
	
	
Unicentre 

CH-1015 Lausanne 

http://serval.unil.ch 

 
 
	

Year : 2014 

 
THE USE OF SIMULATIONS IN EVOLUTIONARY POPULATION 

GENETICS: APPLICATIONS ON HUMANS, OWLS AND VIRTUAL 
ORGANISMS 

 
KANITZ Ricardo 

 
 
 
 
 
 
 
 
 
 
 
 
KANITZ Ricardo, 2014, THE USE OF SIMULATIONS IN EVOLUTIONARY POPULATION 
GENETICS: APPLICATIONS ON HUMANS, OWLS AND VIRTUAL ORGANISMS 
 
Originally published at : Thesis, University of Lausanne 
 
Posted at the University of Lausanne Open Archive http://serval.unil.ch 
Document URN : urn:nbn:ch:serval-BIB_1D7A41307FFB5 
 
 
Droits d’auteur 
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les 
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la 
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir 
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou 
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la 
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette 
loi. Nous déclinons toute responsabilité en la matière. 
 
Copyright 
The University of Lausanne expressly draws the attention of users to the fact that all documents 
published in the SERVAL Archive are protected by copyright in accordance with federal law on 
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the 
author and/or publisher before any use of a work or part of a work for purposes other than 
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose 
offenders to the sanctions laid down by this law. We accept no liability in this respect. 



 
Département d'écologie et évolution 

 
 

THE USE OF SIMULATIONS IN EVOLUTIONARY POPULATION 
GENETICS: APPLICATIONS ON HUMANS, OWLS AND VIRTUAL 

ORGANISMS 
 
 
 

Thèse de doctorat ès sciences de la vie (PhD) 
 

présentée à la  
 

Faculté de biologie et de médecine 
de  l’Université  de  Lausanne 

 
par 

 
 

Ricardo KANITZ 
 

Master en Zoologie de la Université Pontificale Catholique du Rio Grande do Sul (PUCRS) 
 

 
Jury 

 
 

Prof. Pierre Goloubinoff, Président  
Prof. Jérôme Goudet, Directeur de thèse 

Prof. Nicolas Perrin, Expert 
Prof. Laurent Excoffier, Expert 

            
            

 
 

Lausanne 2014 
 





!

!

2!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"It is sometimes said that scientists are unromantic, that 

their passion to figure out robs the world of beauty and 

mystery. But is it not stirring to understand how the world 

actually works — that white light is made of colors, that 

color is the way we perceive the wavelengths of light, that 

transparent air reflects light, that in so doing it 

discriminates among the waves, and that the sky is blue 

for the same reason that the sunset is red? It does no harm 

to the romance of the sunset to know a little bit about it.” 

Carl Sagan 

Pale Blue Dot: A Vision of the Human Future in Space (1994) 
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Summary 

Computer simulations provide a practical way to address scientific questions that would 

be otherwise intractable. In evolutionary biology, and in population genetics in 

particular, the investigation of evolutionary processes frequently involves the 

implementation of complex models, making simulations a particularly valuable tool in 

the area. In this thesis work, I explored three questions involving the geographical range 

expansion of populations, taking advantage of spatially explicit simulations coupled 

with approximate Bayesian computation. First, the neutral evolutionary history of the 

human spread around the world was investigated, leading to a surprisingly simple 

model: A straightforward diffusion process of migrations from east Africa throughout a 

world map with homogeneous landmasses replicated to very large extent the complex 

patterns observed in real human populations, suggesting a more continuous (as opposed 

to structured) view of the distribution of modern human genetic diversity, which may 

play a better role as a base model for further studies. Second, the postglacial evolution 

of the European barn owl, with the formation of a remarkable coat-color cline, was 

inspected with two rounds of simulations: (i) determine the demographic background 

history and (ii) test the probability of a phenotypic cline, like the one observed in the 

natural populations, to appear without natural selection. We verified that the modern 

barn owl population originated from a single Iberian refugium and that they formed 

their color cline, not due to neutral evolution, but with the necessary participation of 

selection. The third and last part of this thesis refers to a simulation-only study inspired 

by the barn owl case above. In this chapter, we showed that selection is, indeed, 

effective during range expansions and that it leaves a distinguished signature, which can 

then be used to detect and measure natural selection in range-expanding populations. 
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Résumé (en français) 

Les simulations fournissent un moyen pratique pour répondre à des questions 

scientifiques qui seraient inabordable autrement. En génétique des populations, l'étude 

des processus évolutifs implique souvent la mise en œuvre de modèles complexes, et les 

simulations sont un outil particulièrement précieux dans ce domaine. Dans cette thèse, 

j'ai exploré trois questions en utilisant des simulations spatialement explicites dans un 

cadre de calculs Bayésiens approximés (approximate Bayesian computation : ABC). 

Tout d'abord, l'histoire de la colonisation humaine mondiale et de l’évolution de parties 

neutres du génome a été étudiée grâce à un modèle étonnement simple. Un processus de 

diffusion des migrants de l'Afrique orientale à travers un monde avec des masses 

terrestres homogènes a reproduit, dans une très large mesure, les signatures génétiques 

complexes observées dans les populations humaines réelles. Un tel modèle continu 

(opposé à un modèle structuré en populations) pourrait être très utile comme modèle de 

base dans l’étude de génétique humaine à l’avenir. Deuxièmement, l'évolution 

postglaciaire d’un gradient de couleur chez l’Effraie des clocher (Tyto alba) 

Européenne, a été examiné avec deux séries de simulations pour : (i) déterminer 

l'histoire démographique de base et (ii) tester la probabilité qu’un gradient 

phénotypique, tel qu’observé dans les populations naturelles puisse apparaître sans 

sélection naturelle. Nous avons montré que la population actuelle des chouettes est 

sortie d'un unique refuge ibérique et que le gradient de couleur ne peux pas s’être formé 

de manière neutre (sans l’action de la sélection naturelle). La troisième partie de cette 

thèse se réfère à une étude par simulations inspirée par l’étude de l’Effraie. Dans ce 

dernier chapitre, nous avons montré que la sélection est, en effet, aussi efficace dans les 

cas d’expansion d’aire de distribution et qu'elle laisse une signature unique, qui peut 

être utilisée pour la détecter et estimer sa force. 
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Preface 

This thesis work came into being during the past four years as a result of an 

“evolutionary process” (which does not necessarily imply progress) of creation 

(ironically). The original idea was to explore the evolution of skin color in human 

populations. It turned out that we did explore evolution of color, but not in humans; and 

we did study human evolution, but not on skin color. In fact, this thesis work has spread 

much further than anticipated. Instead of focusing on one question, we extended it to a 

myriad of problems in evolutionary biology. We looked into models of the neutral 

evolution of modern human populations and how this would have implications on how 

we deal with races in our species. We also looked into one of the oldest dilemmas in 

evolution: neutrality vs. natural selection, demonstrated that selection has happened in 

barn owls and that it can be assessed in essentially any other system of range expansion. 

Across the whole text of this thesis report I digress about questions in 

evolutionary biology, but generally these questions fall within the narrower scope of 

population genetics and, occasionally, even phylogeography. These terms are at times 

applied interchangeably, but I hope the contexts in which they are presented are clear 

enough to identify at which levels the contributions are made. So, even though this is a 

work of population genetics, I trust it has implications for evolutionary biology and 

potential applications to phylogeography. Also, at times, I make use of the singular 

form of the first person (i.e. “I”) to express my own particular view on a given subject. 

Some other times, I make use of the plural form (“we”) for statements that are derived 

from a group work or idea. So occasional changes in the singular or plural forms are not 

mistakes, but are by design and do have a meaning in the context of this thesis report. 
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General Introduction 

In silico science and evolutionary biology 

Simulations can be defined as procedures used to imitate real-world systems or 

processes (Banks et al. 2005). Even though simulations can be used to look at virtually 

any sort of scientific question, they are particularly useful for studying phenomena that 

would be otherwise intangible due to cost, complexity, space or time constraints. 

Furthermore, simulations can normally be run with a large number of replicates, taking 

advantage of the three-century-old idea behind the law of large numbers (Bernoulli 

1713; Haigh 2012). This law states that, in a survey to assess the mean value of a given 

trait in a population, one observes more fluctuations when the number of observations is 

small; but, as one increases the number of measurements, the calculated mean 

invariably converges to the true mean of the population. In summary, a large number of 

measurements lead to increased accuracy. BOX 1 provides and example of a simulation 

with a simple underlying model applied to the estimation of the irrational number π that 

can be done manually. In BOX 2, the same model can be run in R, increasing the 

potential number of replicates, leading to a better estimate of π. 

Every simulation requires an underlying model – i.e. a logical description of 

how the system of interest works. In fact, a simulation is nothing more than the 

implementation of such model, and the quality of the simulations will eventually 

depend on how good the model in use is. A good scientific model, in general, is one that 

is able to describe as many parameters as possible with as little complexity as needed, a 

concept broadly known as Occam’s razor (Domingos 1999). This idea of simplicity 

permeates almost every simulation-based study. All models are incomplete. Therefore, 

no model is fully correct, and by logical extension all models are essentially wrong. 
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However, some – hopefully most – can be effectively used to understand the system 

under examination. In the famous words of George E. P. Box, “[...] essentially, all 

models are wrong, but some are useful” (Box and Draper 1987). 

The first computer simulations appeared with the arrival of the very first fully 

programmable electronic computer (the Electronic Numerical Integrator And Computer, 

or simply ENIAC) in the late 1940’s (Winsberg 2010). The ENIAC was first conceived 

by the United States Army to calculate artillery tables. These tables used to be 

calculated by women, who curiously were then known as the “computers”. The army 

needed a faster and more reliable source of these calculations, leading to the expansive 

development of the electronic computing machine. ENIAC’s first application, however, 

was not to calculate ballistic trajectories: When the mathematician John Von Neumann 

(Los Alamos National Laboratory) learned of its development, Los Alamos joined the 

army’s engineering endeavor and redirected the efforts towards simulating a model of a 

thermonuclear reaction (Metropolis 1987).  These simulations proved successful both 

on ENIAC’s computation capability and the theoretical possibility of the hydrogen 

bomb. The calculations were performed using the Monte Carlo method: an approach 

that involves the repeated random sampling of values for the parameter in question 

exploring the parameter space of a predetermined model (MacKay 1998), evoking the 

law of large numbers once again (Haigh 2012). Since then, the use of simulations has 

burgeoned and extended to many fields of science, with especial importance in 

meteorology, astrophysics, economics, fluid mechanics, engineering, ecology 

(Winsberg 2009) and, of course, evolutionary biology (Hoban et al. 2011). 
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In evolutionary genetics, Alex S. Fraser and James Stuart F. Barker presented 

the earliest verifiable simulation studies in a series of eight articles from 1957 to 1960 

(Fraser 1957b, a; Barker 1958b, a; Fraser 1958, 1959b, a, 1960). In Fraser (1958), the 

author introduces a Monte Carlo approach to simulate the effect of selection on six loci 

with a predetermined recombination scheme. He then compared the changes in allele 

frequencies under small and large population sizes and high and low intensities of 

selection. He observed, as expected from previous theoretical and experimental work, 

that higher linkage, low selection and small population size decreased the pace of 

adaptation of the analyzed population, making the point that simulations could, already 

then, be used to study evolutionary questions. Further analyses of the effect of linkage 

BOX 1. Running ‘simulations’ without a computer and estimating the value of π 

One can execute simulation-like experiments without a computing machine. In the pre-

computer era, these experiments used to be done manually. Perhaps the most famous 

among them was Buffon’s needle problem (Aigner and Ziegler 2001). It consisted in 

investigating, on a striped surface, what is the probability of a needle to cross the boundaries 

between stripes (Fig. I). As trivial as it might seem, this experiment can actually be used to 

approximate the value of the irrational number π. The underlying model of these 

‘simulations‘ states that the probability P of a given needle, with length (L) shorter than 

stripes’ width (W) to cross the stripes’ boundaries is ! = !! !⁄ ~!2!/!. Therefore π can be 

approximated with many needle tosses to !!~ !2!" !!⁄ , where !! is the number of observed 

crossings, ! is the total number of throws and ! is the length of the needle relative to the 

stripe width. Note that L here is scaled to width, so that length is given as a fraction of the 

stripes’ width. 

 

Figure 1: Buffon's needle problem illustration, where needle A does not cross the boundaries and B does. This 
probability depends on the relative size between stripe width (W) and needle’s length (L) and it can be used to 
approximate the value of π. 
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(Fraser 1957b), autosomal (Barker 1958a) and sex-linked loci (Barker 1958b), epistasis 

(Fraser 1959b, a), and population structure (Fraser 1960) were presented in the 

subsequent papers in the series. Numerous studies followed the seminal work of Fraser 

and Barker in a rather continuous pace – e.g. (Gill 1964; Felsenstein 1976; Davis and 

Brinks 1983; Weir  and Cockerham 1984) – progressively exploring different aspects of 

biological phenomena such as random mating, natural selection, genetic drift, genetic 

linkage, etc. However, no major increase in the popularity of the use of simulations was 

observed until the 1990’s, probably due to the lack of computational power to study 

more complex questions, after the most straightforward ones had already been explored. 

 

Much more recently with the popularization of personal computers and the 

increase of their calculation capability, a boom in the use of simulations in population 

genetics came about with several concomitant works including Hudson (1991) who 

investigated the implementation of intermediate levels of recombination – that could not 

be solved analytically – in a coalescent model (Kingman 1982). His approach was 

largely based on the Gillespie’s algorithm (Gillespie 1976), which simulates 

continuous-time Poisson processes for parameter value assessment (Wakeley 2008). 

Nearly simultaneously, Bowcock et al. (1991) used simulations to draw an FST null 

BOX 2. Buffon’s needle in R 

An example of the ‘simulation’ approach presented in Box 1 can quickly be run in R (R Core 

Team 2012) with the package ‘animation’ by executing the code below. This can also be 

used to demonstrate the effect of the law of large numbers. As the number of observation 

increases, the estimated π value gets closer to its actual value (3.14159265359, here with 

ten decimals). 

library(animation) 

ani.options(nmax = 200, interval = 0.1) 

par(mar = c(3, 2.5, 0.5, 0.2), pch = 20, mgp = c(1.5, 0.5, 0)) 

buffon.needle(mat = matrix(c(1, 2, 1, 3), 2)) 
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distribution to be compared with their observed data; an approach widely used in many 

current studies, including the one presented in the second chapter of this thesis. After 

then, many other works have taken advantage of simulations to investigate various 

questions in the field – e.g. (Charlesworth et al. 1993; Burger and Lande 1994; 

Charlesworth et al. 1995; Hardy and Vekemans 1999; Balloux et al. 2000; Edmonds et 

al. 2004; Evanno et al. 2005; Klopfstein et al. 2006; Fagundes et al. 2007; Excoffier and 

Ray 2008; Peischl et al. 2013). Furthermore, a series of programs and packages for 

population genetics simulations have been developed in the last decade or so, as 

carefully reviewed in Hoban et al. (2011), with especial attention to the most complete 

simulator according to these authors, and the one used throughout this thesis: 

quantiNEMO (Neuenschwander et al. 2008a). 

Model-based inference & approximate Bayesian computation 

As mentioned above, the first simulations run in an electronic computer were used to 

explore a parameter space with the Monte Carlo algorithm (Metropolis 1987). This 

method, envisioned by Stanislaw Ulam and Nicholas Metropolis (Cahn 2001), consists 

in repeatedly sampling random values to obtain probability distributions for certain 

parameters. In the case of the atomic fusion reaction, put in a very simplified version, 

the parameter in question was the frequency of collisions between moving atomic 

nuclei, where the random numbers were applied to deciding which was the next move 

of each one of the particles in the system (Cahn 2001). When the nuclei touched, a 

fusion reaction would take place. In this search method, each step is independent of 

previous movements, following a completely random path with variable distances 

across the parameter space. So, essentially, there is no way in which one could guide the 

search towards a more likely parameter combination. A very popular example of the 

implementation of this search method also consists of calculating the value of the 



General!Introduction!

!

!

15!

irrational number π, based on sampling random coordinates in a two-dimensional 

system consisting of a circle enclosed by a square, as presented in BOX 3. 

 

Since the Monte Carlo method’s elaboration, other model-based statistical 

inference methods have been developed, but in general they apply the same rationale of 

sampling a parameter space to evaluate probabilities. It is not the goal of this text to 

explore and explain them all, but some information is provided on a few that are 

particularly important in the context of evolutionary biology studies. The so-called 

Markov Chain Monte Carlo (MCMC) method has been widely used in phylogenetics 

and it consists on sampling from probability distributions with simulations, where each 

new step depends on the present one, but not on the past: this is a Markov chain 

(Hastings 1970). The idea here is essentially that in the century-old random-walk 

problem (Pearson 1905), where an exploratory path is taken across the parameter space 

by simply picking a random direction at every discrete step (Spitzer 1964). When 

applied to phylogenetics, MCMC’s new steps are actually slightly different 

BOX 3. A simple Monte Carlo approach to estimate the value of π in R 

Here, we have a different and more straightforward way to estimated the value of π using a 

Monte Carlo approach in R. With 100’000 replicates (N), we estimate the area of a circle 

based on each replicate’s coordinates falling inside or outside a circle drawn inside a square 

with side 2. Because the area of circle is defined as π×r2, and here r=1, the ratio of the area 

of the circle over the area of the square should equal π/4. 

N <- 100000;  

x <- runif(N, min= -1, max= 1); y <- runif(N, min= -1, max= 1) 

is.inside <- (x^2 + y^2) <= 1^2 

(pi.estimate <- 4 * sum(is.inside) / N) 

 [1] 3.1478    # Not so bad an estimate! 

plot(x[ is.inside], y[ is.inside], pch = '.', col = "blue") 

points(x[!is.inside], y[!is.inside], pch = '.', col = "red") 
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phylogenetic trees, but these steps can be used in any other system where a given 

parameter in a simulation is modified, exploring a new position in the parameter space 

of interest. Another key feature of MCMC methods is that they are self-improving. Not 

all new steps are necessarily accepted; only the ones that increase the fit of the data to 

the model (the model’s likelihood) are. So that MCMC runs tend to maximize the 

likelihood of the parameter combinations at each new step until a steady state is 

reached, where the variation in the parameter values do not affect anymore the overall 

probability of the tested model. This idea is in the very heart of Maximum Likelihood 

Estimation (MLE) methods (Scholz 2004). Put very simplistically, Bayesian MCMC 

methods, such as the ones applied in the widely used programs MrBayes (Ronquist et 

al. 2012) and BEAST (Drummond et al. 2012), use the exact same procedure, but limit 

the parameter space to be explored to so-called prior distributions (Huelsenbeck et al. 

2001). So in the Bayesian approach, the final probability of the model also depends on 

these previously defined prior distributions. These resulting distributions are then called 

posterior-probability distributions, instead of maximum-likelihood distributions in 

MLE. 

Whichever flavor of MCMC used, however, a likelihood value must be 

calculated, either exactly, or approximately. This is not always feasible for complex 

models (Beaumont et al. 2002), especially when it comes to testing evolutionary 

scenarios. When the likelihood of a model cannot be assessed, evolutionary biologists 

have applied approximate Bayesian computation (ABC, see example in BOX 4) 

approaches for parameter estimations (Sunnaker et al. 2013). Even though MCMC-like 

approaches have been developed (Wegmann et al. 2009), the way that has become 

traditional for implementing ABC consists of the following steps (Fig. 1): 
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1. Sampling – A very large number of simulations (e.g. 1 million) 

are run for as many models as one is interested in testing.  Every simulation uses 

parameter values taken from the prior distributions, so that each simulation has a 

potentially unique combination of these parameters, covering the entire so-called 

parameter space. The more simulations are run, the more refined is the 

exploration of this space. And, of course, every parameter forms a new 

dimension in this space (e.g. a study investigating population size, migration, 

mutation and growth rates has four dimensions to explore). The simulations 

generate, as output, summary statistics whose purpose is to condense the 

information generated. Choosing these summary statistics is a very important 

step in an ABC approach. They should be able to capture all the information 

deriving from the varying choice of parameters, but should also be limited to the 

smallest possible number, since every new statistics also generates noise along 

with the extra information it provides. This sampling phase, therefore, consists 

in sampling simulations and retaining the parameter values and the summary 

statistics produced by them. ABC can be considered as a brute-force approach 

towards the exploration of the parameter space. 

2. Estimation – The estimates generated by an ABC analysis are 

essentially the result of the comparison between the observed summary statistics 

(calculated from a real population) and the simulated summary statistics. Since 

statistics are connected to parameter values in the simulations, one can use this 

comparison to obtain a posterior probability distribution for the parameters of 

interest. This can be done by simply defining an interval around the observed 

statistics for retaining simulations out of which to extract the posteriors 

(rejection method), or by improving the rejection approach by implementing a 
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local linear regression (for the interval previously defined) to project the 

simulated parameter value to the position in the statistics axis where the 

observed statistics are (local linear regression method). This latter can also be 

further incremented by using weighted contribution of the different simulations 

according to their distance (in the statistics axis) to the observed statistics 

values: the closer they are, the higher their weight (weighted local linear 

regression method) (Beaumont et al. 2002). 

3. Validation – This whole estimation procedure described above 

can be tested using the parameter values in the simulations themselves to try and 

re-estimate their values through the estimation step. Since the parameter values 

in the simulations are known, one can assess the precision and accuracy of the 

estimates by comparing these so-called pseudo-observations with the estimates. 

The most traditional and straightforward way to do so is by means of the 

coefficient of determination, or R2 (Neuenschwander et al. 2008b). 

 

Figure 1: Schematic representation of the ABC approach for parameter estimation. The 
sampling, estimation, and validation steps are depicted, where n simulations are run with n 
parameter values (Xn), producing n summary statistics values (Yn) that are then compared 
with the observed statistics (Y) to generate the parameter estimate Z. The simulations are 
then used to assess the quality of the estimates: the statistics trey produce (Yn) are used as 
pseudo-observed summary statistics, leading to estimates (Zn) that can be then compared to 
the pseudo-observed parameter values (Xn). The better the fit of Xn and Zn (R2), the better 
the quality of the estimates of that given parameter. 
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BOX 4. A simple demonstration of Approximate Bayesian computation (ABC) using R 

As a toy example, consider a horizontal rectangle defined by sides X and Y (Fig. 1A), but 

out of which one can only measure diagonal (D) and area (A). The question here is: What 

are the values of X and Y given D and A? Even though this question can easily be solved 

analytically, let us try and deal with it an ABC framework. In this case X and Y are the model 

parameters; D and A are the summary statistics. So, the observed summary statistics of 

our rectangle are A = 60 and D = 13. Also, being horizontal, this rectangle has a larger base 

length than height (i.e. X > Y) and we can also assume that X is never larger than 20 (X =< 

20) as a prior of our model. To estimate the values of X and Y (Fig. 1B), here follows a 

simple implementation in R: 

# Load the necessary library (install.library("abc") to install it): 
library(abc) 
 
# The OBSERVED values for A and D are: 
OBS <- c(60,13) 
 
# Generate simulated data table (10'000 simulations): 
SIM <- data.frame(matrix(ncol=4,nrow=10000)) 
names(SIM) <- c("X","Y","A","D") 
for(i in 1:dim(SIM)[1]){ 
  X <- runif(n=1,min=0,max=20) # Prior distr. for X 
  Y <- runif(n=1,min=0,max=X) # Prior distr. for Y 
  A <- X*Y 
  D <- sqrt(X^2+Y^2) 
  SIM[i,] <- c(X,Y,A,D) 
} 
 
# Standardize the summary statistics (for OBS and SIM): 
  OBS[1] <- OBS[1]/max(SIM[,3]); OBS[2] <- OBS[2]/max(SIM[,4]) 
  SIM[,3] <- SIM[,3]/max(SIM[,3]); SIM[,4] <- SIM[,4]/max(SIM[,4]) 
 
# Estimate X and Y (local linear regression method): 
epsilon <- 0.05 # Proportion of retained simulations 
EST_X <-abc(OBS,SIM$X,SIM[,3:4],tol=epsilon,method="loclinear")$adj.values 
EST_Y <-abc(OBS,SIM$Y,SIM[,3:4],tol=epsilon,method="loclinear")$adj.values 
 
# Point estimates for X and Y (mode of posterior distr.): 
EST_X[which.max(density(EST_X)$y)] 
[1] 11.44782 # Not bad! The analytical solution is X = 12 
EST_Y[which.max(density(EST_Y)$y)] 
[1] 5.222932 # And Y = 5 
 

 

Figure 1: In A, the parameters and summary statistics: Sides X and Y are the parameters to be estimated; Area (A, 
gray rectangle) and diagonal (D, dashed line) are the summary statistics. In B, the posterior distributions of both X 
(blue) and Y (red), with the prior distribution for both parameters as the gray dashed line. 
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Simulation-based approaches are not only used to estimate parameter values, but 

also to compare competing models. In evolutionary biology, these models normally 

consist of different evolutionary scenarios to be tested, as competing hypotheses to 

explain the system under examination. There are various ways in which this comparison 

can be done – e.g. likelihood ratio tests, Bayes factors, etc. – but all of them are based 

on verifying the match between model and data. The model that shows the better match 

is the one chosen. This match is assessed in different ways depending on the model, but 

in the most used method in this thesis (ABC), this is done via the Euclidian distances 

measured between the statistics observed in the real dataset and the statistics produced 

by a given subset of best simulations of each model. The model that produces statistics 

that are closer to the observation is normally the chosen one. Complications are 

foreseeable, though. This choice will depend on the statistics chosen, the number of 

simulations retained and how these simulations’ contribution is weighed, as well. There 

is an already vast literature on model-comparison approach raising some more possible 

issues (Templeton 2009) and solutions (Beaumont et al. 2010; Bertorelle et al. 2010). 

Furthermore, a validation procedure can also be run for the model comparison to 

evaluate possible biases and the precision of the model assignment using simulated 

data, as done in chapter 2 of this thesis. 

Of patterns and processes 

The distinction between patterns and processes is a very important notion for the 

understanding of biological evolution. Although introduced and popularized in a 

macroevolutionary context (Eldredge  and Cracraft 1980), this idea has implications in 

all areas of evolutionary biology (Chapleau et al. 1988).  In the original definition, by 

Eldredge  and Cracraft (1980), patterns are “aspects of the apparent orderliness of life”; 

and processes are “the mechanisms that generate these patterns”. Essentially, what they 
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mean is that patterns are the snapshot signatures found in natural populations 

(horizontal in time), and processes are the paths that lead to these signatures (vertical in 

time). As examples of patterns, one can cite genetic structures, differential amounts of 

genetic diversity, allele frequency clines and other types of gradients, specific genomic 

signatures like runs of homozygosity, among many others. The processes in population 

genetics are, in their essence, combinations and modifications of the evolutionary forces 

(i.e. drift, selection, migration and mutation): demographic and range expansions, 

adaptation events, bottlenecks, reproductive isolation, secondary contacts, isolation by 

distance, etc. All these processes leave signatures in the form of the above-mentioned 

patterns. 

Now, let us consider a simple example of the process of a bottleneck, which 

generates a pattern of low genetic diversity in the population under analysis. In this toy 

example, by looking at 20 microsatellite loci with a very low number of alleles (k) each, 

an imaginary evolutionary biologist – who is ignorant of the process in question – could 

infer that it is actually a bottleneck. She could be right, but other processes may also 

lead to low genetic diversity patterns (e.g. a selective sweep, a historical small 

population size, etc.), making our imaginary colleague’s interpretation potentially 

mistaken. In fact, many other patterns found in natural populations may arise due to 

different processes. Often, they can be told apart by including other signature patterns in 

the examination. In this case, if the biologist had included in her analysis the 

exploration of the range of allele sizes (r) present in these loci, she could have grasped a 

bit more of information about the processes being a bottleneck or not. This is because 

one expect r to decrease more slowly than k after such a demographic event – this is the 

so-called Garza-Williamson’s M statistics (M = k/r, (Garza and Williamson 2001)).  

Many studies in population genetic-related fields have been carried out with this sort of 
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approach of including different statistics that describe patterns to infer the processes 

behind them. More recently, however, a movement towards a more hypothesis-driven 

methodology has established in the field (Knowles 2009), taking advantage of the 

simulation concepts presented above – with especial emphasis on ABC methods 

(Beaumont et al. 2002), as presented in the previous section. As to what this thesis is 

concerned about, all chapters here are studies focusing in deciphering the processes 

behind observed patterns. This is done with simulations that try to mimic these 

processes and that generate sets of patterns (in the form of various kinds of summary 

statistics) that are compared again with the observed patterns. 

Clines and clusters 

One debate in which this distinction between patterns and processes does not seem to be 

completely clear is on the distribution of genetic diversity in modern humans: the 

hereafter called clines-vs.-clusters dilemma. Most studies have focused on the patterns 

alone, but little attention has been given to the processes that may have lead to them 

(Rosenberg et al. 2002; Serre and Pääbo 2004). Here, in chapter 1, we propose a model 

of a simple process of demographic diffusion across a uniform environment: a model 

that reflects, in its essence, a continuous process. Interestingly, such model produces 

patterns that are very similar to the patterns observed in real human populations. On the 

one hand, one would expect this model to reproduce the clinal signatures already 

observed in the literature (Handley et al. 2007). And it does. On the other hand, 

surprisingly, our model also recovers, to a large extent, the cluster patterns described by 

others (Rosenberg et al. 2002). As a result, we believe that, even though there is a 

discussion on what are the most relevant patterns in human diversity, the underlying 

process is essentially continuous. We also make the case that this process should be 

considered in further studies looking for associations and signals of selection in the 
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human genome because the proper appreciation of the background demography is vital 

to define null hypothesis for these studies. 

Selection and drift 

Occasionally, the processes of natural selection and genetic drift may lead to the same 

observed pattern in a population. This happens because some demographic phenomena 

alter genetic variation in ways that resemble selection. For instance, the neutrality test 

devised by Tajima (1989) checks for either the excess or the lack of low-frequency 

variants, which then respectively suggest the action of either purifying or balancing 

selection. Nevertheless, demographic expansions or reductions can also leave the same 

sort of signatures. That is because the changes in effective population size would either 

allow for the accommodation of new variants in the population or lead to an accelerated 

loss of variation because drift would have become stronger. In fact, the statistic derived 

from Tajima’s test (Tajima’s D) has been widely used as a demographic-variation 

indicator for molecular markers assumed to evolve neutrally (e.g. (Fagundes et al. 

2008)). 

When it comes to phenotypic variation, even more confounding factors may 

play a role.  Phenotypes vary according to their underlying genetic, but also their 

environmental circumstances. To rule out acclimation to the different environments, 

experimental procedures – like common garden experiments (Molles and Cahill 1999) – 

are normally advised. Besides, a phenotypic difference does not necessarily imply in 

acclimation or adaptation. It can be simply neutral, as well. In gradients of variation (i.e. 

clines), selection used to be considered as the cause of the differentiation (e.g. (Hewitt 

1996)). More recently, however, it has been demonstrated that these clines can also 

emerge out of purely neutral scenarios (Edmonds et al. 2004; Klopfstein et al. 2006). 

This would happen during range expansions, where the founder events of subsequent 
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colonization of new areas would amplify random drift and generate potentially very 

differentiated genetic (and phenotypic) compositions at the starting and ending points of 

the expansion. So, even very coherent patterns – such as clines – may come to existence 

via processes as different as natural selection and random genetic drift. 

Of humans and owls (and virtual organisms) 

In this thesis report, I present three studies – distributed in three chapters – that cover 

different aspects of the problems presented above. In the first part, a simple model for 

the human colonization of the globe is presented, showing that a purely continuous 

process can lead to both clinal and cluster signatures observed in modern human 

populations. The second chapter, a collaborative work with Sylvain Antoniazza, 

approaches the post-glacial evolutionary history of the European barn owl and the 

emergence of a striking color cline across the continent. There we show that this cline 

cannot be the result of purely neutral processes, and that natural selection has to be 

invoked to explain its appearance and maintenance. In the last part chapter, I devise a 

method to measure selection strength in range-expansion scenarios, widely inspire by 

the barn owl case. There, I demonstrate that selection is actually effective in this drift-

prone situation, and that it leaves consistent signature that can be used to assess its 

presence and intensity. All these studies involved simulations run in a spatially explicit 

manner, which I believe brought relevant insight on the evolutionary processes 

investigated. These simulations were coupled to an ABC pipeline, which, here too, 

proved to be a powerful tool to examine complex evolutionary questions. 
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Chapter 1 – A simple range-expansion model replicates the general 

patterns of neutral genetic diversity observed in humans 
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Abstract 

Although it is generally accepted that geography is a major factor shaping human 

genetic differentiation, it is still disputed whether this differentiation is a result of a 

simple process of isolation-by-distance, or if there are factors generating distinct 

clusters of genetic similarity. We address this question using a geographically explicit 

simulation framework coupled with an Approximate Bayesian Computation approach. 

Based on six simple statistics only, we estimated the most probable demographic 

parameters that shaped modern humans evolution under the isolation by distance 

scenario, and found these were the following: an initial population in East Africa spread 

and grew from 4000 individuals to 5.7 million in about 132 000 years. Subsequent 

simulations with these estimates followed by cluster analyses produced results nearly 

identical to those observed in real data. Thus, a simple diffusion model from East Africa 

seems to explain a large portion of the genetic diversity patterns observed in modern 

humans. We argue that a model of isolation by distance along the continental 

landmasses might be the relevant null model to use when investigating selective effects 

in humans. From a societal point of view, this model reinforces the idea that there are 

no different races in our species. Indeed, humans seem to be distributed over a 

continuum of increasing genetic differentiation. 
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Introduction.

Defining the processes behind the worldwide distribution of human genetic diversity is 

one of the main ongoing discussions in human population genetics (Handley et al, 2007; 

Rosenberg et al, 2005; Serre and Pääbo, 2004). It has long been recognized that 

geography plays a major role in shaping human genetic diversity (Cavalli-Sforza et al, 

1994), but it remains unclear whether the patterns observed are sufficiently well 

explained by isolation-by-distance alone, in a simple process of demographic diffusion 

of our species, or whether other explanations are needed to understand patterns of 

human genetic diversity. Indeed, barriers have been put forward as playing an important 

role in shaping human genetic variation forming more delimited clusters of population 

structure – i.e. ethnic and continental groups (Rosenberg et al, 2005; Rosenberg et al, 

2002). 

This opposition of ideas has generated a debate that has implications for how, if 

at all, humans are divided in different distinct groups; which in turn has consequences 

on health policy and research, ethics, and the very understanding of our own species’ 

evolutionary history. Furthermore, studies looking for effects of selection [e.g. (Coop et 

al, 2010; Pickrell et al, 2009)] and the association between genotype and phenotype 

[e.g. (Andersen et al, 2012)] strongly depend on models for the underlying neutral 

evolution. Such models are typically used as null hypotheses and, if incorrect, may lead 

to erroneous conclusions. 

The significance of geography as a shaping agent of human genetic diversity has 

already been demonstrated in many genetic studies, such as from works based on blood 

group polymorphism (Cavalli-Sforza  and Edwards, 1964), enzyme polymorphism (Nei, 

1978), mitochondrial-DNA complete sequences (Ingman et al, 2000) up to hundreds of 

thousands of single-nucleotide polymorphisms (SNP) (Auton et al, 2009; Li et al, 



Chapter!1! ! A!simple!model!of!human!genetic!diversity!

!

!

30!

2008), and even complete genome sequences (The 1000 Genomes Project Consortium, 

2010). Nonetheless, which geographical aspects have the largest influence on human 

genetic diversity is still disputed. Essentially, two competing views could be posed 

(even though intermediate positions may also be taken): the first one defending the idea 

in which humans are solely continuously differentiated along a gradient (Handley et al, 

2007; Prugnolle et al, 2005; Serre and Pääbo, 2004); the second, the idea that humans 

present discrete clusters of genetic differentiation which coincide with continental and 

sub-continental groupings (Rosenberg et al, 2005; Rosenberg et al, 2002). 

In favor of a clinal view, researchers have based their arguments on the 

observation that human genetic variability declines as one moves further away from 

East Africa (Handley et al, 2007; Ramachandran et al, 2005). Also, it has been observed 

that there is a clear correlation (R2=0.85) between genetic distances (e.g., FST) and 

geographic distances (along probable colonization routes) (Prugnolle et al, 2005). Pro-

cluster’s arguments do not deny this evidence, but they do see discontinuities along the 

decline of diversity and argue that major bottleneck events must have generated what 

one could see as steps in a staircase of genetic diversity (Rosenberg et al, 2005). Serre 

and Pääbo (2004) however brought to discussion the possibility that the geographically 

uneven sampling scheme seen in most (if not all) worldwide studies on human genetics 

may have generated false positives for clusters, which would merely reflect the 

clustered sampling. Rosenberg et al (2005) challenged this view taking advantage of an 

expanded dataset to argue that, among all other variables to be considered in the 

detection of clusters, geographic dispersion has relatively little effect on the final 

outcome. In such cases, large amount of genetic data would always allow detecting 

discontinuities even if the distribution of sampled populations were completely uniform. 

Such discontinuities could be small, but still detectable and biologically relevant 
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(Rosenberg et al, 2005). Finally, another study more focused on determining the 

geographical origin of modern humans detected similar patterns of clines in FST and 

genetic diversity, and attributed the few deviations from these trends as being caused by 

“admixture or extreme isolation” (Ramachandran et al, 2005). 

The lack of agreement on how human neutral genetic diversity is distributed 

over the globe may bring confusion to studies in related areas. It has been demonstrated 

that some demographic scenarios might leave signatures which are indistinguishable 

from those supposedly left by selection. And these demographic scenarios are 

dependent on the underlying genetic diversity distribution. For instance, Hofer et al 

(2009), looking at four continental human populations, detected an unexpected large 

proportion of loci (nearly a third) with strong differences in allelic frequency. The 

authors suggested that the observed patterns are better explained by the combination of 

demographic and spatial bottlenecks with allele surfing in the front of range expansion 

rather than by selective factors (Klopfstein et al, 2006). In the allele surfing process, 

drift takes random samples of alleles at potentially different frequencies from the source 

population (i.e. founder effect), while the combination of range and demographic 

expansions amplifies this effect on the overall population by increasing the contribution 

of these alleles in the newly colonized regions. Therefore, to understand the recent 

evolution of human populations, it is essential to have a good grasp on the neutral 

events underlying it. A first step to this end is to understand the spatial distribution of 

human genetic diversity and existence or not of strong discontinuities (i.e. formation of 

clusters). 

Although dense SNP datasets are available, we used a microsatellite dataset in 

the following investigation for the following reasons:  (i) The microsatellites used here 

have been extensively checked and shown to evolve under the stepwise mutation model 
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(Pemberton et al, 2009), (ii) they are unlinked and essentially neutral, (iii) the number 

of samples and populations publically available is greater than for SNPs [78 instead of 

51 for the latter (Cann et al, 2002)], and with better coverage of the American continent, 

and (iv) we could only simulate so many loci in a spatially-explicit approach with the 

currently available computational power. Being multi-allelic markers, microsatellites 

also contain more information per locus than SNPs. 

Here, we investigate the distribution of neutral genetic diversity in modern 

humans using spatially explicit simulations to model the demographic diffusion of our 

species throughout the globe and to recover the genetic signature left by this process. 

The simulations are used to estimate, based on six simple and straightforward summary 

statistics, the demo-genetic parameters best fitting the observed data using Approximate 

Bayesian Computation (ABC) (Beaumont et al, 2002). We do so by generating genetic 

data under a simple stepping stone model constrained by the shape of the continental 

masses. Based on the parameter estimates, a second round of simulations is used to 

generate individual genotypic data (“full dataset”). These data are then subjected to 

Principal Component Analysis (PCA) and analyses with the STRUCTURE software, 

where we compared results from the simulations to those obtained for the observation. 

This allows us to assess the ability of the proposed model to generate the complex 

patterns observed in the real data. We then discuss the outcomes of such a model for the 

understanding of the processes defining human genetic diversity around the world and 

possible applications in the field. 

Material.and.Methods.

Observed genetic data. We used 346 microsatellite loci previously verified to evolve 

according to a stepwise mutation model (Pemberton et al, 2009). These loci represent a 

subset of the data originally made available by Rosenberg et al (2002) and Wang et al 
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(2007). The total number of populations in the original dataset was 78, totaling 1484 

individuals distributed throughout the world (more details in Figure S1, Figure S2, and 

Table S1 in the Supplemental Data available online).  

ABC. We estimated demographic and genetic parameters using an Approximate 

Bayesian Computation (ABC) framework. Genetic data were generated using a 

modified version of quantiNEMO (Neuenschwander et al, 2008a) in a two-step process: 

(i) individual-based forward-in-time simulations for the demography and (ii) coalescent-

based backward-in-time simulations to generate the according genetics. Parameters 

were estimated using the ABC package ABCtoolbox (Wegmann et al, 2010). 

For the demographic part, all simulations started at one single deme with a 

varying initial population size (Ni, uniform prior distribution, from 2 to 5120), in 

Eastern Africa (9°1’48”N, 38°44’24”E) – today’s Ethiopian city of Addis Ababa, the 

origin of human expansion as estimated by Ray et al (2005) and place of the oldest 

known modern humans remains (Clark et al, 2003). The prior distribution for the time 

for the onset of this expansion had mean 155 000 years ago and standard deviation of 

32,000 years (T, generation time of 25 years). These values were based on the 

combination of independently estimated dates of 141 455 ± 20 000 (Fagundes et al, 

2007) and 171 500 ± 25 500 years ago (Ingman et al, 2000). These dates are more 

recent than the oldest reliably dated fossil remains in Ethiopia (195 000 ± 5000), which 

is expected since they most likely predate the spatial expansion of interest in this study 

(McDougall et al, 2005). Dispersal occurs between the four directly neighboring demes 

in a two-dimensional stepping-stone pattern with a given dispersal rate (m) sampled 

uniformly between 0 and 0.5. Population regulation followed a stochastic logistic model 

(Beverton and Holt, 1957) with intrinsic growth rate (r, lognormal prior, mean=0.5, 

SD=0.6) delimited by the deme’s carrying capacity (N, uniform prior of 2-5120 
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individuals), used as a proxy for current population size, when multiplied by the total 

number of habitable demes (5094). For the genetic step, we used a coalescent approach 

to simulate genealogies for 20 microsatellite loci (single stepwise mutation model with 

a mutation rate with prior distribution defined by µ (uniform prior of 10-5-10-3 

mutations/locus/generation) for the same 70 populations and same number of 

individuals as the observed sampling scheme (details on Table S2). 

Summary statistics. In ABC, summary statistics are used to compare observations with 

simulations (Beaumont, 2010). Ideally, they should be as comprehensive as conceivable 

in as few values as possible. Initially, we explored a large set of different statistics: 

number of alleles, allelic richness (Mousadik and Petit, 1996), Garza-Williamson’s M 

(Garza and Williamson, 2001) and gene diversity (Nei and Chesser, 1983) per sampled 

population; pairwise FST (Weir  and Cockerham, 1984) and Chord-distances (Nei, 1987) 

between samples. Considering that many of them did not bring extra information to our 

model, we retained a subset with the 2415 pairwise FST between populations and the 

number of alleles (A) per each one of the 70 demes. These 2485 summary statistics 

were then transformed into six “pattern” statistics, summarizing the relationships 

between FST and pairwise geographic distance. Two linear regressions were made based 

on these comparisons, from which we then extracted six pattern statistics, namely the 

means, slopes, and the logarithm of the sum of residuals. The calculations of summary 

and pattern statistics for the observed data were carried out in the R-package hierfstat 

(Goudet, 2005). Finally, these six pattern statistics were used for the estimates of the 

demo-genetic parameters and subsequent validations. We also used partial least squares 

(PLS) to reduce the original 2485 summary statistics to fewer components (Wegmann et 

al, 2009). This technique gave similar (but no better) results for the validations and a 

few parameters had slightly different estimated values (Figure S4). 
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Estimates. The six parameters (Ni, µ, m, N, r, T) were estimated based on a comparison 

of the simulated and the observed summary and a subsequent estimation step. The 

comparison of the summary statistics was obtained by assessing the Euclidean distance 

between simulations and the statistics from the observed data, which can be used to rank 

the simulations from closest to most distant from the observations. Here, we retained 

the 5000 simulations with smallest Euclidean distances from the observations. This 

subset of simulations was then used to estimate the parameter values using a weighted 

generalized linear model (GLM) (Leuenberger and Wegmann, 2010) of the six pattern 

statistics with the ABCtoolbox software (Wegmann et al, 2010). 

Validation. We used a validation procedure to assess the quality of our estimates. By 

using pseudo-observed values taken from the simulations themselves, we verify how 

well these values could be recovered when estimated through the ABC pipeline used for 

the real estimates (Neuenschwander et al, 2008b). This was done for 1000 different 

pseudo-observations for each of the six investigated parameters. We calculated then the 

correlation (R2) for the regression between pseudo-observed and estimated values, the 

slope of this regression, the standardized root mean squared error of the mode (SRMSE) 

and the proportion of estimates for which the 95% higher posterior density interval 

included the pseudo-observed (“real”) value. 

Full-dataset simulations. The estimated parameters were then used to generate a new 

set of demo-genetic simulations with quantiNEMO, from which we stored the genotypic 

data at 100 loci for the sampled individuals. We ran three sets of 100 simulations each 

whose parameter values were sampled from the (i) prior distribution of the estimation 

step, (ii) posterior distribution (95%HPD) of the estimation step or (iii) taken directly 

from the point estimates (mode values of the posteriors) of the estimation step. Using 

the output of these simulations, we ran further analyses in order to compare the 
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simulation’s outcome with the patterns observed in the real data. The first comparison 

of such patterns was based on the six pattern statistics used for the estimations (i.e. 

mean, slope and sum of residuals for number of alleles and pairwise FST). We did a 

second comparison based on the first two axes of a principal component analysis (PCA) 

computed on the individual allele frequencies in each sampled population. Since the 

sign of the coordinates along PCA components can differ between replicates, we 

compared the different sets of simulations by means of the squared correlation between 

observed and simulated PCA results. Each axis was considered separately. Thus, for 

each simulation, we estimated an R2 representing the concordance of simulations and 

observation in the positioning of the populations on the analyzed PCA axes. These R2 

values were then compared across the three different sets of simulations (Prior, 

95%HPD and Mode). 

A third comparison was made with population clustering analysis using 

STRUCTURE v2.3.4 (Pritchard et al, 2000). Each simulation was analyzed with the 

number of clusters K varying from 1 to 7. Each run was made with 250 000 iterations, 

discarding the first 50 000 as burn-in. The simulations in this comparison where based 

on the point estimates only. The same strategy was used to analyze the observed data, 

but for these we used the whole set of 346 microsatellite loci and ran 25 replicates for 

each K. We post-processed the STRUCTURE outputs with CLUMPP (Jakobsson and 

Rosenberg, 2007) in order to align the different replicates and also summarize them into 

one final output which was then used to compare simulations with the observations. We 

also carried out the estimation of the number of groups (K) best explaining the variation 

present in simulations and observations following Evanno et al (2005). The ΔK was 

estimated based on 25 replicates for each STRUCTURE run. 
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Results.

Parameter estimates and validation. We ran in total 1 183 831 simulations based on 

prior distributions; 974 934 (82.4%) successfully colonized all the sampled patches and 

were therefore used in the subsequent analyses. We obtained posterior estimates for all 

six demo-genetic parameters, which are presented in Table 1 (point estimates; for their 

complete distributions, see Figure S3). Briefly, the time of expansion T is estimated to 

be 132 250 years before present, the initial population size Ni close to 4000 individuals, 

the current world population effective size N slightly more than 5.7 million individuals; 

the mutation rate µ is estimated at 2.6x10-4, the population growth rate r at 0.149 and 

the migration rate between neighboring populations m at 0.041. To assess the quality of 

these parameter estimates, we performed a validation step (Wegmann et al, 2010). This 

assessment, based on 1000 independent simulations, allowed grouping the results into 

three qualitative groups. Excellent estimability was attained for mutation rate (µ) since 

we observed a strong correlation between pseudo-observations and estimations 

(R2=0.877) for which the slope was nearly 1 (slope=0.908), the error rate was low 

(SRMSE=0.099), and the proportion of the estimates that included the pseudo-observed 

value within their 95%HPD interval was 0.977, suggesting only slightly more 

conservative posteriors. Good estimability was also achieved with migration rate (m), 

current population size (N) and initial population size (Ni) for which the R2 values were 

about 0.5 and the slopes above 0.6. We had rather poor estimability for time of the onset 

(T) and population growth rate (r) where R2 values were below 0.3 (Table 1). 

Full-dataset simulations. The posterior estimates above were then used in further 

simulations producing complete genotypes (not only summary statistics) for all sampled 

individuals at 100 simulated microsatellite loci. These additional simulations were 

carried-out by randomly sampling parameter values from the prior and truncated 
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posterior (at the 95%HPD level) distributions and also by directly using the point 

estimates. We first addressed whether our simulations could replicate the patterns 

already observed in the original genetic data. Here, we extended the analyses of the 

observed dataset to a more complete coverage than previous studies [as reviewed in 

Handley et al (2007)], with the addition of 21 Native American populations from Wang 

et al (2007). Figure 1A shows the observed patterns of reduction of genetic diversity 

and isolation by distance, while Figure 1B shows the comparison with a typical full-

dataset simulation rerun with parameter values based on the point estimates of the 

parameters. For both observation and simulations, the general pattern is the same: a 

steady reduction of diversity for populations as one moves away from Addis Ababa, and 

a clear-cut increase of genetic differentiation with geographic distance. The comparison 

between these simulations’ results served as proxy for the convergence of the parameter 

estimates: As expected, we observe that, with more restrictive samplings of parameter 

values (from sampling in the prior distribution to sampling in the posterior distribution 

to using the point estimate), the statistics in the simulations better approximate the 

values of the observed data (Figure 2 and Figure S5). 

Next, we investigated whether the simulated genetic data could reproduce the 

patterns observed in a Principal Component Analysis (PCA) of the observed data set. In 

the observed dataset, one observes clear divisions between continental groups (Figure 

3A), as previously demonstrated elsewhere (Biswas et al, 2009; Li et al, 2008). The 

PCA results based on our simulations returned a pattern very similar to that observed 

(Figure 3A).  The convergence (from prior to 95% HPD to point estimate) of parameter 

estimates can also be assessed with PCA: The correlation between observation and 

simulations in their principal components (PC1 and PC2) are presented in Figure 3B. 

For the first component, the correlation was similar for the three groups of simulations 
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(parameters drawn from the prior, the posterior or the mode of the posterior 

distribution); for the second, there was a trend of higher correlation as simulations based 

on more restrictive samples of the posterior distribution were used. 

!

Figure 1: Comparison of the patterns of isolation by distance generated with the observed and simulated 

data. In A, the patterns obtained for the observed data; in B, the result of one of the simulations based on 

the point estimates. Each point represents a population (top) or a pairwise population comparison 

(bottom); the dashed lines represent the linear regressions of these points (whose R² values are 

informed). 

Finally, we also looked at the partitioning pattern generated by the software 

STRUCTURE. Simulations and observation gave the same estimates of the most likely 

number of groups (K) within the worldwide sample either using the highest likelihood 

of the data as the criteria for defining K (which led to K=7 in both observations and 

simulations); or using ΔK (Evanno et al, 2005), which favored K=2 both for 

observations and simulations (Figure S7). The similarities also persist in the way the 

different individual genomes are allocated to the different clusters resulting from this 

analysis. They generated, for both observed and simulated data, remarkably similar 

results for K=2 to K=4 (Figure 4). For K=2, African and Americans individuals have 

genomes entirely assigned to one of the clusters, whereas all other individuals are 
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admixed to different extents, and the proportion of admixture in the simulations 

matches almost perfectly that in the observation. For K=3, Eurasian populations 

emerge from the other groups previously formed with a few differences between 

simulations and observation: In the observations, Middle-Easterners and Europeans 

group with Africans; whereas in the simulations, they are admixed between the African 

and East Asian clusters. For K=4, the African component becomes clear by dividing 

the sub-Saharan samples from the rest of the world. Whereas for the observation this 

division is very clear, the results based on the simulated data show a more gradual 

pattern with Middle-Eastern and European mixed-ancestry samples. Beyond K=4, the 

patterns observed between simulations and observations diverge: while single 

populations start to emerge as separate groups in the observation; higher values of K 

generated admixed individuals and populations within the already existing groups in 

the simulations (Figure S6). Interestingly, in both simulations and observation, the 

grouping pattern is relatively consistent with the continental partitioning of the 

populations. 

Discussion.

We have shown that a simple diffusion model along landmasses generates genetic 

patterns very similar to those observed in the real dataset. The signatures of isolation-

by-distance and constant decrease of genetic diversity with increasing distances from 

Addis Ababa retrieved from the simulations show remarkable similitude with the 

observations. Importantly, these similarities are not restricted to the statistics used to 

estimate the demo-genetic parameters, but are also present in the other analyses we ran. 

The PCA results for the simulations based on the modes of the posterior distributions 

show a strong correlation with both the first and second principal components 

calculated from the observation. And the analyses using the software STRUCTURE 
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presented highly similar results for observation and simulations: they are consistent in 

the number of groups which better explains the diversity in the samples and also show 

very similar population divisions up to four clusters. 

!

Figure 2: Convergence of the pattern statistics towards the observation (horizontal gray line) in different 

sets of simulations. Within each plot, we present the different sources for the simulations that generated 

the distributions: “Prior” are simulations sampled randomly from the whole prior; “95%HPD” are 

simulations run based on the 95% higher posterior density estimates for all parameters; and “Mode” are 

simulations based on the point estimates for all parameters.  

Patterns from the full-dataset simulations. PCA has long been used in human 

population genetics (Menozzi et al, 1978). Even though the interpretations made on 

those first results are questionable when it comes to detecting migration events 

(Novembre and Stephens, 2008), it is clear that PCA is able to relate genetic variation to 

the geographic distribution of populations (Novembre et al, 2008) and even individuals 

(Wang et al, 2012). Here, we compared the positioning of the sampled populations on 

the first two principal components between simulations and observation. Their 

resemblance seen in Figure 3A is clear and, even though it is based on one of many 

simulations, it is by no means an atypical example; to the contrary, it is one of many 
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that are very similar to the observation. Over all sets of simulations, the coordinates of 

the samples along the first component (Figure 3B) show a very high correlation with the 

observed coordinates, even for simulations based on the prior, uninformative, 

distribution of the parameters. This indicates that the first axis of the PCA (capturing 

the largest fraction of the genetic variance) probably relates to the origin of the 

expansion (which occurs in the same place, East Africa, for all simulations) and demic 

diffusion. The second principal component seems to be more sensitive to the choice of 

the parameter values, the correlation between observation and simulations increasing 

when the parameters used for the simulations get closer to the estimation. 

!

Figure 3: PCA results in observation and simulations. A, Comparison of PCA applied to the observed 

data (left) and one selected simulation (right). The first (PC 1) and second (PC 2) principal components 

are represented here, where each point represents one of the analyzed populations, grouped by continents. 

B, Boxplots of the correlation values between the two first principal components in observations and 

simulations based on the prior distribution (“Prior”), 95% higher posterior density distribution 

(“95%HPD”), and on the point estimates (“Mode”). 

Even having in mind that admixture-based analyses are not completely 

independent from PCA (Engelhardt and Stephens, 2010), the most surprising result 

obtained here comes from the population clustering analysis in STRUCTURE. We were 

uncertain of the possibility of clusters to appear as a result of a simple diffusion process 

such as that we used in our simulations. In fact, based on ΔK, the estimation of the best 

number of groups is K=2 (possibly K=1), which suggests the inexistence of separate 
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genetic groups in the simulations. Importantly, this is also the case for the real dataset, 

which has been – regardless of that – consistently analyzed as if there were more 

genetic clusters in it (Rosenberg et al, 2005). We therefore also compared the 

simulations with the observations with higher values of K and found a high consistency 

in the order in which new clusters appear. The American populations are the first to 

stand out; second, a separation between European and African versus East Asian; and 

then the Africans alone stand out from the rest. There are a few exceptions though. The 

Mozabite population, from North Africa, tends to group with the other African 

populations in the PCA results for the simulations; while, in the observed data, they 

group with the Middle-Eastern and European populations. It is possible that more recent 

events of contact through the Strait of Gibraltar (Currat et al, 2010) or the Fertile 

Crescent, which are not captured by our simulations, contributed to this discrepancy. 

Another explanation could be the absence of the potentially important barrier of the 

Sahara desert in the simulations, which, in reality may have played an important role in 

isolating North Africans from sub-Saharan populations. Studies more focused in this 

region should take these possibilities into account when looking at the local 

populations’ genetic composition. Besides that, the European/Middle-Eastern samples 

present a more mixed composition in the simulations. Here, again, the presence/absence 

of the Sahara might have its importance, and we know from other sources that the 

history of the peopling of Europe, the fertile crescent and North Africa is more complex 

(Arenas et al, 2012). But the key point remains that, on the whole, simulations and 

observed data lead to the same splits among human groups. 
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Table 1: Accuracy table and point estimates for the six variable parameters in the ABC framework. Point 

estimate corresponds to the mode of the posterior distribution, while HPD95% interval represents the 

parameter values comprised within the 95% higher posterior density interval. R2 stands for the coefficient 

of determination of pseudo-observed on estimated values; SRMSE is the root mean squared error of the 

mode, standardized between 0 and 1; Prop. HPD95% stands for the proportion of tests for which 95% 

higher posterior density intervals include the true value. All rates are per generation (25 years). 

!! T"(years)" Ni"(ind.)" N"(ind.)" µ" r" m"

Point"estimate" 132"250" 3952" 5"725"656" 2.6x10=4" 0.149" 0.041"

HPD95%!interval! 60!850!3!
203!900!

920!3!
5120!

35!658!3!!
20!905!776!

9.3x1035!3!
4.4x1034!

0.036!3!
0.679!

0!3!
0.177!

R²! 0.235! 0.399! 0.431! 0.877! 0.286! 0.57!

SRMSE! 0.132! 0.233! 0.227! 0.099! 0.108! 0.187!

Slope! 0.248! 0.536! 0.602! 0.908! 0.352! 0.682!

Prop.!HPD95%! 0.993! 0.956! 0.981! 0.977! 0.983! 0.979!

 
 

It is essential to mention that when looking at the most probable number of 

groups according to the Delta K method (K=2) the results obtained for simulation and 

observation are virtually indistinguishable. Meaning that, for the most relevant part of 

the overall genetic differentiation for both simulations and observation (i.e. two groups), 

the resulting assignment of the populations to one or the other group is fundamentally 

the same. 

As mentioned above, to use microsatellite loci in this study was an informed 

decision taken on the basis of the effort to improve the amount of information captured 

with the limited number of loci that could be simulated. A comparison of results 

obtained in previous studies across these two kinds of markers is nonetheless possible. 

For the PCA results, studies on SNP worldwide datasets (Biswas et al, 2009; Jakobsson 

et al, 2008; Li et al, 2008; Wang et al, 2012) return results very similar to the results 

obtained here both for the observed and simulated data (Figure 3A). For the admixture-

based STRUCTURE analyses, the similarities across markers remain: Rosenberg et al 
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(2005) using microsatellite data have found results very similar to those obtained with 

SNPs in Li et al (2008), which are, in turn, very similar to our results in Figure 4. As it 

seems, for capturing the overall human genetic distribution, the SNP data may increase 

the resolution of the results (Li et al, 2008), but does not seem to affect the general 

patterns that are replicated in the model we propose here. 

Selection. Detecting and measuring natural selection in action in the human genome has 

been one of the main goals of population geneticists in the last decades (Nielsen et al, 

2007; Sabeti et al, 2007; Voight et al, 2006). Some of the methods for detecting 

selection are based on the comparison of FST across loci [e.g. (Foll and Gaggiotti, 

2008)]. Observed markers are compared against a neutral reference (or null) distribution 

of FST values simulated using a simple island model.  Loci whose FST values are too low 

or too high are then considered to be, respectively, under balancing or directional 

selection. The power of this method is negatively affected with increasing deviation of 

the real demography from the simulated island model. Excoffier et al (2009), for 

instance, showed that the addition of one layer of complexity to the base model, making 

it hierarchical with two levels, already reduces the number of false-positives to very 

large extent. Possibly, at least for humans, a better underlying model would be a clinal 

one. Including null model with isolation by distance seems the next key step to improve 

methods for the detection of selection. 

While it seems clear that additional spatial heterogeneity could help improving a 

basic neutral model (by accounting, e.g., for the Sahara), the model we used here proved 

to be a very useful one for explaining many patterns of human genetic variation. Such a 

model may represent a good choice for establishing a neutral background in future 

studies looking at more complex questions in modern human evolution such as the 

detection of selective events. 
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!

Figure 4: Comparison between the STRUCTURE results obtained for observed (OBS) and simulated 

(SIM) data. Horizontal bars represent the 70 populations as used in the simulations and the different 

shades of gray code for the proportion of each inferred ancestry group (K from 2 to 4). 

 

Cline vs. clusters. The results obtained here shed new light on the “cline vs. clusters” 

controversy. The fact that a simple model of two-dimensional dispersion on a 

homogeneous world succeeds in producing results so similar to the real data in many 



Chapter!1! ! A!simple!model!of!human!genetic!diversity!

!

!

47!

different analyses is strong support for an overall clinal view of the distribution of 

human genetic diversity over the globe. Even though the simulations used here involve 

some sophistication, the model they suggest is simple and can easily be considered in 

further population genetics studies: isolation-by-distance and continuous decline of 

diversity as we move away from East Africa. These two patterns are easily described by 

two linear regressions after all. 

The clinal model for the global distribution of human diversity encounters 

support in other biological and cultural systems. Skull morphological diversity, for 

example, shows a clear and steady decline of within population diversity as the distance 

from Africa increases and is in perfect agreement with what is found on DNA (Betti et 

al, 2009). Language, a cultural feature, also shows a similar pattern. Distance from 

Africa, alone, explains 30% of the reduction in phonemic diversity as measured in 504 

languages worldwide (Atkinson, 2011). 

This view of human genetic diversity distributed over a continuous cline 

reinforces the notion of inexistence of biological races (Group, 2005; Jorde and 

Wooding, 2004; Long and Kittles, 2009). Nonetheless, classifying humans in different 

groups is still common practice in many genetic studies (mostly medical genetics). As 

most of these studies are actually dealing with local populations sampled in 

discontinuous ways or with immigrants whose origins are very different around the 

world, assuming discrete groups is not necessarily an incorrect approach. However, if 

one is interested in moving to broader scale studies, putting the subjects in different 

“boxes” may lead to mistakes and misconceptions. 
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Supplemental.data.

Supplemental Data include seven figures and two tables and can be found further 

bellow in this chapter. 
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A simple range-expansion model replicates complex patterns of neutral 

genetic diversity observed in humans 

Ricardo Kanitz, Sylvain Antoniazza, Samuel Neuenschwander, Jérôme Goudet 

 

Supplementary.Figures.

Figure S1: Schematic representation of the 

pipeline used in the study. ABC framework 

shows the basic structure of an ABC analysis 

focused in parameter estimation. Full-

dataset simulations represents the following 

step in which simulations were run based on 

the estimations above and for which complete 

allele frequency data was retained. In 

Pattern comparison, further analyses were 

run in order to compare simulations and 

observations in way they produce results for 

IBD regression analysis, PCA and 

STRUCTURE. 
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Figure S2: Distribution of the populations used in this study (red crosses). The origin of the expansion of 

humans in East Africa is marked as the green dot. Map following Fuller’s Dymaxion projection, the same 

applied to the maps used in the simulations. The modeled map contained 20,384 square demes (5,094 on 

land), each with an approximate area of 160 x 160 km2. The pairwise geographic distances between 

populations were calculated with the R package gdistance correcting for the Earth curvature and 

considering only on-land pathways – and between A and geographic distance from Addis Ababa (the 

origin of the expansion). 
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Figure S3: ABC-GLM estimation of the model parameters. Gray lines represent the prior distributions; 

black lines, the posteriors; the gray dashed vertical lines, the modes for the posteriors (point estimates). 

The estimations were carried out on 5,000 out of ~1 million simulations which were the closest to the 

observations in six pattern statistics (see material and methods for details). 
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Figure S4: ABC-GLM estimation of the model parameters using five PLS components calculated from 

the whole set of statistics retaining 1000 simulations. Gray lines represent the realized priors; blue dashed 

lines represent the distribution of the parameter values in the retained simulations; red lines represent the 

posterior distributions. The PLS calculation was conducted on a set of 2,485 statistics comprising number 

of alleles (A) and gene diversity (Hs) per patch and all pairwise FST comparisons between patches. 

CAR_CAPA stands for current population size; INI_SIZE, initial population size; MUT_RATE, 

mutation rate; GRW_RATE, population growth rate; EXP_TIME, time of onset of the expansion; 

MIG_RATE, migration rate. Below each panel, the values for the mode (point estimates) are given for 

every parameter. 
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Figure S5: Comparison of patterns generated with gene diversity (heterozygosity, hs). A, comparison of 

the patterns generated for the cline in heterozigosity between observation and a simulation based on the 

point estimates. B, convergence of different pattern statistics related to the heterozigosity cline across 

different samplings from prior or posterior. 



Chapter!1! ! A!simple!model!of!human!genetic!diversity!

!

!

60!

 

 

Figure S6: Comparison between the STRUCTURE results obtained for observed (OBS) and simulated 

(SIM) data. Vertical bars represent the 70 populations as used in the simulations and the colors code for 

the proportion of each inferred ancestry group (K = 5 and 6). One can observe that particular populations 

become highlighted in the observations (Suruí with K=5, Oceanians with K=6); while, in the simulations, 

many populations begin to show admixed compositions. 
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Figure S7: Estimates of the most likely number of groups within the worldwide sample of populations. 

The figure contains the results obtained both for observations (Observed) and simulations (Simulated). 

L(K) is the direct assessment of likelihood for each number of groups. Delta-K is the estimate based on 

Evanno et al.’s 2005 approach. 
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Supplementary.Tables.

Table S1: Population samples as they were analyzed in this study. Populations marked with “a” were 

merged together due to their geographical proximity (less than 160km apart) and were considered to 

inhabit the same deme in the simulations and also in the analyses applied to the read dataset. Populations 

marked with “b” were removed from the pattern statistics calculations: They were either known 

exceptions to the general patterns found in the continent (Aché), or were sampled in the vicinity of other 

populations, on the edges of their original distributions. For these, we kept the populations with the larger 

sample sizes and these were the Karitiana (as opposed to the Suruí) and Guarani (as opposed to the 

Kaingang). 

Continent" Population" Number"of"individuals"

Africa! Bantu!North3Eastern!Africa! 12!
Africa! Bantu!Southern!Africa! 8!
Africa! Biaka!Pygmies! 32!
Africa! Mandenka! 24!
Africa! Mbuti!Pygmies! 15!
Africa! San! 7!
Africa! Yoruba! 25!
America! Acheb! 19!
America! Arhuaco!&!Kogia! 34!
America! Aymara! 18!
America! Cabecar! 20!
America! Chipewan! 29!
America! Cree! 18!
America! Embera! 11!
America! Guarani! 10!
America! Guaymi! 18!
America! Huilliche! 20!
America! Inga! 17!
America! Kaingangb! 7!
America! Kaqchikel! 12!
America! Karitiana! 24!
America! Maya! 25!
America! Mixe!&!Mixteca! 40!
America! Ojibwa! 20!
America! Pima! 25!
America! Piopoco! 13!
America! Quechua! 20!
America! Suruib! 21!
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America! Ticuna3Arara!&!Ticuna3Tarapacaa!! 35!
America! Waunana! 20!
America! Wayua! 17!
America! Zapotec! 19!
America! Zenu! 18!
South3Asia! Brahui!&!Balochia! 50!
South3Asia! Burusho! 25!
South3Asia! Hazara!&!Pathana! 48!
South3Asia! Kalash! 25!
South3Asia! Makrani! 25!
South3Asia! Sindhi! 25!
South3Asia! Uygur!&!Xiboa! 19!
East3Asia! Combodian! 11!
East3Asia! Dai!&!Lahua! 20!
East3Asia! Daur! 10!
East3Asia! Han!Central!China! 34!
East3Asia! Han!Northern!China! 10!
East3Asia! Hezhen! 9!
East3Asia! Japanese! 29!
East3Asia! Miao! 10!
East3Asia! Mongola! 10!
East3Asia! Naxi! 10!
East3Asia! Oroqen! 10!
East3Asia! She! 10!
East3Asia! Tu! 10!
East3Asia! Tujia! 10!
East3Asia! Yakut! 25!
East3Asia! Yi! 10!
Europe! Adygei! 17!
Europe! Basque! 24!
Europe! Bedouin!&!Druzea! 95!
Europe! French! 29!
Europe! Italian! 13!
Europe! Mozabite! 30!
Europe! Orcadian! 16!
Europe! Palestinian! 51!
Europe! Russian! 25!
Europe! Sardinian! 28!
Europe! Tundra!Nentsi! 14!
Europe! Tuscan! 8!
Oceania! Melanesian! 19!
Oceania! Papuan! 17!
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Table S2: Prior distributions and values of the parameters explored in the ABC analysis..

Parameter" Abbreviation" Distribution" Min." Max." Mean" S.D."
Initial!Population!Size! Ni! Uniform! 2! 5120! 3! 3!
Carrying!Capacity! K! Uniform! 2! 5120! 3! 3!
Growth!rate! r! Lognormal! 0.01! 2.5! 0.5! 0.6!
Migration!rate! m! Uniform! 0! 0.5! 3! 3!
Time!of!the!onset! T! Normal! 2000! 10400! 6200! 1280!
Mutation!rate! µ! Uniform! 1.00E305! 1.00E303! 3! 3!
!
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Abstract.

Gradients of variation – or clines – have always intrigued biologists. Classically, they 

have been interpreted as the outcomes of antagonistic interactions between selection and 

gene flow. Alternatively, clines may also establish neutrally with isolation-by-distance 

or secondary contact between previously isolated populations. The relative importance 

of natural selection and these two neutral processes in the establishment of clinal 

variation can be tested by comparing genetic differentiation at neutral genetic markers 

and at the studied trait. A third neutral process, surfing of a newly arisen mutation 

during the colonisation of a new habitat, is more difficult to test. Here, we designed a 

spatially-explicit ABC simulation framework to evaluate whether the strong cline in the 

genetically-based reddish coloration observed in the European barn owl (Tyto alba) 

arose by allele surfing or whether selection has to be invoked to explain this colour 

cline, for which we have previously ruled out the actions of isolation-by-distance or 

secondary contact. Using ABC simulations and genetic data on 390 individuals from 20 

locations genotyped at 22 microsatellites loci, we first determined how barn owls 

colonized Europe after the last glaciation. Using these results in new simulations on the 

evolution of the colour phenotype, and assuming various genetic architectures for the 

colour trait, we demonstrate that the observed colour cline cannot be due to the surfing 

of a neutral mutation. Taking advantage of spatially explicit ABC, which proved to be a 

powerful method to disentangle the respective roles of selection and drift in range 

expansions, we conclude that the formation of the colour cline observed in the barn owl 

must be due to natural selection. 

!
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Introduction.

Determining the relative roles of natural selection and neutral processes as driving 

agents of evolutionary change has long been the focus of discussions in the field of 

evolutionary biology (Kimura 1983; Nei 2005; Wagner 2008). A process of particular 

interest in this context is one observed in many species presently occupying temperate 

areas: range expansions. Most (if not all) species currently inhabiting Europe and North 

America have undergone postglacial recolonisation events, increasing their ranges and 

population sizes (Hewitt 2000), and nowadays, some extant species and populations 

facing the on-going climatic changes and human alterations to the environment may 

also respond by increasing their range (Parmesan & Yohe 2003). Range expansions are 

a key factor for the discussion above because they often take place over an 

environmental gradient, which potentially provides natural selection with the 

opportunity to generate locally-adapted variants (Hewitt 1996). When these variants are 

distributed gradually across the environment, a cline is formed (Endler 1977). Clines 

along the path of range expansions, however, can also be formed without natural 

selection. The series of founder events, which are inherent to the colonization of new 

areas, may lead to the formation of allele frequency clines simply trough the neutral 

phenomenon of allele surfing (Edmonds et al. 2004; Klopfstein et al. 2006). In this 

process, neutral alleles may “surf” the wave of range expansion, increase their 

frequency along the way eventually forming a genetic cline. If the underlying genetics 

has any effect on phenotype, a purely neutral cline may become very similar to what 

one would expect to be a selection-derived cline (Currat et al. 2006). 

Classically, clines have been studied in the context of hybrid zones, a secondary-

contact zone between species or populations that evolved in allopatry, where selection 

against hybrids prevents gene flow and generates clines of phenotypes or alleles 
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frequencies (Barton & Hewitt 1985). This is well described in the hybrid-zone 

literature, where the terms “cline” and “hybrid zone” are even sometimes confounded 

(Barton & Hewitt 1985). The processes behind the formation of such clines have been 

investigated in some details both theoretically and experimentally (Barton & Gale 1990; 

Barton & Hewitt 1985; Gay et al. 2008). Clines could also be the result of the mixing of 

populations adapted to different ecological conditions where the ecological transition 

occurs over short distances [e.g. latitudinal clines (James et al. 1997) or sharp 

environmental changes (Mullen & Hoekstra 2008)]. These ecological clines can be 

analysed in a similar way to the hybrid zones clines (e.g. Mullen & Hoekstra 2008). For 

these types of clines, the development of tools to infer selection has a long history and 

the method relies on the comparison between the clines’ width (w) and species’ 

dispersal distance (σ). In this case, selection is proportional to the square root of σ/w 

(Linnen & Hoekstra 2009; Slatkin 1973). 

Clines can also appear through two neutral processes; isolation by distance and 

secondary contact without selective disadvantage of hybrids (Novembre & Di Rienzo 

2009). When compared with natural selection, these neutral processes can essentially be 

ruled out by comparing the genetic/phenotypic variation putatively under selection to 

the neutral genetic variation. If the trait putatively under selection presents a stronger 

signal of population differentiation (higher QST or PST) than neutral genetic markers 

(FST), there is probably selection involved in maintaining or leading to locally-adapted 

forms. Otherwise – if QST is not significantly higher than FST – isolation by distance or 

secondary contact are enough to explain the observed patterns (Leinonen et al. 2008; 

Spitze 1993). Several studies have been performed to either compare differentiation at 

quantitative traits and neutral markers (QST-FST) (Antoniazza et al. 2010; Demont et al. 

2008; Gockel et al. 2001; Hangartner et al. 2012; Long & Singh 1995; Merilä 1997; 
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Palo et al. 2003; Savolainen et al. 2007; Storz 2002), or to compare genetic variation at 

different types of loci (FST-FST) (Ingvarsson et al. 2006; Kooyers & Olsen 2012; 

Saccheri et al. 2008). 

In large-scale clines (occurring over wide geographical ranges, such as a 

continent), the role of selection has only been tackled through theoretical investigations 

focusing on either gene frequencies (Bazykin 1969; Endler 1977; Fisher 1950; Haldane 

1948), or quantitative phenotypic traits (Barton 1999; Case & Taper 2000; Kirkpatrick 

& Barton 1997; Leimar et al. 2008; Slatkin 1978). No methods have yet been developed 

to infer selection in this case. In addition, the empirical studies describing large-scale 

clines have consistently neglected the evaluation of the surfing phenomenon as their 

possible cause. They have largely assumed natural selection to be driving force leading 

to the observed patterns [see Currat et al. (2006) and Vasemägi (2006) for critical 

reviews, and Kujala (2012) for an exception]. Nevertheless, the most probable source of 

allele surfing – i.e. range expansions – is common. Most species inhabiting temperate 

latitudes of both hemispheres spent the last glacial maximum (LGM) in refugia that 

were closer to the equator than their current distribution and then expanded their range 

after the last ice age (Hewitt 1999, 2000; Taberlet et al. 1998). 

Evaluating how likely it is for a given cline to originate by allele surfing 

(relative to natural selection) is essential to understand its biological basis and can bring 

key insight on the more general discussion about the prevalence of selective processes 

in biological evolution. The establishment of clines by allele surfing in range 

expansions, however, is more difficult to rule out by means of QST-FST comparisons 

than the other two neutral processes. Surfing mutations may also occur in the loci 

underlying the candidate trait (Klopfstein et al. 2006), leading to an inflated QST when 

compared to other random loci’s FST. In order to deal with this situation, one possible 
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approach is to first infer/reconstruct the most likely demographic history for the taxon 

under investigation. This can be done using approximate Bayesian computation [ABC 

(Beaumont et al. 2002; Bertorelle et al. 2010; Csillery et al. 2010; Sunnaker et al. 

2013)], where simulations with variable scenarios and demographic-parameter values 

are used to infer which parameters are closest to the observed genetic data, and whether 

the species has undergone a range expansion (Eriksson et al. 2012; Estoup et al. 2004; 

Estoup & Clegg 2003; Itan et al. 2009; Neuenschwander et al. 2008b; Warmuth et al. 

2012). Second, using these estimated demographic parameters, a new round of neutral 

simulations is carried out, focusing this time on the phenotypic trait showing clinal 

variation. Taking advantage of many replicates, this procedure allows assessing the 

probability of the cline under investigation to have been generated by purely neutral 

processes (i.e. allele surfing in a range-expansion scenario). A similar approach was 

successfully used by Roux et al. (2012) in a different biological context (balancing 

selection in Arabidopsis spp.). 

One striking example of clinal variation is provided by the south-west/north-east 

cline in colour of the European barn owl (Tyto alba) described by Roulin and colleagues 

(Roulin 2003; Roulin et al. 2009), and analysed along with neutral genetic markers in 

Antoniazza et al. (2010). Based on a comparison of the spatial variation of the colour 

with the neutral genetic diversity, the latter study revealed that the south-west/north-east 

colour cline is significantly steeper than population differentiation at neutral genetic 

markers measured in the same populations. Antoniazza et al. (2010) discussed the 

surfing hypothesis, but did not test it. A major characteristic of neutral genetic diversity 

in European barn owls is a decline from south-western (Iberian Peninsula) to north-

eastern Europe (North-Eastern Germany to Serbia, Fig. S2). The likely origin of this 

genetic diversity decline is a series of bottleneck events during the post-glacial 
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colonisation of northern Europe. Here, we investigate whether a post-glacial 

colonisation model is compatible with today’s observed genetic diversity of the 

European barn owl, and investigate how likely it is for the colour cline to have arisen by 

allele surfing (as opposed to natural selection) during colonisation. 

To reconstruct past and current demography of the European barn owl, a dataset 

of 390 individuals genotyped at 22 microsatellites coming from 20 sampling locations 

(Fig. S3) in Western Europe was analysed with spatially explicit simulations within an 

approximate Bayesian computation (ABC) framework. The observed patterns were 

compared to those generated with spatially explicit computer simulations using several 

plausible historical scenarios (Table 1) and 6-9 demographic parameters (Table 2). 

Based on observed genetic patterns, classical phylogeographic analyses and ecological 

knowledge of the species, a scenario consisting of a single colonisation from the Iberian 

Peninsula was hypothesized. As geographic variation in genetic diversity might arise by 

other processes than colonisation, we also tested scenarios with a south-west/north-east 

gradient of effective population size and extinction rate. Additionally, considering that 

many species were shown to have more than one glacial refugium (Taberlet et al. 1998), 

we looked at models with two glacial refugia in the Iberian Peninsula and in Greece. 

Finally, to control for the possibility that the patterns observed might not be derived 

from a colonisation process, several models without colonisation were tested as well. 

Using the parameters obtained for the best-supported scenario for neutral genetic 

markers, we ran additional simulations to model the evolution of the colour trait. 

Different possible genetic architectures underlying the colour trait were investigated. 

For each one of these, we estimated the probability of generating a cline as steep as the 

one observed in the natural populations without selection. 
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Material.and.Methods.

I. Sampling and molecular analyses 

From 20 locations throughout Europe, a total of 390 barn owls were sampled by 

collaborators working in survey programs, recovery centres, and museums (Fig. 1). 

Genomic DNA was extracted from the basal 1 mm of breast feather quills, or from 

blood or muscles stored in 96% ethanol. Extractions were performed either on a 

BioSprint 96 extraction robot using the BioSprint 96 DNA blood kit or using the 

DNeasy blood and tissue kit, following the manufacturer’s protocols (Qiagen, Hilden, 

Germany). 

Population genetic statistics were estimated from genotypes obtained for 22 

polymorphic microsatellite loci [(Ta-202, Ta-204, Ta-206, Ta-210, Ta-212, Ta-214, Ta-

215, Ta-216, Ta-218, Ta-220, Ta-305, Ta-306, Ta-310, Ta-402, Ta-408 and Ta-413 

from Burri et al. 2008) and (54f2, Calex-05, FEPO42, Oe053, GgaRBG18 and Tgu06 

from Klein et al. 2009)]. Polymerase chain reactions (PCR) were performed in five 

multiplexes using the QIAGEN Multiplex PCR Kit (Qiagen, Hilden, Germany) and the 

following protocol: initial step of denaturation for 15 min at 95 °C, 34 cycles of 30 sec 

denaturation at 94 °C, annealing for 1.5 min at 57 °C, and elongation at 72 °C for 1 min. 

Final elongation for 30 min was conducted at 60 °C. The primer concentration and 

multiplexes composition can be found in Table S1. Fragment analyses were run on an 

ABI 3100 sequencer with a ROX 500 size standard and allele lengths were assigned 

using GENEMAPPER 4.0 (Applied Biosystems, Foster City, CA, USA). After 

verifying that no null-alleles were present (MICRO-CHECKER 2.2.3, Van Oosterhout 

et al. 2004) and that populations were not showing departure from Hardy-Weinberg 

equilibrium (Goudet 1995) the dataset was used to calculate observed summary 

statistics for the ABC estimation procedure. All summary statistics for both observed 
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and simulated data were calculated using quantiNEMO (Neuenschwander et al. 2008a) 

and custom R scripts available on demand (R Development Core Team 2008). 

 

II. Approximate Bayesian computation (ABC) 

1. Population genetics patterns and choice of summary statistics 

The rationale behind ABC is to compare simulated genetic data obtained under 

various scenarios and demographic/genetic parameters against observed genetic data 

through summary statistics (Beaumont 2010; Beaumont et al. 2002; Bertorelle et al. 

2010; Csillery et al. 2010; Sunnaker et al. 2013). The choice of summary statistics on 

which the comparison is based is thus a key component of an ABC analysis. The 

summary statistics should describe the genetic data sufficiently, but should also be kept 

to a minimal number: Each additional summary statistic adds extra noise to the 

parameter estimation (Beaumont et al. 2002). 

The present data exhibit strong geographic patterns of genetic diversity and 

population structure, which can be summarized by few summary statistics: (i) a 

significant signal of isolation-by-distance [IBD; pairwise FST as a function of pairwise 

geographic distances, Fig. S1 (Mantel test, R2 = 0.310, p < 0.001)], and (ii) a significant 

reduction in genetic diversity from south-west to north-east [mean allelic richness per 

population as a function of geographic distance from the south-western most 

population, Fig. S2 (R2 = 0.779, p < 0.001)]. Four statistics were implemented to 

summarize these patterns: (i) The IBD slope (5.68 × 10-4); (ii) average mean pairwise 

FST between populations (1.68 × 10-2); (iii) the slope of the regression of the mean 

allelic richness per population as a function of its distance to the south-western-most 

population (-2.18 × 10-2); and (iv) the average mean allelic richness per population 

(5.32). 
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Table 1: Demographic models tested with ABC for the demographic history of the European barn owl. 

Two dimensions of the models are described (colonisation and heterogeneity) with the each model’s 

number of variable parameters. 

Colonisation.
model. Heterogeneity.model.

Nb..of.varying.parameters.

(=.with.prior.distributions).

One$refugium.
(Iberian).

One$carrying$capacity!(base!model)! 6!

Carrying$capacity$cline!(SWSNE)! 7!

Extinction$rate$cline!(SWSNE)! 8!

Two$dispersal$rate!(one!during!
colonisation!and!one!at!carrying!

capacity)!

7!

Two$refugium.
(Iberian.and.
Greek).

One$carrying$capacity! 7!

Carrying$capacity$cline!(SWSNE)! 8!

Extinction$rate$cline!(SWSNE)! 9!

Two$dispersal$rate!(one!during!
colonisation!and!one!at!carrying!

capacity)!

8!

No$colonisation4

One$carrying$capacity! 6!

Carrying$capacity$cline!(SWSNE)! 7!

Extinction$rate$cline!(SWSNE)! 8!

!
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2. Base model 

One of the major drivers of barn owl populations’ dynamics is winter harshness 

(Altwegg et al. 2006; Marti & Wagner 1985; Massemin & Handrich 1997). The 

sensitivity of this species to climate, notably to long periods of snow cover, is well 

known. There is no doubt that European barn owls endured the LGM in refugia in ice- 

and largely snow-free ranges south of their current European distribution. The strong 

cline in genetic diversity from south-west to north-east Europe points toward a single 

colonisation from the Iberian Peninsula (or north-Africa via Gibraltar, Fig. S2). Our 

basal simulation model is thus based on a colonisation of Europe from a single, Iberian 

glacial refugium. 

Simulating colonisation processes requires spatially explicit modelling. A 

modified version of the quantiNEMO programme was used to simulate the colonization 

and the resulting neutral genetics (Neuenschwander et al. 2008a), using an integrated 

coalescent layer for increased efficiency. Our simulations consisted of two phases, 

similar to the approach implemented in SPLATCHE (Currat et al. 2004; Ray et al. 

2010). In a first phase, spatially explicit demographic history was simulated forward in 

time (starting with the post-glacial colonization and ending today). In this phase the 

demographic history of populations is simulated based on the demographic parameters 

presented in Table 2. In the second phase genetic data were generated in a coalescent 

approach (backward in time, starting from today’s sample and going back to the most 

recent common ancestor of all sampled lineages) using the demographic information 

obtained from the demographic simulations (Hudson 1990; Nordborg 2001). The 

genetic data (22 unlinked microsatellite markers) was simulated for the same number of 

individuals and populations as in the observed data. Mutations followed a stepwise 

mutation model (SMM). 
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Simulations were performed on a raster map of Europe consisting of 2671 

square land demes, each 50 km × 50 km in size (Fig. S3). A deme may be inhabited by 

a single population. The deme size is appropriate for barn owl since their dispersal 

abilities are in this range (see below). Simulations started with a single population in the 

glacial refugium in the south of the Iberian Peninsula. At the start of a simulation, this 

refugium population was distributed in equal numbers among the nearest 100 demes 

(Fig. 1 and Fig. S3). In the following generations, the population range expanded 

successively across Europe based on demographic processes, such as local logistic 

population growth and dispersal to the four neighbouring demes (stepping stone 

dispersal model). This described base model requires five demographic parameters 

(time of the onset of colonisation, migration rate, deme carrying capacity, size of the 

refugium population, and intrinsic population growth rate) and a single genetic 

parameter (mutation rate of the microsatellites, Table 2). 

 

3. Prior distributions 

The prior distributions of the six base-model parameters for ABC analyses are 

based on extensive ecological data: 

• Start of the colonisation (time): As a result of high sensitivity of barn owls to 

winter harshness, the colonisation of the northern part of Europe necessarily 

occurred after the warming of the continent, i.e. after the LGM around 20 000 

years ago (Clark et al. 2009). Since no information on the onset of colonisation 

is available, a broad uniform prior was chosen ranging from 2000 to 10 000 

generations, which is about 7200-36 000 years BP assuming a constant 

generation time of 3.6 years for barn owls (Altwegg et al. 2006). 
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• Dispersal rate: Dispersal rate is generally high and with long ranges in the barn 

owl. In the Netherlands, more than 30% of the juveniles disperse more than 50 

km from their place of birth to their place of reproduction (Bairlein 1985; Bunn 

et al. 1982). We account for these dispersal distances by defining a deme size of 

50 km × 50 km (see above) and by defining a wide uniform dispersal prior 

allowing for high dispersal rates from 0 to 0.5. 

• Carrying capacity: The barn owl census population size is well estimated in 

Europe and it counts about 140 000 breeding pairs (Hagemeijer & Blair 1997). 

We chose to cover a broad interval of 5-10 000 individuals per deme (so 

between 13 355 and 26 710 000 overall), but we put more weight on small 

values by using a lognormal distribution with a mean of 300 and a variance of 

400.  

• Size of the refugium population: As no information is available about this 

population size we used a wide uniform distribution between 100 and 100 000 

individuals. 

• Population growth rate: We chose a wide uniform prior between 0 and 2. Note, 

that the growth rate has only an effect during colonization when population size 

has not reached carrying capacity and is thus not a so important parameter of the 

model. 

• Mutation rate: a lognormal distribution between 10-8 and 10-2 with a mean of 10-

3 and a variance of 8 × 10-2 was used as prior to span the full range of plausible 

mutation rate values (Ellegren 2000). 

Table 2: Demographic parameters for the different scenarios (models). Details on the a priori value 

distributions of the different models. Uniform distributions have equal probability of sampling any value 

between the defined boundaries; lognormal distributions have a higher probability of sampling values 

closer to its mean in a logarithmic scale, with predefined upper and lower limits (truncated). The brackets 

describing lognormal distributions give: (lower bound, upper bound, mean, variance). 
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Parameters. For.which.model. Prior.characteristics.

Start!of!the!colonisation! All!models!
Uniform!(2000S10!000!

generations)!

Population!growth!rate! All!models! Uniform!(0S2)!

Mutation!rate! All!models!
Lognormal!(1eS8S1eS2,!1eS3,!8eS

2)!

Size!of!refugium!population! All!models!

Uniform!(100S100!000)!but!

for!2Srefugia!models!

Uniform!(200S100!000)!for!1S

refugium!models!

Dispersal!rate! All!models!but!two$dispersal$rate! Uniform!(0S0.5)!

Dispersal!rate!high!density! Two$dispersal$rate6 Uniform!(0S0.5)!

Dispersal!rate!low!density! Two$dispersal$rate66 Uniform!(0S0.5)!

Carrying!capacity!
All!models!but!carrying$
capacity$cline!

Lognormal!(5S10!000,!300,!

400)!

Carrying!capacity!of!the!SW!

deme!
Carrying$capacity$cline!

Lognormal!(5S10!000,!300,!

400)!

Carrying!capacity!of!the!NE!

deme!
Carrying$capacity$cline!

Lognormal!(5S10!000,!300,!

400)!

Extinction!rate!SW!deme! Extinction$rate$cline6 Uniform!(0S0.5)!

Extinction!rate!NE!deme! Extinction$rate$cline! Uniform!(0S0.5)!

Divergence!time! Two$refugium6 Uniform!(0S120!000)!

!
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Figure 1: Map of the sampling locations and sampling sizes. Sampling sizes and sampling locations for 

the observed dataset are indicated. Similar sampling locations and sampling sizes are generated for the 

simulated dataset. The Iberian glacial refugium demes are indicated in dark grey. We use a Europe Albers 

Equal Area Conic projection to adequately represent surfaces. 

 

4. Model comparison 

ABC does not only allow estimating model parameters, but it is also effective in 

contrasting different models (eg. Sunnaker et al. 2013 and references therein). We took 

advantage of this feature to test for different scenarios that could explain the barn owl’s 

post-glacial evolutionary history, and then applied more refined parameter estimation to 

the best-supported model. 

Three colonisation models: Our observation of a strong decrease of allelic 

richness from the Iberian Peninsula towards northeastern populations (Fig. S2) suggests 
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a single colonisation from the Iberian Peninsula. Our base model (one-refugium model) 

thus consists of a single colonisation of Western Europe from this Peninsula. However, 

many taxa in Europe are known to have survived the cold period also in eastern glacial 

refugia (Hewitt 1999; Taberlet et al. 1998). We tested this hypothesis by adding an 

additional eastern glacial refugium, of identical size situated in Greece, to previous 

model (two-refugium model). Finally, we tested the hypothesis if barn owls resisted the 

cold period and remained across Europe and thus had no colonisation phase after the 

LGM. We implemented this model by directly spreading the initial population size over 

the whole continent (no-colonization model). 

Four heterogeneity models: The described base model has constant 

environmental characteristics (one-carrying-capacity model), i.e. deme characteristics 

did not change over space. However, several ecological characteristics of the barn owl, 

apart from the colonisation, might have induced spatial variation in genetic diversity. 

Half of the extant European barn owls are breeding in the Iberian Peninsula, and there is 

a strong decrease in population sizes from south-western to north-eastern Europe 

(Hagemeijer & Blair 1997). We thus tested whether a model with clinal variation in 

carrying capacity from south-west to north-east Europe fits the data better (carrying-

capacity-cline model). A second key characteristic that might influence the spatial 

variation in allelic richness is the variation in the extinction rate. The European barn owl 

is very sensitive to cold, snow-rich winters, and the gradient of continentality from 

southwestern to northeastern Europe might play an important role in creating the 

observed pattern of genetic variation. We thus also ran a model that includes a south-

west/north-east cline in extinction rates (extinction-rate-cline model). Finally, the last 

model investigated is based on the observation that migration rates may differ 

depending on the stage of colonisation looked at: Dispersal is often higher during the 
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colonisation and then it lowers once carrying capacity is reached (Neuenschwander et 

al. 2008b; Saether et al. 1999). In this model (two-dispersal-rate model), we allowed 

for two migration rates, one at low density during colonization and one at high density 

when demes are completely populated. 

The four heterogeneity models were combined with the three colonization 

models. The combination of the no-colonization and two-dispersal-rate models was 

eliminated since the migration rate during colonization would have no effect. Eleven 

different models were therefore compared (Table 1). 

For the model comparison in ABC, we run 105 simulations for each of the 

eleven models based on parameters drawn from the corresponding prior distributions 

(Table 2). Each simulation was compared to the observation by their summary statistics, 

resulting in a Euclidean distance. Models were then compared based on their posterior 

probabilities following Leuenberger and Wegmann (2010) as implemented in 

ABCTOOLBOX (Wegmann et al. 2010). 

 

5. Parameter estimates 

The best demographic model was then selected for final parameter estimation. A 

total of 106 simulations were generated as before based on parameters drawn from the 

prior distributions. 1000 simulations closest to the observation were retained for 

parameter estimation using a locally-weighted linear-regression approach implemented 

in the package ABCTOOLBOX (Wegmann et al. 2010). 

 

6. Quality assessment of estimates 

To test the accuracy of our estimates, we use 1000 randomly chosen simulations 

(from the 106 simulations dataset) with known parameter values and their resulting 
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genetic data as pseudo-observations. Using the same ABC framework as before, we 

estimated the parameter values for these pseudo-observations. The accuracy of the 

estimation was measured by comparing the estimated parameter value against the “true” 

parameter value using the following statistics: relative root mean square error (RMSE), 

mean relative bias, proportion of high posterior density 50% (HPD50%) encompassing 

the pseudo observed value, proportion of HPD95% encompassing the pseudo-observed 

value. We also computed the R2 of the linear regression of the estimated parameter 

values as a function of the pseudo-observed parameter values (Neuenschwander et al. 

2008b). 

 

III. Simulations applied to the colour trait 

Additional simulations were performed to assess the probability of neutral 

processes generating the colour cline observed in the barn owl across Europe. These 

simulations were run using the best demographic model and parameter values drawn 

from the posterior distributions (HPD95% intervals). In order to simulate colour as a 

quantitative trait, we ran the simulations forward in time in quantiNEMO 

(Neuenschwander et al. 2008). 

The individual breast-colour variation in the barn owl ranges from purely white 

to rufous-brown (dark). Because the genetic basis for this trait is still poorly known 

(Roulin & Dijkstra 2003), we investigated five alternative genetic architectures. (i) The 

simplest architecture consists of a single bi-allelic locus; more complex ones involved 

(ii) 25 bi-allelic loci; and (iii) a single multi-allelic locus (with 50 alleles). For these 

three architectures, the determination of the colour phenotype was defined as purely 

additive (i.e. no dominance, nor epistasis). Additionally, we explored architectures with 

(iv) a single bi-allelic locus and (v) 25 bi-allelic loci, where the dark allele was 
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completely recessive. Even though somewhat unrealistic, this dominance scheme was 

used in order to allow for a higher initial dark allele frequency in the refugium, while 

keeping the frequency of the dark phenotype at its observed value, which would 

facilitate the surfing phenomenon (Hofer et al. 2009). In other words, we chose this 

dominance scheme in order to be conservative, by favouring the neutral processes. 

In the bi-allelic architectures (for either one locus or 25 loci), one allele was 

considered “white” (representing the whitest birds), the other “dark” (representing the 

darkest birds). In the multi-allelic architecture, alleles are distributed over a linear 

gradient ranging from “whitest” to “darkest” with 50 different levels. Also, as a control, 

we simulated 22 microsatellite loci to mimic the purely neutral markers used in the 

previous simulations. 

As the initial frequency of a given allele (Hofer et al. 2009) or the geographic 

location where a new allele appears (Klopfstein et al. 2006; Travis et al. 2007) may play 

a major role in the probability of observing the surfing phenomenon, two models 

varying in these respects were designed: (i) evolution from standing variation and (ii) 

enforced allele surfing. This second scenario was implemented only for the 

architectures without dominance, in order to estimate the probability of surfing for a 

new mutation occurring at the front of the expansion. For all these models, range 

expansion started from an Iberian refugium colonising the rest of the continent, 

potentially generating clines in colour polymorphism through the process of allele 

surfing. 

Initial allele frequencies depended on the model used. For models based on 

standing variation, the average initial frequencies were calculated based on the current 

phenotype frequencies observed in the refugium of the Iberian Peninsula where the 

white phenotype is currently present at a ~90% frequency. Accordingly, for the co-
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dominance models, the initial frequency of the “white” allele was 90%; for the complete 

dominance models, it was 68%. In the multi-allelic model, the frequency of each allele 

was given by an exponential distribution, in which the lighter-coloured half of the 

alleles had a frequency of 90%. 

For the simulations with enforced allele surfing, the whole Iberian Peninsula 

started already occupied and the white allele was fixed in all patches. One patch, located 

in the north-eastern corner of the Iberian Peninsula, contained a single dark allele at 

each locus (also for the multi-locus architecture). For the multi-allelic trait, the new 

mutation was implemented by bringing the darkest allele into the population which, in 

this case, contained the same exponential distribution of the other alleles as used in the 

evolution from standing variation scenario. As a result, this dark allele was at the very 

front end of the expansion, giving it an enhanced chance to spread by hitchhiking on the 

colonisation wave and creating the observed cline. 

Beyond dominance effects, the mapping of genotypes into phenotypes was also 

done considering two different values for heritability of the colour trait (h2 = 0.81 or 1). 

These values were chosen because narrow-sense heritability for colour was estimated to 

be 0.81 in Switzerland (Roulin & Dijkstra 2003; Roulin et al. 1998), and complete 

heritability (h2 = 1) makes the estimation of phenotypic differentiation (QST) more 

conservative. 

For all simulations, we calculated the linear regression between pairwise 

geographic distances and the neutral genetic (FST) or phenotypic differentiation (QST) 

between the 20 sampled populations. To assess the steepness of the cline produced, we 

retained the slope of the linear regressions, and following (Antoniazza et al. 2010) used 

the difference in slope between QST and FST as a statistic to summarize the discrepancy 

between phenotypic and neutral markers differentiation. Finally, we compared the 



Chapter!2! Natural!selection!on!the!barn!owl’s!color!cline!

!

!

87!

values for the difference of slopes obtained in each one of the simulation models with 

the relative position of this statistic as calculated for the observation. The proportion of 

simulations in each model that returned values equal or higher than the observation 

provided us with an estimate of the probability of attaining the observed values with 

that given neutral model. 

!

Results.

Model comparison 

The posterior probability of each of the eleven models tested is presented in Fig. 

2. The four models with one glacial refugium are best supported and their total posterior 

probability is higher than 90%. Among the one-refugium models, the base scenario with 

a constant carrying capacity over the continent had the highest posterior probability 

(0.31), followed by the model with a south-west/north-east cline in carrying capacities 

(0.25). The former model has not only higher support, but is also more parsimonious 

than the latter and was therefore used for all further simulations. Interestingly, the 

estimation of the parameters for the second best model, with a cline in carrying 

capacity, (although clearly less supported) results in estimates for a very shallow or 

non-existents cline of carrying capacities supporting the best simple model (estimates 

not shown). 

 

Demographic parameter estimates 

The posterior distributions for the demographic and genetic parameters of the 

base model (one refugium with one carrying capacity) are shown in Fig. 3, and the 

corresponding point estimates are reported in Table 3. The carrying capacity shows a 

narrow posterior distribution with a mode at 203 individuals per deme and a HPD95% 
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varying between 76.5 and 555. The population growth rate, as well as the refugium 

population size, shows broad posterior distributions, and their point estimates of 

respectively 1.58 and 59 800 should be considered with caution given their low 

estimability (see below). Dispersal rate estimates show high values with a mode at 

0.375 and an HPD95% of 0.188-0.5. The mutation rate showed a very narrow posterior 

distribution with a mode of 1.03 × 10-4 and a HPD95% between 2.85 × 10-5 and 3.8 × 

10-4. The estimation of the onset of colonisation indicates high values with a mode at 

7350 generations, which corresponds to about 24 500 years BP according to the 

generation times estimated in a Swiss barn owl population (Altwegg et al. 2006) and its 

HPD95% varies between 3810 and 10 000 generations ago. 

!

Figure 2: Posterior probabilities of the 11 models tested based on Leuenberger and Wegmann (2010). 

Based on four pattern statistics, 1000 simulations over 100 000 simulations per models were retained. 
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Table 3: Parameter estimates under the best-supported model (one-refugium single carrying capacity). 

Estimated modes are used as point estimates; HPD95% stands for the 95% highest posterior density 

intervals. 

Demographic.parameters. Estimated.modes. HPD95%.

Start!of!the!colonisation!(generations)! 7350! 3810!S!10!000!

Population!growth!rate! 1.58! 0.338!S!2.00!

Mutation!rate! 1.03!×!10S4! 2.85!×!10S5!S!3.80!×!10S4!

Size!of!refugium!population! 59!800! 8840!S!98!800!

Dispersal!rate! 0.375! 0.188!S!0.500!

Carrying!capacity! 203! 76.5!S!555!

6

Quality assessment 

All statistics that assess the quality of the estimation of the parameters (RMSE, R2, 

relative bias) are consistent with which parameters can be well estimated and which ones cannot 

(Table 4). The RMSE of the parameter estimation varies widely from 0.0516 to 7.55. While the 

estimation of mutation rate is highly accurate; dispersal rate, carrying capacity and start of the 

colonization are estimated less accurately. Population growth rate and refugium population size 

however show poor accuracy, which is not unexpected since these parameters have only an 

effect on the demographic history during a short period of the simulation (i.e. during the 

colonization process). 

The validation analyses showed that our posteriors estimates are generally conservative 

(Table 4): More pseudo-observed simulations are generally found in the posterior distribution 

than expected (except for the start of colonisation and the refugium population size that show a 

slight deficiency). As those distributions were used as the background model for the colour 

simulations, we can be confident that they provided solid foundations. 

!
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Figure 3: Posterior distributions of the estimated parameters. Grey lines show prior density and black 

lines the posterior distributions. Note that carrying capacity and mutation rate are in logarithmic scale. 

 

Colour simulations reveal adaptive origin of colour cline 

Lastly, the probability of generating the observed colour cline under a strictly 

neutral model was assessed with a second round of simulations. For each combination 

of genetic architecture and model of polymorphism distribution (dominance or not, 

enforced allele surfing or not), we generated 1000 replicates. The results for the 

comparison between these simulations and the observed values are presented in Fig. 4. 

For the models based on standing variation, we observe that no simulation reached the 

observed values (with either h2 = 1 or 0.81), no matter the dominance. When mutations 

are enforced to take place at the very front of the expansion, between one and five 

simulations produced difference of slopes equal to or larger than what is observed in the 
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owl populations (1 out of a 1000 for both one-locus traits, 3 and 5 out of 1000 for the 

multi-locus trait with the h2 = 0.81 or h2 = 1, respectively). In summary, without 

selection, very few simulations under an unlikely scenario managed to recreate the 

abrupt cline in colour visible in the observed data. 

 

Table 4: Validation of the estimates for the one-refugium, one-carrying-capacity model based on 1000 

pseudo-observations. See Material & Methods, Quality assessment of estimates for more details.!

Demographic.
parameters.

Rel..
bias.

Rel..RMSE. Prop..HPD.50%. Prop..HPD.95%. R2.

Start!of!colonisation! 0.109! 0.536! 47! 93.2! 0.154!

Population!growth!rate! 0.744! 5.9! 52.6! 94.9! 0.0952!

Mutation!rate*! 0.00336! 0.0516! 60.8! 98.0! 0.955!

Refugium!population!

size! 1.24! 7.55!
48.9! 94.7! 0.0582!

Dispersal!rate! 0.206! 0.919! 56.5! 97.3! 0.576!

Carrying!capacity*! 0.00978! 0.114! 65.5! 98.7! 0.649!

*As!for!the!parameter!estimate,!these!parameters!are!in!log!scale.!

!

Discussion.

Neutral demographic model 

The spatially explicit approximate Bayesian computation analysis strongly 

supported the hypothesis that barn owls colonised Europe after the LGM from a single 

refugium situated on the Iberian Peninsula. It appears that the sequential bottlenecks 

during colonization alone explain the pronounced continuous decrease in diversity from 

the Iberian Peninsula to Eastern Europe. Alternative models including additional 

processes capable to explain the observed cline (cline in carrying capacity, cline in 
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extinction rate, or hybrid zone due to two refugia) were worse than the simpler model. 

The parameter estimates of the demographic model for the European barn owl’s post-

glacial history inferred from neutral genetic data is consistent with what is known from 

other species (Hewitt 2000) and with the ecological literature on the species (see 

below). 

 

Figure 4: Probability of the neutral simulations to replicate the observed cline in colouration in the 

European barn owl. Comparison of distributions obtained from the calculation of the slope of IBD for the 

quantitative trait (colour, QST) and the neutral loci (FST). Each model of different genetic architectures and 

starting polymorphisms is represented as a different distribution. The observed values for different levels 

of heritability are represented by the vertical lines: dashed line with h2 = 1, plain line h2 = 0.81. 

 

The estimated start of the colonisation of 7350 generations ago with a 95% 

confidence interval of 3810 to 10 000 generations ago corresponds to 26 460 years BP 

and a 95% confidence interval from 36 000 to 13 700 year BP (assuming the estimated 

3.6 years per generation, Altwegg et al. 2006) falls in line with an expansion following 
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the LGM. This estimate is, although slightly higher, in good agreement with the 

expected time of colonisation of Europe after the LGM 20 000 years BP. The estimated 

time of colonization in years BP depends highly on the generation time, which is 

difficult to estimate and also assumes that the generation time remains constant over 

time. 

The estimated carrying capacity of ~200 individuals per deme with a 95% 

confidence interval of 77 to 555 individuals extrapolated to the European scale results in 

a population size of 542 000 with a confidence interval of 204 300 to 1 482 400. 

Compared to the estimate of 140 000 breeding pairs (Hagemeijer & Blair 1997), i.e. 280 

000 breeding individuals in Europe this seems to be overestimated. Even if these two 

numbers cannot be compared directly (the first one is an effective population size and 

the second one a census size for the breeding adults), they are in the same order of 

magnitude and our estimate is plausible. The overestimation is also based on the fact 

that the population size includes non-breeding individuals as well, such as juveniles 

[minimum age of the first breeding is one year (Cramp 1985)] and the simulated 

European map is slightly larger than the actual natural range of Barn owls. 

The estimated migration rate of 0.375 between neighbouring demes of 50 km × 

50 km is in accordance with what was estimated by Bunn et al. (1982) for the 

Netherlands (32.1 % of the young move more than 50 km in their first year). The 

estimated size of the refugium population of 59 800 individuals has to be taken with 

caution. As expected the accuracy tests show that this parameter is difficult to estimate 

since its traces in the genetic diversity in the present is secondary. In contrast, the 

estimate of the mutation rate is very accurate, with an estimate of 1.03 × 10-4 and a 

sharp 95% confidence interval from 2.85 × 10-5 to 3.80 × 10-4. This estimate is in good 

agreement with the expectation (see discussion in Wegmann & Excoffier 2010). 
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To sum up, all estimates seem to be biologically meaningful and we are thus 

confident that this demographic and genetic model is a good approximation of the actual 

post-glacial history of the European barn owls and that it provides a sound demographic 

null model to investigate further questions regarding barn owl biology. 

 

Colour simulations 

Our finding that Europe was colonised from a single Iberian refugium has the 

implication that the colour cline (Fig. S4) might have been established by surfing during 

this colonisation. Simulations of a colour quantitative trait in our neutral demographic 

model were run in order to evaluate this possibility. Overall, the formation of the 

observed cline under neutrality is extremely unlikely: We only very rarely obtained 

simulations showing the same strong difference in geographic differentiation between 

phenotype and neutral markers. We never observed it with standing genetic variation in 

the refugium. Only with enforced allele surfing (i.e. explicitly seeding mutations in the 

front of expansion) we obtained between 1 and 5 simulations (out of a 1000) showing 

the same or larger differences. The highest number of such simulations was obtained 

using the trait architecture based on 25 bi-allelic loci (and hence, 25 mutations, 1 per 

locus, in the deme at the start of the expansion), but even with this unrealistically 

favourable architecture the probability was below 0.5%. 

The colour simulations thus show that the evolution of the colour cline by 

surfing is extremely unlikely. The conclusion drawn by Antoniazza et al. (2010), that 

the European colour cline results from a local adaptation process, is thus confirmed by 

our simulation approach. With the exclusion of neutral scenarios, the evolution of the 

colour cline by natural selection generating local adaptation is indeed far more likely. 
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Evolution and maintenance of the European barn owl colour cline 

The classical view on the evolution of barn owl colour variation in Europe is that 

the colour morphs evolved in allopatry in two refugia during the last glaciations and that 

the cline evolved by secondary contact after the ice age (Voous 1950). The model 

inferred above for the post-glacial history of the barn owl in Europe points toward a 

very different scenario. Our results suggest that the colour cline evolved during or after 

the colonisation out of a single refugium through a local adaptation process and also 

imply a very recent evolution of the colour cline (post-glacial, hence younger than 20 

000 years BP). A rapid colonisation of Europe after the last ice age is supported by the 

observation of barn owl remains that dated at least from 10 000 years BP found in the 

UK (Del Hoyo et al. 2000; Yalden & Albarella 2009) and the estimated onset of 

colonisation of 7349 generation points toward a colonisation date close to the end of the 

last glacial maximum. Evaluating the strength of selection will be a next step to further 

the understanding of this system, but the lack of information on the selective agent 

behind the colour variation puts a serious challenge to this extension (Antoniazza et al. 

2010). 

 

Continental clines and evolution during range expansions 

We feel that the case of the barn owl, where evolution of a locally adapted trait 

happened during or after the recolonisation of the continent after the ice age, might be 

far more common than currently recognized in other taxa. The climatic oscillations of 

the quaternary that shape the dynamics of the ranges of many species of temperate 

latitudes on both hemispheres, generated retreat/recolonisation cycles that occurred 

along major climatic axis (mainly north-south). Also, there is a growing body of 
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evidence that local adaptation along such climatic axes is ubiquitous [e.g. size clines 

first describe by Bergmann (1847)]. 

Continental clines in temperate latitude thus offer a scope to study both local 

adaptation at large scale, but also the dynamics of this adaption in time and its 

interaction with colonisation processes. The interaction between natural selection and 

colonisation processes is a key question in evolutionary biology, but is still in its 

infancy (Excoffier et al. 2009). The study of large scale continental gradient might 

represent a fruitful area to study these questions in more details (see Kujala & 

Savolainen 2012 for a first approach with a non-spatial demographic model). 

The European barn owl is a good illustration and provides a superb case study to 

investigate these questions. In this paper, we were able to show that the colour cline 

observed in this species was not established by neutral demographic processes during 

the colonisation of the European continent. This shows that selection processes must 

have been involved in the establishment of the European colour cline, even if the 

mechanism by which these colour clines established remain to be elucidated. The 

demographic model developed in this study will provide a sound neutral model for 

background process in the genome and be a solid starting point to tackle further 

evolutionary questions. 
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Supplementary.Figures.

!

Figure S1: Observed isolation by distance (pairwise FST as a function of pairwise distances). Note that 

pairwise distances are in deme units (50 km). R2 = 0.310. 
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Figure S2: Observed cline in mean allelic richness (mean allelic richness over 22 loci per population as a 

function of distance to the south-westernmost population). Note that distances are in deme units (50 km). 

R2 = 0.779. 
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Figure S3: Simulated map of the sampling locations and sampling sizes. Sampling sizes and sampling 

locations as for the observed dataset are indicated. Similar sampling locations and sampling sizes are 

generated for the simulated dataset. Colonisable demes are indicated in grey, sea demes (not colonisable) 

are indicated in white. The Iberian glacial refugium demes are indicated in dark grey. We use a Europe 

Albers Equal Area Conic projection to adequately represent surfaces. 
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Figure S4: Observed isolation by distance for the microsatellites (pairwise FST as a function of pairwise 

distances, same data as in Fig. S1) and for the colour data (pairwise PST as a function of pairwise 

distances). Note that distances are in kilometres. 
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Supplementary.Table.

Table S1: Multiplex composition and primer concentration for microsatellite genotyping. 

Multiplex! Locus! Dye! Final!Conc.![nM]!

Multiplex!1!

TaS206! FAM! 0.45!

TaS210! HEX! 0.105!

TaS216! FAM! 0.135!

TaS306! NED! 0.165!

Multiplex!2!

TaS218! HEX! 0.178!

TaS220! FAM! 0.11!

Multiplex!3!

TaS204! HEX! 0.25!

TaS214! FAM! 0.5!

TaS305! FAM! 0.5!

TaS310! NED! 0.25!

TaS413! NED! 0.25!

Multiplex!4!

TaS202! FAM! 0.25!

TaS212! DYO630! 1!

TaS215! FAM! 1!

TaS402! NED! 0.25!

TaS408! HEX! 0.5!

Multiplex!5!

FEPO42! FAM! 0.24!

54f2! NED! 0.24!

Tgu06! HEX! 0.48!

CalexS05! DYO630! 0.48!

RBG18! FAM! 0.72!

Oe053! HEX! 0.96!

Primer!concentration!is!indicated!for!both!forward!and!reverse!primer!together.!

 



Chapter!3! ! ABC!for!selection!in!range!expansions!

!

!

112!



Chapter!3! ! ABC!for!selection!in!range!expansions!

!

!

113!



Chapter!3! ! ABC!for!selection!in!range!expansions!

!

!

114!

!

!

!

!

!

!

Chapter 3 – Natural selection in range expansions: insights from a 

spatially explicit ABC approach 

 

Ricardo Kanitz, Samuel Neuenschwander, Jérôme Goudet 

 

Manuscript to be submitted to Genetics 



Chapter!3! ! ABC!for!selection!in!range!expansions!

!

!

115!

Natural selection during range expansions: insights from a spatially 

explicit ABC approach 

Ricardo Kanitz1,2,*, Samuel Neuenschwander1,3, Jérôme Goudet1,2,* 

 

1Department of Ecology & Evolution, University of Lausanne, Switzerland 

2Swiss Institute of Bioinformatics, University of Lausanne, Switzerland 

3Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Switzerland 

*Correspondence to ricardo.kanitz@unil.ch, jerome.goudet@unil.ch 

 

Keywords: range expansion, natural selection, allele surfing, simulations, approximate 

Bayesian computation. 

 

Running title: Natural selection in range expansions 



Chapter!3! ! ABC!for!selection!in!range!expansions!

!

!

116!

Abstract.

For at least 40 years now, evolutionary biologists have been discussing the relative roles 

of natural selection and genetic drift in shaping the genetic composition of populations. 

Range expansions are of particular interest in this discussion: They normally occur over 

environmental gradients allowing local adaptation to take place, but the demographic 

properties of these expansions also potentiate genetic-drift effects, which may in turn 

generate extreme changes in allele frequencies as populations expand in territory and 

numbers (i.e. allele surfing). Here, we address the detection and measurement of 

selection in such scenario using simulations. We mimic a range expansion over a 

variable selective gradient where individuals have in their genomes both loci that are 

neutral and loci determining a quantitative trait subject to selection. The responsiveness 

of summary statistics to the selective pressure is then assessed, and estimates of the 

selective pressure are made – based on these statistics – with approximate Bayesian 

computation (ABC). We observe that statistics related to isolation-by-distance patterns 

present a strong response to selection. This response can be used in ABC to estimate the 

strength of selection acting on the simulated populations with very reliable measures of 

estimability, regardless of the genetic architecture underlying the selected phenotypic 

trait. Furthermore, these estimates are robust to noise produced by genetic and 

demographic parameters such as heritability, mutation, migration and population-

growth rates. This approach of taking into account the spatial dimension of 

differentiation in quantitative traits offers a promising avenue for investigating the role 

of natural selection in range-expansion scenarios, with possible implementations in the 

study of natural cases, as well. 



Chapter!3! ! ABC!for!selection!in!range!expansions!

!

!

117!

Introduction.

The opposition between selectionism and neutralism is one of the most important 

debates in evolutionary biology (EWENS 1977; KIMURA 1984; HEY 1999; NEI 2005). 

Ultimately, the question relies on which kind of process (neutral or selective) leads to 

the patterns observed in nature. Even though reconciliatory ideas have been proposed 

(WAGNER 2008), the dilemma regarding selection vs. neutrality still endures in different 

contexts of evolutionary biology (NEI et al. 2010). One evolutionary context that has 

drawn increasing attention from evolutionary biologists is the context of ‘range 

expansions’. Range expansions are a ubiquitous phenomenon in nature involved in 

processes such as biological invasions (PARMESAN and YOHE 2003; WALTHER et al. 

2009), adaptive radiations (RUNDELL and PRICE 2009), speciations (THORPE 1984; 

HEWITT 1996), pest and disease outbreaks (JEPSEN et al. 2008; ROTH et al. 2010), and 

post-glacial recolonizations (HEWITT 1996). Contractions and recolonizations following 

glacial oscillations are immensely common in nature, not only in temperate areas, but in 

tropical and subtropical regions, as well (COLINVAUX et al. 2000; HEWITT 2000). 

Therefore, it is safe to say that range expansions are likely involved in the evolutionary 

history of most of the organisms on the planet. 

In the selection vs. neutrality discussion, range expansions are particularly 

important because populations increasing their range tend to do so over environmental 

gradients, leaving room for selection to act, possibly leading to local adaptation 

(HEWITT 1996). When different forms are established across this gradient, a cline is 

produced (ENDLER 1977). Clines have been thoroughly studied in the context of hybrid 

zones, where two allopatric populations get into secondary contact forming a tension 

zone in which the hybrids are selected against, so that the width of the cline is inversely 

proportional to the strength of selection (BARTON and HEWITT 1985). The same 
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rationale was later applied to clines appearing in ecological transition zones (i.e. 

ecotones): MULLEN and HOEKSTRA (2008), in what has become a classical example, 

demonstrated that strong selection maintains two color-morphs of deer mice separated 

in two different habitats. These studies, however, have concentrated on small 

geographical scale clines. When it comes to large-scale clines (such as those appearing 

across continents) the literature is scarcer with some theoretical studies focused on gene 

frequencies (BAZYKIN 1969; ENDLER 1977) and quantitative traits (BARTON 1999; 

LEIMAR et al. 2008), and other empirical studies mostly dedicated to the description of 

clinal patterns in organisms like Drosophila spp.  (HALLAS et al. 2002; WEEKS et al. 

2002), Populus tremula (INGVARSSON et al. 2006), Quercus petrea (ZANETTO and 

KREMER 1995), Pinus sylvestris  (GARCIA-GIL et al. 2003), Arabidopsis thaliana 

(KRONHOLM et al. 2012), and yet other plant species (SAVOLAINEN et al. 2007). 

However, no attempt to measure selection in any of these or any other large-scale 

systems has been carried out, to our knowledge. 

Still in the context of expanding populations, EDMONDS et al. (2004) proposed 

that the formation of (genotypic) allele-frequency clines across environmental gradients 

could also (and mainly) be caused by a purely neutral process during range expansion: 

the allele-surfing phenomenon, further studied and named by KLOPFSTEIN et al. (2006). 

In populations undergoing a range expansion, mutations arising at the front of the wave 

of expansion can “surf” on this wave and increase in frequency simply due to a series of 

founder effects. This surfing leaves behind a pronounced cline in allele frequencies, 

which may in turn have an effect on a phenotype, generating a phenotypic cline. Recent 

studies are bringing a growing body of evidence that allele surfing alone is capable of 

producing many of the allele-frequency clines observed in natural populations (CURRAT 

et al. 2006; EXCOFFIER and RAY 2008; HOFER et al. 2009). A recent finding even shows 
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that range expansions might allow for the accumulation of deleterious mutations 

generating an ‘expansion load’ in populations of recently colonized areas (PEISCHL et 

al. 2013). 

However, there is also evidence that adaptive processes may occur during range 

expansions, bringing about the idea of adaptive clines. For example, WHITE et al. 

(2013) recently found indications of adaptive evolution in an ongoing range expansion 

in Irish bank voles, where several genes related to immune and behavioral systems were 

shown to form consistent clines across three independent transects of the expansion. 

Also, it appears that dispersal ability itself is a trait commonly affected by selection in 

range expansions: higher dispersal is often selected for in the margins of an expansion, 

as theoretical analyses suggest (TRAVIS and DYTHAM 2002).  Empirical support for this 

finding has been documented in several species (HUGHES et al. 2007; MONTY and 

MAHY 2010; MOREAU et al. 2011). Furthermore, rapid adaptation to climate variation 

also facilitates range expansion, as has been verified in the invasive plant Lythrum 

salicaria in North America (COLAUTTI and BARRETT 2013). The body of evidence 

favoring selection in range-expansion systems is substantial, and it often includes the 

examples of the (continental) large-scale clines mentioned above, as well (BAZYKIN 

1969; ENDLER 1973; ENDLER 1977; BARTON 1999; LEIMAR et al. 2008). One 

particularly interesting case in large-scale cline and range expansion systems is the 

European barn owl (Tyto alba) and its coat-color cline (ANTONIAZZA et al. 2010). In 

this species, a gradient of colors has established across Europe, probably during or after 

a post-glacial range expansion, with white morphs nearly fixed in the southwest and 

dark-brown morphs in the northeast. This and the above-mentioned cases all suggest 

selection has been acting. However, the current challenge persists in (i) distinguishing 

neutrality from selection and (ii) properly measuring the strength of natural selection in 
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large-scale clinal systems involved in range expansions. 

Here, we take advantage of spatially explicit simulations to investigate the role 

of selection in the context of range expansions. First, we assess the ability of selection 

to leave a distinctive signature of its activity on the populations, despite the occurrence 

of the complicating demographic effects of range expansions (e.g. allele surfing). 

Second, with approximate Bayesian computation (ABC) (BEAUMONT et al. 2002), we 

address the detection and estimation of natural selection operating in this system. 

Finally, focused on the estimation of selection, we also explore the effect of other 

demographic and genetic parameters (nuisance parameters) on the accuracy of the 

selection estimates. Variations in these parameters may affect the probability of allele 

surfing. Therefore assessing the robustness of selection estimates across these 

parameters can bring valuable insight on the interplay between neutrality and natural 

selection in the ubiquitous demographic scenario of range expansions. 

 

Material.&.Methods.

Range expansion – Simulations were run in a rectangular world 5 patches wide and 51 

(0-50) patches long (Fig. 1A) in the program quantiNEMO (NEUENSCHWANDER et al. 

2008a). To mimic a range expansion, only the left-most patches started the simulations 

occupied at their carrying capacity (K = 100). These five patches evolved without any 

range expansion for arbitrary 100 generations in order to establish a background of 

genetic diversity, mimicking a refugium. The colonization of the remaining patches 

occurred after this initial phase and lasted 400 generations, at a speed that depended on 

the migration rate (m, uniform [0.1, 0.4]) and the intrinsic growth rate of each patch (r, 

uniform [0.2, 0.8]). We further varied narrow-sense heritability value (h2, details below) 
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and mutation rate (µ, log-uniform [10-5, 10-2]), were used as nuisance parameters to test 

the robustness of the selection-related parameter’s estimates. As neutral genetic 

markers, ten multi-allelic loci were simulated with the same mutation rate implemented 

for the quantitative loci (µ) and a single-step mutation model, mimicking microsatellite 

markers. 

 

Figure 1: Implementation of the simulations with range expansion over a selection gradient. In A, the 

range expansion process over 300 generations (T), across the simulated map (51x5 demes). Two layers 

overlap here: population size (gray scale, underneath) and frequency of the allele adapted to the left-hand 

side of the map (cyan-magenta scale). In B, the fitness landscape for three patches from above (p0 

magenta, p25 black, and p50 cyan) with selection intensity ω=0.1 and pheno/genotype space defined 

between 0 and 1. Note that the x-axis in B (Z-value) is different from the one in A (deme position p). 

 

Selection implementation – Fig. 1B illustrates how selection was implemented: 

we assumed a local hard stabilizing-selection scheme with a gradient of optima along 

the colonization path. On the left-hand side of the map, the selective optimum was 

defined at one extreme of the phenotypic range (ZOPT = 0); while, at the right-hand side, 
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it was set to the other extreme (ZOPT = 1). Each patch along the colonization path had a 

different optimum value (ZOPT), linearly distributed between 0 and 1. Individual fitness 

is given by the function: 

!!" = !!!
!!"!!!"#$

!

!!!  

where Wij is the fitness of individual i from patch j with phenotype Zij, where the patch 

optimum is ZOPTj and the selection intensity (identical for all patches) is given by ω. 

This latter parameter determines the strength of selection in our model (ω, log-uniform 

[0.1, 100], Fig. 2A). The ω parameter translates directly into a selection coefficient (s) 

(Fig. 2B) according to equation: 

! = 1− !!
!

!!! 

where s is the selection coefficient – defined as the difference in fitness between the two 

extreme pheno/genotypes (Z = 0 or 1) at any of the ends of the map – and ω is selection 

intensity, as already defined above. Part of the phenotype is environmentally 

determined, depending on trait heritability (h2). We explored a wide range of heritability 

values (h2, uniform [0.01, 1]), kept constant over time within the same simulation. Our 

goal is to estimate the selection coefficient (s), having nuisance parameters 

corresponding to the heritability of the trait (h2), migration (m), mutation (µ) and 

growth (r) rates. 

Six genetic architectures – Six different genetic architectures were implemented 

for the trait under selection where the allelic effects were entirely additive within and 

between loci. First, we assumed a trait encoded by one locus and two co-dominant 

alleles (1L2A). In this case, only one mutation was needed to make the leap between the 

two extremes of phenotype. The second model still involved only one locus, but with 
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multiple alleles (1L10A), whose effects on the phenotype were linear and additive. 

Here, there are only two alleles completely adapted to the two extremes of the 

environmental gradient; all other alleles have intermediate values, which are able to 

match the intermediate optima along the colonization range. The third genetic 

architecture was that of a trait encoded by ten bi-allelic loci (10L2A) where all loci are 

required to adapt to obtain the extreme phenotypes. A second version of this 

architecture was one with the same number of loci and alleles, but with allelic effects 

large enough for a mutation at a single locus to allow for perfect adaptation to the 

extremes (10L2A+). A fifth architecture involved 10 alleles at 10 loci (10L10A), similar 

to 1L10A, but extended to ten independent loci. Similar to the extension of large allele 

effects applied in 10L2A+, a sixth architecture was defined with the possibility of any 

given locus as being able to modify the phenotype across its complete range 

(10L10A+). Mutation rate was scaled to the number of loci encoding the trait, so that 

the trait’s mutation rate was the same across architectures (i.e. it was 10× lower for each 

locus in the 10L architectures). 

 

Figure 2: Fitness distribution and selection coefficient under different selection intensities (ω). In A, 

different fitness distributions with ZOPT always at 0.5, as in patch p25 (see Fig. 1B), depicting the 

extremes of the ω prior distribution ω=0.1 and 100. In B, the effect of ω on the difference of fitness [i.e. 

selection coefficient (s)] between opposing pheno/genotype values at the extreme patches (p0 and p50). 
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ABC for selection – One suitable way to address complex evolutionary question 

is to implement approximate Bayesian computation (ABC). With this approach, one can 

assess the probability of different models and parameter values therein via summary 

statistics, thus dismissing the need of an exact likelihood function (BEAUMONT et al. 

2002). Summary-statistic values are taken from the observation (i.e. the real 

populations) and compared to the values of the same statistics obtained in simulations. 

A large number of simulations are then used to explore different combinations of 

parameter values; the simulations that better match the summary statistics values of the 

observation are then used to draw a posterior distribution of parameter values. As a 

Bayesian method, ABC can (and should) incorporate prior information on the parameter 

distributions into the simulated model. Here, we applied ABC to the estimation of 

selection in a spatially explicit setting involving range expansions. Since this a 

simulation study, the observations were also taken from the simulations in the form of 

pseudo-observations (see below). 

ABC: summary statistics – Based on our previous experience with a similar set-

up in natural populations of barn owls (ANTONIAZZA et al. 2010; ANTONIAZZA et al. in 

prep.), we decided to focus on isolation-by-distance (IBD) pattern statistics as the 

statistics more likely to reveal the presence of selection: From the correlation between 

pairwise geographic distance and pairwise pheno/genotypic distance, we extracted the 

mean, slope and sum of residuals for ten neutral multi-allelic markers (FST), and the 

phenotype (QST). Finally, we also retained the difference of slopes of IBD between the 

phenotype and the neutral markers (Δ-slope), which represents how much steeper is the 

differentiation in the quantitative trait when compared to the one produced by the 

neutral loci (Fig. S1). 

ABC: parameter estimates and estimability assessment – We tested the precision 
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and accuracy of parameter estimates through ABC’s validation approach as 

implemented in ABCtoolbox (WEGMANN et al. 2010). Since the actual parameter values 

for all simulations are known (pseudo-observations), the ABC parameter-estimation 

pipeline was used to assess the quality of the estimates (i.e. how close the estimates 

were to the actual values). This was done by comparing 1000 of these estimates with 

their actual pseudo-observed values taken directly from the simulations, for each one of 

the genetic-architecture models. This procedure involved retaining the 1000 (out of ~1 

million) simulations with summary statistics values closest to the pseudo- observation’s, 

and then to use locally weighted linear regressions to obtain the posterior distributions 

for the parameter estimates (WEGMANN et al. 2010). The overall estimability of 

selection coefficient for the different architectures was assessed using the coefficient of 

determination (R2) of the regression between the true value of the parameter (pseudo-

observation) and the parameter point estimate (given by the mode of the posterior 

distribution) (NEUENSCHWANDER et al. 2008b). Two other statistics were also used to 

assess estimability: the root mean square error (RMSE), which depicts the prediction 

errors of our model by means of the mean absolute differences between pseudo-

observations and estimates (WEGMANN and EXCOFFIER 2010); and proportion of the 

estimated posterior encompassing the pseudo-observed value for 50% and 95% of the 

higher-posterior density intervals (proportion of HPD50% and 95%). This latter 

statistics may indicate a low accuracy, when proportion of HPD50% << 0.5, or 

HPD95% << 0.95; or excessive conservativeness, when proportion of HPD50% >> 0.5, 

or HPD95% >> 0.95. Ideally, HPD50% and 95% should be exactly 0.5 and 0.95, 

respectively. 

Moreover, to assess the effect of the nuisance parameters (m, r, µ, h2) on the 

estimability of selection coefficients, a second test was devised in which the parameter 
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space of each one of the nuisance parameters was restricted to ten quantiles. The 

estimations of selection coefficient were obtained only in that restricted space. For 

example, heritability (h2) varied randomly from 0.01 to 1 across all simulations. To test 

whether estimates of selection were robust to a predetermined h2 value, we separated 

the simulations in ten different sets according to different quantile intervals of the h2 

prior distribution – e.g. the first interval includes the simulation in which h2 ranges from 

0.01 to ~0.1. For each of the h2 intervals, we obtain estimations of selection coefficient 

(s) that were then compared to their pseudo-observed value. This was also done for the 

other three nuisance parameters (m, r and µ) and across all six genetic architectures. 

Quantiles of the parameter values, instead of fixed bins, had to be used in order to 

insure that all estimates were made based on the same number of simulations. This is 

because the inherent sampling process, combined with the failure of some simulations 

(see supplement), does not necessarily leads to the same density of simulations across 

the whole parameter space. So, for each quantile interval, 1000 estimates were run with 

500 retained simulations, and the estimability was again measured by means of R2, 

allowing for comparisons across the quantiles. 

 

Results.

Overall, the statistics related to the regressions between pairwise differentiation (QST) 

and pairwise geographical distances were very sensitive to variation in selection 

strength, regardless of the genetic architecture implemented (Fig. 3). In particular, the 

difference of QST and FST IBD slopes (Δ-slope) showed to be particularly responsive to 

small selection coefficients, while mean differentiation on the phenotype (mean QST) 

was more sensitive to moderate and high selection coefficients. Additionally, as 

expected for independent neutral loci, the statistics related to FST alone did not vary with 
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the selection coefficients (results not shown). For nearly all architectures, mean QST 

showed a constant quasi-linear increase with higher selection coefficients (Fig. 3A). The 

only two exceptions were the 1L2A and the 10L2A+ (with large-effect alleles) 

architecture models. In fact, these two architectures showed very concordant responses 

also in the other statistics, such as Δ-slope (Fig. 3B). In both cases, one can observe a 

lack of points for high selection coefficient values (s > 0.5). Indeed, these simulations 

failed to colonize the entire habitat (further examined below in ‘Discussion’). Moreover, 

Δ-slope, for all architectures, reaches an asymptote when s > 0.4. This is because, when 

selection is very strong, even closely neighboring demes are highly differentiated (high 

QST). This leads to high mean QST, but limits (or even reduces) the values obtained for 

the slope of differentiation across the environmental gradient (Fig 3B). Noteworthy are 

also the similarities between 1L10A and 10L10A+. 

The quality of estimates for selection coefficient (s) in all models was high 

(Table 1, Fig. 4). The genetic-architecture models 1L10A, 10L2A, 10L10A and 

10L10A+ had particularly high coefficients of determinations (R2 > 0.9), with 1L2A 

and 10L2A+ falling shortly behind (R2 > 0.7). This difference among the architectures 

derives from the differences in the summary statistics (above), where simulations with s 

> 0.5 failed to leave any signature on the summary statistics (Fig. 3), resulting in a 

limited range of s values (Fig. 4). Furthermore, the root mean square error values were 

proportionally low for all architectures (RMSE ≈ 5 to 9% of s estimates), implying a 

very high accuracy of estimates. The proportion of posterior-estimate distributions that 

encompassed the pseudo-observed value – both with HPD50% and 95% – resulted in 

conservative estimates (Table 1), with proportion values always larger than the HPD 

interval. This suggests that, even though accurate, the posterior distributions are not 

necessarily very precise, with rather wide ranges. 
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Figure 3: The relation between selection coefficient (s) and the most informative pattern statistics used to 

assess the selection coefficient. For all six architectures, in A, the response of mean differentiation across 

populations (Mean QST); and in B, the response of the difference between the QST and the neutral FST 

slopes of IBD (Δ-Slope). 
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Remarkably, in our simulations, the estimability results are robust to the 

variation in the nuisance parameters and to the position in the largest part of the 

nuisance parameters’ space, with the clear exception of lower values of heritability (h2 < 

0.1) for all architectures and also, to a lesser extent, lower values of mutation rate for 

some architecture models (Fig. 5). Interestingly, variation in migration (m) and growth 

rate (r) in the interval explored (m = [0.1, 0.4] and r = [0.2, 0.8]) has very little effect. 

Here too, there seems to be a ranking of estimation quality among the genetic-

architecture models across the nuisance parameter quantiles: 1L2A and 10L2A+ being 

the worse (but still good); followed by 10L10A; and then having 10L10A+, 10L2A and 

1L10A as the better ones. 

Table 1: Assessment of selection coefficient (s) estimability for all genetic architectures. R2 stands for the 

coefficient of determination of the pseudo-observation on the estimates; RMSE is root mean square error 

of the estimates; and Prop. HPD50% and HPD95% represent the proportion of posterior distributions 

encompassing the pseudo-observed value. These values were obtained based on 1000 estimates, with 

1000 retained simulations out of 1 million simulations, under a stabilizing hard selection system. 

Architecture" R2" RMSE" Prop."HPD50%" Prop."HDP95%"

1L2A" 0.837! 0.049! 0.726! 0.988!

1L10A" 0.958! 0.065! 0.646! 0.982!

10L2A" 0.952! 0.066! 0.703! 0.989!

10L2A+" 0.738! 0.056! 0.665! 0.992!

10L10A" 0.911! 0.087! 0.654! 0.988!

10L10A+" 0.963! 0.060! 0.590! 0.971!

 

Discussion.

We have shown that it is possible to estimate selection and its intensity in range 

expansions by taking advantage of the information contained in IBD-derived statistics 

and by using spatially explicit simulations. Even though plenty of variance in the 
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response of the summary statistics was observed when comparing the different genetic-

architecture models, in all cases, selection left a distinctive signature on these statistics. 

It seems, however, that the probability of the populations to respond to selection was 

not the same across all architectures. In a nutshell, the more alleles and loci encoded the 

trait; the better was the estimation of the selection coefficient. 

 

Figure 4: Validation plots, pseudo-observed vs. estimated, for selection coefficient (s). For each 

genetic-architecture model, a plot of 1000 simulations’ actual selection coefficient values (s) 

against their estimates (open circles). The back line stands for the perfect diagonal; and the red 

dashed line, the calculated linear regression. Coeffiecients of determination of the pseudo-

observation on the estimates (R2) are also reported in red. 

 

The architectures can be divided in three groups: (i) 1L10A and 10L10A+ with 

very high R2 and low RMSE (i.e. very good estimability), (ii) 10L2A and 10L10A with 

still high R2 and low RMSE values but with a distinct signature in the Δ-slope statistic 

(Fig. 3B), and (iii) 1L2A and 10L2A+ with slightly worse R2 and RMSE results. Not 

surprisingly, these last two architectures are also the ones that present the least number 
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of allele combinations (within the phenotypic range between Z = 0 and 1) that could 

lead to adaptation across the selection gradient. The 1L2A model has only three 

possible genotypes to be translated into phenotypes. In essence, this architecture is just 

as capable as the others to adapt to the two extremes and the exact center of our 

simulated environment (patches p0, p50 and p25, respectively). However, this does not 

apply for any of the patches in between. In these other patches, there is no combination 

of alleles that would make an individual perfectly adapted to the local conditions. This 

same explanation applies to 10L2A+ because the large-effect alleles turn up to make too 

big a leap in between pheno/genotypic values (Z in Fig. 1). Indeed, if a second locus 

mutates as well in 10L2A+, the Z-value of the resulting phenotype would almost 

certainly fall outside the range of adapted phenotypes in all patches (Z = 0 to 1). This is 

why, when selection is too strong (s > 0.5), simulations failed to finish the colonization 

due to the recurrent extinction of pioneer populations. Conversely, all the other 

architectures present many more Z-value combinations allowing to locally adapt to all 

patches across the colonization range. These results may suggest that adaptation may be 

easier to occur when many loci and alleles contribute to a trait – offering several to 

many combinations of loci and alleles in order to adapt to the local conditions – in 

agreement with previous studies (LE CORRE and KREMER 2012). 

It is important to highlight the impact of the inclusion of spatial information in 

the understanding of the effect of selection in range-expansion scenarios. The process of 

range expansion is essentially a spatial phenomenon and, to fully understand its 

outcome, a spatially explicit approach is warranted. Even though some of the statistics 

we used – mean FST and QST – do not explicitly contain spatial information, it was only 

with the addition of Δ-slope and the other IBD-associated statistics that we managed to 

grasp the full extent of the of the effect of selection in range-expansion processes. The 
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importance of the spatial dimension in population genetics is not a novel idea, though. It 

has been explored in numerous previous publications, both in the disciplines of 

phylogeography (AVISE et al. 1987; DINIZ-FILHO et al. 2008) and, more recently, in 

landscape genetics (MANEL et al. 2003). Studies looking for signatures of selection, 

however, have been systematically neglecting the relevance of the spatial distribution of 

genes and phenotypes (LI et al. 2012). 

 

Figure 5: Estimability assessment across the nuisance-parameter space, for all genetic architectures. In 

each panel, the estimability of selection coefficient (by means of R2) is shown for ten different quantiles 

of the realized prior distributions fo the four nuisance parameters (each panel) and all six genetic 

architectures (within panels). 

 

Furthermore, combining more than one pattern statistics (at least mean QST and 

Δ-slope, Fig. 3) seems to be of key importance to properly assess the effect of selection 

on populations facing range expansions. For instance, the analysis of mean QST alone 

could lead to false positives when selection is very low (virtually zero), given that a few 

observations of high overall differentiation appear in these quasi-neutral conditions 
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(Fig. 3A). Also, looking at Δ-slope alone could lead to false negatives – or simply lack 

of information – when selection is too strong, leading to less steep slopes than the ones 

observed at intermediate selection coefficients (Fig. 3B). Therefore, to properly benefit 

from our proposed ABC approach, we believe that one should always, of course, 

consider all available information contained in the different IBD pattern statistics. 

Even though we modeled selection via intensity of selection (ω) – a parameter 

widely used in quantitative genetics (FALCONER and MACKAY 1996) – we decided to 

estimate selection through selection coefficient (s), which is a more common measure in 

population genetics (HARTL and CLARK 2007). Selection coefficient is a parameter 

whose effect on fitness (W) is directly accessible (W = 1 - s), making biological 

interpretation easier. Also, while ω had to be treated in the logarithmic scale (to obtain a 

more linear relation with the summary statistics), s could be dealt with in a linear scale. 

Besides, the results for estimability calculated for log10ω showed only a slight trend to 

lower R2 values and did not differ substantially from the ones obtained with s (Table 

S1). Regarding the scale of selection coefficient here, it is worth to remember that it 

concerns the difference in fitness in the extreme patches and the difference in fitness 

between the extreme pheno/genotypes (p0 and p50, Fig. 1). It becomes smaller as one 

approaches the center of the map and/or compares closer pheno/genotypes, and 

therefore represents the maximum strength of selection operating in the system. 

We mentioned that some simulations “failed to finish the colonization 

altogether”. This requires further explanation. By failed simulations, we do not 

necessarily mean simulation where the population went extinct, but actually simulations 

that resulted in missing-data (NA) for any of the statistics. First, the simulations were 

run assuming a hard-selection system (i.e. individual fitness is absolute). So – even 

though local populations could react to loss of individuals via population growth (r) – if 
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selection was too strong and no locally-adapted individuals were yet present at the 

population, that specific deme would go extinct delaying or stopping the wave of 

expansion. Alternatively, we also ran the same simulations with a soft-selection system 

(supplementary material). These showed a lower failure rate, but did not affect further 

results, suggesting that the approach presented here is also robust to the softness of the 

selection implemented. Second, some architecture models lead to higher failure rates 

than others, predominantly due to the non-colonization effect described above. This is 

again related to the limited combinations of loci and alleles observed in architectures 

1L2A and 10L2A+. As a result, the realized prior distribution (i.e. the parameter 

distribution after the removal of simulations containing NAs) for selection intensity (ω) 

– and therefore selection coefficient (s, as in Fig. 2) – was altered for these two 

architectures, being limited to ω = 10-0.5 to 102 (s ≈ 0.8 to 0, respectively, Fig. S2 and 

S3). Beyond selection strength, for the other simulation parameters (i.e. nuisance 

parameters), there was no differential effect of the architecture model on the way these 

parameters produced simulations containing missing data. There was, however, a more 

elevated missing data production, for all architectures, associated with low mutation 

rates (when µ < 10-4), when not enough variation was produced to adapt to new 

environments; low growth rates (r < 0.3), when the negative effect of higher selection 

coefficients was stronger on the populations; and, to a lesser extent, higher migration 

rates, where the homogenizing effect of migration more often erased the differentiation 

signatures created by selection. As a result, the prior distributions for the nuisance 

parameters were altered after the removal of such failed simulations (Fig. S2). 

Consequently, the ten quantiles presented in Fig. 5 do not necessarily represent 10% 

intervals of the original prior distributions, but rather regular intervals taken from 

realized prior distributions. The analysis was done this way in order to have the same 
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number of simulations out of which to make the estimates in each interval, allowing for 

a balanced comparison of estimability across quantiles.  

The estimability of selection was little affected by variation in the nuisance 

parameters, as R2 remained well above 0.7 for all genetic architecture models across 

most of these parameters’ distributions. Some of the architectures seemed to be more 

sensitive to the noise caused by these parameters than others: Again, 1L2A and 10L2A+ 

showed to be the most sensitive models, probably, due to the lack of possible genotypic 

combinations, limiting adaptation to intermediary positions across the environmental 

gradient, as discussed above. However, the variation in mutation rate also had some 

effect on these architectures. The lower the mutation rate, the harder to deal with very 

strong selection, especially when combinations are limited. Another architecture in 

which selection estimability strongly responded to mutation rate was 10L10A. 

Curiously, this is the one with highest number of genotype combinations. This can be 

explained by the fact that it also is the architecture that needs the most mutations in 

order to adapt to the opposite environmental conditions during the range expansion. All 

ten loci need to adapt by fixing one of ten possible alleles each. Finally, as one could 

already expect, low values of heritability led to lower estimability for all architectures. 

Clearly, if the trait under selection has a very small genetic component, selection can do 

very little to affect the differentiation of the quantitative trait, leaving no signature of 

adaptation in the pattern statistics we explored, or any other statistics one could think of, 

as well. 

It is still computationally expensive to run the individual-based spatially explicit 

simulations required to study the evolution of quantitative traits in range expansions, 

especially with several models of genetic architecture (e.g. ~350 CPU days for 1 million 

simulations on a Linux server with a 2.4GHz Intel Xeon processor). This is because an 
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ABC implementation generally requires many simulations (at least 1 million) to obtain 

reliable parameter estimates (FAGUNDES et al. 2007; NEUENSCHWANDER et al. 2008b), 

even though this can dependent at a large extent on the number of the parameters to be 

estimated (i.e. the dimensions of the parameter space to explore). Alternatively, 

improvements on the ABC algorithm such as MCMC-ABC (WEGMANN et al. 2009) can 

help reducing the number of simulations needed for investigating a given question. 

Besides, selection was not the only parameter varying in our model. Nuisance 

parameters, even though not estimated, also affect the parameter space to be explored 

by the simulations. These do not have to be used, though: We added them to our 

analysis to assess the robustness of our estimates, but this does not need to be done in 

empirical studies. An approach that could be followed in such studies would be a two-

step ABC analysis (BAZIN et al. 2010), where (i) one would determine a neutral 

demographic background based on neutral markers and coalescent simulations, and (ii) 

then use the estimates of this previous step as priors for the following one in which 

individual-based simulations would be run to explore a different set of fewer parameters 

(e.g. selection coefficient and heritability), assuming that the effects of selection on 

demography would have already been captured in the first step. 

Contrary to an impression one might get reading the recent theoretical literature 

on range expansions (KLOPFSTEIN et al. 2006; TRAVIS et al. 2007; EXCOFFIER et al. 

2009; PEISCHL et al. 2013), selection is able to operate in such scenarios. Recent 

empirical studies have been showing evidence that adaptation has occurred in several 

cases (HUGHES et al. 2007; ANTONIAZZA et al. 2010; MONTY and MAHY 2010; 

BUCKLEY et al. 2012; ANTONIAZZA et al. in prep.). When compared to allele surfing, 

selection seems to be much more efficient in producing differentiation across the range 

of an expansion, according to our results. Even though we observed consistent isolation 
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by distance in the neutral loci (proxy for pure allele surfing), this isolation was always 

much lower than what was observed for the trait under selection. 

The direct observation of some simulations provided evidence that locally 

maladapted variants could appear and reach relatively high frequencies during the range 

expansion process (Fig. S4), but these events tended to be transient and were quickly 

erased by selection, leaving virtually no signature after the whole map had been 

occupied. This observation may be the result of the model implemented here, where 

only one locus or a few loci were involved with selection and, therefore, could bear 

locally maladaptive (deleterious) variants. Another theoretical study, focused on the 

evolution of genetic load, provided evidence that, when many loci are involved, the 

overall deleterious load of populations undergoing range expansions tends to increase 

(PEISCHL et al. 2013). Indeed, there seems to be a decrease in the efficiency of purifying 

selection in purging a genome-wide deleterious load during range expansion (i.e. 

expansion load). However, here we investigated a process involving positive selection 

acting on one specific phenotypic trait whose genetic architecture was relatively simple. 

It is in this situation, we showed that natural selection during range expansions is still 

effective. Furthermore, in real populations, the simultaneous occurrence of adaptation at 

a given trait with the accumulation of an expansion load is perfectly possible and may 

be one explanation for the success of so many range expansions observed in nature. The 

combined effect of these two processes, however, remains to be more carefully 

investigated in the future. 

Even though neutrality (including background selection) (KIMURA 1984) should 

always be the null hypothesis for any investigation of a process leading to a given 

observed pattern, we believe that here we have gathered sufficient in silico evidence 

that selection can operate on range expansion scenarios, leaving a distinguishable 
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signature in spatially explicit statistics. Furthermore, this signature allows estimating the 

strength of selection operating on the study system and could be promptly used in 

empirical studies investigating selection in range expansion scenarios – which could be 

post-glacial recolonizations, species invading new habitats, or populations coping with 

environmental changes. All of these processes were and still are very common, not only 

in temperate regions (HEWITT 2004), but also anywhere else on the globe, rendering the 

spatially explicit ABC approach presented here particularly valuable. 
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Pattern statistics explained – Statistics related to patterns of isolation-by-

distance (IBD) were used as summary statistics in our ABC analysis. From a scatterplot 

of geographic distance vs. genetic/phenotypic distance (FST/QST), one can extract 

several statistics related to the spatial distribution of differentiation of neutral traits (FST) 

and quantitative traits (QST). We used seven values to describe these relations: (1,2) 

mean FST and QST, (3,4) slope of the regression of FST and QST vs. geographic distance, 

the (5,6) logarithm of the sum of residuals for both FST and QST regressions, and (7) the 

difference between the QST and the FST slopes (Fig S1). 

Soft selection model – As an addition to the hard selection model implemented 

in the main body of this study, we also tested the outcomes of a soft selection model, 

where the demes are refilled to their previous generation’s population size readjusted by 

the population growth rate (r) and migration rate (m). So that, if selection is too strong, 

there is no local extinction caused by it. The results did not differ very much the ones 

obtained with the hard selection model, except for the range in which architectures 

1L2A and 10L2A+ managed to respond to selection: here it covered the whole initially 

determined prior distribution, but a lower density in high selection coefficient values (s 

> 0.5, Fig. S2 and S3). 

FSTQ-based estimates – We also ran estimates including information on the 

quantitative trait loci differentiation as part of the summary statistics (i.e. FSTQ). FSTQ 
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stands for FST applied to loci underlying the phenotype, as opposed to the phenotype 

itself (QST). The resulting estimates were not significantly better than the ones already 

obtained with phenotype-based only statistics (QST). Furthermore, considering empirical 

applications, most of the times the underlying loci of any given phenotype are 

unknown. Thus, avoiding the use of the FSTQ-related statistics is a more realistic 

approach. 

Estimates for selection intensity (ω) – We also ran estimates for local 

stabilizing selection intensity (ω). This parameter was treated in the logarithmic scale in 

order to have a more linear relation with the summary statistics. The estimability results 

for the different models of genetic architecture (Table S1) are not significantly different 

from the estimates done for selection coefficient and, therefore, do not affect our 

conclusions in any way. 

Maladapted alleles in the front end of expansion – Occasionally, simulations 

had the appearance of maladapted variants right on the edge of the expansion wave, as 

predicted by previous studies (TRAVIS et al. 2007; EXCOFFIER et al. 2009; PEISCHL et al. 

2013). These phenomena, however, do not seem to be last very long. Especially when 

selection is very strong (Fig. S4), the aberrant allele frequency state does not last longer 

than a single generation, denoting a transient nature for the “deleterious” alleles that 

increase in frequency during the range expansion in our simulations. 
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Supplementary.Tables.

Table S1: Selection intensity (log10ω) estimability assessment for all genetic architectures. R2 stands for 

the coefficient of determination of the pseudo-observations on the parameter estimates; RMSE is relative 

root mean square error; and prop. HPD50% and HPD95% represent the proportion of posterior 

distributions encompassing the pseudo-observed value. These values were obtained based on 1000 

estimates, with 1000 retained simulations out of 1 million simulations, under the stabilizing hard selection 

system. 

"Architecture" R2" RMSE*" Prop."HPD50%" Prop."HDP95%"

1L2A" 0.693! 0.109! 0.611! 0.989!

1L10A" 0.839! 0.105! 0.582! 0.979!

10L2A" 0.741! 0.133! 0.589! 0.988!

10L2A+" 0.533! 0.130! 0.582! 0.982!

10L10A" 0.637! 0.153! 0.548! 0.992!

10L10A+" 0.839! 0.113! 0.552! 0.982!

*RMSE here is normalized by the log10ω distribution (i.e. -1 to 2) 

!
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Supplementary.Figures.

! !

Figure S1: Pattern statistics extracted from the isolation-by-distance (IBD) pattern observed in the 

simulations. From the QST IBD (black circles), we extracted Mean QST, Slope of IBD (Slope QST) and 

the sum of residuals around the linear regression (black line); for the FST IBD pattern (gray crosses), 

Mean FST (not shown), Slope of IBD (Slope FST) and the sum of residuals for the FST regression (gray 

line). Additionally, the difference between the two slopes (Δ-Slope, not shown) was also retained 

summing up to seven pattern statistics. 
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Figure S2: Comparison of pre- and post-cleaning prior distributions for selection intensity (ω) for all six 

architecture models in the hard selection scheme. Cleaning refers to the removal of simulations 

containing missing data for any of the calculated summary statistics. 
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Figure S3: Comparison of pre- and post-cleaning prior distributions for selection intensity (ω) for all six 

architecture models in the soft selection scheme. Cleaning refers to the removal of simulations containing 

missing data for any of the calculated summary statistics. 
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Figure S4: Deleterious mutation appearing on the front end of expansion. In a randomly chosen 

simulation (from generation 195 to 196), a maladapted variant appears in high frequency (magenta-

colored circled deme) in a newly colonized deme. In the following generation (197), the allele 

frequencies of that same deme already change towards the predominance of the better-adapted allele to 

right-hand side of the map. 
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General Discussion 

In this thesis, all the questions investigated involved the use of computer simulations. It 

could not be different: All scenarios explored here involved complexities beyond any 

analytic approach. But not only that, the simulation approach allowed us to explore 

these complex models in many different ways and in greater depth. For instance, in 

chapter one, we used two rounds of simulations to investigate the fit of our model to the 

real data of human genetic diversity. In the first round, we assessed the parameter 

values underlying the system extracting information out of millions of simulations; and 

in the second, we used full genetic information out of a smaller number of simulations 

to try and recreate complex signatures of genetic differentiation. In the second chapter, 

again two rounds of simulations were used. First, we determined the neutral 

demographic history of the barn owls and their recolonization of Europe; second, we 

investigated – within the boundaries set by first set of simulations – how likely it was to 

neutrally evolve a color cline like the one observed in the natural populations. And it 

turned out that neutral evolution alone was not able to explain the observed pattern. The 

last chapter is a simulation-only study. There, inspired by the barn owl case above, we 

explored the efficiency of selection to generate an adaptive cline in range-expansion 

scenarios, and how could one detect and estimate selection in these cases. Curiously 

enough, our simulations suggest that adaptation in range expansions is detectable 

regardless of other parameters that could disturb this assessment. Considering that range 

expansions are ubiquitous in nature (Hewitt 2000; Parmesan and Yohe 2003), this 

approach provides a promising picture for future studies on the barn owl and other 

organisms, as well. 
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Even though the three chapters composing this thesis may look disconnected at a 

first glance, I believe there is an observable natural development along their execution: 

Going from neutrality to natural selection. In the first chapter, we explored a purely 

neutral demographic picture of modern human evolution. As mentioned in the chapter’s 

text, we believe this model may be a robust alternative to other models that have been 

assumed as representative of the background demography in studies looking for 

phenotype-genotype associations and signatures of selection in humans. The second 

chapter showed a further development towards selection, where we devised what can be 

called a neutrality test for the evolution of a phenotypic trait (e.g. coat color) under a 

spatially and demographically explicit model of evolution. In the third chapter, we 

finally implemented selection to our models and verified that it can be detected and 

estimated, but by always keeping in mind that neutrality is the null hypothesis when it 

comes to investigating evolutionary questions (Kimura 1984). 

However complicated the models we implemented here may seem, they were 

conceived to be as simple as possible. Fundamentally the only increments, when 

compared to previous similar studies (Fagundes et al. 2007; Antoniazza et al. 2010), are 

the spatially explicitness-related features. Such features go from the simulations’ 

implementation in a two-dimensional setting to the incorporation of summary statistics 

that also account for spatial organization. Other studies have already applied the spatial 

dimension to the different related contexts (Ramachandran et al. 2005; Ray et al. 2005; 

Currat et al. 2010), but these were normally limited in either how geographically 

accurate the spatial implementation was or in the statistical treatment of the models. 

Here, we observed that the addition of the spatial dimension to our models, in general, 

brought considerable insight on the processes under investigation. 
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Drift: the null hypothesis 

The concept of the null hypothesis is central to the scientific method. In the hypothesis 

formulation step, it stands for the default position, the expectation when nothing out of 

the ordinary is involved in the process under study (Fisher 1935). When investigating an 

evolutionary process, the null hypothesis is always that of neutrality (Lande 1977). But 

it is not always straightforward to properly address this neutral null hypothesis. The 

background demographic history of any system may be rather complex, leading to all 

sorts of observed patterns. This variety of patterns often poses a challenge to researchers 

looking for signatures of selection (Excoffier et al. 2009). Therefore, it is essential to 

any study looking for selection to implement the relevant demographic model. 

Here, we addressed a particularly problematic demographic scenario in all three 

chapters: range expansions. This demographic process of increasing the area that a 

given population inhabits is intimately linked with the phenomenon of allele surfing. 

Surfing happens on the front end of the range expansion, where the series of founder 

events resulting from the persistent colonization of new locations may easily generate 

allele frequency clines (Klopfstein et al. 2006). To properly assess selective processes 

happening in such scenarios, one must explicitly take into account the demography and, 

since this is a spatial process, it must be modeled in a spatially explicit manner. 

Furthermore, as seen in chapter three, the incorporation of space into the summary 

statistics seems to be an important improvement as well. 

In the third chapter, we make the point that selection is effective in range-

expansion scenarios. This does not mean, at all, that allele surfing is in any way less 

likely to happen, though. Since the seminal works of Edmonds et al. (2004) and 

Klopfstein et al. (2006), it has been well theoretically established that the allele-surfing 

phenomenon is possible and very likely to happen, as supported by several other 
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subsequent works (Hallatschek et al. 2007; Travis et al. 2007; Excoffier and Ray 2008; 

Hofer et al. 2009; Peischl et al. 2013). So, if there is selection in the system, it has to 

present a more consistent pattern than allele surfing. Using this rationale, the probability 

of selection can then be assessed via a simple neutrality test. In this test, the observed 

pattern (phenotype or genotype) is compared with a null distribution generated based on 

neutral simulations. Based on how far the observation is from the distribution of values 

generated by the neutral model, one can determine how probable it is for simple 

neutrality to explain the observed pattern (as done in chapter two). Allele surfing 

remains the most likely explanation for allele frequency clines formed in range 

expansions: random genetic drift (probably with some background selection) remains as 

the null hypothesis. 

Perspectives 

The most immediate and obvious future development of the line of work presented here 

is the application of the method of estimating selection (in chapter three) to the example 

of the European barn owl (chapter two). There are different ways in which the detection 

and (to a smaller extent) measurement of selection have been tackled in the recent 

literature. For example, Gutenkunst et al. (2009) present a method that uses simulations 

to generate allele frequency spectra, which are then compared to real data to infer past 

demography and selection – e.g. (Yi et al. 2010; Ellison et al. 2011). However, the 

models that can be implemented in this software (∂a∂i) are limited to three simultaneous 

populations with selection acting only at one single locus in a rather simple 

implementation. More complex selection regimes can be implemented in MSMS 

(Ewing and Hermisson 2010) that can then be coupled with an ABC analysis pipeline 

for the inference of the underlying parameters. MSMS does not allow the application of 

spatially explicit simulations, though. Simulations in space have been implemented in 
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only a few programs. SPLATCHE (Currat et al. 2004) is arguably the most popular 

implementation of spatially explicit coalescent simulations, presenting a wide range of 

settings related to migration regimes on a two-dimension lattice. This last software, 

however, does not deal with any sort of selection. Yet another alternative approach 

towards the investigation of natural selection with simulations is the use of time-

sampled data, as applied to a drug-resistance study in influenza virus (Foll et al. 2014), 

which takes into consideration the changes in allele frequencies across time to assess the 

effect of natural selection on different loci. Temporally spaced data however is not 

always available and, despite the recent advancements in ancient DNA analysis (Gilbert 

et al. 2005), will probably continue to be exception rather than the rule for natural 

populations. Therefore, none of the abovementioned approaches would be able to deal 

with the case of the European barn owl, either because of their own limitations, or 

because of the limitations of the data itself. 

Therefore, in order to properly assess selection in case of the barn owl, one 

needs to implement the sort of simulations devised in the third chapter, but in a more 

complicated setting. If directly based on the geographically explicit simulations used 

chapter two, the new set of simulations will have to deal with many more demes than 

the ones present in the simplified implementation. Furthermore, the complex selection 

scheme applied to generate a gradient of selection requires the simulations to be run 

forward in time, discarding the choice of using faster coalescent simulations. As a 

result, more computational power will surely be required, leading to more processing 

time and larger memory consumption. Since an ABC approach often requires hundreds 

of thousands to millions of simulation replicates, one may have to consider some 

simplifications, or even a reduction of needed simulations for the estimates. 
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Studies in humans may also benefit from the implementation of the methods 

developed and used here. There have been many different approaches towards the 

detection of selection in human populations and different researchers are choosing a few 

different directions. One very popular path that has been followed is to explore the 

plethora of genomic that has been produced by the several population genomic projects 

– e.g. HGDP-CEPH (Cann et al. 2002), HapMap (The International HapMap 

Consortium 2003), 1000 Genomes (The 1000 Genomes Project Consortium 2010). 

Most of the studies looking at these databases are searching for genomic signatures of 

natural selection, among which the most popular is a selective sweep (Sabeti et al. 

2006). Sweeps are characterized by a consistent reduction of diversity around a certain 

locus on the genome. This is due to the rapid fixation of one allele at that specific locus 

that also drags with it the linked loci that are nearby. Recombination, of course, erases 

this signature as one moves away from the locus under selection. This kind of signature 

has been detected at many locations in the human genome (The International HapMap 

Consortium 2005), but its accuracy in actually reflecting selective events is still 

debatable both because of occasional false positives (Jensen et al. 2005) and because 

selection does not necessarily generates a strongly marked (i.e. hard) selective sweeps 

(Hernandez et al. 2011). 

Yet another line of evidence being used in human populations, and more related 

to the approaches used in this thesis work, is the use differentiation measurements (by 

means of FST) calculated along the genome to detect regions that are either strongly or 

weakly differentiated across different populations (Nielsen 2005). Even though there 

have been consistent advances in the analytical methods used to assess these FST 

signatures (Foll and Gaggiotti 2008; Narum and Hess 2011), these approaches still 

appear to be greatly affected by the underlying demographic history of the population 
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being studied (Excoffier et al. 2009). And, when it comes to human populations, the 

matter of the fact is that they have undergone a very complex demographic history with 

an incredible expansion of their range since they left from eastern Africa to colonize the 

whole planet (Cavalli-Sforza et al. 1994; Ray et al. 2005; Fagundes et al. 2007). So, 

explicitly using this demographic background in future studies should provide an even 

more efficient way to avoid mistakes due to, for example, false positives. Besides, 

humans offer a huge amount of genetic data that is largely underused, leaving room for 

many more studies based solely on the analysis of data already produced. Simulation-

based studies may profit a great deal by comparing their theoretical predictions and 

outcomes to the abundant observed data for human populations worldwide. 

The research field of phylogeography – which concerns itself with the interplay 

among population genetics, phylogenetics and geography – has developed from simple 

mitochondrial-DNA diversity analysis considering its spatial distribution in its very 

origin (Avise et al. 1987), to the incorporation of formalized theoretical background, but 

still with a strong ad-hoc component in its analyses (Avise 1998; Edwards and Beerli 

2000), to the arrival of model-based inference with hypothesis testing, in what has been 

dubbed statistical phylogeography (Knowles 2003; Beheregaray 2008; Knowles 2009; 

Beaumont et al. 2010). Statistical phylogeography has obvious benefits to extract from 

spatially explicit models. In this approach, simulations play a big role in establishing the 

hypotheses to be tested (normally with ABC techniques, see ‘General Introduction’). 

Few studies, however, have done this in a spatially explicit way (Knowles 2013). 

Furthermore, the recent advances in landscape genetics (Manel and Holderegger 2013) 

and environmental niche modeling (Guisan and Thuiller 2005) provide phylogeography 

with even better tools to define and test hypotheses concerning past and current 

populations’ distributions and their effects on the populations’ genetic composition. The 
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incorporation of geography – by means of spatial explicitness – seems to be the next 

natural step in the movement of making phylogeography a more statistically sound 

discipline. 

Conclusion 

In summary, simulations offer a wide range of possibilities in the development of many 

of the research areas related to population genetics. Simulations have already proven to 

be very useful since the late 1950’s, with the pioneering work of Alex Fraser (Fraser 

1957a, b, 1958, 1959a, b, 1960) and James Stuart Barker (Barker 1958a, b), and they 

continue to expand in importance in the field to this date (Arenas 2012). In this thesis I 

hope to have accomplished two goals. First, I expect to have contributed with deeper 

knowledge about natural processes ongoing in humans, in the European barn owl and, 

potentially, other populations that have undergone range expansions. In particular, how 

the interplay between neutrality and selection happens in these especial demographic 

conditions, showing that natural selection can operate despite the complications 

generated by the intensified genetic drift on the edge of the expansion. Second, I hope to 

have produced good examples of the use of simulations – spatially explicit in particular 

– as tools applied to evolutionary biology. Simulations are, indeed, a powerful way to 

address complicated questions in science, taking advantage of the processing capacity 

of computers to enable scientists to look into the detailed mechanisms of nature. 
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