a, 1970). First, the
change 2 c ¼ @w/@z† in the fitness of a focal individual
stemming from it expressing the mutant allele during
its lifetime, where the derivative is evaluated at the
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point where all phenotypes are the same (at z† ¼ z0 ¼
z). Second, the change in the fitness of the focal indi-
vidual b ¼ @w/@z0 stemming from all its neighbours
expressing the mutant allele. Finally, the relatedness
R between the focal individual and a randomly
sampled neighbour from its patch. Equation (3.5)
also illustrates that inclusive fitness is a decomposition
of (the average) individual fitness of the carrier of some
gene into sources of variation given by the gene of the
carrier and those of other categories of individuals
(note that strictly speaking, inclusive fitness is given
by 1 þ dSIF(z)).

It follows from equations (3.4) and (3.5) that the
mutant allele may invade the population when
Hamilton’s rule is satisfied:

Rb$ c . 0: ð3:6Þ

Because the inclusive fitness effect (SIF) is
independent of allele frequency, empirical estimates
of R, b and c allow one to assess the direction of
selection on a social trait, regardless of the current
allele frequencies.

(iii) Interpretation of relatedness
The relatedness coefficient, R, can be thought of as a
ratio of two standardized transmission coefficients. It
measures the extent to which the recipient of the act
of the focal individual is more likely to transmit the
mutant allele to the next generation than an individual
sampled at random from the population, relative to the
extent to which the actor is more likely to transmit the
allele than a random individual (Frank 1998). Related-
ness is, therefore, a three-parties concept, involving a
focal actor, a recipient and a randomly sampled indi-
vidual from the population (Grafen 1985).

Relatedness can also be interpreted in two different
ways. First, as a correlation, where it is given in terms
of the covariance between the mutant allele frequency
in a focal individual and that in a recipient relative to
the variance in mutant allele frequency in the popu-
lation. Second, in terms of coalescence events, as the
probability that a gene copy from the focal individual,
and a gene copy from a recipient of the act, have their
most recent common ancestor (coalesce) in the deme
of the focal individual.

The classical computation of relatedness from pedi-
grees rests on a similar interpretation. If fitness (w)
depends on (say) half-sisters’ interactions, then the
inclusive fitness effect depends on a relatedness coeffi-
cient that depends on half-sister ‘identity by descent’,
which can be understood as the probability that gene
copies from half-sisters coalesce in their common
parent. For more general family relationships, identity
by descent is the probability that the gene copies
coalesce within the pedigree defined by the relation-
ship considered.

Compared with the classical pedigree relationships,
however, it is important to note that both relatedness,
R, and the fitness function, w, depend on life cycle
features. In equation (3.3), the fitness depends on
the dispersal rate and so will relatedness (see equation
(3.7) below).

(d) Notion of local competition
Is it worthwhile to pay a direct fitness cost in order to
help neighbours under limited dispersal? The answer
to this question is not straightforward. By helping
neighbours to produce more offspring, the intensity
of competition experienced by the focal individual’s
offspring and that of its neigbours is increased.
Helping neighbours thus leads to an increase in local
competition, here understood as the extent to which
an actor and a recipient (or their offspring) are more
likely to compete against each other for the same
resources than are two adult individuals (or offspring)
sampled at random from the population. This tends to
inhibit the evolution of helping.

Under the demographic scenario described by
equation (3.3), the additional number of offspring pro-
duced by neighbours through helping (each weighted
by their relatedness to the focal) are exactly offset by
the increase in local competition. In order to prove
this, one needs to substitute equation (3.3) into
equation (3.5) and use the equilibrium value of
relatedness for the island model, which is given by
Wright’s (1951) measure of population structure
(R ¼ FST). Standard calculations (reviewed for
example in Rousset 2004, p. 28) then show, first, that

R ¼ ð1$mÞ2

1þmð2$mÞðN $ 1Þ
; ð3:7Þ

which decreases as both m and N decrease, and,
second, that the direction of selection on the mutant
allele takes the form

$C . 0 ð3:8Þ

(see equations (A1)–(A5) of the electronic sup-
plementary material).

Inequation (3.8) shows that helping neighbours is
selected for only insofar that the actor’s fecundity
(number of juveniles produced and counted before
the competition stage) is increased as a result of
it expressing the mutant allele (Taylor 1992a,b).
Regardless of the level of migration and deme size
(value of R in equation (3.7)), the focal individual
gets no benefits from helping neighbours if the act of
helping reduces its lifetime fecundity. Costly helping
is thus selected against.

Inequation (3.8) illustrates the general fact that
limited dispersal has two major but antagonistic
consequences for the evolution of social behaviours
(Hamilton 1964b; Grafen 1984; Taylor 1992a; Queller
1994). First, because social interactions take place
between related individuals, organisms may benefit
from increasing the vital rates of neighbours. Second,
since related neighbours are also more likely to com-
pete for the same local resources, increasing the vital
rates of neighbours is likely to hurt those of the focal
individual.

4. FACTORS PROMOTING AND INHIBITING
SELECTION ON HELPING
Because the increase in local competition exactly bal-
ances out the increase in the benefits to neighbours
in Taylor’s (1992a) model, it provides an ideal
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reference model for relaxing life cycle assumptions in
order to identify those life history and demographic
factors that promote or further inhibit the evolution
of social behaviours (timing of social interactions,
modes of competition and dispersal, social structures,
environmental and demographic dynamics, and so
on). We now turn to a discussion of the effect of
these factors for the evolution of helping.

Although our discussion will focus mainly on quali-
tative effects, it is useful to gain some quantitative
insights into how varying life cycle assumptions affects
the selective pressure on helping. We then provide, if
simple enough, analytical expressions of the fecundity
or survival (vital rates) cost-to-benefit ratio k under
which selection favours the mutant allele. That is, we
always rearrange Hamilton’s rule (equation (3.6))
such that the form of the invasion condition of the
mutant allele can be written in terms of changes in
vital rates:

Bk$ C . 0; ð4:1Þ

where k depends on life cycle parameters and can be
positive, negative or take the value 0 (as in equation
(3.8)). Because B and C are not the fitness costs and
benefits considered in Hamilton’s rule, but costs and
benefits measured in units of vital rates, care must be
taken with the interpretation of the k coefficient,
which may be thought of as a scaled relatedness
coefficient, where the effect of competition has been
included (Queller 1994). We return to this issue in
§5 below.

In order to be able to easily identify the factors lead-
ing to high and low selective pressures on helping, we
also evaluate the k coefficients under the weak
migration large population size limit (as m ! 0 and

N! 1 while holding Nm constant), which we refer
to as the ‘Nm limit’. In order to facilitate comparison
between models, we always consider (unless specified)
that B is an effect on neighbours of the focal individual
(thus excluding the focal; that is, ‘others-only’ helping;
Pepper 2000). We refer to the appendix for a list of the
fitness functions (referred to as ‘F: equation AX’ in the
main text for equation AX in the appendix) leading to
the k coefficients presented below, and table 2 lists the
k coefficients evaluated under the weak migration,
large population size limit.

(a) Timing of life cycle events
(i) Regulation before dispersal
In the reference model (equation (3.3)), density-
dependent competition (regulation) occurs after the
dispersal of offspring, but it may also occur before
their dispersal, or be a mixture of these two cases.
When competition occurs only before dispersal, it
occurs solely between the individuals from the same
deme. A focal individual producing more gametes
than another from another deme will not have a
higher fitness than the latter, whenever the two indi-
viduals have the same productivity relative to their
own deme productivity. Because any individual receiv-
ing help receives it in the same amount as any other
individual in the focal deme, except the focal individ-
ual, the relative fecundity of an individual being
helped is only increased relative to that of the focal
individual, but not relative to that of an individual
from another deme. Hence, the contribution of a
deme with helpers to the population is not greater
than that of a deme with defectors, and helping does
not increase the inclusive fitness of a focal individual.

Table 2. A fistful of rules for the evolution of costly helping.

k coefficient case

21/N regulation before dispersal
0 helping after dispersal and before reproduction
1/N helping after dispersal and before reproduction with a social worker caste
1/N helping after reproduction and before dispersal
0 propagule (budding) dispersal with competition between individuals
1/(1 þ 2Nm) propagule (budding) dispersal with competition between groups
1/2N selective emigration
sv
2/N fecundity variance (over-dispersed distribution of offspring)

s/N overlapping generation with fecundity effects and juvenile dispersal
s/N overlapping generation with fecundity effects, juvenile dispersal, and isolation by

distance
s(m(12 s) 2 ma)/[N(m(1 2 s) þ mas)] overlapping generation with fecundity effects and both juvenile and adult dispersal
2(12 s)/2N overlapping generation with survival effects and juvenile dispersal
21/N overlapping generation with survival effects and both juvenile and adult dispersal
0 sex-specific disperal
(1/Nm þ 1/Nf)/2 sex-specific adult size
0 environmental deme extinction with fecundity effects
1/[(12 sd)N] environmental deme extinction with effects on deme survival
l/[(12 l)N] niche construction: fecundity effects on individuals living in later generations than

the actor
0 demographic stochasticity with semelparous reproduction
1/N demographic stochasticity with overlapping generations under a birth–death process
[1/2N](1/k2 2 1) range expansion: helping increases deme carrying capacity from size N to size Nþ

(k ¼ N/Nþ)
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It follows from these considerations that when com-
petition occurs only before dispersal, that is, only at a
local scale and that all demes contribute equally to the
population, the selective pressure on (unconditional)
helping depends only on the direct consequences of
the behaviour of the focal individual on its fitness
(e.g. 2c) and not on the indirect effects on the fitness
of neighbours (e.g. b). Costly helping is then selected
against and harming, which reduces the fecundity to
neighbours, may be selected for when deme size is
small (F: equation (A6), k ¼ 21/(N 2 1); Rousset
2004, p. 125).

For costly helping to evolve, some competition (or
regulation) must occur at a global scale, between indi-
viduals from different demes. Hence, holding
everything else constant, some regulation must occur
after dispersal. Although this condition is necessary
(Wade 1985), the reference model discussed above
shows that this is not sufficient (Taylor 1992a,b), and
we now relax further assumptions of this model.

(ii) Helping after reproduction and before dispersal
In the reference model, social interactions occur only
between the N adults in a deme before reproduction
and after dispersal and regulation. But social inter-
actions may also occur after reproduction before the
dispersal of juveniles; either among the juveniles in a
deme, or between individuals of the parental and the
offspring generation before the latter disperse and
then compete (regulation). Under these two cases,
the benefits of helping are directed towards individuals
that are on average more related to a focal individual
than when helping occurs before reproduction. In
effect, a focal individual benefits more from helping
its offspring, or its offspring helping him, or even its
offspring helping each other, than it benefits from
increasing the offspring production of other adults in
the focal patch. Because the intensity of local com-
petition is not affected by the timing of social
interactions, the selective pressure on helping
is increased under this scenario (F: equation (A9),
k ¼ 1/N; Taylor 1992a, p. 355).

(b) Modes of reproduction, dispersal and
competition
(i) Propagule dispersal: competition between individuals
In the reference model, each individual disperses inde-
pendently of each other to a new, randomly chosen
deme. But individuals might also disperse jointly
with other members of their natal deme, which leads
to propagule pool or budding dispersal (Slatkin
1977; Clobert et al. 2001). In the presence of propa-
gule dispersal, the relatedness between individuals is
maintained during dispersal, so the relatedness
between group members is likely to be higher under
propagule than under independent dispersal. But
propagule (budding) dispersal also implies that
individuals from the same propagule (bud) are more
likely to compete against each other after dispersal
for resources or vacant breeding spots. Hence, the
benefits to neighbours are not more decoupled from
local competition than in the reference model, with
the result that propagule dispersal does not in itself

promote selection on helping (F: equation (A11),
k ¼ 0; Lehmann et al. 2006).

(ii) Propagule dispersal: competition between groups
Individuals might not only disperse as a group but may
also compete as a group against other groups for access
to whole group breeding spots (competition occurs
stricto sensu between groups). The winners of such
group contests can then occupy whole demes. If
propagule dispersal is coupled with competition
between buds (or propagules), then competition
within groups is greatly reduced because individuals
only compete against other individuals from other
groups. If demes of helpers produce more propagules
than demes of defectors, then helping can invade the
population. In the absence of dispersal between
demes, relatedness within groups will take its maxi-
mum value of unity and groups can be seen as
functioning like clones. Because local competition is
not increased as a result of the expression of helping,
this biological scenario may lead to the strongest
possible selective pressure on helping (F: equation
(A14), Nm: k ¼ 1/(1 þ 2Nm); Gardner & West 2006;
Lehmann et al. 2006; Traulsen & Nowak 2006).

(iii) Selective emigration
Benefits to neighbours and local competition are also
decoupled when helping specifically affects the
number of emigrant juveniles produced (but not philo-
patric ones) and that dispersers compete only with
dispersers from other demes. This results in ‘selective
emigration’ (Rogers 1990), where groups with more
helpers produce more dispersers but not more philo-
patric individuals. Selective emigration may occur if
helping specifically increases the survival rates of dis-
persing progeny. As was the case for competition
occurring only between propagules, this process does
not affect the level of local competition, with the
result that the selective pressure on helping is increased
relative to that occurring in the reference model
(F: equation (A16), k ¼ (12 m)2/f(22 m)(N2 1)g,
Nm: k! 1/2N; Rogers 1990, p. 402).

(iv) Variance in vital rates
In the reference model, the coalescence rate per gener-
ation, which increases relatedness, is equal to the
inverse of the local census size (i.e. 1/N in equation
(3.7)). It might be felt that relatedness may further
increase if the local effective size is lower than the
census deme size. This may occur if the variance in
fecundity or mating is in excess of a Poisson distri-
bution, for instance, because the mating system is
skewed or females have a high variance in fecundity
(note that fecundity in the reference model follows a
Poisson distribution, either with infinite mean or
with finite mean, where in the latter case the con-
comitant demographic fluctuations are neglected).
Importantly, such features will not only affect the
dynamics of relatedness, R, but also the expression
of the fitness function, w, which depends on the vari-
ance in vital rates (Gillespie 1975, 1977). An
increase in the fecundity variance may then increase
the selective pressure for helping by raising relatedness
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(Nm: k! sv
2/N, where sv ¼ s/f is the coefficient of

variation (Lynch & Walsh 1998, p. 23), which is
assumed to be small relative to N, and where s and f
are, respectively, the mean and the variance of the
fecundity distribution; Lehmann & Balloux 2007,
eqn 16).

(c) Demographic structures
(i) Age structure
In the reference model, each individual dies after
reproduction but individuals may also survive from
one generation to the next. If surviving adults remain
in their natal patch and only juveniles disperse, the
average relatedness between patch members builds
up relative to that in the reference model because the
effective dispersal rate is lower when adults do not dis-
perse than when they do. In the same time, the
probability that an offspring from the focal individual
competes for the same local breeding spot as the off-
spring from another individual still depends on the
probability that both offspring are philopatric. A con-
sequence of this feature is that the benefits to
neighbours tend now to be more decoupled from
local competition.

Another factor promoting the selective pressure on
helping is thus the presence of overlapping generations
(Taylor & Irwin 2000; Irwin & Taylor 2001), or, in
other words, the presence of ‘asynchronous’ rather
than ‘synchronous’ updating (Nakamaru et al. 1997;
Koella 2000; Ohtsuki et al. 2006). If in the reference
life cycle, each adult individual survives independently
with probability s to the next generation, then the
selective pressure on costly helping is increased
(F: equation (A18), k ¼ f2s(12 m)g/f2s(1 2 m) þ
N[2 2 m(12 s)]g, Nm: k ! s/N; Taylor & Irwin
2000).

But the overlapping generation effect would not
work if all adults also dispersed independently of
each other to new demes at the same rate as juveniles.
In this case, the average relatedness between patch
members would be lower than in the null model
because the effective migration rate would be the
same but the coalescence probability lower than in
the reference model. Dispersal of adults may then
select for harming (reducing the survival of neigh-
bours) instead of helping (F: equation (A21) with
equation (A20), Nm: k ¼ fs(m(12 s) 2 ma)g/
fN(m(1 2 s) þ mas)g, where ma is the migration rate
of adults).

With overlapping generations, one may also sup-
pose that the expression of the mutant allele
increases the survival probability s of neighbours by
B, and decreases the survival probability of the focal
individual by C. Such effects on survival actually
result in a weaker selective pressure on helping than
effects on fecundity because they increase local com-
petition more than fecundity effects do. By reducing
the probability that neighbours die, fewer breeding
spots are vacated and available to the offspring of the
focal individual. But, by contrast to fecundity effects,
where the intensity of local competition depends on
the probability that two offspring from the focal patch
compete against other (effect of order (12 m)2),

the intensity of local competition under survival effects
depends on the generally higher probability that an
offspring from the focal patch settles locally (effect of
order 12 m). As a result, the selective pressure on
helping with effects on survival is lower than that
with effects on fecundity (Nakamaru et al. 1997;
Taylor & Irwin 2000), and harming is again selected
for (F: equation (A19), k ¼ 2(12 s)(1 2 m)/f2N2
(12 s)[1 þ m(N 2 1)]g, Nm: k ! 2(1 2 s)/2N).

The distinction between effects on fecundity and
effects on survival (effect on s in the last paragraph)
also helps us to understand the difference of selective
pressure resulting from different reproductive schemes
under overlapping generations with exactly one indi-
vidual dying per generation (the so-called Moran
process; Ewens 2004). Under this life history, it was
observed that one demographic regime, the so-called
death–birth protocol (DB), allows for costly helping,
whereas another, the so-called birth–death protocol
(BD), does not (Ohtsuki et al. 2006; Grafen 2007;
Taylor et al. 2007a). Under the DB protocol, an indi-
vidual sampled at random from the population dies
and the neighbours then compete to replace the
vacant spot with their relative pay-off affecting those
chances of replacement. This corresponds to effects
on fecundity. By contrast, under the BD protocol, a
random individual is chosen to reproduce, with a
probability equal to its relative pay-off. A random
neighbour of the reproducer is then killed to make a
space for its offspring. This can be interpreted as
effects on survival because the act of helping by a
focal individual increases the average lifespan of its
neighbours, as it increases their chances of not being
killed and reproducing instead.

(ii) Sex structure
In the reference model, both males and females have
exactly the same behaviours. However, the dispersal
rate of males and females might differ. In this case,
the relatedness asymmetries between the sexes stem-
ming from sex-specific dispersal may select for
altruism under certain conditions, and asymmetries
in the number of adult individuals may also do so
(Johnstone & Cant 2008; Gardner 2010). Selection
may then favour the sex that disperses less to help
both males and females. However, when the sex bias
in dispersal becomes extreme, selection will favour
harming behaviour, so that the set of parameter
values where sex-specific dispersal results in a higher
selective pressure on helping than in the reference
model (and holding everything else unchanged) is
rather small (Nm: k ! 0; Johnstone & Cant 2008,
p. 323), while that for sex-specific adult number is
larger (Nm: k! (1/Nm 2 1/Nf)/2 for an action per-
formed by a female, and where Ni is the number of
individuals of sex i (Johnstone & Cant 2008, p. 323).

(iii) Social structure
Under the reference model, each adult individual
carrying the mutant helping allele helps its neighbours
to produce more offspring and bears the cost of
helping in terms of reduced reproduction. But each
such adult has to reproduce, otherwise forgoing
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reproduction results in demographic fluctuations, a
feature that greatly complicates the analysis of the
selective pressure on social behaviour (demographic
fluctuations are discussed below). An adult individual
in the reference model cannot be interpreted as being a
sterile worker like those occurring in social insects
(Wilson 1975; Bourke & Franks 1995).

In order to get a representation of sterile workers,
one has to introduce castes into the model and a
simple way to do this is to assume that the N adult
individuals within groups are all queens and that
they produce both queens and workers. One can
then consider that workers help to raise the brood of
all queens in their natal patch before any dispersal of
juveniles occurs, which is commonly observed in
social insects (Wilson 1975; Bourke & Franks 1995).
This is equivalent to ‘helping before dispersal’ as dis-
cussed above, and a worker caste is selected for (k ¼
1/N). But the worker caste would also evolve when
helping occurs after the dispersal of both workers
and queens (k ¼ (12 m)2/N, Nm: k! 1/N; Lehmann
et al. 2008). Further, costly helping would also evolve
if it occurred between dominant and subordinate
individuals (Johnstone 2008).

(iv) Geographic structure: explicit versus implicit space
The discussion so far has been centred only around
‘patch-structured’ populations, where well-defined
boundaries separate the individuals from the same
group and where dispersal is random between groups
(Wright’s 1931 island model). By contrast, in natural
populations dispersal is usually localized; that is,
migrants preferentially move nearby rather than homo-
geneously over the landscape, a feature accounted for
in models of isolation by distance (e.g. Malécot
1973, 1975). In such models, the relatedness between
two individuals taken from different groups typically
decreases as the distance between the groups increases,
as more distant individuals are less likely to share
recent ancestors than more distant ones.

From the point of view of social behaviours, intro-
ducing explicit space is akin to introducing additional
categories of actors. The fitness of a focal individual
then no longer depends only on its own phenotype,
average phenotype of patch mates and the average phe-
notype of individuals in the population (see equation
(3.3)), but may be affected differently by individuals
living at different spatial locations, so that Hamilton’s
rule now needs to be evaluated with multiple classes of
recipients (see §5). For instance, competition between
plants (for light or nutrients in the soil) might decrease
with the spatial distance between them.

Although there is no doubt that spatially explicit
models are more realistic than patch-structured
models with random migration (e.g. Comins et al.
1980; Rogers 1990; Taylor 1992b; Irwin & Taylor
2001; Hauert & Doebeli 2004; Rousset 2004; Ohtsuki
et al. 2006), they add substantial mathematical and
dynamic complexity without necessarily leading to
new insights concerning the conditions favouring or
inhibiting the evolution of helping. For instance,
spatial pattern formation can lead to intricate temporal
dynamics in deterministic models, but it has been

investigated mainly in models where pure Defect is
opposed to Tit-for-Tat in the Prisoner’s Dilemma
game, rather than a continuum of ‘mixed’ strategies
as in, e.g. Taylor & Irwin (2000). Beyond such pattern
formation, discrepancies between the island and the
isolation by distance setting are essentially quantita-
tive, and occur in models of the evolution of the
dispersal rate (Gandon & Rousset 1999), of the distri-
bution of dispersal distance (Rousset & Gandon 2002)
and of costly helping itself (Lehmann et al. 2007).

But importantly, the qualitative features exposed in
spatially explicit models for the evolution of helping
behaviours can generally already be observed in the
simpler island models. For instance, the direct general-
ization to isolation by distance of the overlapping
generation model with fecundity effects discussed
above shows that the selective pressure on helping
has the same qualitative and quantitative features
than under the island model for the weak migration
large population size limit (F: equation (A23), Nm:
k ! s/N). For these reasons, we will ignore the more
realistic features of isolation by distance models, and
continue our discussion of the life cycle factors affect-
ing the evolution of helping mainly within the context
of the island model.

(d) Environmental dynamics
So far, the dynamics of the environment were assumed
to be constant. Each individual in each deme in each
generation faces exactly the same environmental con-
ditions as any other individual from any other
generation. But biotic and abiotic environments are
unlikely to remain constant over time and they may
change owing to fluctuations, for instance, in
resources, weather, diseases, predation, or even the
behaviour of conspecifics. Such environmental fluctu-
ations are likely to affect the fitness of several or of all
individuals within a group, which may then change the
selective pressure on helping.

(i) Environmental stochasticity
A simple way to introduce environmental fluctuations
into the reference model is to assume that each deme
may go extinct in each generation with probability
1 2 sd (where sd is the survival probability of a
deme), a formulation that underlies the classic meta-
population models (Slatkin 1977; Hanski & Gilpin
1997). Such patch destruction rate continuously gen-
erates empty breeding spots (empty demes), which
can be re-colonized. It might then be expected that
demes with more helpers are more likely to re-colonize
empty patches. Introducing metapopulation dynamics
does in itself not change the intensity of benefits to
neighbours relative to the concomitant increase in
local competition, so that adding extinction does not
in itself select for higher levels of helping (k ¼ 0;
Lehmann et al. 2006).

Phenotypic effects may not only affect the fecundity
of neighbours but may also reduce the intensity of
environmental fluctuations by increasing the survival
probability of whole demes. For instance, the con-
struction of nests and burrows may buffer individuals
from temperature changes or may allow them to
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store food, which reduces extinction risks from star-
vation. One can then suppose that the expression of
the mutant allele may increase the deme survival
rate, sd, by B. This effect on patch demography results
in an inclusive fitness benefit to all patch members
(including the focal) because the chance of them
reproducing is increased. At the same time, the inten-
sity of kin competition is not increased because
reducing patch extinction does not in itself increase
the productivity of neighbours relative to that of the
focal individual. As a result, the selective pressure on
helping is much increased (F: equation (A27), k ¼ 1/
[f12 sd(1 2 m)2gN], Nm: k! 1/f(1 2 sd)Ng; Eshel
1972; Aoki 1982; Lehmann et al. 2006).

(ii) Niche construction
Individuals might not only alter the environmental
conditions generated by exogenous abiotic or biotic
factors but may also generate or construct the environ-
ments to which they and other conspecifics are
exposed (Dawkins 1982; Odling-Smee et al. 2003).
For instance, the construction of a nest or a dam,
the emission of detritus, or even the behaviour of an
individual, can be seen as an environment affecting
other individuals, in which case the environment can
be thought of as being endogenously determined (to
some extent at least). Such extended phenotypic
effects might not only change the vital rates of others
living in the generation of the actor, but also that of
individuals living in the next, or subsequent gener-
ations. Because limited dispersal generates relatedness
between actors and recipients both within and across
generations (Malécot 1973, 1975), even if there is a
multigenerational gap between behavioural modifi-
cation of the environment and fitness consequences
on recipients, selection may favour social behaviours
that are costly to the actor and increase the fitness of
individuals living in downstream generations.

Suppose that the phenotypic effect B on other
individuals affects the reproduction of individuals
living in the focal deme in future generations and
that it decays with time at rate l (when l ¼ 0 the
effect, e.g. a nest, is erased from one generation to
the next, while when l ¼ 1 the nest stays forever).
This effect on the vital rates of future generations
does not increase the intensity of competition experi-
enced by the focal individual or that by its offspring
and thus decouples benefits to recipients and local
competition. Consequently, the presence of long-
lasting effects increases selection on helping (F:
equation (A30), k ¼ l(12 m)/[f12 l(1 2 m)gN];
Nm: k! l/f(12 l)Ng; Lehmann 2007; Wakano
2007; Sozou 2009). It is worth recalling that counting
the number of offspring in the next generation is still
sufficient for the computation of the selection gradient
on long-lasting behaviours: multigenerational effects
are taken into account as effects of actors from earlier
generations on the one-generation fitness w of a focal
individual (equation (A30)).

(e) Population dynamics
Until now, we have considered that the number of
individuals in each group is fixed. Such constant

group size follows from assuming that, first, there is
some ceiling number of individuals that can reach
adulthood in each deme or, second, that reproductive
output is so large that groups of individuals will always
be saturated. As a result, there are no fluctuations in
patch size in the population. But in natural popu-
lations, fecundity is neither infinitely large nor is
regulation necessarily of the ceiling type. Hence,
deme size may actually fluctuate between a whole
spectrum of sizes, which may affect selection on
social traits.

(i) Demographic stochasticity
While environmental stochasticity refers to situations
where several individuals are affected by a common
factor, demographic stochasticity refers to hazards
experienced independently by each individual. Under
demographic stochasticity, a maximum number of
breeding spots need not be imposed to regulate the
population. But there is an intermediate number of
settled individuals in a deme that would maximize its
future genetic contribution to the population as a
result of a trade-off between number of settled indi-
viduals and fecundity or survival of offspring. At
equilibrium, the population may be undersaturated,
i.e. average deme size may be below this maximizing
number, and the difference is analogous to empty
breeding spots, which may be filled if individuals
produced more offspring as a result of helping. Filling
empty local breeding spots functions like reducing
group extinction, as in both cases the average
focal group size is increased relative to that of other
groups as a result of helping behaviours.

Because this situation is difficult to analyse for-
mally, models taking demographic fluctuations into
account often assume that population demography fol-
lows a so-called birth and death process (only one
individual in a group or in the total population repro-
duces or dies per unit time; Grimmett & Stirzaker
2001), which induces overlapping generations. Such
models may be thought of as demographically explicit
versions of the overlapping generation models dis-
cussed above when s becomes close to unity. Under
these birth and death processes, it has recurrently
been found that helping can evolve under limited dis-
persal (e.g. van Baalen & Rand 1998; Le Galliard et al.
2003; Lion & van Baalen 2007; Alizon & Taylor 2008;
Lion & Gandon 2009). However, overlapping gener-
ations is a feature that in itself greatly increases the
selective pressure on helping (see §4c(i)), which
raises the question of the extent to which open breed-
ing spots, rather than overlapping generations,
increase the selective pressure on helping in these
models.

An analytical discrimination of the effects of
overlapping generations and open breeding spots can
in theory be performed (Rousset & Ronce 2004). In
the presence of demographic stochasticity, the inclu-
sive fitness effect can be decomposed into two terms:
SIF ¼ Sf þ SPr, where Sf is a demographic average of
the selective pressure encountered so far (e.g. demo-
graphic average of equation (3.5)), while SPr captures
the additional selective pressure on the mutant allele
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stemming from it, changing the local demographic
states and which quantifies the strength of selection
on helping stemming from filling open breeding
spots. In the appendix, we compare these two com-
ponents of selection, SPr and Sf, for demographically
explicit models based on the infinite island population
structure (see equations (A33)–(A59)). This allows us
to clarify the common features of the inclusive fitness
effects arising under birth–death reproduction (e.g.
van Baalen & Rand 1998; Le Galliard et al. 2003;
Lion & van Baalen 2007; Alizon & Taylor 2008;
Lion & Gandon 2009) and in those of semelparous
reproduction (Rousset & Ronce 2004; Lehmann
et al. 2006), and suggest that overlapping generations
contribute substantially to SIF.

Open breeding spots may promote selection on
helping behaviours (i.e. SPr . 0) only insofar as
populations are undersaturated. In patch-structured
models without overlapping generations (semelparous
populations), costly helping then evolves under
rather stringent conditions because populations are
found close to saturation (in which case equation
(3.8) applies and SPr ( 0), unless fecundity is very
low or positive density dependence (Allee effect) inter-
feres with demographic stochasticity (Lehmann et al.
2006). But models built on birth and death processes
tend to bring in additional demographic stochasticity
relative to semelparous reproduction. Under a birth
and death process, there is a variance in both the sur-
vival and the reproduction of individuals, which
increases the demographic variance in the population
and may lead to more frequent undersaturation. The
demographic component of inclusive fitness, SPr,
may be stronger under birth and death processes
than under semelparous populations, where all indi-
viduals die with certainty in each generation, which
may then increase the selection pressure on social
behaviours filling open breeding spots.

An estimate about the overall strength of selection
on helping under a birth and death demographic pro-
cess with fecundity effects can be found from lattice
models, where a focal individual may interact with
up to N nearest neighbours; that is, each site on the
lattice is connected to N other sites. Under these
assumptions, k! 1/N under the Nm limit (Lion &
Gandon 2009, eqn (14) with relatedness given up on
p. 1501). But the different quantitative results stem-
ming from assuming different demographies raise the
question of which demographic model is relevant in
which situation. A synthesis remains to be done in
order to assess the importance of the role of empty
breeding spots generated by demographic stochasticity
alone for the evolution of helping behaviours.

(ii) Niche and range expansion
Average group size might be increased not only as a
result of filling empty breeding spots generated by
demographic stochasticity, but also by changing the
number of local breeding spots or the number of indi-
viduals surviving competition. This might occur if
social interactions allow individuals to access new
resources (niche expansion) or new territories (range
expansion), thereby changing the local ecological

conditions in which groups are constrained to live.
The spatial distribution of resources or the size of
prey might prevent their exploitation by isolated indi-
viduals, but by mutual cooperation such resources
might be seized, which may result in an increase in
local group size. Because such group size expansion
results in a higher contribution of a focal group to
the ancestry of the population, helping behaviours
leading to group size expansion can result in fitness
benefits without concomitantly increasing kin
competition.

Although several models have considered the evo-
lution of optimal group size (Clark & Mangel 1986;
Giraldeau & Caraco 2000; Kokko et al. 2001), few
models have considered the benefits of group size
expansion in a structured population setting, which
necessarily leads to indirect fitness benefits when
total group size remains finite. Nevertheless, it has
been shown that, regardless of the level of saturation
of a focal deme, a mutant allele increasing the average
number of individuals reaching adulthood in the focal
deme, for instance because of a reduction of density-
dependent competition for resources among juveniles,
is under higher selection (Lehmann et al. 2006). A
rough estimate about the strength of this effect is
given by considering that a mutant allele may increase
the probability of transition of a focal deme from size
N to a larger size, say N+, with this transition prob-
ability being equal to unity when every individual in
the focal patch carries the mutant allele, in which
case the strength of selection on patch size expansion
can be high (Nm: k! (1/k2 2 1)/(2N), where k ¼
N/N+; Lehmann & Keller 2006, eqn (46)).

5. EMPIRICAL TESTS AND THE CONUNDRUM
OF LOCALIZED DISPERSAL
The models discussed above show that the strength of
selection on helping behaviours depends critically on
life history and demographic factors. In order to iden-
tify those factors favouring helping in natural
populations, one approach is to seek those factors
that appear correlated with the occurrence of sociality.
For example, correlative studies show that helping
behaviours are more common in variable environ-
ments (Rubenstein & Lovette 2007). This goes well
with some of the results of the models discussed
above (e.g. §4d). However, the same theoretical
models show that the phenotypic consequences of
helping (on fecundity of adults versus survival of
juveniles) as well as the mode of population recolon-
ization (e.g. propagule mode of dispersal versus
individual dispersal) are critical in determining the
strength of selection on helping. The relevance of
these factors for selection on helping in natural popu-
lations remains to be investigated. The propagule (or
budding) mode of dispersal may be common in
social species (e.g. Sharp et al. 2008; further references
in Lehmann et al. (2006) and Cornwallis et al. (2009))
but its importance in promoting helping has been little
studied empirically.

Another correlative approach is to measure related-
ness under limited dispersal in order to compare the
expected magnitude of indirect effects on helping
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across different demographic conditions. Despite the
counter-example provided by the reference model
(equation 3.8; Taylor 1992a), the idea that higher
relatedness favours higher levels of helping has
remained prevalent. This is because it works both in
family-structured models as originally considered by
Hamilton (1964a,b), and in many of the scenarios
encountered above. Experimental studies with bacteria
are consistent both with the results of the reference
model when its assumptions are enforced in the experi-
mental protocol, and with the idea that relatedness
otherwise favours helping (Kümmerli et al. 2009a,b).

The interpretation of estimates of relatedness
under limited dispersal is not straightforward. First,
kin discrimination may blur relationships between
relatedness and helping, as the relatedness between
interacting pairs within groups will not be well pre-
dicted from spatial patterns alone (e.g. Cornwallis
et al. 2009). Second, such works have been confronted
to a natural feature absent from the simplest model;
namely that dispersal is generally localized (§4c(iv)).
This affects the ‘scale of competition’, i.e. who com-
petes with whom, and whose relatedness should
be computed (see studies of unicoloniality in ants by
Helantera et al. (2009) for a recent example). In par-
ticular, since relatedness is a three-parties concept,
this raises the problem of assessing the reference popu-
lation relative to which the relatedness of a pair of
individuals is measured. In the sequel of this section,
we will show how the problem of the reference popu-
lation should be addressed in empirical studies, by
contrasting three different answers to this question.
Readers not interested in the estimation of relatedness
can skip this section and directly go to §6.

(a) Relatedness: island model
We first recall some statistical definitions of relatedness
that apply to the simple island model. One definition
of relatedness is Wright’s classic statistic R ¼ FST of
population structure, which one can write as

FST ¼ p0 $ p

1$ p
; ð5:1Þ

where p0 is the average, over focal individuals that bear
the mutant allele, of the frequency of the mutant allele
among patch neighbours, and p is this allele’s fre-
quency in the total population (i.e. regression
definition of relatedness: p0 ¼ FST þ (12 FST)p;
Grafen 1985; Rousset 2002). The frequency p0 is
increased above p only to the extent that a focal
individual mutant and a neighbour have a common
ancestor in the focal’s patch, which matches our earlier
probabilistic interpretation of relatedness (and, in a
neutral model, is independent of p).

The same expression for relatedness can be written as

FST ¼ q0 $ q

1$ q
; ð5:2Þ

where q0 is the frequency of pairs of gene copies from
two neighbours within a patch that bear the same
allele (the mutant or the resident one), and q is the
same frequency for pairs of genes taken from the
whole population. Because such ratios of frequencies

of identical pairs estimate relatedness defined as the
probability of coalescence within the deme, relatedness
can be estimated using the same formula now applied
to frequencies of identical pairs at ideally neutral loci,
not involved in the determinism of a given social trait.

In diploid models, or under isolation by distance as
considered below, other functions of frequencies of
identical pairs for a social mutant allele may need to
be considered, but they can be estimated by the same
function of sample frequencies of identical pairs of
genes at neutral loci. This forms the basis of widely
used estimators of relatedness (Queller & Goodnight
1989) and more generally of moment estimators of
Wright’s F-statistics (e.g. Weir & Cockerham 1984) as
further detailed elsewhere (Rousset 2007). More
powerful estimators can be defined when additional
information is used (e.g. pedigree reconstructions, or
when only a small number of kinship ties have to be dis-
tinguished, such as sisters versus cousins).

(b) Relatedness: localized dispersal
We now discuss three different choices of reference
population that can be used to evaluate relatedness
under localized dispersal: the total population (related-
ness is measured relative to the global scale), the deme
of a focal individual (relatedness is measured relative
to the local scale) and the competitive neighbourhood
(relatedness is measured relative to some specific class
of individuals).

(i) Relatedness relative to the global scale
Under localized dispersal, the change of mutant allele
frequency can still be written under the same form as
encountered above (see equations (3.2) and (3.4)).
Namely

Dp ¼ ds 2SIFðzÞ; ð5:3Þ

where s2 is a measure of genetic variation in the total
population, which reduces to p(12 p) in the island
model, and

SIFðzÞ ¼
@w

@z†

1$ p)

1$ p
þ
X

allk

@w

@zk
* pk $ p)

1$ p|fflfflfflffl{zfflfflfflffl}
‘relatedness’

ð5:4Þ

is a direct generalization of the inclusive fitness effect
for the island model (Rousset 2006). The first term
in the sum, bk ¼ @w/@zk, is the effect of all neighbours
separated by distance k from the focal deme, on the
focal individual’s fitness (all individuals at distance k
are treated symmetrically). The second term in the
sum, Rk ¼ (pk 2 p*)/(1 2 p), is a measure of related-
ness, which is expressed in terms of the frequency pk
of the mutant allele among distance-k neighbours, of
the frequency p of the mutant allele in the population;
and the frequency p* in any given class of actors.

The reference class in equation (5.4) does not
matter because, by necessity, the sum of the partial
derivatives of w, with respect to all phenotypes
involved, is null, which follows from the fact that the
evolutionary dynamics is zero-sum (Rousset & Billiard
2000): when one allele increases in frequency, the
other must decrease in frequency. In particular, in
the island model @w/@z† þ @w/@z0 þ @w/@z ¼ 0.
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Hence, the derivative relative to the mean population
phenotype @w/@z is 2@w/@z† 2 @w/@z0 ¼ c 2 b.

If we let p* ¼ p, the relatedness coefficients in SIF

are defined relative to the total population, which
matches the original formulation of Hamilton’s rule.
In particular, in the island model, the inclusive
fitness effect takes the usual form as that given by
equation (3.5):

SIFðzÞ ¼ $cþ bFST þ ðc$ bÞ½0'; ð5:5Þ

where ‘[0]’ exhibits the null relatedness between the
focal individual and the average population. Such
relatedness coefficients have also been used in theoret-
ical analyses of localized dispersal (e.g. Grafen 2007;
Taylor et al. 2007b). But it then comes at the cost
that data analyses based on this formulation have to
identify something that matches the concept of total
population size of the models.

(ii) Relatedness relative to the local scale
There is a second interpretation of relatedness, relative
to the focal deme, and that follows from using the for-
mula for FST (equation (5.1)) and rewriting equation
(5.3) as

Dp ¼ d½ð1$ FSTÞs2' SIFðzÞ
1$ FST

" #

¼ d½ð1$ FSTÞs2'~SIFðzÞ; ð5:6Þ

where

~SIFðzÞ ¼
@w

@z†

1$ p)
1$ p0

þ
X

all k

@w

@zk
* pk $ p)

1$ p0|fflfflfflffl{zfflfflfflffl}
‘relatedness’

: ð5:7Þ

Now let p* ¼ p0, so that relatedness coefficients are
defined relative to the focal deme. In particular, the
relatedness between the focal individual and its deme
neighbours is (p0 2 p0)/(1 2 p0) ¼ 0, which means
that the neighbours are not more related than them-
selves to the focal individual. In the island model, we
then recover the standard inclusive fitness effect in
the form SIF(z) ¼ (1 2 FST)S̃IF(z) where

~SIFðzÞ ¼ $cþ b½0' þ ðc$ bÞ $FST

1$ FST

¼ $cþ bFST

1$ FST
: ð5:8Þ

With localized dispersal, the relatedness coefficients
in S̃IF can be estimated from local data only because
they are of the form Rk ¼ (pk 2 p0)/(12 p0)¼ 2FSTk

/
(12 FSTk

) in terms of the FST between pairs of
demes at distance k: FSTk

¼ (p0 2 pk)/(1 2 pk).
Hence, S̃IF can be thought of as a localized selection
gradient. The expression for the change of allele fre-
quency (equation (5.6)) then conveys two important
messages. First, that the fate of the mutant depends
essentially only on local features (as quantified by
S̃IF). Second, that its speed of advance in the total
population depends also on its frequency and spatial
distribution in the total population (as quantified by
(12 FST)s

2). This distribution cannot usually be esti-
mated from local data only but it does not affect the
direction of selection on helping.

(iii) Relatedness relative to the competitive neighbourhood
There is a third interpretation of relatedness, in terms
of a competition neighbourhood relative to which
relatedness should be measured (Queller 1994). This
interpretation can be reached from equation (5.4) as
follows. Suppose we can distinguish among the recipi-
ents of an act of helping two categories of adult
individuals: competitors and another class that is a
priori more related to the focal individual and that we
call ‘beneficiaries’. These two classes of recipients
can be obtained from the fitness effects (the @w/
@zk’s) of class-k neighbours in various ways. For
instance, one may pool all the classes into the two cat-
egories, beneficiaries and competitors. Alternatively,
one may split the individual of each class-k into the
two non-symmetric categories of beneficiaries and
competitors (e.g. the patch mates of the focal individ-
ual consist of an average of more and less-related
individuals, such as its siblings and immigrants), and
then pool over the classes all individuals belonging to
a given category. Either way, equation (5.4) can then
be written as

SIFðzÞ ¼
@w

@z†

1$ p)

1$ p
þ

X

class k of
beneficiaries

@w

@zk

pk $ p)

1$ p

þ
X

class k of
competitors

@w

@zk

pk $ p)

1$p
; ð5:9Þ

where the first sum is over all beneficiaries, while the
second sum is over all competitors.

We can then define a weighted mean allele fre-
quency among beneficiaries as

pb ¼
X

class k of
beneficiaries

@w

@zk
pk=

X

class kof
beneficiaries

@w

@zk
ð5:10Þ

and a weighted mean allele frequency among competi-
tors as

pc ¼
X

class k of
competitors

@w

@zk
pk=

X

class k of
competitors

@w

@zk
: ð5:11Þ

If we let p* be equal to pc, we can eliminate the last
term in equation (5.9), and the selection gradient can
be written as

SIFðzÞ ¼
1$ pc
1$ p

@w

@z†
þ pb $ pc

1$ pc

X

class k of
beneficiaries

@w

@zk

0

@

1

A; ð5:12Þ

so that, regardless of the number of categories of
recipients, the last factor looks like 2c þ rb for related-
ness given by r ¼ (pb 2 pc)/(1 2 pc) and the benefit
is given by b ¼ P

class k of beneficiaries @w/@zk, the sum
of the benefits over all beneficiaries.

We see that in equation (5.12), the fitness cost to
the actor is the same as in Hamilton’s rule but related-
ness is now expressed in terms of a weighted allele
frequency, which is specific to each biological scenario
(i.e. the weights are different for each distinct scenario
discussed above) and on the choice of the partitioning
of the individuals into the two categories. Hence, while
the whole expression (equation (5.12)) gives the same
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direction of selection as Hamilton’s rule (equation
(3.6)), its terms do not match those of the Rb 2 c
formula (equations (3.6) or (5.4)).

The terms of equation (5.12) do not match those of
the Bk 2 C formula (equation (4.1)) either, because
each fitness effect @w/@zk may involve both the cost,
C, and the benefit, B, measured in units of vital
rates, as each actor may on one side increase the
vital rates of a recipient in proportion to B and at the
same time decrease the competition experienced by
this recipient in proportion to its own cost C. However,
each fitness effect @w/@zk may itself be partitioned into
a ‘beneficial effect’ and a ‘competitive effect’ separ-
ating B and C terms. By using this alternative
partition and following the same argument as above,
one can obtain an expression like equation (5.12),
but separating B and C terms rather than beneficiaries
and competitors, whose terms match those of the
Bk2 C formula.

Despite the popularity of the interpretation of
relatedness measured relative to the scale of compe-
tition (e.g. West et al. 2002; Helantera et al. 2009;
Platt & Bever 2009), inspection of equations (5.9)–
(5.12) suggests that it may generate confusions
because: (i) it remains unclear which of the partitions
are actually envisioned by its practitioners; (ii) its for-
mulation may raise concerns about the interpretation
of relatedness coefficients; and (iii) different traits
operate within different economic neighbourhoods
(Gardner & West 2006). It is thus important to realize
that there are many possible partitions of the total
fitness effect of a mutant allele (e.g. many different
ways of taking the sum in equation (5.9)), but the
terms in different partitions cannot have consistent
meanings across partitions. We are also unaware of
any study that has tried to estimate weighted prob-
ability of identity as suggested by equations (5.10)
and (5.11) or those resulting from other partitions of
the fitness effects @w/@zk.

In addition to the discrepancy with Hamilton’s rule,
the interpretation of relatedness in terms of scale of
competition may raise additional concerns. For
instance, a slight generalization of Taylor’s (1992a)
model (Taylor 1992b; Rousset 2004, eqn 7.21)
shows that the result that costly helping is not favoured
(equation (3.8)) holds whatever the relative sizes of the
‘scale of cooperation’ (the maximum distance of
neighbours benefiting from a focal individual’s helping
act) and of the ‘scale of competition (or regulation)’.
The idea that relatedness has to be low when compe-
tition occurs over a small scale (Helantera et al.
2009) then does not fit with the fact that, to the
extent that a ‘scale of competition’ depends on a
scale of dispersal, a small scale of competition would
imply a small scale of dispersal and then a strong
local genetic structure (high relatedness).

6. DISCUSSION
The models discussed in this paper illustrate that the
selective pressure on helping behaviours under limited
dispersal depends considerably on life history and
demographic factors (table 2). While the idea that
the increase in local competition cancels out the

benefit of helping under limited dispersal has
become popular (equation (3.8)), we saw that this
result relies on very specific assumptions. These
assumptions are unlikely to be exactly met in natural
populations, and when they are relaxed a situation
where costly helping can be selected for usually
emerges (table 2). A main message of our analysis is
thus that under many conditions (if not most) limited
dispersal and small deme size may favour selection on
unconditional costly helping (altruism). This fits well
with the intuitive notion that higher relatedness
between neighbours should lead to higher levels of
altruism. More generally, this implies that the selection
pressure on most social traits will vary directly with
relatedness under limited dispersal.

(a) Three types of quantitative outcomes
Analysis of the models presented in this paper illus-
trates that variations in life history and demographic
factors may lead to many different selection gradients
on helping (and hence k coefficients, table 2). These
rules of invasion of costly helping can be divided into
three quantitative categories, based on the value that
k takes under strong population structure and large
deme size (Nm limit, see table 2).

The first category encompasses situations leading to
vanishingly low selective pressure for costly helping or
selection on harming (k! 0 or k, 0). This encapsu-
lates all situations where helping neighbours only
increases local competition but not much productivity
relative to other demes (e.g. regulation before disper-
sal, effects on survival, sex-specific dispersal). The
second category of invasion rules encompasses situ-
ations leading to selection on helping being
proportional to the inverse of deme or neighbourhood
size (k! q/N, for some q + 1 depending on life cycle
features). This encapsulates the cases where benefits
to neighbours are partially decoupled from local com-
petition (e.g. selective emigration, social structures,
explicit population dynamics, above Poisson fecundity
or mating distribution, niche construction if l is
small). Finally, the third category encompasses situ-
ations leading to a strong selective pressure on
helping (k can be arbitrarily larger that 1/N). Here,
the benefits to neighbours are strongly decoupled
from local competition (e.g. propagule or budding dis-
persal and competition, effects on group extinction,
niche construction if l is large).

Among all models encountered so far in the litera-
ture, the most frequent quantitative outcome is the
second; that is, when the selective pressure on helping
is at most 1/N. This supports the idea that selection for
costly helping is negligible when population structure,
here characterized by deme size, is weak. Yet, cases
where helping evolves may overall be of the third
type. In particular, it may be that modelling efforts
have been driven away from some important cases,
partly for technical reasons. For example, local extinc-
tions and recolonization can both lead to strong spatial
relatedness (mainly determined by the minimal deme
size) and favour helping (Lehmann et al. 2006,
p. 1145), yet they do not easily lead to simple
theoretical results as presented in table 2. Such

2612 L. Lehmann & F. Rousset Review. Life history, demography and helping

Phil. Trans. R. Soc. B (2010)

 on August 2, 2010rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


metapopulation process are nevertheless common
(Clobert et al. 2001; Hanski & Gaggiotti 2004), but
their effects on the evolution of social behaviours
have not been much investigated, as well as the evo-
lution of social interactions in the presence of
age-classes with ageing (senescence).

Another even less relaxed assumption for the evo-
lution of social behaviours is that traits affect fitness
continuously, as a chemical law of mass action. This
may be appropriate for many traits such as dispersal
or sex ratio, but may be less appropriate for agonistic
interactions between groups, where it may be most
important to be bigger than the competitors, and
where fitness may be a steep function of the difference
between the phenotypes of competitors.

(b) Other features affecting outcomes
We now spell out some other features, which may
markedly affect the evolution of helping, and that
have been left out of our discussion so far. For
instance, mating systems such as polyandry affect
social behaviours in insect colonies (Bourke &
Franks 1995). It is thus important to keep in mind
that the models discussed here were haploid without
Mendelian segregation and that features of the genetic
system, such as diploidy or haplo-diploidy, the mode
of control of the expression of traits (e.g. parental
versus offspring, imprinting), may also affect the selec-
tive pressure on helping, or more generally the
evolution of any social behaviour (e.g. Hamilton
1979; Taylor 1988; Haig 1997).

We have also not discussed the conditional
expression of helping, which is useful to divide into
at least two categories. First, the behaviour of an
individual may be conditional on the behaviour of its
social partner(s), as occurs, for instance, in multimove
games such as the repeated Prisoner’s Dilemma game
(Trivers 1971; Axelrod & Hamilton 1981; Leimar
1997), the Bargaining game (Binmore et al. 1997;
McNamara 1999) or the Foraging game detailed in
§7 (a variety of game-theoretic concepts are also pre-
sented in various contribution to this volume, see
Connor 2010; Leimar & Hammerstein 2010). This
type of ‘strategic conditionality’ is implicitly taken
into account in the model discussed above. Hence,
if selection is weak and gene action is additive, differ-
ent strategic situations will lead to different values of
the cost C and the benefit B, without the need to
re-evaluate the consequences of the various life his-
tory and demographic factors for selection on
strategies for each new behavioural scenario (see §7
for an example, Taylor & Irwin (2000); Lehmann &
Keller (2006) for other ones, and Day & Taylor
(1997, 2000) for a more general formulation of
dynamic games).

The second category of conditional helping involves
those situations resulting in some form of kin recog-
nition and where the behaviour of an individual is
expressed conditionally on some demographic feature.
For instance, this may be the case when helping is
expressed conditionally on a focal individual being
philopatric, or conditionally on the focal individual’s
social partner(s) being philopatric, or even on the

partner having identical recognition tags/markers to
the focal individual (e.g. Frank 1998; Axelrod et al.
2004; Jansen & van Baalen 2006; Rousset & Roze
2007; El Mouden & Gardner 2008; Johnstone &
Cant 2008). In all these cases, the expression of the
behaviour is conditional on variables that are them-
selves function of demographic or life-history
features (migration rate, population size, survival).
These kinds of scenario are not implicitly taken into
account in the models discussed above but usually
involve direct extensions of them (e.g. Rousset &
Roze 2007; El Mouden & Gardner 2008; Johnstone &
Cant 2008).

(c) Measuring relatedness
Although we saw that there is a large variety of life his-
tory and demographic scenarios for the evolution of
helping, some may be more plausible than others.
The most direct test of a given scenario leading to
the evolution of helping may actually be a test of its
life history and demographic assumptions. Another
approach is to measure relatedness under limited dis-
persal in order to compare the expected magnitude
of indirect effects on helping across different demo-
graphic conditions. We have seen that there are
different, equally valid ways to represent allele fre-
quency changes for social traits in spatially
structured populations (e.g. equations (5.4), (5.7)
and (5.12)), but they suggest more or less appropriate
data analyses. They rest on at least three different
interpretations of ‘relatedness’, which imply different
quantities to be estimated empirically.

Relatedness may first be defined relative to the total
population allele frequency, which matches the terms
of Hamilton’s rule but can hardly be estimated in prac-
tice because there is a too poor match between the
idealized ‘total population’ size of theoretical models
and the ‘total population’ of any real species. Further,
the data may simply not be there to analyse the ‘total
population’ of a species of interest; that is, the scale
of intraspecific competition.

Another way to defined relatedness (the third one
considered above) is relative to a competitive neighbour-
hood, which depends on local allele frequencies, but
will be specific to each new biological scenario rather
than a measure common to a wide range of models,
and therefore it will not bear a single relationship with
relatedness in Hamilton’s rule. Different choices of the
reference frequency p* (equation (5.4)) should lead to
the same conclusions about inclusive fitness (as only
its magnitude, not its sign, would be affected) but
may render across-species (and even within-species)
comparisons of relatedness meaningless.

Finally, we have considered relatedness measured
relative to the local scale, which solves the above diffi-
culties: the cost and benefits are those of Hamilton’s
rule, the relatedness coefficients are local and they
bear a consistent relationship with relatedness in
Hamilton’s rule. Hence, it seems than anyone
willing to estimate ‘inclusive fitness’ should focus on
estimating S̃IF(z) (equation (5.7)) rather than SIF(z)
(equation (5.4)).
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(d) Conclusion
In summary, with the assumptions of additive gene
action and weak selection, theoreticians have been
able to derive the consequences of many life history
and demographic scenarios for the evolution of help-
ing behaviours. This has provided an increased
understanding of how selection and genetic drift inter-
act at a local scale in order to shape the force of
directional selection on social behaviours, which may
often result in the evolution of unconditional costly
helping. However, owing partly to the complications
raised by localized dispersal, analyses of spatial vari-
ation in relatedness have provided comparatively little
insight. A synthesis is still needed in order to better
understand the relative importance of different
demographic factors on the evolution of social traits.

7. WHAT DO THE FITNESS EFFECTS C AND B
REPRESENT: THE LINK BETWEEN
DEMOGRAPHY AND STRATEGIC BEHAVIOUR
(a) Multimove social interactions
Behavioural ecologists tend to consider that the behav-
iour of an organism can be predicted from knowledge
about a set of external stimuli and internal states of the
organism (e.g. McFarland & Houston 1981; Leimar
1997; Enquist & Ghirlanda 2005). One can then
model behaviour as a function M that maps states, s
(internal and external inputs) to behavioural responses
or action, a, as

a ¼ MðsÞ: ð7:1Þ

This is the so-called state–space approach to behav-
iour (McFarland & Houston 1981; Leimar 1997;
Enquist & Ghirlanda 2005), where the function M
describes how a focal individual responds to its
environment (abiotic and biotic) at any point in
time, and will result in a sequence of behavioural
actions a0, a1, a2, . . . , which will affect the vital rates
of the focal individual and possibly those of its
neighbours.

The phenotype z defined in the main text may affect
the states of the organism, the transitions between the
states and/or the function M that maps states into
actions. In other words, the evolving phenotype z
may affect either directly or indirectly the actions
taken by an individual at any point in time, e.g.
at(z). For instance, if individuals interact repeatedly
(e.g. repeated Prisoner’s Dilemma game, Bargaining
or Negotiation game, repeated rounds of cultural
transmission, etc.) the sequence a0, a1, a2, . . . of
actions expressed by a focal individual during a
period of time is affected by z, and will then change
its vital rates (by magnitude C) and possibly that of
its neighbours (by magnitude B).

Importantly, C and B capture the total change in
the relative fecundity (or survival) of a focal individual
stemming from it and its neighbours expressing the
mutant phenotype, respectively. The interpretation of
C and B is thus not limited to the outcomes of one-
shot social interactions with direct genetic effects but
capture as well the outcomes of multimove social inter-
actions, which may be directly or indirectly influenced
by z, and occur over one iteration of the life cycle.

(b) Example: cooperative cleaners
In order to illustrate these concepts, we extend the
‘foraging in pair non-cooperative cleaning model’ of
Bshary et al. (2008, p. 3, electronic supplementary
meterial) to interactions occurring between pairs of
individuals in a patch-structured population. The
model describes the foraging behaviour of two cleaner
fishes on a single client. The assumption for the fora-
ging strategy is that a focal cleaner consumes
encountered ectoparasites but may ‘cheat’ by taking
a bite of mucus with a probability z† per unit time
(denoted l1 in Bshary et al. 2008, p. 2, electronic sup-
plementary material), while z0 denotes the probability
that the partner of the focal individual, here an average
patch neighbour, takes a bite of mucus per unit time
(denoted l2 in Bshary et al. 2008, p. 2, electronic sup-
plementary material). After a bite of either individual,
the client terminates the interaction with probability
1/2. The expected cleaning duration is then t ¼ 2/
(z† þ z0) and when an interaction ends, the expected
time until a new client arrives is t0.

The fecundity of the focal individual is assumed
to be given by eqn (2) of Bshary et al. (2008, p. 2,
electronic supplementary material), which, with the
present notation becomes

f ¼ gpðtÞ þ 2bðz†=ðz† þ z0ÞÞ
t þ t0

; ð7:2Þ

where gp(t) is the expected energy gain that accrues
to the focal cleaner from consuming ectoparasites,
z†/(z† þ z0) is the fraction of bites of mucus taken by
the focal cleaner, b is the expected energy gain from
such a bite and the factor 2 reflects the fact that on
average two bites occur before the interaction with
the client ends. Note that strictly speaking one has to
describe how different pairs of individuals interact in
a patch in order to write the fecundity function f (as,
e.g. in Lehmann et al. 2007; Rousset & Roze 2007),
but we ignore these details as they do not affect the
results given below.

For this strategic situation, one has:

$ CðzÞ ¼ 1

f

@f

@z†
jz†¼z0¼z

¼ 1

2ðt þ t0Þzf
bþ gpðtÞ
ðt þ t0Þz

þ b$
g0pðtÞ
z

$ %
; ð7:3Þ

where the prime denotes a derivative, and which gives
the change in the relative fecundity of the focal individ-
ual stemming from it increasing its mucus biting
probability, while

BðzÞ ¼ 1

f

@f

@z0

&&&&
z†¼z0¼z

¼ 1

2ðt þ t0Þzf
bþ gpðtÞ
ðt þ t0Þz

$ b$
g0pðtÞ
z

$ %
; ð7:4Þ

which is the change in the relative fecundity of the
focal individual stemming from its partner increasing
its mucus biting probability and did not appear in
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the original formulation of the model as cleaner fish
are likely to interact in a panmictic way.

Using equation (4.1), a candidate evolutionarily
stable state is found at the point where B(z)k2
C(z) ¼ 0. Substituting equations (7.3) and (7.4) into
the latter equation, we find that the candidate optimal
z satisfies

g0pðtÞ ¼
gpðtÞ þ b

t þ t0
þ bð1$ kÞ

tð1þ kÞ
; ð7:5Þ

which shows, first, that when k ¼ 0, equation (7.5)
reduces to the ‘non-cooperative’ solution of Bshary
et al. (2008, eqn (3)), and, second, that when k ¼ 1,
eqn (7.5) reduces to the ‘cooperative’ solution of
Bshary et al. (2008, eqn (2)). Hence, depending on
the demographic assumptions, spatial structure can
tilt the optimal biting rate from the ‘non-
cooperative’ to the ‘cooperative’ solution, in which
case individuals provide a better service than if they
were alone (Bshary et al. 2008).
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Kümmerli, R., Griffin, A. S., West, S. A., Buckling, A. &
Harrison, F. 2009b Viscous medium promotes
cooperation in the pathogenic bacterium Pseudomonas
aeruginosa. Proc. R. Soc. B 276, 3531–3538. (doi:10.
1098/rspb.2009.0861)

Le Galliard, J., Ferrière, R. & Dieckmann, U. 2003 The
adaptive dynamics of altruism in spatially heterogeneous
populations. Evolution 57, 1–17. (doi:10.1111/j.0014-
3820.2003.tb00211.x)

Lehmann, L. 2007 The evolution of trans-generational altru-
ism: kin selection meets niche construction. J. Evol. Biol.
20, 181–189. (doi:10.1111/j.1420-9101.2006.01202.x)

Lehmann, L. & Balloux, F. 2007 Natural selection
on fecundity variance in subdivided populations: kin
selection meets bet hedging. Genetics 176, 361–377.
(doi:10.1534/genetics.106.066910)

Lehmann, L. & Keller, L. 2006 The evolution of
cooperation and altruism: a general framework and a
classification of models. J. Evol. Biol. 19, 1365–1376.
(doi:10.1111/j.1420-9101.2006.01119.x)

Lehmann, L., Perrin, N. & Rousset, F. 2006 Population
demography and the evolution of helping behaviors.
Evolution 60, 1137–1151. (doi:10.1554/05-655.1)

Lehmann, L., Rousset, F., Roze, D. & Keller, L. 2007 Strong
reciprocity or strong ferocity? A population genetic view
of the evolution of altruistic punishment. Am. Nat. 170,
21–36. (doi:10.1086/518568)
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Electronic supplementary material to the paper “How life-history, demography, and ecol-

ogy promote or inhibit the evolution of helping behaviors” by L. Lehmann and F. Rousset.

Fitness functions in inclusive fitness effects for the various

factors promoting and inhibiting selection on helping

In this appendix, we present in a first time the fitness functions (w) and the inclusive fitness

effects (SIF) leading to several of the κ coefficients presented in the main text. This allows

for a more direct comparison between the various models. In a second time, we evaluate

the two components, Sf and SPr, of the inclusive fitness effect for the demographic model

of Alizon and Taylor (2008), which allow us to highlight the similarities and the differences

between the inclusive fitness effect arising in demographic models based on a birth-death

process (e.g., van Baalen and Rand, 1998; Le Galliard et al., 2003; Lion and van Baalen,

2007; Alizon and Taylor, 2008; Lion and Gandon, 2009) and those assuming semelparous

reproduction (Rousset and Ronce, 2004; Lehmann et al., 2006).

The κ coefficients have been calculated in the literature with a variety of methods and

we recalculated some of them in order to have a more unitary interpretation concerning the

effect B on vital rates, which, unless specified otherwise, will be an effect on the neighbours

of the focal individual (excluding the focal individual; that is, “others-only” helping, see

Pepper, 2000).

The models presented in this appendix are always the direct variations of the baseline

model discussed in the section“Fitness in a structured population: baseline model”and those

presented here were chosen on the basis that they are relatively easy to analyze. Hence, they

do not represent an exhaustive list. We also present the relatedness coefficients associated

to each model and the κ coefficients are obtained by evaluating eq. 5 or (eq. 13) of the main

text at the point where all phenotypes are equal to zero and rearranging under the form

C/B < κ.
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Baseline model

For the baseline model, substituting eq. 3 into eq. 5 produces

SIF = −C +BR− (1−m)2 (B − C)RR, (A-1)

where

RR =
1

N
+

�
N − 1

N

�
R. (A-2)

The relatedness needed to evaluate explicitly eq. A-1 is given by eq. 7 of the main text:

R =
(1−m)2

1 +m (2−m) (N − 1)
, (A-3)

which satisfies the recursion

R = (1−m)2
�

1

N
+

�
N − 1

N

�
R

�

= (1−m)2RR. (A-4)

Using eq. A-4 in eq. A-1 and simplifying produces

SIF = −C +BR− (B − C)R

= −C (1−R) . (A-5)

Timing of life cycle events

Regulation before dispersal

Under regulation before dispersal, the fitness of a focal individual depends only on its fe-

cundity relative to the average fecundity in the focal deme, which gives

w =
1 +Bz0 − Cz•
1 + (B − C)zR0

. (A-6)

Substituting this equation into Hamilton’s rule (eq. 5 of the main text) and noting that

∂w/∂z• = −∂w/∂z0 produces

SIF =

�
−C − B − C

N

�
(1−R) . (A-7)
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The mutant allele spreads if

C

B
<

−1

N − 1
(A-8)

so that κ = −1/(N − 1).

Helping after reproduction and before dispersal

In this case, the fecundity of a focal individual (average number of offspring produced before

any regulation stage) is given by 1 + BzR0 − Cz• because a fraction 1/N of helpers in the

population are the offspring of the focal individual and have relatedness one to him (recall

that zR0 = z•/N + (N − 1)z0/N), while everything else is the same as in the baseline model.

Hence, the benefit B can be thought of as an effect on neighbors including the focal (“whole-

group” helping, Pepper, 2000) and the fitness function is given by

w =
(1−m)(1 +BzR0 − Cz•)

(1−m) [1 + (B − C)zR0 ] +m[1 + (B − C)z]
+

m(1 +BzR0 − Cz•)

1 + (B − C)z
, (A-9)

and the relatedness needed to evaluate the inclusive fitness effect is given by eq. A-4.

For this model, the inclusive fitness effect simplifies to

SIF =

�
−C +

B

N

�
(1−R) . (A-10)

Modes of reproduction, dispersal, and competition

Individual versus group dispersal

In this case, individuals may disperse in propagules and we denote by φ the probability that

two individuals randomly sampled in the same propagule come from the same deme (e.g.,

Slatkin, 1977). With this, the fitness function with “others-only” helping is

w =
(1−m)(1 +Bz0 − Cz•)

(1−m) [1 + (B − C)zR0 ] +m[1 + (B − C)z]

+
m(1 +Bz0 − Cz•)

(1−m)[1 + (B − C)z] +m(φ[1 + (B − C)zR0 ] + (1− φ)[1 + (B − C)z]
, (A-11)
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where the denominator of the second term now accounts for competition occurring after dis-

persal between individuals stemming from the same deme before dispersal. The relatedness

corresponding to this scenario satisfies the recursion

R =
�
(1−m)2 +m2φ

�
RR, (A-12)

where RR is given by eq. A-2.

For this model, the inclusive fitness effect simplifies to

SIF = −C (1−R) . (A-13)

Individual versus group competition

In this case, the fitness of a focal individual depends only on its fecundity relative to the

average fecundity in the population, and is given by

w =
1 +Bz0 − Cz•
1 + (B − C)z

, (A-14)

where, by contrast to eq. A-6, competition is now completely global (always between indi-

viduals from different demes). Assuming that dispersal occurs among adults, after group

competition, the relatedness corresponding to this scenario is given by eq. A-4.

Here, the inclusive fitness effect is

SIF = −C +BR. (A-15)

Selective emigration

The formulation of Rogers’ (1990) model implies that the fitness of the focal individual with

“others-only” helping is given by

w =
1− Cz•
1− CzR0

�
(1−m) +m

1 +Bz0
1 +Bz

�
(A-16)

and the corresponding relatedness is still given by eq. A-4.
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For this model, the inclusive fitness effect can be expressed as

SIF = −C
�
1−RR

�
+mBR. (A-17)

Demographic structures

Age structure

For fecundity effects, the model of Taylor and Irwin (2000) implies that the fitness of the

focal individual is given by

w = s+ (1− s)

�
(1−m)(1 +Bz0 − Cz•)

(1−m) [1 + (B − C)zR0 ] +m[1 + (B − C)z]
+

m(1 +Bz0 − Cz•)

1 + (B − C)z

�
,

(A-18)

while for survival effects it is

w = s(1+Bz0 −Cz•)+ (1−m)
�
1− s{1 + (B − C)zR0 }

�
+m (1− s{1 + (B − C)z}) .

(A-19)

These two fitness functions remain valid in the presence of adult dispersal if one assumes

that only juveniles compete for vacant breeding spots and that adults disperse after the

regulation of juveniles. The relatedness for the case where both adults and juveniles may

disperse satisfies the recursion

R = s2(1−ma)
2R+ 2s(1− s)(1−m)(1−ma)R

R + (1− s)2(1−m)2RR, (A-20)

where ma is the dispersal rate of adults.

The inclusive fitness effect for fecundity effects (substituting eq. A-18 into eq. 5 of the

main text) is

SIF = (1− s)
�
−C +BR− (1−m)2 (B − C)RR

�
, (A-21)

while that for survival effects (substituting eq. A-19 into eq. 5 of the main text) is

SIF = s
�
−C +BR− (1−m) (B − C)RR

�
. (A-22)
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Geographic structure: explicit space

Under isolation-by-distance and assuming a homogeneous population of total infinite size

(see Rousset, 2004 for a review of such models), we can generalize eq. A-18 to

w = s+ (1− s)
�

i

mi
1− Cz• +

�
k Bkzk

�
jmi−j

�
1 +

�
k B

�
j−k,tz

R
k

� , (A-23)

where mi is the probability that a juvenile disperses to a deme at distance j from its natal

deme (
�

i mi = 1), Bj is the effect of an individual carrying the mutant allele on the

fecundity of the whole set of individuals breeding in a deme at distance j (B0 is the effect

on deme mates), B�
j = Bj except that B�

0 = B0 − C, and zRk = zk except that zR0 =

z•/N + (N − 1) z0/N .

Substituting eq. A-23 into eq. 13 or eq. 16 of the main text and assuming weak migration,

the inclusive fitness effect for this model can be expressed as

S ∝ −C + (B0 − C)

�
s(1 + s)m0 + s(1− s)

2N

�
+

�

k �=0

Bk

�
s(1 + s)mk

2N

�
, (A-24)

which follows by a rearrangement of eq. A.44 of Lehmann et al. (2007) and where m0 = 1−m

with m being the total migration rate. In the Nm limit all the mk’s are very small for k > 0,

while N becomes very large. Hence, the last term in eq. A-24 vanishes. Setting B0 = B,

the κ coefficient for this model is then found to be κ = s/N in the Nm limit.

A special case of eq. A-23 is to assume that there is only one individual per deme, that s

becomes very close to one so that approximatively only one individual reproduces per unit

time in the population, that helping involves only an effect B that is shared equally among

N nearest neighbours of a focal individual, and that complete migration of juveniles occurs

to one of the the N nearest neighbours (m0 = 1). This, in essence, are the assumptions of

the death-birth protocol model of Ohtsuki et al. (2006), which gives the fitness function:

w ∼ 1− Cz• +Bz1
1
N (1− Cz• +Bz1) +

�
N−1
N

� �
1 +B

�
z1
N + (N−1)

N z3
�
− Cz2

� . (A-25)

Assuming as in Ohtsuki et al. (2006) that the population is an infinite homogeneous tree of

degree N (Cayley tree or Bethe lattice), the relatedness coefficients between two individuals
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sampled at i steps apart on the lattice is given by Ri = (1/(N − 1))i (Lion, 2009, Appendix

B). Substituting these relatedness coefficients and eq. A-25 into eq. 13 of the main text

produces after rearrangements:

S ∝ −C +
B

N
, (A-26)

whereby κ = 1/N .

Environmental dynamics

Environmental stochasticity

Here, each deme gets independently extinct with probability 1− sd in each generation, and

helping increases deme survival (instead of increasing deme member fecundity) according to

the average trait value in a deme. The survival probability of the focal deme is then given by

sd
�
1 +BzR0

�
, which results in “whole-group” helping, and the fitness of the focal individual

is

w = sd
�
1 +BzR0

� � (1−m)(1− Cz•)

(1−m) (1− CzR0 ) +m(1− Cz)

+
{1− sd (1 +Bz)}(1− Cz•)

sd (1 +Bz) (1− Cz)
+

m(1− Cz•)

1− Cz

�
. (A-27)

The relatedness for this model satisfies the recursion

R = sd(1−m)2RR (A-28)

and the inclusive fitness effect can be expressed as

SIF = −C (1−R) +BRR. (A-29)
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Niche construction

For long lasting behaviors, the fitness function is given by

w =
(1−m)(1 +Bz0 +

�∞
t=1 Bt z0,t − Cz•)

(1−m) (1 + (B − C)zR0 +
�∞

t=1 Bt z0,t) +m(1 + (B − C)z +
�∞

t=1 Bt zt)

+
m(1 +Bz0 +

�∞
t=1 Bt z0,t − Cz•)

(1 + (B − C)z +
�∞

t=1 Bt zt)
, (A-30)

where Bt is the effect of a focal individual carrying the mutant allele on the fecundity of the

whole set of individuals living in the focal deme t generations later than the focal individual

and z0,t (zt) is the average phenotype of an individual randomly sampled in the focal patch

(in the population) t generations prior to the focal generation, which can be thought of as

a class-t actor.

The selection gradient on the mutant allele when the fitness function is given by eq. A-23

can then be evaluated from eq. 13 of the main text and the relatedness Rt of the focal

individual to an individual living at t ≥ 1 generations before him is given by

Rt = (1−m)tRR. (A-31)

where RR is given by eq. A-2 with R given by eq. A-4. With this, the inclusive fitness effect

can be expressed as

SIF =

�
−C −

∞�

t=1

Bt(1−m)t
�
(1−R) . (A-32)

Assuming that Bt = Bλt, one then obtains after rearrangements that κ = λ(1 −m)/[{1 −

λ(1−m)}N ].

Population dynamics

In this section we present an example of fitness functions and inclusive fitness effect in the

presence of demographic stochasticity. Our aim is to provide an alternative derivation of

the main result of Alizon and Taylor (2008); namely, their eq. 1, and put it under the form

SIF = Sf + SPr. This allows us to make clear the common features of the inclusive fitness
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effect arising in demographic models based on a birth-death process (e.g., van Baalen and

Rand, 1998; Le Galliard et al., 2003; Lion and van Baalen, 2007; Alizon and Taylor, 2008;

Lion and Gandon, 2009) and in those assuming semelparous reproduction (Rousset and

Ronce, 2004; Lehmann et al., 2006), which was not clear to us from earlier analyses.

Selection gradient

In the presence of change in patch size, the calculation of the inclusive fitness effect under

the infinite island model of dispersal becomes more complicated and it can be expressed as

SIF = Sf + SPr, where

Sf =
�

n

Sf(n)nPr(n) (A-33)

and

SPr =
�

n

SPr(n)nPr(n), (A-34)

where

Sf(n) =
�

n�

ν(n�)

�
∂wp(n, n�)

∂z•
+

∂wp(n, n�)

∂zR0
RR(n)

�
Pr(n� | n)

+
�

l

�

l�

ν(l�)

�
∂wd(l, l�, n)

∂z•
+

∂wd(l, l�, n)

∂zR0
RR(n)

�
Pr(l� | l) Pr(l) (A-35)

and

SPr(n) =
�

n�

ν(n�)wp(n, n
�)
∂Pr(n� | n)

∂zR0
RR(n), (A-36)

and where all quantities are evaluated under the neutral process, or (for derivatives) at

the neutrality point. The above expressions are ad hoc versions of eqs. 26-27 in Rousset

and Ronce (2004) (see also appendix 2 of Lehmann et al., 2006) suitable for the present

comparisons. The two components of the gradient of selection depend on four types of

quantities:

(1) The stationary probability Pr(n) that a focal group of individuals is in demographic

state n (here that there are n individuals within a focal deme), which is the steady-state
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distribution of the Markov chain describing the demography of the population and which

has forward transitions probabilities Pr(n� | n), where n is the demographic state of the

deme in the parental generation and n� is its state in the offspring generation.

(2) Two fitness functions. First, wp(n�, n), which gives, for a focal parent, its expected

number of philopatric offspring reaching adulthood in the focal deme, this number being

considered conditional on the size n� of the deme in the offspring generation, and on the size

size n of the deme in the parental generation. Second, wd(l, l�, n), which gives, for a focal

parent breeding in a deme of size n, its expected number of immigrant adult offspring in

demes of size l� in the offspring generation that were of size l in the parental generation.

(3) The relative reproductive value ν(n) of a single offspring within a group in demo-

graphic state n.

(4) Finally, the probability of identity by descent RR(n) between two homologous genes

sampled with replacement in a deme in state n. This is

RR(n) =
1

n
+

�
n− 1

n

�
R(n), (A-37)

where R(n) is the probability of identity between two homologous genes sampled without

replacement in that group.

Demography

In order to evaluate eqs. A-35–A-36 we need explicit expressions for the quantities involved.

Following the birth-death process demographic assumptions spelled out in the appendix of

Alizon and Taylor (2008), assuming (for ease of presentation) that the fecundity effect B is

shared by all individuals on the focal patch (“whole-group” helping Pepper, 2000), and that

the mutant affects only fecundity, the probability that a deme of type n becomes a deme of

type n+ 1 per time interval h is

Pr(n+ 1 | n) = λnh+ o(h), (A-38)
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where

λn =

�
N − n

n

��
(1−m) [1 + (B − C)zR0 ]n+m[1 + (B − C)z]Neq

�
, (A-39)

which is the net birth rate in a patch of size n per unit time, where N is the local carrying

capacity and Neq is the mean patch size in the population. The probability that a deme of

type n becomes a deme of type n− 1 is

Pr(n− 1 | n) = µnh+ o(h), (A-40)

where

µn = (1− s)n (A-41)

is the death rate on a patch of size n with (1− s) being the death rate of a single individual.

The probability that a deme of type n does not change in size is

Pr(n | n) = 1− (µn + λn)h+ o(h), (A-42)

while other transition probabilities are of order o(h).

Fitness functions

It follows from the demographic assumptions (eqs. A-38-A-42) that the philopatric compo-

nents of fitness are given by

wp(n, n+ 1) = 1 +
(1−m)(1 +BzR0 − Cz•)

(1−m) [1 + (B − C)zR0 ]n+m[1 + (B − C)z]Neq
, (A-43)

wp(n, n) = 1, (A-44)

and

wp(n, n− 1) = 1− 1

n
. (A-45)

The dispersing components of fitness are

wd(l, l + 1, n) =
m(1 +BzR0 − Cz•)

[(1−m) l +mNeq] (1 + (B − C)z)
, (A-46)
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wd(l, l, n) = 0, (A-47)

and

wd(l, l − 1, n) = 0. (A-48)

Effect Sf (n) on settled number of offspring

Because the demographic assumptions entail that only one unit change of patch size may

occur per unit time and the mutant affects only birth rates, eqs. A-38–A-42 and eqs. A-43–

A-48 imply that eq. A-35 reduces to

Sf(n) = ν(n+ 1)

�
∂wp(n, n+ 1)

∂z•
+

∂wp(n, n+ 1)

∂zR0
RR(n)

�
Pr(n+ 1 | n)

+
�

l

ν(l + 1)

�
∂wd(l, l + 1, n)

∂z•
+

∂wd(l, l + 1, n)

∂zR0
RR(n)

�
Pr(l + 1 | l) Pr(l). (A-49)

After some algebra one has

∂wp(n, n+ 1)

∂z•
Pr(n+ 1 | n) = C(1−m)

(N − n)

N
h+ o(h) (A-50)

over a time interval h, which we write more compactly as

∂wp(n, n+ 1)

∂z•
Pr(n+ 1 | n) ∼ −C(1−m)

(N − n)

N
. (A-51)

Likewise

∂wd(l, l + 1, n)

∂z•
Pr(l + 1 | l) ∼ −Cm

(N − l)

N

∂wp(n, n+ 1)

∂zR0
Pr(n+ 1 | n) ∼

�
B(1−m)− (B − C)(1−m)2n

(1−m)n+mNeq

�
(N − n)

N

∂wd(l, l + 1, n)

∂zR0
Pr(l + 1 | l) ∼ Bm

(N − l)

N
, (A-52)

and substituting these results into eq. A-49 yields

Sf(n) ∼
�
BRR(n)− C

�
�
ν(n+ 1)

(1−m)(N − n)

N
+
�

l

ν(l + 1)
m(N − l)

N
Pr(l)

�

− ν(n + 1)
(1−m)2(B − C)n

(1−m)n+mNeq

(N − n)

N
RR(n). (A-53)
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In order to get an idea of the difference between the selective pressure in the infinite

island model under a birth-death process and semelparous reproduction following a Poisson

distribution, we mention that under the latter case one has

Sf(n) =
�
BRR(n)− C

�
�
�

n�

ν(n�)
(1−m) Pr(n� | n)
(1−m)n+mNeq

+
�

l

�

n�

ν(n�)
mPr(n� | l)

(1−m) l +mNeq
Pr(l)

�

−
�

n�

ν(n�)
(1−m)2(B − C)nPr(n� | n)

[(1−m)n+mNeq]
2 RR(n) (A-54)

which is obtained by a rearranging eq. A.20 of Lehmann et al. (2006).

The qualitative form of eq. A-54 is similar to that of eq. A-53. The first term in both

equations represents the increase in fitness due to the increase in the actor’s fecundity stem-

ming from the expression of helping in the focal patch, while the second terms represents

the decrease in fitness stemming from the increase in competition. Eq. A-54 can be in-

terpreted as a demographic version of the selective pressure on helping arising under the

baseline model presented in the main text; that is, a demographic average of eq. A-1 (and

including “whole-group” helping). Eq. A-53 can be thought of as the demographic version

of the selective pressure on helping arising in the presence of overlapping generations when

s tends to one, that is, a demographic average of eq. A-21 under high survival.

Since the increase in local competition (last line in both eq. A-54 and eq. A-53) cancel

out the benefits of helping under semelparous reproduction, eq. A-54 actually simplifies to

Sf(n) = ν(n) (B/n− C) [1−R(n)] (A-55)

(Lehmann et al., 2006, eq. A.21), which does not select for altruistic helping as B/n− C is

the net effect of the actor on its fecundity. However, no such simplification occurs for eq. A-

53, which may then select for altruistic helping as is the case under constant population size

(e.g., eq. A-21).

Effect SPr(n) on reproductive value

Because the demography involves only one unit change of patch size per time interval and

the mutant affects only birth rates, we have ∂Pr(n+ 1 | n)/∂zR0 = −∂Pr(n | n)/∂zR0 . With
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these considerations, eq. A-36, reduces to

SPr(n) ∼ [ν(n+ 1)wp(n, n+ 1)− ν(n)wp(n, n)]
∂Pr(n+ 1 | n)

∂zR0
RR(n). (A-56)

From eq. A-38, we have

∂Pr(n+ 1 | n)
∂zR0

= (1−m) (B − C)
(N − n)

N
n (A-57)

and substituting this equation with eqs. A-43–A-44 evaluated at neutrality into eq. A-56

gives after simplification

SPr(n) ∼ (ν(n+ 1)− ν(n)) (1−m) (B − C)
(N − n)

N
nRR(n)

+ ν(n + 1)
(1−m)2(B − C)n

(1−m)n+mNeq

(N − n)

N
RR(n). (A-58)

Net inclusive fitness effect

Adding up eq. A-53 and eq. A-58, we get that the component SIF(n) = Sf(n) + SPr(n) of

the total selective pressure can be written as

SIF(n) ∼
�
BRR(n)− C

�
�
(1−m)

(N − n)

N
ν(n+ 1) +m

�

l

(N − l)

N
ν(l + 1)Pr(l)

�

+ (ν(n+ 1)− ν(n)) (1−m) (B − C)
(N − n)

N
nRR(n), (A-59)

which is eq. 2 of Alizon and Taylor (2008) with the only difference that they assumed no

direct fitness benefits returning to the focal individual so that the RR(n) in the first line of

eq. A-59 is replaced by R(n) in eq. 2 of Alizon and Taylor (2008).
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