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Inherited peripheral neuropathies are a genetically heterogeneous group of disorders characterized by distal muscle weakness and

sensory loss. Mutations in genes encoding aminoacyl-tRNA synthetases have been implicated in peripheral neuropathies, suggesting

that these tRNA charging enzymes are uniquely important for the peripheral nerve. Recently, a mutation in histidyl-tRNA

synthetase (HARS) was identified in a single patient with a late-onset, sensory-predominant peripheral neuropathy; however, the

genetic evidence was lacking, making the significance of the finding unclear. Here, we present clinical, genetic, and functional data

that implicate HARS mutations in inherited peripheral neuropathies. The associated phenotypic spectrum is broad and encom-

passes axonal and demyelinating motor and sensory neuropathies, including four young patients presenting with pure motor

axonal neuropathy. Genome-wide linkage studies in combination with whole-exome and conventional sequencing revealed four

distinct and previously unreported heterozygous HARS mutations segregating with autosomal dominant peripheral neuropathy in

four unrelated families (p.Thr132Ile, p.Pro134His, p.Asp175Glu and p.Asp364Tyr). All mutations cause a loss of function in

yeast complementation assays, and p.Asp364Tyr is dominantly neurotoxic in a Caenorhabditis elegans model. This study dem-

onstrates the role of HARS mutations in peripheral neuropathy and expands the genetic and clinical spectrum of aminoacyl-tRNA

synthetase-related human disease.
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Introduction
Inherited peripheral neuropathies (IPNs) represent a

common, heterogeneous group of disorders that affect

about 1 in 2500 individuals worldwide (Skre, 1974). A

common feature of these diseases is progressive, length-

dependent axonal degeneration of the peripheral nervous

system resulting in impaired motor and sensory function

in the distal extremities. IPNs are clinically subdivided

based on the involvement of different types of peripheral

nerve fibres. The most common type is hereditary motor

and sensory neuropathy (HMSN), also known as Charcot–

Marie–Tooth (CMT) disease, which affects both motor and

sensory fibres. Less frequent subtypes display more selective

involvement of nerve fibres and include hereditary motor

neuropathy (HMN) and hereditary sensory and autonomic

neuropathy (HSAN). The common HMSN/CMT group is

further classified based on electrophysiological studies with

motor nerve conduction velocities in the median nerve

538 m/s (normal 449 m/s) indicating demyelinating neur-

opathy (CMT1 or HMSN-I) and nerve conduction veloci-

ties 438 m/s indicating axonal neuropathy (CMT2 or

HMSN-II) (Harding and Thomas, 1980). In addition, an

intermediate group is defined as having nerve conduction

velocities between 25 and 45 m/s among patients in the

same family (Baets et al., 2014). Interestingly, IPNs display

a high level of clinical heterogeneity, even among patients

that carry an identical genetic lesion.

The genetic diversity of IPN is extensive with 475 genes

identified to date (Baets et al., 2014). The transmission of

the disease can be autosomal dominant, autosomal reces-

sive, or X-linked. Dominantly inherited CMT1 is the most

common type and also the easiest to diagnose genetically

with mutations in three loci accounting for at least 80% of

cases (Saporta et al., 2011; Rossor et al., 2013). In con-

trast, for axonal forms (CMT2) the genetic cause is only

found in � 25% of patients because there are no major

gene(s) accounting for a substantial proportion of patients

(with the possible exception of mitofusin 2, MFN2), and

the locus and allelic heterogeneity of CMT2 is extensive

with many genes still undiscovered (Murphy et al., 2012).

Aminoacyl-tRNA synthetases (ARSs) are ubiquitously

expressed, essential enzymes that charge tRNA molecules

with cognate amino acids—the first step of protein transla-

tion (Antonellis and Green, 2008). To date, mutations in

six genes encoding ARSs have been identified in patients

with IPN phenotypes (Antonellis et al., 2003; Jordanova

et al., 2006; Latour et al., 2010; McLaughlin et al.,

2010; Gonzalez et al., 2013a; Vester et al., 2013). Three

of these genes have been convincingly implicated in disease

via linkage analysis, with multiple families and patients

described in independent studies: (i) glycyl-tRNA synthetase

mutations (GARS) cause CMT2D and HMN5A (Antonellis

et al., 2003); (ii) tyrosyl-tRNA synthetase mutations

(YARS) cause an intermediate form of CMT (DI-CMTC)

(Jordanova et al., 2006); and (iii) alanyl-tRNA synthetase

mutations (AARS) cause CMT2N and also a form of HMN

(Latour et al., 2010; Zhao et al., 2012). Interestingly,

extensive functional studies have shown that disease-

associated ARS mutations cause a loss-of-function effect

in tRNA charging and yeast viability assays, suggesting

that peripheral nerves are uniquely sensitive to tRNA char-

ging deficits (Wallen and Antonellis, 2013).

Recently, a p.Arg137Gln variant in the histidyl-tRNA

synthetase gene (HARS) was found by whole exome

sequencing in an isolated patient with a sporadic, late-onset

predominantly sensory axonal neuropathy (Vester et al.,

2013). While functional studies in yeast revealed that the

variant behaved similarly to other disease-implicated ARS

variants, the lack of convincing genetic findings and the

detection of the variant in the general population made it

impossible to conclude that this was a disease-causing mu-

tation (Vester et al., 2013). Here, we present 23 patients

from four unrelated families with HARS mutations that

segregate with axonal or intermediate neuropathy pheno-

types. Our functional studies show that all identified
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mutations are unable to support viability in yeast comple-

mentation assays and that one mutation is dominantly

toxic in a worm model system. Combined, our data clearly

establish HARS as a neuropathy-associated locus and

further expand the genetic and phenotypic spectrum of

ARS-related human disease.

Patients and methods

Patients

In total, 23 patients from four unrelated families with a dom-
inantly inherited peripheral neuropathy are described (Fig. 1).
The Ethical Review Boards of the participating institutions
approved this study. All patients or their legal representatives
signed informed consent prior to enrolment.

Linkage analysis

To define the molecular genetic basis of the disease in Families
A and D, a whole genome scan using single nucleotide poly-
morphism (SNP) arrays was carried out. Genomic DNA sam-
ples from patients and unaffected relatives were hybridized to
GeneChip� Human Mapping NspI 250 K arrays (Family A,
seven individuals) and GeneChip� Human Mapping 50 K
arrays (Family D, 12 individuals) (Affymetrix) according to
the manufacturer protocols. Genotypes were called using
GeneChip� Genotyping Analysis Software (Version 4.1) and
default thresholds. To identify the linkage regions, the para-
metric multipoint logarithm of the odds (LOD) scores and
haplotypes were obtained using a subset of SNPs (distance
between markers 450 kb and heterozygosity 40.15) with

the MERLIN program (v 1.1.2) with the assumption of an
autosomal dominant mode of inheritance and fully penetrant
model (Abecasis et al., 2002).

For Family B, an in-house developed multiplex genome-scan
panel was used consisting of 422 polymorphic short tandem
repeat (STR) markers, subsequently PCR amplified with fluor-
escently labelled primers and size-separated on an ABI3730xl
DNA Analyzer. Results were scored with an in-house
developed software program, Local Genotype Viewer (LGV).
Two-point parametric linkage analysis was calculated with
EasyLINKAGE software package under a fully penetrant auto-
somal dominant model, equal female/male recombination
rates, and a disease frequency of 0.0001.

Sanger sequencing

Prior to linkage analysis, candidate gene sequencing, or whole-
exome sequencing, the chromosome 17 duplication (CMT1A)
was excluded in all four families. Subsequently, various sets of
IPN associated genes were tested negative in these families:
GJB1, MPZ, BSCL2, NEFL, MFN2, HSP22, HSP27, RAB7,
GARS, YARS, DNM2, and TRPV4 in Family A; MPZ,
PMP22, GJB1, GARS, AARS, and GDAP1 in Family B;
PMP22 in Family C; GJB1, MPZ, HSP22, HPS27, SETX,
and BSCL2 in Family D.

For the index patient of Family A, all 13 coding exons and
adjacent exon-intron boundaries of HARS were amplified as
well as a cohort of 61 index patients with genetically unre-
solved HMN (primers available upon request). To validate
whole-exome sequencing results (Families B, C and D) and
to demonstrate segregation, the mutated exons of HARS
were Sanger sequenced in all available individuals. Primer
pairs were designed with the Primer3 program (sequences
available upon request) (Rozen and Skaletsky, 2000). Total

Figure 1 Pedigrees of the families with HARS mutations. Female family members are indicated with a circle and male family members are

indicated by squares. Filled symbols indicate affected individuals, while empty symbols indicate unaffected individuals. The number of the individual

is shown in Arabic numerals if the DNA was available for genotyping.
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genomic DNA was PCR amplified and PCR products were
bi-directionally sequenced using the BigDye� Terminator
v3.1 cycle sequencing kit (Applied Biosystems). Fragments
were separated on an ABI3730xl and ABI 3130 Genetic
Analyzer (Applied Biosystems) and analysed with SeqManTM

II Software (DNAstar Inc.) and Mutation Surveyor�

(Softgenetics).

Whole-exome sequencing

Index patients from Families B and C and two distant relatives
from Family D (Subjects IV.1 and IV.6) were selected for
whole-exome sequencing. Exome capture was performed
using the Agilent SureSelect Human All Exon V5 kit
(50 Mb), followed by sequencing on a HiSeq 2000 platform
(Illumina). Sequence alignment was performed using the
BWA-v0.5.9rc1 tool. GATK-v1.4-37 was used for variant
calling. Further data analysis was performed in the Genomes
Management Application database (GEM-app) (Gonzalez
et al., 2013b). Variants were filtered for the regions with sug-
gestive linkage for Families B and D, no occurrence in the
normal population [absent in the Exome Variant Server
(EVS)], predicted impact on the encoded protein (missense,
nonsense, frame shift, inframe indels and essential splice vari-
ants), conservation [Genomic Evolutionary Rate Profiling
(GERP) score 4 4, or PhastCons score 4 0.9, or PhyloP
Score 4 1.5], and predicted damaging amino acid substitution
[at least in one: SIFT, PolyPhen-2, MutationTaster, Mutation
Assessor, Likelihood Ratio Test (LRT), Functional Analysis
through Hidden Markov Models (FATHMM)], and quality
(GATK GQ score 4 75). An overview of the general outcome
after performing whole-exome sequencing (number of reads,
coverage etc.) can be found in Supplementary Table 1.
Confirmation of the possible pathogenic variants and segrega-
tion analysis in all available family members was performed
using Sanger sequencing.

Yeast complementation assays

Yeast complementation assays were performed as previously
described (Vester et al., 2013). Briefly, mutation-containing
oligonucleotides were designed to model the p.Thr132Ile,
p.Thr132Ser, p.Pro134His, p.Asp175Glu, or p.Asp364Tyr
HARS missense variants in the yeast orthologue HTS1. The
QuickChange� II XL Site-Directed Mutagenesis Kit
(Stratagene) was used (per manufacturer’s instructions) to
mutate the HTS1 locus in a pDONR221 Gateway� entry
clone (Invitrogen). Resulting clones were purified and
sequenced to confirm successful mutagenesis and exclude
polymerase-induced mutations. The mutated HTS1/
pDONR221 entry clone was subsequently recombined into a
Gateway�-compatible LEU2-bearing pRS315 destination
vector. Resulting clones were purified and digested with
BsrGI (New England Biolabs) to confirm successful
recombination.

Two independently generated haploid �hts1 strains
(harbouring a pRS316 maintenance vector to express wild-
type HTS1 and URA3) were transformed with a LEU2-
bearing pRS315 vector containing no insert (‘Empty pRS315’
in Fig. 2) or containing a wild-type or mutant HTS1 allele
(Vester et al., 2013). Subsequently, yeast strains were selected

on medium lacking uracil and leucine (Teknova) to select for
the presence of both vectors. For each transformation, four
colonies were grown to saturation in selective medium for
48 h. Next, 10 ml of undiluted and diluted (1:10 and 1:100)
samples from each culture were spotted on plates containing
0.1% 5-fluoroorotic acid (5-FOA) or SD -leu -ura growth
medium (Teknova) and incubated at 30�C for 48 h. Survival
was determined by visual inspection of growth. Experiments
were performed using two independently generated HTS1
expression constructs for each allele (designated as ‘A’ and
‘B’ in Fig. 2).

Caenorhabditis elegans plasmids
and strains

Nematode strains were provided by the Caenorhabditis
Genetic Centre. Strains were raised at room temperature on
nematode growth media plates with OP50 Escherichia coli as
the food source per standard protocols (Brenner, 1974).
Plasmids and transgenic worms were constructed as previously
described (Mello et al., 1991; Vester et al., 2013). The human
p.Asp364Tyr mutation was created by PCR-based site directed
mutagenesis into the equivalent C. elegans hars-1 residue
D383Y using the oligonucleotide primers: D383Y_FWD:
TAGCTGCCGGTGGACGATACTAT; and D383Y_REV: AT
AGTATCGTCCACCGGCAGCTA.

Morphological and behavioural
analysis in C. elegans

Quantification of motor neuron and behavioural defects were
performed as previously described (Vester et al., 2013).
Quantification was performed on the following strains:
EG1285: oxIs12 (Punc-47::GFP; lin15b) X, BEG16: oxIs12
(Punc-47::GFP; lin15b) X; aabEx12 (Punc-25::hars-1
[D383Y], Pmyo-2::mCherry). L4 stage worms were synchro-
nized by bleaching and grown at 20�C. Morphological defects
were quantitated in 4100 worms/genotype at each develop-
mental time point. Animals exhibiting at least one aberrant
neuronal process were scored as positive. Behavioural thrash
assays were performed as previously described (Miller et al.,
1996; Vester et al., 2013). At least 40 animals/genotype were
tested. Briefly, single animals were picked to a 35 mm agarose-
coated dish filled with 2 ml of M9 media. Animals were
allowed to acclimate for 2 min and then a 1-min video was
recorded using a Leica IC80HD camera. The movies were
slowed to one-quarter speed and the total number of body
bends per minute was manually scored offline using ImageJ
software.

Microscopy

All morphological quantitation was performed on a Leica
DMI6000B compound microscope with a CCD camera
(DFX360, Leica Microsystems Inc.) using a �40 objective.
High-resolution confocal images were obtained on a Nikon
A1R microscope with a �20 and �60 objective (Nikon
Corporation).
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Results

Mutations in HARS are identified
in patients with IPN

Linkage analysis, Sanger sequencing, and whole-exome

sequencing revealed four distinct heterozygous mutations

in HARS in four unrelated families with dominantly

inherited peripheral neuropathy.

Genome-wide linkage analysis in Family A, including

four affected and three unaffected family members, revealed

one chromosomal interval on chromosome 5q tentatively

linked to the disease, with a maximal LOD score of

2.107. All affected individuals, but none of the unaffected

subjects, shared a haplotype consisting of 93 SNP alleles

over a region of 7.9 Mb. This interval contained 161 pos-

itional RefSeq genes including HARS, which was con-

sidered as the most plausible candidate gene (Vester

et al., 2013). Sanger-sequencing of HARS revealed the

p.Thr132Ile variant. This variant also segregated in all

additional family members previously not included in the

linkage study. At the same position another amino acid

change p.Thr132Ser was listed in dbSNP database

(rs143473232), this variant is present in 1 of 13 006

chromosomes in the EVS.

In Family B, linkage analysis revealed five plausible

regions with suggestive but inconclusive linkage (LOD

score 41) on chromosomes 5, 6, 11, 13 and 14.

Searching these five regions of interest for variants iden-

tified by whole-exome sequencing in the index patients,

promising variants in six candidate genes were found:

CDC42BPG, KLHDC1, MYH7, PYGL, PCDHB1, and

the p.Pro134His variation in HARS as the most likely

segregating candidate.

In Family C, whole-exome sequencing data filtering

yielded promising variants in 66 genes including a

p.Asp175Glu variant in HARS, which was found to segre-

gate with the disease in the pedigree.

In Family D, linkage analysis including seven affected

and five healthy individuals delineated six genomic regions

of interest: four on chromosomes 4, 5, 8, 9 (LOD score

2.4) and two located on the X chromosome (LOD score

1.8). Whole-exome sequencing data from two affected

patients combined with linkage analysis revealed only two

possible variants, one in LHX6 and one in HARS. After

confirmation with Sanger sequencing, the variant in LHX6

was excluded because of presence also in a healthy family

member not included in the original linkage analysis, thus

leaving the segregating p.Asp364Tyr variant in HARS as

the only probable disease cause.

All variants detected in HARS (p.Thr132Ile,

p.Pro134His, p.Asp175Glu, p.Asp364Tyr) are in the het-

erozygous state and segregate with disease in all available

family members from Families A–D (Fig. 1). In silico pre-

diction programs classified all four missense variants as

pathogenic: ‘probably damaging’ (PolyPhen-2) (Adzhubei

et al., 2010), ‘damaging’ (SIFT) (Ng and Henikoff, 2001),

‘disease causing’ (Mutation Taster) (Schwarz et al., 2014)

and ‘high’ (Mutation Assessor) (Reva et al., 2011). The

same apply also for the variant p.Thr132Ser; the prediction

programs assessed it as pathogenic. None of the four HARS

variants are present in dbSNP, the Exome Variant Server, or

1000 genomes database (Supplementary Table 2). No add-

itional HARS mutations were found in a cohort of 62 index

patients with genetically unresolved HMN to which Family

D belonged. Families B, C, and D were part of large whole-

exome sequencing effort tackling a heterogeneous cohort of

128 autosomal dominant families with genetically un-

defined neuropathies (axonal and intermediate CMT and

Figure 2 CMT-associated HTS1 variants decrease yeast cell viability. Haploid �hts1 yeast strains were transformed with a vector

containing no insert (pRS315 Empty) or an insert to express wild-type, p.Thr132Ile, p.Thr132Ser, p.Pro134His, p.Asp175Glu or p.Asp364Tyr HTS1

(Supplementary Table 4). Two colonies (indicated by ‘A’ and ‘B’) from transformations with Thr132Ile, Thr132Ser, Pro134His, Asp175Glu or

Asp364Tyr HTS1 are shown. Resulting colonies (undiluted, diluted 1:10, or diluted 1:100) were grown on agar plates containing 0.1% 5-FOA. Note

the severe depletion of growth associated with p.Asp175Glu HTS1 at 1:10 and 1:100 dilutions.
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HMN). Data were analysed using GEMapp (Gonzalez

et al., 2013b) but apart from these three families, no add-

itional HARS mutations were identified.

Clinical findings

Clinical and electrophysiological findings in all studied

individuals are summarized in Table 1 and Supplementary

Table 3. Photos of selected patients from Families A and D

are in Supplementary Fig. 1. The phenotype is variable,

with disease onset ranging from early childhood to late

adulthood. Some individuals had clinical signs and electro-

physiological abnormalities without subjective symptoms

(Subjects A-IV.3, A-IV.6, D-IV.2, and D-IV.6). Especially

in Family D, most patients are mildly affected, often only

displaying steppage gait and sensory symptoms/signs at

later stages of the disease (Supplementary Fig. 1). Two

asymptomatic individuals (Subjects D-IV.2 and D-IV.6)

have brisk patellar reflexes with absent ankle jerks. Based

on electrophysiological studies, the phenotypes of the

families were classified as axonal neuropathy in Families

A, C, and D and intermediate neuropathy in Family B.

Four young individuals did not have sensory symptoms/

signs and normal sensory nerve conduction studies consist-

ent with a diagnosis of HMN (Subjects A-V.1, D-IV.2, D-

IV.3 and D-IV.6). Older individuals of the same families

were diagnosed with CMT2.

HTS1 mutations are associated with
decreased cell viability in yeast

Yeast complementation assays have been employed to test

mutations in ARS genes for a loss-of-function effect, includ-

ing p.Arg137Gln in HARS (Antonellis et al., 2006;

Jordanova et al., 2006; McLaughlin et al., 2010; Stum

et al., 2011; Gonzalez et al., 2013a; Vester et al., 2013;

Griffin et al., 2014). To test the functional consequences of

the four HARS missense variants that segregate with dis-

ease (p.Thr132Ile, p.Pro134His, p.Asp175Glu and

p.Asp364Tyr) and one rare variant listed in dbSNP without

diseases association (p.Thr132Ser), we modelled these mis-

sense variants in the yeast orthologue HTS1

(Supplementary Table 4) and independently tested each

mutation for the ability to support yeast cell growth com-

pared to wild-type HTS1 or an empty vector. Mutations in

the text and Fig. 2 are referred to by the position in the

human protein. Briefly, a haploid yeast strain (with the

endogenous HTS1 locus deleted and a maintenance vector

to express wild-type HTS1 and URA3) was transformed

with either a pRS315 vector with no insert (‘Empty

pRS315’ in Fig. 2) or a pRS315 vector harbouring

wild-type, p.Thr132Ile, p.Thr132Ser, p.Pro134His,

p.Asp175Glu, or p.Asp364Tyr HTS1. Yeast cells were

then selected on media containing 5-FOA, which is toxic

to yeast expressing URA3 and therefore selects for

cells that have spontaneously lost the maintenance vector

(Boeke et al., 1987). Only yeast cells expressing a

functional HTS1 allele from pRS315 will grow in this

assay.

Yeast transformed with a wild-type HTS1 expression

vector demonstrated significant growth, while those trans-

formed with the empty vector did not (Fig. 2). These data

are consistent with HTS1 being an essential gene (Vester

et al., 2013). Regarding the novel, CMT-associated HARS

mutations described here, yeast expressing p.Thr132Ile,

p.Pro134His and p.Asp364Tyr HTS1 were unable to

grow on 5-FOA media (Fig. 2) indicating that these are

complete loss-of-function alleles. Additionally, yeast

expressing p.Asp175Glu HTS1 showed a significant reduc-

tion, but not complete abrogation, of yeast viability com-

pared to wild-type HTS1 (Fig. 2; note pronounced

differences in growth at 1:10 and 1:100 dilutions) indicat-

ing that this is a partial loss-of-function allele. Unlike

CMT-associated HARS mutations, the p.Thr132Ser

HARS variant supported yeast growth to the same extent

as wild-type HARS, indicating that this variant has no

significant effect on HARS activity.

p.Asp364Tyr causes late-onset motor
neuron defects and behavioural
impairments in C. elegans

C. elegans was previously established as a model system to

differentiate the pathogenicity of potential mutant hars-1

(the C. elegans orthologue of HARS) variants (Vester

et al., 2013). In C. elegans, 19 GABA motor neurons

innervate body wall muscles and are required for locomo-

tion via reciprocal inhibition (Schuske et al., 2004). These

GABA motor neuron cell bodies reside in the ventral nerve

cord and extend circumferential axons that form the dorsal

nerve cord—these axons are easily visualized with fluores-

cent proteins facilitating visual assessment of axon morph-

ology and integrity (Fig. 3A). To determine if p.Asp364Tyr

expression resulted in morphological and functional tox-

icity to motor neurons, we specifically expressed the C.

elegans hars-1 (p.Asp364Tyr) transgene in GABA motor

neurons, which were labelled with green fluorescent protein

(GFP). Expression of p.Asp364Tyr caused morphological

neurotoxicity denoted by dorsal and ventral nerve gaps,

axonal blebbing, and severely aberrant axonal processes

that were not present in control animals (Fig. 3B).

Axonal morphological defects increased over time (L4 to

7-day adult) in those animals expressing the p.Asp364Tyr

variant (Fig. 3C). To determine if the axonal pathology

produced behavioural defects, we tested animals in liquid

thrash assays, which measure the fidelity of neuromuscular

motor performance (Miller et al., 1996). Transgenic

animals expressing the p.Asp364Tyr variant exhibited sig-

nificantly decreased thrashing rates compared to control in

4- and 7-day adults, which mirrored the increased axonal

pathology (Fig. 3D). Although p.Asp364Tyr expressing L4

and 1-day adult animals exhibited a significant increase in

axonal pathology, there were no overt behavioural defects,
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suggesting p.Asp364Tyr expression imparts a progressive

loss of motor neuron function and neuromuscular coordin-

ation (Fig. 3C and D).

Discussion
The advent of next-generation, high-throughput sequencing

technologies has allowed rapid identification of disease-

associated variants. However, these same advances have

caused human geneticists to be increasingly faced with vari-

ants of unknown significance in single patients and small

families (Schabhuttl et al., 2014). Several ARS family mem-

bers have been implicated in IPNs; however, the simple

identification of a missense variant in a gene encoding

one of these enzymes is not sufficient evidence of pathogen-

icity. To date, mutations in three ARSs (GARS, YARS and

AARS) have strong genetic evidence supporting a role in

dominantly inherited peripheral neuropathy (Antonellis

et al., 2003; Jordanova et al., 2006; Latour et al., 2010;

Zhao et al., 2012). Our study now establishes the same

level of genetic evidence for the role of HARS in IPN.

Previously, a missense variant in histidyl-tRNA synthetase

(p.Arg137Gln HARS) was identified in a single patient with

late-onset, sensory-predominant axonal neuropathy; how-

ever, segregation studies could not be performed and this

variant was also identified at a very low rate in the general

population (Vester et al., 2013). Despite demonstrating

a loss of function and dominant toxicity in established

functional assays, the lack of segregation studies and failure

to identify additional unrelated families with IPN and

HARS mutations made it difficult to establish a causal

link between HARS and IPN (Vester et al., 2013). In the

current study, next-generation sequencing was used to iden-

tify four HARS mutations in four large unrelated families

with IPN. All four mutations are missense alterations that

segregate with disease status and that are predicted to be

pathogenic using several in silico tools (Supplementary

Table 2). In the current study no large systematic cohort

screenings have been performed so an accurate estimation

of HARS mutation frequencies is not possible. Based on the

series that were studied we estimate that the frequency is in

the order of 1.6–2.3% (1/62 in HMN cases and 3/128 in

GEMapp). Given the extensive phenotypic diversity asso-

ciated with HARS mutations we expect multiple additional

cases are likely to be identified in future whole-exome

sequencing studies.

A growing body of evidence suggests that impaired

enzyme function is an important component of ARS-

mediated CMT disease. Fifteen of 19 CMT-associated

mutations in GARS, YARS, and AARS demonstrate loss-

of-function characteristics in aminoacylation assays and/or

in yeast complementation assays. Importantly, all muta-

tions that cause a loss of function in yeast growth assays

also demonstrate loss of tRNA charging in kinetic assays

(Jordanova et al., 2006; McLaughlin et al., 2010, 2012;

Griffin et al., 2014). By using a yeast model to test theT
a
b
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function of ARS variants in vivo, we determined that all

four disease-associated HARS variants result in a severe

reduction in yeast viability. In contrast, although affecting

the same residue as p.Thr132Ile, the p.Thr132Ser HARS

variant, which is not associated with disease, complements

loss of endogenous HTS1, indicating that p.Thr132Ser is

not a loss-of-function allele (Fig. 2). This supports the

notion that impaired function is an important component

of ARS-mediated disease pathogenesis. In addition, we used

a C. elegans model to show that over-expression of

p.Asp364Tyr HARS causes morphological and functional

motor deficits, consistent with the dominant IPN phenotype

Figure 3 p.Asp364Tyr (D364Y) motor neuron expression causes axonal pathology and neuromuscular defects in C. elegans. (A)

Diagram of the 19 DD and VD GABA motor neuron cell bodies (green dots), which are located in the ventral nerve cord (VNC), and their

commissural axonal processes. Ventral motor neuron cell bodies extend dorsal circumferential axons forming the dorsal nerve cord (DNC).

Figure adapted with permission from Vester et al. (2013). (B) Whole animal (upper panels) and magnified (lower panels) confocal images of control

oxIs12 [Punc-47::GFP] and oxIs12; hars-1 (D364Y) expressing animals. In control animals, commissural axons (white arrowhead) extend dorsally

from ventral motor neuron cell bodies forming a continuous dorsal nerve cord. Note the homogeneous GFP expression and lack of axonal

blebbing in control animals (lower panel, white arrowhead). Expression of hars-1(D364Y) causes aberrant axonal commissures that fail to reach the

dorsal nerve cord (yellow arrowhead), prominent dorsal nerve cord gaps (yellow arrow), and axonal blebbing (yellow asterisks) not observed in

controls. Scale bar = 50mm. (C) Quantification of aberrant GABA motor neuron axonal commissures in HARS-1 (D364Y) expressing animals

(n5 100 worms/genotype; n = 5 trials/genotype). (D) Quantification of thrash assays in liquid media (n5 40 animals/genotype). Error bars �

SEM, *P5 0.05, Students t-test.
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observed in patients carrying this mutation. This also con-

firms that yeast and C. elegans data are consistent with the

previously identified variant (Vester et al., 2013) and in

favour of pathogenicity allowing the use of genetic and

yeast data alone to implicate the remaining alleles.

Phenotypic diversity in IPN is well documented and next

generation sequencing techniques have helped reveal the

allelic heterogeneity of IPN-associated mutations that

may, at least partially, explain the phenotypic variations

observed. Our current study demonstrates the diverse

types of IPN—in terms of presentation, severity and elec-

trophysiology—that are associated with HARS mutations.

Family A is diagnosed with an adult onset CMT2 pheno-

type of moderate severity. Family B on the other hand dis-

plays a more severe disease course with marked slowing of

nerve conduction velocities that are in the range of CMT1

for the older individuals. This finding suggests a progressive

slowing of nerve conduction velocities. Subject B-III.5 had

positive sensory symptoms under the form of paraesthesia.

In Family C the disease presentation and severity is highly

variable with the male index (Subject C-III.1) presenting a

typical CMT phenotype in adolescence while his mother

(Subject C-II.2) has unusual late onset features with positive

sensory symptoms. Electrophysiology is again in keeping

with CMT2 although the effect of progressive slowing of

nerve conduction velocities seems to be present as well. In

Family D, an initial diagnosis of pure motor axonal neur-

opathy was made in some patients (HMN) but on progres-

sion of the disease in older individuals, clear sensory

symptoms and signs and abnormalities of the sensory

nerve conductions were noted. Follow-up over time will

show if sensory involvement becomes apparent in

Subjects A-V.1, D-IV.2, D-IV.3 and D-IV.6 as well. Most

other neuropathy phenotypes associated with mutations in

the ARSs genes have an axonal electrophysiology with the

exception of DI-CMTC caused by YARS mutations where

a degree of nerve conduction velocity slowing in the inter-

mediate range is described (Jordanova et al., 2006). Even

within the group of axonal neuropathies linked to the ARS

genes clear, variability of the affected nerve fibres is known

with GARS and AARS mutations causing both CMT2 and

HMN phenotypes (Antonellis et al., 2003; Zhao et al.,

2012). For the currently described HARS mutations, no

obvious genotype–phenotype correlations can be made.

The Asp175Gly mutation in HARS is a hypomorphic

allele with a clearly reduced but not completely abolished

yeast colony growth compared to control conditions. Given

the mildly affected individuals in the first and second gen-

eration of the corresponding family this raises the question

of a genotype–phenotype correlation. However Subject

C-III.1 has a more typical CMT phenotype in adolescence

so this correlation is certainly not straightforward. At the

same time several individuals in Family A (Subjects A-IV.3

and A-IV.6) and Family D (Subjects D-IV.2 and D-IV.6) are

very mildly affected as well although their respective muta-

tions (Thr132Ile and Asp364Tyr) are complete loss of func-

tion alleles. Based on this observation and also our

extensive previous experience with other ARS genes

(GARS and AARS), we are confident that the yeast assay

is a robust predictor of disease but does not allow for

strong correlations with disease severity.

ARSs are ubiquitously expressed enzymes that perform

the essential first step of protein translation. It is therefore

interesting that mutations in genes encoding these enzymes

have been implicated in tissue-specific diseases such as

peripheral neuropathy. There is currently a preponderance

of data suggesting that impaired ARS function is a compo-

nent of dominant ARS-related IPN; however, to date only

missense and in-frame deletions have been associated with

these diseases suggesting that the mutant protein must be

expressed. This apparent discrepancy may be explained by

two non-mutually exclusive possibilities. First, as GARS,

AARS, YARS, and HARS holoenzymes function as homo-

dimers, the loss-of-function protein may deplete the

function of the remaining wild-type protein via a

dominant-negative effect (Freist et al., 1999). In this scen-

ario, dramatically reduced ARS function may breach a

threshold of tRNA charging required for protein transla-

tion in axons, leading to the axonal phenotype (Wallen and

Antonellis, 2013). Second, impaired ARS function (i.e.

reduced catalytic activity or decreased tRNA binding)

may be a prerequisite for an as-yet undiscovered toxic

gain-of-function effect; for example, mutant ARS may

now be free to inappropriately bind to axonal RNAs or

proteins (Motley et al., 2010, 2011; Wallen and

Antonellis, 2013). The first possibility is supported by the

over 20 loss-of-function mutations identified in the dimeric

GARS, YARS, AARS and HARS enzymes in patients with

IPN (Wallen and Antonellis, 2013; Griffin et al., 2014) and

the fact that each HARS mutation described here maps to

the catalytic domain of the enzyme. The second possibility

is supported by the apparent lack of a neuropathy pheno-

type in patients with Usher Syndrome that are homozygous

for a presumably hypomorphic HARS mutation

(p.Tyr454Ser) (Puffenberger et al., 2012). However, it is

important to note that patients homozygous or compound

heterozygous for null and/or hypomorphic mutations in

other ARS enzymes do present with a peripheral neur-

opathy (Isohanni et al., 2010; McLaughlin et al., 2010;

Schwartzentruber et al., 2014). While the mechanistic link

between ARS mutations and IPN remains unclear, there is

abundant evidence that reduced ARS function is an import-

ant component of the molecular pathology.

Here we present clinical, genetic and functional data that

implicate HARS mutations in inherited peripheral neur-

opathy. These findings expand the locus, allelic, and pheno-

typic spectrum of ARS-related human disease and further

support a pathogenic role for these enzymes in diseases of

the peripheral nerve. Future efforts aimed at teasing out the

precise molecular pathology of ARS mutations will be crit-

ical for assessing if improving enzyme function or decreas-

ing the activity of mutant ARS alleles will be relevant

therapeutic strategies for patients with dominant ARS-

related disease.
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