
Computing in Social Networks

Andrei Giurgiu1, Rachid Guerraoui1,
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Abstract. This paper defines the problem of Scalable Secure Comput-
ing in a Social network: we call it the S3 problem. In short, nodes, directly
reflecting on associated users, need to compute a function f : V → U
of their inputs in a set of constant size, in a scalable and secure way.
Scalability means that the message and computational complexity of the
distributed computation is at most O(

√
n · polylog n). Security encom-

passes (1) accuracy and (2) privacy: accuracy holds when the distance
from the output to the ideal result is negligible with respect to the maxi-
mum distance between any two possible results; privacy is characterized
by how the information disclosed by the computation helps faulty nodes
infer inputs of non-faulty nodes.

We present AG-S3, a protocol that S3-computes a class of aggrega-
tion functions, that is that can be expressed as a commutative monoid
operation on U : f(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn, assuming the number
of faulty participants is at most

√
n/ log2 n. Key to our protocol is a

dedicated overlay structure that enables secret sharing and distributed
verifications which leverage the social aspect of the network: nodes care
about their reputation and do not want to be tagged as misbehaving.

1 Introduction

The past few years have witnessed an explosion of online social networks and
the number of users of such networks is still growing regularly by the day, e.g.
Facebook boasts by now more than 400 millions users. These networks consti-
tute huge live platforms that are exploited in many ways, from conducting polls
about political tendencies to gathering thousands of students around an evening
drink. It is clearly appealing to perform large-scale general purpose computa-
tions on such platforms and one might be tempted to use a central authority for
that, namely one provided by the company orchestrating the social network. Yet,
this poses several privacy problems, besides scalability. For instance, there is no
guarantee that Facebook will not make any commercial usage of the personal
information of its users. In 2009, Facebook tried to change its privacy policy to
impose new terms of use, granting the company a perpetual ownership of per-
sonal contents – even if the users decide to delete their account. The new policy
was not adopted eventually, but highlighted the eagerness of such companies to
use personal and sensitive information.
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We argue for a decentralized approach where the participants in the social
network keep their own data and perform computations in a distributed fash-
ion without any central authority. A natural question that arises then is what
distributed computations can be performed in such a decentralized setting. Our
primary contribution is to lay the ground for precisely expressing the question.
We refer to the underlying problem as the S3 problem: Scalable Secure Comput-
ing in a Social network. Whereas scalability characterizes the message and com-
putational complexity of the computation, the secure aspect of S3 encompasses
accuracy and privacy. Accuracy refers to the robustness of the computation and
aims at ensuring accurate results in the presence of dishonest participants. This
is crucial in a distributed scheme where dishonest participants might, besides
disrupting their own input, also disrupt any intermediary result for which they
are responsible. The main challenge is to limit the amount of bias caused by
dishonest participants. Privacy is characterized by the amount of information
on the inputs disclosed to other nodes by the computation. Intuitively, achiev-
ing all three requirements seem impossible. Clearly, tolerating dishonest play-
ers and ensuring privacy calls for cryptographic primitives. Yet, cryptographic
schemes, typically used for multi-party computations, involve too high a compu-
tation overhead and rely on higher mathematics and the intractability of certain
computations [1,2,3]. Instead, we leverage users’ concern for reputation using a
information theoretical approach and alleviate the need for cryptographic prim-
itives. A characteristic of the social network context is indeed that the nodes are
in fact users who might not want to reveal their input, nor expose any misbe-
havior. This reputation concern determines the extent to which dishonest nodes
act: up to the point that their misbehavior remains discrete enough not to be
discovered.

Solving the S3 problem is challenging, despite leveraging this reputation con-
cern: to ensure privacy, an algorithm must ensure that even when all the nodes
except one have the same inputs, the information obtained by the coalition of
faulty nodes cannot know which non-faulty node had a different input. This
requires the existence of two configurations of inputs that differ for two nodes,
which with high probability lead to the same sequence of messages received by
the faulty nodes. In turn, this boils down to swapping two nodes’ inputs trans-
parently (from the standpoint of the faulty nodes), which is challenging when the
protocol needs to be also scalable and accurate. The scalability requirement (i.e.,
each node communicates with a limited number of nodes) makes it difficult to
find a chain of messages that can be swapped transparently between two nodes
in the system. The trade-off between privacy and accuracy can be illustrated by
the following paradox: on the one hand verifying that nodes do not corrupt the
messages they receive (without digital signature) requires the verifier to gather
some information about what the verified node received; on the other hand the
more the nodes know about the messages exchanged the more the privacy of the
nodes is compromised.

Our contributions are twofold. Firstly, we define the Scalable Secure Comput-
ing problem in a Social network, namely the S3 problem. Secondly, we present
a distributed protocol, we call AG-S3 (i.e., S3 for AGgregation), that solves the
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problem for a class of aggregation functions that derive from a monoid operation
on U : f(x1, ..., xn) = x1 ⊕ · · · ⊕ xn, under the assumption that the number of
faulty nodes is upper-bounded by

√
n/ log2 n. At the core of our protocol lie (1)

a structured overlay where nodes are clustered into groups, (2) a secret sharing
scheme that allows the nodes to obfuscate their inputs, and (3) a verification
procedure which potentially tags the profiles of suspected nodes. Beyond these
contributions, our paper can be viewed as a first step toward characterizing what
can be computed in a large scale social network while accounting for the human
nature of its users.

2 Problem

This section defines the problem of Scalable Secure Computing in a Social net-
work : the S3 problem. The problem involves a S3 candidate, namely the function
to be computed, and a set of nodes Π = {p1, . . . , pn}.

2.1 Candidates

Definition 1 (S3 candidate). A S3 candidate is a quadruple (f, V, U, d), where
V is an arbitrary set, f is a function f : V ∗ → U such that f(v1, . . . , vn) =
f(vσ(1), . . . , vσ(n)) for any permutation σ of the inputs, and (U, d) is a metric
space.

Each node in Π has an input value in the set V , and a S3 candidate maps the
inputs of the nodes to a value in a metric space. The function f is assumed to be
symmetric in the sense that the output depends on the multiset of inputs but not
on their assignation to nodes. For example, a binary poll over Π can be modeled
by the S3 candidate ((v1, v2, . . . , vn) �→ v1 + · · · + vn, {−1, +1}, Z, (z1, z2) �→
|z1 − z2|). Consider also a component-wise addition on U = Z

d, where V is the
set of all vectors with exactly one nonzero component, which is either +1 or −1.
The distance function is then just the L1 (or Manhattan distance).

The nodes considered in the S3 problem are users of a social network, able to
(1) communicate with private message passing and (2) tag the public profile of
each other. As such, every node directly reflects on the associated user. Nodes
care about their privacy and their reputation: a user wants neither the private
information contained in her input, nor her misbehavior, if any, to be disclosed.
This reputation concern is crucial to make the problem tractable. To ensure
security, part of the computation consists in checking the correctness of other
nodes’ behavior. The output of a node p is a value in U plus a set Fp of nodes
that p detected as faulty. This information is eventually reported on the public
profile of the involved nodes by means of tags of the form “p detected nodes in
Fp as faulty”.

Faulty nodes are considered rational: their goal is only to bias the output of
the computation and infer the inputs of the users taking part in the computation.
As such, their behavior is more restricted than that of Byzantine users [4]. To
achieve their goal, faulty nodes may collude.
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In our context, a distributed computation D on the set of nodes Π, is a
sequence of message exchanges and local computations such that any non-faulty
node p eventually outputs a value op. The content of the message and the nodes’
outputs are random variables whose value is determined by the random choices
made by the nodes during the computation. In the following, we define the
desirable properties of a distributed computation in a social network, namely
scalability and security, itself encompassing privacy and accuracy.

2.2 Scalability

Scalability means that the computation is able to handle a large number of
inputs (i.e., large values of n): consequently, the properties are expressed in the
form of asymptotic bounds.

Definition 2 (
√

-Scalability). A distributed computation is said to be
√

-
scalable if the message, spatial and computational complexities at each node are
O(

√
n · polylogn).

The intuition behind the logarithmic factor in the asymptotic bound is that
operations with the nodes’ identifiers and the memory needed to store such
identifiers remain within O(log n).

2.3 Accuracy

The definition of the accuracy of a computation relies on the metric space struc-
ture of the output space U : accuracy is given by the distance between the output
of the computation and the actual value of the output of f . To render it mean-
ingful, we normalize this distance by the diameter of f(V n) for a distributed
computation over n nodes.

Definition 3 (
√

-Accuracy). A distributed computation D is said to
√

-
accurately compute a S3 candidate (f, U, V, d) if:

1
Δ(n)

· max
p non−faulty

d(op, f(v1, . . . , vn)) = O
(

1√
n

)
,

where vi is the input of the i-th node and

Δ(n) = max
(x1, . . . , xn)

(y1, . . . , yn)

d(f(x1, . . . , xn), f(y1, . . . , yn)).

This definition highlights the importance of specifying the distance measure
of a S3 candidate: providing the output space with the coarse grain distance
d(x, y) = 0 if x = y, and 1 otherwise, will restrict the class of S3 computations
to those that output the exact value of f . Meanwhile, for binary polling for
instance Dpol [5], considering the natural distance on relative numbers includes
computations for which the error on the tally is negligible when compared to
the sample size n (i.e., Δ(n) = 2n).
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2.4 Privacy

Privacy characterizes how the information gained by curious nodes taking part
in the distributed computation enables them to recover the input of a particular
non-faulty node. Clearly, the cases where an input can be inferred from only
the output and the inputs of the faulty nodes are ignored when looking at the
privacy leaks of a computation. In a perfectly private distributed computation,
a coalition of faulty nodes should be able to recover the input of a non-faulty
node if and only if its input can be inferred from the output of the computation
and the inputs of the faulty nodes. Such configurations of inputs are captured
by the notion of trivial inputs. An example of such configuration of inputs is
the case where all non-faulty nodes taking part in a binary poll have the same
input, be it −1 or 1. Since S3 candidates are symmetric by definition, a trivial
input is a configuration where all nodes start with the same input.

Definition 4 (Trivial input). An element v of V ∗ is said to be a trivial input
for a coalition B if there is a node p /∈ B such that for all input configuration v′

that coincides with v for all nodes in B, f(v) = f(v′) implies vp = v′p.

We say in our context that a distributed computation is private if the probability
of recovering the input of a particular non-faulty node (assuming that it cannot
be inferred from the output alone, i.e., the configuration of inputs is non-trivial)
decreases as 1/nα for some positive α. We capture this notion more formally
through the notion of probabilistic anonymity, itself based on the very notion of
message trace.

Definition 5 (Message trace). A message trace (or trace for short) of a
distributed computation is the collection of messages sent in a possible execution
of a program. A trace is said to be compatible with an input configuration v if
the trace can be obtained from v with a nonzero probability. We say that two
traces are equivalent with respect to a coalition of faulty nodes B if each node in
B receives the exact same messages in both traces.

We are ready now to introduce the concept of probabilistic anonymity, which
encapsulates the degree of privacy we require.

Definition 6 (Probabilistic anonymity). A distributed computation D is
said to be probabilistically anonymous if for any coalition of faulty nodes B,
for any non-faulty node p, and for any trace D compatible with a non-trivial
(w.r.t. B) input configuration v, there exists with high probability a trace D′

compatible with an input configuration v′ such that (1) D and D′ are equivalent
w.r.t. B and (2) v and v′ differ on the input value of node p.

The intuition behind this definition is that a coalition of faulty nodes cannot
distinguish, with high probability, different executions of a computation in
which non-faulty nodes had different inputs.
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Definition 7 (S3 computation). A distributed computation is said to S3-
compute a S3 candidate if it is

√
-scalable,

√
-accurate and probabilistically

anonymous with respect to the candidate.

3 Protocol

In this section, we focus on a class of aggregation functions and propose a pro-
tocol, namely AG-S3 (S3 for AGgregation), which S3-computes such functions
for |B| ≤

√
n/ log2 n faulty nodes.

3.1 Assumptions

We consider S3 candidates for which the function f is an aggregation func-
tion, i.e. deriving from an associative binary operation on U : f(v1 . . . , vn) =
v1 ⊕ · · · ⊕ vn. Because a S3 candidate must be symmetric, the ’⊕’ operation is
commutative. This induces a commutative monoid structure on (U,⊕) and it
implies that V is a subset of U . We further assume that the ’⊕’ operation is
compatible with the distance measure d in the sense that

d(v1 ⊕ v2, v
′
1 ⊕ v′2) ≤ d(v1, v

′
1) + d(v2, v

′
2) . (1)

As an example, note that the S3 candidate ((v1, v2, . . . , vn) �→ v1 + · · · +
vn, {−1, +1}, Z, (z1, z2) �→ |z1 − z2|), introduced in the previous section, satisfies
the compatibility condition described above. A simple example of S3 candidate
which cannot be expressed as an aggregation is the one given by the sum of
products of pairs of inputs, i.e. f(x1, . . . , xn) = x1 · x2 + x1 · x3 + x2 · x3 + . . . .
This function is symmetric, and choosing U = Z turns this function into a valid
S3 candidate, but it is clearly not an aggregation function.

We assume the size of the set of possible inputs to be constant and the size of
the output space to be polynomial in n implying that any input or output can
be represented by O(log n) bits. In addition, we assume that the diameter Δ(n)
of the output space is Ω(n). Due to this assumption, bit operators do not fall
into our definition. Finally, we assume that V is closed with respect to inverses:
if v is in the input set V then �v is in V as well, where �v denotes the inverse
of v with respect to the ’⊕’ operation. We denote by δV the diameter of V :
δV = maxv,v′∈V d(v, v′).

3.2 Design Rationale

The main challenge of S3 computing is the trade-off between scalability and
accuracy on the one hand and privacy on the other hand. We describe below
this trade-off and how we address it before describing the protocol in details.

To ensure scalability, we cluster the nodes into groups of size
√

n, and require
that a node sends messages only to other nodes in a small set of neighboring
groups. We introduce two parameters of the protocol, κ and l. A non-faulty
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node p is allowed to send messages to any other node in its own group, and to
exactly l nodes in each of κ other groups. For scalability, l and κ need to be
low, since they are directly proportional to message complexity. The same for
accuracy: intuitively, the larger l and κ, the more opportunities a node has to
cheat (i.e., corrupt the unique pieces of information it receives before forwarding
them), which entails a higher impact on the output. To preserve privacy (i.e.
probabilistic anonymity), we need a mechanism which, for any node p, transforms
any trace (i.e. input values and messages) into another trace, in such a manner
that all messages received by the coalition of faulty nodes are preserved, and p has
a different input in the two traces. This prevents the coalition from determining
the input value of p. It will become apparent in our proof of privacy that both
κ and l need to be large in order to obtain reasonable privacy requirements. To
summarize, accuracy and scalability require the parameters κ and l to be small,
whereas privacy requires them to be large. As a trade-off, we pick them both to
be Θ(log n), which reasonably ensure the S3 requirements.

3.3 Protocol

We describe AG-S3 which computes general aggregation in a S3 manner: the
protocol is composed of two interleaved components: one computes the aggrega-
tion function while the other checks the behavior of users. The pseudo-code of
all is given in Algorithms 1-4.

Structure. AG-S3 uses a special structure inspired from [6], where the n nodes
are distributed into groups of size

√
n. Such an overlay can be obtained in a

distributed fashion with strong guarantees on the randomness of nodes placement
in the groups even in the presence of malicious users [7]. The groups (or offices)
are placed in a ring, with nodes from a particular group sending messages to
either nodes from the same office (called officemates) or to selected nodes from
the next offices on the ring (called proxies). More specifically, a node is connected
to its

√
n officemates and to l proxies in each of the next κ groups on the ring.

If a node p′ is a proxy of p, then p is said to be a client of p′. The partitioning
into groups and their placement on the ring are chosen uniformly at random.
We further assume a perfect client-proxy matching that ensures that a proxy
has exactly κ · l clients. For example, we can index the nodes inside each group
and assign to the i-th node of a group the nodes i + 1, . . . , i + l mod

√
n as

proxies in each of the next κ groups on the ring. We set κ = 3/2 · 	log n
 and
l = 5 · |V | · 	log n
 + 1. These choices are motivated in the next section.

Aggregation. In the first phase, each participant splits its input into κ · l shares
in V and sends them randomly to its assigned proxies. The randomized scheme
ensures that the aggregate of the shares is the input value. The shares are gen-
erated as follows: (κ · l − 1)/2 are chosen uniformly at random, (κ · l − 1)/2 are
the inverses of the randomly chosen shares, and one is the actual input of the
node.
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Fig. 1. Overview of the overlay

procedure share input( v );1

for i← 1 to (l · κ− 1)/2 do2

si ←rand V # random values in V ;3

si+(l·κ−1)/2 ← �si;4

sl·κ ← v # the actual input;5

σ ←rand Sl·κ # random permutation to distribute the shares;6

for igroup ← 1 to κ do7

for iproxy ← 1 to l do8

send (share, pigroup,iproxy , sσ(igroup·l+iproxy));9

Algorithm 1. Input sharing

In the counting phase, each proxy aggregates the shares received in the pre-
vious phase to obtain an individual aggregate. Each node then broadcasts its
individual aggregate to all its officemates. Each node computes the aggregate of
the individual aggregates of its officemates and obtains a local aggregate. If all
nodes are non-faulty, then all local aggregates computed in an office are identical.

upon event receive (share, c, s) do1

Verify c is a client;2

Verify s is a valid input in V # s ∈ V ;3

uind = uind ⊕ s;4

Algorithm 2. Individual aggregation

In the forwarding phase, the local aggregates are disseminated to other nodes
thanks to tokens forwarded along the ring, as explained below. The forwarding
phase is bootstrapped by a special group (that can be determined by the social
networking infrastructure at random). The nodes in this special group send a
token containing the local aggregate computed in their group to their proxies
from the next group. The tokens are further forwarded along the ring. The first
time a token reaches a node in a particular group, this node aggregates the local
aggregate to the token and forwards it to its proxies in the next group. When a
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procedure local count();1

foreach officemate o do2

send (individual agg, o, uind);3

Algorithm 3. Local aggregate broadcast

upon event receive (individual agg, o, u) do1

Verify u is a valid aggregate of κ · l shares;2

# d(u, v1 ⊕ · · · ⊕ vκ·l) ≤ κ · l · δV where v1 ⊕ · · · ⊕ vκ·l are random values in3

V ;
ulocal ← ulocal ⊕ u ;4

Algorithm 4. Local aggregation

node receives a token for the second time, the node sets its own output to the
value of the token and forwards it. The third time a node receives a token, it
discards it.

Verifications. The purpose of verifications is to track nodes that deviate from
the protocol. This is achieved by leveraging the value attached by the nodes to
their reputation. The basic mechanism is that misbehaviors are reported by the
participants who discover a faulty node and subsequently tag the latter’s profile.
The verifications are performed in each phase of the protocol. In the sharing
phase, each proxy verifies that the shares received are valid input values. In the
second phase, each node checks whether the distance between the individual
aggregates sent and some random valid individual aggregate is at most κ · l · δV .
The reason for this is that due to the compatibility of the distance function with
the monoid operation, for any v1, . . . , vk, v′1, . . . , v

′
k ∈ V , we have that

d(v1 ⊕ · · · ⊕ vk, v′1 ⊕ · · · ⊕ v′k) ≤ d(v1, v
′
1) + · · · + d(vk, v′k) ≤ k · δV .

The verification in the third phase works as follows: if all the tokens received
by a node in a given round (remember that tokens circulate up to three times
around the ring) are not the same, then an alarm is raised and the profiles of
the involved nodes are tagged. Otherwise, the node broadcasts the unique value
of the tokens it received to its officemates. If it is not the case that all values
broadcast are equal, again an alarm is raised.

3.4 Correctness

We prove here that AG-S3 satisfies the S3 conditions for |B| ≤ √
n/ log2 n.

Theorem 1 (Scalability). The AG-S3 protocol is
√

-scalable.

Proof. The nodes need to maintain a list of officemates, a list of proxies, and a list
of clients. This amounts to O(

√
n · log n) space complexity as nodes’ identifiers
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can be represented using O(log n) bits. The message complexity is similarly
O(

√
n) arising from the following components: a node sends κ · l = O(log2 n)

shares during the sharing phase, O(
√

n) copies of its individual aggregate in the
counting phase, and O(

√
n) in the forwarding phase. ��

Theorem 2 (Accuracy). The AG-S3 protocol is
√

-accurate.

Proof. A faulty node can bias the output of the computation by either sending
an invalid set of shares, changing the value of its individual aggregate, or corrupt
the aggregate during the forwarding phase. However, a node never misbehaves
in a way that this is exposed with certainty (by the verifications presented in
the previous section).

Sharing: Not to be detected, a node must send shares in V . Therefore, the
distance between the sum of a node’s shares and a valid input is at most κ · l ·δV .

Counting: Suppose that a faulty node changes its individual aggregate from
v = v1 ⊕ · · · ⊕ vκ·l to some value u. When its officemates receive its individual
aggregate u they compute the distance between this aggregate and an arbitrary
aggregate w = w1 ⊕ · · · ⊕ wκ·l. If this distance is larger than κ · l · δV then
the misbehavior is reported. If the distance is within the bound, the triangular
inequality yields an upper-bound on the maximum impact: d(u, v) ≤ d(u, w) +
d(w, v) ≤ 2κ · l · δV .

Forwarding: To corrupt a token without being detected, the coalition of
faulty nodes must fool (i.e., make a node decide and forward a corrupted token
without raising an alarm) all the non-faulty nodes of a group. Otherwise the
corruption is detected by the verification consisting in a node broadcasting the
token received to its officemates. To fool a single non-faulty node, all the l tokens
it received from its clients (remember that nodes forward tokens only to their
proxies in the next group) must be equal. Since nodes have l proxies in the next
group, f faulty nodes can fool up to f non-faulty nodes. Assuming that a group
contains f non-faulty nodes (and

√
n− f faulty nodes), then corrupting a token

without being detected requires another f faulty nodes in preceding groups.
That is a total of

√
n faulty nodes which cannot happen under the assumption

|B| ≤ √
n/ log2 n. To conclude, the local aggregates cannot be corrupted during

the forwarding phase.
The impact of a faulty node on the output of the computation is bounded by

3κ · l · δv. We have |B| ≤
√

n/ log2 n, κ = O(log n), l = O(log n) and Δ(n) =
Ω(n). Putting everything together, we get that the accuracy of definition 3 is
O(

√
n/ log2 n · log n · log n/n) = O(1/

√
n), which concludes the proof. ��

Theorem 3 (Probabilistic anonymity). The AG-S3 protocol is probabilisti-
cally anonymous.

Proof. We need to show that, with high probability, there exists a mechanism
that for any node p, transforms any trace in such a way that the coalition of
faulty nodes receives the same messages, but p has a different input. We first
give an outline of the proof.

The transformation mechanism consists of changing the values transmitted
between non-faulty nodes, in such a way that any subsequent message sent by
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non-faulty nodes to the nodes in the coalition does not change. As a result,
the coalition receives the same information. The basic idea of this mechanism
is to swap the inputs of two nodes p1 and p2, provided that there is a non-
compromised group g (a group with no faulty nodes) that contains proxies of
both p1 and p2. In this case, we can modify the shares sent by p1 and p2 to
proxies in g, in such a way that the local aggregate of g is maintained. Since we
assume that all nodes in g are non-faulty, the coalition does not have access to
information exchanged in g during the counting phase. The coalition only sees
what the nodes in g decide to broadcast in the forwarding phase, but that is
identical to what is sent in the original trace. To modify the shares of p1 and p2,
we assume that both send a share containing their own input to some proxies in
g. Each of p1 and p2 has l proxies in g, so the larger l is, the larger the probability
that our assumption is true. Then the aforementioned shares of p1 and p2 are
swapped, resulting a consistent trace, where p1 and p2 swapped input values.

In case there is no such common non-compromised group g for p1 and p2,
we may still find a chain of nodes with endpoints p1 and p2, such that two
consecutive nodes in the chain can swap input values. The larger κ, the larger
the probability that such a chain exists. Afterwards, the nodes can swap shares
along the chain, resulting in a consistent configuration where p1 has as input the
old input value of p2. The rest of the proof is concerned with making our outline
description precise.

Let D be a trace of AG-S3 compatible with a non-trivial input v, B be a
coalition of faulty nodes (|B| ≤

√
n/ log2 n) and p be a non-faulty node. Since

the input is non-trivial, there exists a node p′ whose input is different from the
input of p in v, and we prove that with high probability there exists a trace
equivalent to D compatible with an input configuration v′ which is the same as
v, except that the inputs of p and p′ have been swapped.

We say that a group compromised if it contains at least one faulty node.
The coalition of faulty nodes knows the local aggregates of all the groups, the
individual aggregates of the proxies in the compromised groups, the shares they
received and their own inputs.

We first prove the following lemma.

Lemma 1. The probability that in any sequence of κ − 1 consecutive groups

there is at least one non-compromised group, is at least 1 −
√

n
(

|B|√
n

)κ−1

.

Proof. This probability is minimized if no two faulty nodes lie in the same group,
i.e. there are |B| compromised groups. Fix κ − 1 consecutive groups. The num-
ber of configurations in which these groups are compromised is

(√n−κ+1
|B|−κ+1

)
. The

total number of configurations is
(√

n
|B|

)
, so the probability that all the fixed k

consecutive groups are compromised is given by the ratio of the two binomial
coefficients, which is upper-bounded by (|B|/

√
n)κ−1. We use the union bound

to upper-bound the probability that there is at least one such sequence of κ− 1
consecutive compromised groups. There are

√
n sequences of κ − 1 consecutive

groups, which proves the lemma. ��
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Since κ = 3/2 · 	log n
 and |B| ≤ √
n/ log2 n, we get that the probability of

having κ consecutive compromised groups is at most 1/n.

Lemma 2. Given x ∈ V , the probability that a node sends at least one share of
value x to a proxy situated in a given group, assuming this node has proxies in
that group, is at least 1 − 1/n3.

Proof. The l shares sent to a group by a node are randomly picked from a set
of κ · l shares in which (κ · l − 1)/2 are random, (κ · l − 1)/2 are the inverses of
the random shares, and one is the actual input of the node. At least (l − 1)/2
of them are independent, and drawn uniformly at random from V . Thus, the
probability that a is not one of them is at most (1 − 1/|V |)(l−1)/2. Since (l −
1)/2 = 5/2 · |V | · 	log n
, this probability is upper-bounded by 1/n5/2, which
proves the lemma. ��

Let g(·) denote the index of a group in which a node lies. Without loss of gener-
ality, we assume that g(p) = 0. Since we assume that the input v is not trivial,
let p′ be a node such that its input v′p is different from the input of p, i.e.,
vp. Let i1, . . . , iM be a sequence of indexes such that: (1) group gim is non-
compromised for all m, (2) 0 < i1 < κ, (3) 0 < im+1 − im < κ for all m, and
(4) 0 < iM − g(p′) < κ. Such a sequence exists with high probability according
to Lemma 1. For all 1 ≤ m < M , we define pm as an arbitrary non-faulty node
in group gim−1. Additionally, we set p0 = p and pM = p′. Since all nodes have
proxies in the κ groups succeeding them, we have that for all 1 ≤ m ≤ M , pm−1

and pm both have proxies in gim as depicted in Figure 2.
Using Lemma 2 and using an union bound on the 1 ≤ m ≤ M , we get that the

probability that for all 1 ≤ m ≤ M , pm−1 sends a share of value vp to a proxy in
gm and pm sends a share of value vp to a proxy in gm, is at least 1 − 2M/n5/2.
Since M is bounded by the number of groups, namely

√
n, this probability is

lower-bounded by 1 − 2/n2.
Assuming that this event occurs, we exhibit a trace compatible with a config-

uration of inputs where the inputs of p and p′ are swapped: for all 1 ≤ m ≤ M ,
the vp share sent by pm−1 to gim is replaced by v′p and the v′p share sent by pm

to gim is replaced by vp, as illustrated in Figure 2. This trace is equivalent to
D with respect to the coalition B as no share sent to a compromised group is
changed and all local aggregates remain the same.

We complete the proof by showing that this trace is indeed compatible with
the modified configuration of inputs. In the case of AG-S3, compatible means
that the set of shares sent by a node is composed of (κ · l − 1)/2 values of V ,
their inverses, and the actual input of the node. For p and p′, we only change the
value of one share equal to their inputs. Therefore, their set of shares remains
compatible with their new inputs. For the other nodes pm, 0 < m < M , two of
their shares are simply swapped.

We proved that the privacy of a given non-faulty node p is preserved with
probability at least 1− 2/n2, given that the event of Lemma 1 occurs. Since the
probability of this event is large (according to Lemma 1), using Bayes rule it
is clear that 1 − 3/n2 is an upper bound on the probability that privacy of a
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particular node is preserved. Using a union bound over the whole set of at most
n non-faulty node nodes, we obtain that probabilistic anonymity as defined in
Definition 6 is preserved with probability 1 − 2/n. ��
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(b) Swapped configuration

Fig. 2. Illustration of the proof of privacy: pairs of shares sent in the same group can
be swapped ((a) → (b)) leading to an equivalent trace compatible with a different
configuration of inputs.

4 Related Work

Cryptographic primitives and secure multi-party computation [1,2,3] allow to
compute aggregation functions in a secure way. This comes however at the price
of non-scalability. Assuming trust relationships between users of a social network,
Vu et al. [8] proposed an improved secret sharing scheme to protect privacy.
In that scheme, the actual relationships between nodes are used to determine
the trustworthy participants, and the shares are only distributed to those. In
contrast, AG-S3 exploits solely the human nature of social networks without
making any assumptions on the social relationships themselves.

The population protocol model of et al. [9] provides a theoretical framework of
mobile devices with limited memory, which relates to the scalability requirement
of the S3 problem. The model however can only compute first order formulas in
Presburger arithmetic [10] and can tolerate only a constant number of benign
failures [11]. The community protocol model [12] relax the scalability require-
ments on the memory sizes of tiny agents which enables powerful computations
and Byzantine fault-tolerance. Yet, the model breaks anonymity as agents are
assigned unique ids. This illustrates the trade-off between the power and security
of a model on one hand and privacy on the other hand. The problem of privacy
in population protocols was also tackled in [13]. The sharing scheme of AG-S3 is
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inspired by the obfuscation mechanism proposed in that paper, namely adding
unit noise (+1 or -1) to their inputs, upon a state exchange. Dpol [5], itself
also inspired by [13], can be be viewed as a restricted form of AG-S3. Dpol is
restricted to binary polling: it aggregates values in {−1, +1} and it uses a rudi-
mentary secret sharing scheme and overly structure that assume (i) a uniform
distribution of inputs, and (ii) a built-in anonymous overlay: these are the two
main difficulties of the privacy challenge as defined in the S3 problem.

Differential privacy [14] and k-anonymity [15] are two common ways to ex-
press privacy in the context of distributed computations on sensitive databases.
Contrary to AG-S3, where faulty nodes take part in the computation, those
techniques aim at protecting the privacy of inputs from an external attacker
that queries the database. Differential privacy characterizes the amount of in-
formation disclosed by the output by bounding the impact of a single input on
the output. It is typically achieved by adding noise to the output. However, as
pointed out in [16], differential privacy does not capture the cases of rare in-
put configurations due to the multiplicative bounds in its formulation, which is
precisely the difficult case we need to address in the S3 problem, i.e., the case
where everybody but one node have the same inputs. The obfuscating technique
consisting in adding noise to intermediate results cannot be used in the context
of S3 computing. The granularity of noise may indeed by high if elements of V
are far away. In addition, it gives more opportunities to faulty nodes to bias the
output of the computation. On the other hand, k-anonymity guarantees that
any input value maps to at least k input nodes. In the S3 problem, privacy can
be seen as 2-anonymity with high probability, expressed in a distributed setting.
With AG-S3, faulty nodes cannot map any input to a restricted subset of nodes
as any two nonfaulty nodes can swap their inputs transparently. It thus ensures
n − B-anonymity with high probability.

5 Conclusion

Social networks constitute now huge platforms on which it is very tempting to
perform large scale computations. Yet, such computations are challenging as one
needs to ensure privacy, scalability and accuracy. We leverage the very fact that,
in such platforms, behind every node lies a respectable user who cares about his
reputation, in order to make the problem tractable. We define what the notion
of computation means in that context and propose a protocol that computes a
class of aggregation functions. This is a first step toward understanding what
can be computed in a social network and many open questions are left open such
as what is the maximum number of faulty nodes a S3 protocol can tolerate and
what else besides aggregation functions can be computed in a S3 manner?
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