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Abstract

Management of chronic pain is a real challenge, and current treatments focusing on blocking
neurotransmission in the pain pathway have only resulted in limited success. Activation of glia cells
has been widely implicated in neuroinflammation in the central nervous system, leading to
neruodegeneration in many disease conditions such as Alzheimer’s and multiple sclerosis. The
inflammatory mediators released by activated glial cells, such as tumor necrosis factor-a and
interleukin-1p can not only cause neurodegeneration in these disease conditions, but also cause
abnormal pain by acting on spinal cord dorsal horn neurons in injury conditions. Pain can also be
potentiated by growth factors such as BDNF and bFGF that are produced by glia to protect neurons.
Thus, glia cells can powerfully control pain when they are activated to produce various pain
mediators. We will review accumulating evidence supporting an important role of microglia cells in
the spinal cord for pain control under injury conditions (e.g. nerve injury). We will also discuss
possible signaling mechanisms in particular MAP kinase pathways that are critical for glia control
of pain. Investigating signaling mechanisms in microglia may lead to more effective management
of devastating chronic pain.

Keywords
microglia; MAP kinase; chemokines; cytokines; intracellular signaling; chronic pain; nerve injury

Introduction

In the last several years we have seen exponentially increasing number of research articles
studying the role of glial cells in pain control especially in conditions involving inflammation.
Inflammation in any part of our body is associated with pain, due to the release of inflammatory
mediators such as prostaglandin E, (PGEy), the proinflammatory cytokines tumor necrosis
factor-a (TNF-a) and interleukin-1p (IL-1p), and nerve growth factor (NGF). These mediators,
produced by non-neural cells or immune cells, can stimulate nociceptor terminals in the
peripheral tissue to increase pain sensitivity (Julius & Basbaum, 2001; Scholz & Woolf,
2002). Inflammation also occurs in the central nervous system (CNS) after brain trauma, brain
infection, and in neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, or multiple
sclerosis. This so-called neuroinflammation is characterized by activation of glial cells (e.g.,
microglia and astrocytes) in the CNS and contributes importantly to the development of
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neurodegeneration by releasing inflammatory mediators from glial cells (Block et al., 2007;
Lobsiger & Cleveland, 2007). This glia-mediated neuroinflammation also plays an important
role in pain control under pathological conditions.

Pain is described as an unpleasant sensory and emotional experience associated with actual or
potential tissue damage. It is an essential sense to avoid a dangerous environment. Individuals
lacking pain sensation sustain injuries, bite their tongue and lips, or get infections (Cox et al.,
2006). When tissue damage (e.g., surgical incision) occurs, a reversible increase in pain
sensitivity can be observed in the inflamed and surrounding tissue, which helps wound healing
by avoiding any contact. However, after peripheral nerve lesions, spinal cord injury or
rheumatoid arthritis, the increase in pain sensitivity can be long lasting and sometimes
irreversible, becoming pathological pain or abnormal pain. Two major neuronal mechanisms
are responsible for the pain hypersensitivity observed in these injury conditions. First,
peripheral sensitization, increased sensitivity in the peripheral nervous system, results from
the local action of inflammatory mediators on the peripheral terminals of high-threshold
sensory neurons. Hyperactivity of transduction molecules [e.qg., transient receptor potential
subtype V1 and Al (TRPV1 and TRPA1)] and conduction molecules (e.g., TTX-resistant
sodium channels Na,1.8/1.9) leads to increased sensitivity and excitability of nociceptors
(Julius & Basbaum, 2001; Levine & essandri-Haber, 2007). Second, central sensitization is
caused by an increase in synaptic efficacy at the spinal cord level. It is caused by chemical,
structural, and functional plasticity in spinal cord dorsal horn neurons, which modulates and
amplifies signals from the periphery and is responsible for secondary hyperalgesia (spread of
sensitivity well beyond the peripheral site of injury). Central sensitization embraces different
forms including long-term potentiation (LTP) that is implicated in long-term memory when
LTP occurs in the hippocampus and persistent pain when LTP occurs in the spinal cord (Ji et
al., 2003; Scholz & Woolf, 2002).

However, the role of glial cells cannot be ignored even in this neuronal view of pain control,
because neural plasticity is triggered by many inflammatory mediators, which in the CNS are
mainly produced by glial cells. Indeed in the past several years, more and more attention has
been paid to neuron-glia interaction as a driving force for the development and maintenance
of abnormal pain (reviewed in Ji & Strichartz, 2004; Marchand et al., 2005; Scholz & Woolf,
2007; Tsuda et al., 2005; Watkins et al., 2001). Glia activation in the spinal cord after nerve
injury was first associated with pain behavior in 1991 (Garrison et al., 1991). Later, it was
found that spinal injection of an glial inhibitor fluorocitrate can reduce hyperalgesia (Meller
et al., 1994). However, the specific role of microglia in nerve injury-induced neuropathic pain
was demonstrated a decade later (Tsuda et al., 2003). Glial activation has been studied in
different animal models such as neuropathic pain after injuries to peripheral nerves (Colburn
et al., 1997) or the spinal cord (Hains & Waxman, 2006), inflammatory pain after injection of
inflammatory substances (e.g. formalin) into a hindlimb (Fu et al., 1999), cancer pain after
inoculation of tumor cells (Honore et al., 2000), or orofacial pain after lesion of joint muscle
(Sessle, 2007). Both microglia and astrocytes are activated in these pain models and interact
with neurons in the complex pain pathophysiology. We have recently discussed the role of
astrocytes in pain control in this journal (Ji et al., 2006). In this review, we will focus on how
activation of microglia controls abnormal pain.

Microglia activation and proliferation in the spinal cord in chronic pain

conditions

Microglia comprise around 5-12% of the cells in the CNS and are heterogeneously distributed
(Lawson et al., 1990). They originate from bone marrow-derived monocytes migrating during
perinatal time (Nakajima & Kohsaka, 2001). Quiescent microglia are not passive cells but
rather actively sense their environment with their ramified processes (Nimmerjahn et al.,
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2005; Raivich, 2005; Hanisch and Kettenmann, 2007). Microglia become activated by various
stimuli. Microglia activation is also described in various ways (Tsuda et al., 2005), such as
changes in morphology from ramified to amoeboid (Eriksson et al., 1993), increase in the
expression of microglial markers [e.g., MHC Il, CD 11b (Coyle, 1998; Eriksson et al., 1993;
Liu et al., 1995)], and increase in the number of microglia (proliferation). These slow changes
often take hours to days to manifest. However, some rapid changes in microglia, such as
changes in second messengers and changes in signal transduction are often ignored.

Proliferation in the spinal cord is an important feature of glia activation, as in resting state very
few glial cells divide. Cell proliferation in the spinal cord was mainly investigated using
bromodeoxyuridine (BrdU), a nucleotide analog that can be incorporated into the DNA of
duplicating cells. Fortunately, antibodies are available to recognize BrdU by
immunohistochemistry. Microglia are rarely dividing in the intact spinal cord (Horner et al.,
2000). However, microglia proliferation occurs after nerve injury (Graeber et al., 1988) and
was found in diverse models of neuropathic pain. We used the spared nerve injury (SNI) model
(Decosterd & Woolf, 2000) in which two of the three terminal branches of the sciatic nerve
are ligated leaving the third brand sural nerve intact. Neuropathic pain symptoms develop in
the hindpaw territory of the spared sural nerve. Using BrdU staining, we found a massive
proliferation in the dorsal and ventral horn of the spinal cord on the ipsilateral side after SNI.
However, no staining was seen in control animals or on the contralateral dorsal horn of animals
with SNI (Fig. 1). The proliferation was already very prominent 2 days after nerve injury.
Double staining showed that most BrdU positive cells were also labeled by Ibal, a microglial
marker (Fig. 1). Therefore, the proliferating cells in the spinal cord are predominantly
microglia, in agreement with previous studies with sciatic nerve transection (Liu et al., 2000),
sciatic nerve constriction (Echeverry et al., 2007) or partial sciatic nerve ligation (Narita et al.,
2006). The proliferating response of glia to nerve injury might be different depending on the
lesion site. After rhizotomy (transection of the central axons) the proliferating populations
differ: 30% proliferating cells are astrocytes, in addition to 60% of microglia (Liu et al.,
2000). After spinal cord injury, a condition known to induce central neuropathic pain,
proliferation involves mostly progenitor cells (developing into oligodendrocytes) as well as
microglia (Horky et al., 2006; Lytle & Wrathall, 2007). Consistently in all the studies, neurons
never show proliferation. However, some report also suggests that after peripheral nerve injury
the most abundant proliferating cells are stem cells (Xu et al., 2007b). Unfortunately, the
specific role of glia proliferation in pain control has not been clearly demonstrated.
Nevertheless, increasing number of glial cells such as microglia may result in increasing
production of inflammatory mediators, leading to abnormal pain.

Probably the most studied feature for glia activation is increased expression of specific glia
markers, such as complement receptor 3 (CR3 or CD11b, recognized by OX-42 antibody) or
Ibal. Upregulation of OX-42 or Ibal is indicative of microglia activation. In inflammatory
pain models that do not involve nerve injury, such as carrageenan model (Hua et al., 2005) and
zymosan model (Clark et al., 2007a; Sweitzer et al., 1999), there is only a very moderate
increase of OX42-immunoreactivity (IR) in the spinal cord. Whereas other models such as
complete Freund’s adjuvant model (Clark et al., 2007a; Zhang et al., 2003) and mustard oil
model (Molander et al., 1997) fail to demonstrate any increase of OX-42-1R. The inflammatory
pain model that shows significant OX-42 increase is the formalin model (Aumeerally et al.,
2004; Fu et al., 1999; Fu et al., 2000; Sweitzer et al., 1999). But formalin injection into a
hindpaw will also produce nerve injury in the peripheral axons. Undoubtedly, nerve injury,
such as lesions of the sciatic nerve or the spinal nerve produces robust upregulation of OX-42
(Fig. 2, Clark et al., 2007b; Lin etal., 2007; Wen et al., 2007; Zhang et al., 2003). Nerve injury-
induced upregulation of OX-42 and Ibal appears to be age-dependent: young rats show weak
responses, which may explain why neuropathic pain is less robust in these animals (Moss et
al., 2007; Vega-Avelaira et al., 2006). Although OX-42 is the most used marker for microglia
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activation in different pain conditions, pain states can be dissociated from OX-42 changes in
several cases (Colburn et al., 1997; Obata et al., 2006; Winkelstein & DeLeo, 2002). Indeed,
OX-42 increase is more associated with nerve injury than correlated with the pain symptoms.

To better correlate microglia activation to pain-related behavior, we need to explore functional
markers for microglia activation. Fortunately, in last several years, we have seen several
potential markers, such as the ATP receptor P2X4 (Tsuda et al., 2003), the chemokine receptors
CCR2 (Abbadie et al., 2003) and CX3CR1 (Verge et al., 2004; Zhuang et al., 2007), as well
as Toll-like recepotor-4 (TLR4) (Tanga et al., 2005).

The role of microgliain pain control

In clinics, patients have a variety of complaints depending on the pathophysiological
mechanisms underlying their pain. Pain can be spontaneous or evoked by diverse stimuli (cold,
heat, touch). In animal models, we try to mimic these clinical characteristics. For example, we
observe flinching or licking behavior of an affected paw and regard it as a spontaneous pain.
We also use cold, heat, or mechanical stimuli to measure evoked pain. After injury, animals
develop hyperalgesia, i.e. increased responses to a noxious stimulus. The most robust behavior
phenomenon after injury is allodynia, painful behavior induced by a normally innocuous
stimulus, such as light touch. For example, patients feel pain even with the simple contact of
the clothes when they put it on.

Behavioral studies on glia regulation of pain began with the glia inhibitor fluorocitrate, an anti-
metabolic drug which selectively disrupts the Krebs energy cycle of glia by inhibiting the glia-
specific enzyme aconitase. Fluorocitrate has been shown to alleviate pain behavior in animal
models of inflammatory pain, neuropathic pain, and postoperative pain (Clark et al., 20074;
Meller et al., 1994; Milligan et al., 2003; Obata et al., 2006; Watkins et al., 1997). However,
it fails to inhibit muscle pain, a pain condition that does not show any glial activation (Ledeboer
et al., 2006).

Minocycline, atetracycline antibiotic, has been used as a microglia inhibitor and shows efficacy
in several neurodegenerative conditions (Tikka & Koistinaho, 2001; Yong et al., 2004). Spinal
injection of minocycline via intrathecal route was shown to attenuate neuropathic pain at early
times but not at late times, suggesting a unique role of microglia in the development of nerve
injury-induced neuropathic pain (Ledeboer et al., 2005b; Raghavendra et al., 2003). However,
in a central neuropathic pain condition induced by spinal cord injury, minocycline is also
capable of reversing neuropathic pain several weeks after injury (Hains & Waxman, 2006).
Thus, the time course of microglia activation may be different after peripheral nerve injury and
spinal cord injury. Minocycline has also been shown to inhibit OX-42 upregulation in the spinal
cord under different pain conditions (Hains & Waxman, 2006; Lin et al., 2007; Raghavendra
et al., 2003). The mechanisms underlying minocycline’s action are still not clear and may
involve different targets, such as p38 MAP kinase (Nikodemova et al., 2006). Minocycline
also inhibits matrix metalloproteinase (MMP), an important player in neuroinflammation. For
example, our data have shown that minocycline can suppress MMP-9 expression in dissociated
primary sensory neurons following TNF-o stimulation (unpublished results).

To determine the role of spinal microglia in neuropathic pain after spinal cord injury, Zhao et
al. have tried to selectively target dorsal horn microglia with the Mac-1-SAP immunotoxin, a
chemical conjugate of mouse monoclonal antibody to CD11b and the ribosome-inactivating
protein saporin. They found reduced microglia staining and reversed pain-related behaviors
after the treatment of the immunotoxin (Zhao et al., 2007a).

Since 2003, molecular mechanisms underlying microglia control of pain have begun to be
revealed (Table 1). Tsuda et al. found that the purinergic receptor P2X4 is upregulated in spinal
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microglia after nerve injury, which is required for the development of neuropathic pain.
Interestingly, intrathecal injection of ATP-activated microglia in the spinal cord is sufficient
to induce pain (Tsuda et al., 2003). Further studies indicate that ATP-activated microglia can
enhance pain by producing the growth factor BDNF (Coull et al., 2005). BDNF can act on
lamina | neurons in the spinal cord to remove GABA inhibition by altering chloride reverse
potential (Coull et al., 2005). ATP may also activate P2X7 receptors in spinal microglia to
enhance pain (Donnelly-Roberts et al., 2007;Inoue, 2006).

Recent studies have shown that chemokines play important roles in microglia activation and
pain sensitization (White et al., 2007). Chemokines are important for mediating neural-glia
interaction, since they can be produced by neurons and act on microglia. For example,
fractalkine (CXCL1) is produced in dorsal root ganglion (DRG) neurons and able to produce
pain hypersensitivity (Verge et al., 2004). Nerve injury induces a rapid cleavage of fractalkine
from the membrane (Zhuang et al., 2007), which involves a cysteine protease cathepsin S that
is expressed in microglia (Clark et al., 2007b). Notably, the fractalkine receptor CX3CRL1 is
only expressed in spinal microglia and upregulated after nerve injury (Verge et al., 2004;
Zhuang et al., 2007). Intrathecal injection of a CX3CR1 neutralizing antibody has been shown
to inhibit neuropathic pain (Milligan et al., 2004) and inflammatory pain (Sun et al., 2007).
Monocyte chemoattractant protein-1 (MCP-1, also called CCL2) is a well known
chemoattractant for microglia. Nerve injury increases MCP-1 expression in the DRG (Tanaka
et al., 2004; White et al., 2005; Zhang & De Koninck, 2006). Mice lacking CCR2 show an
impaired neuropathic pain (Abbadie et al., 2003). Intrathecal injection of MCP-1 activates
microglia in wild-type but not in CCR2-deficient mice (Zhang et al., 2007). In addition, the
chemokine CCL21 was shown to activate microglia in the thalamus and induce pain-related
behaviors (Zhao et al., 2007h).

It is generally believed that Toll like receptors (TLRs) normally respond to pathogens to
regulate innate immunity. However, recent studies show that TLRs in the spinal cord are also
involved in microglia activation and pain sensitization. For example, TLR2 and TLRA4 are
required for nerve injury-induced microglia activation in the spinal cord. Mice lacking TLR2
and TLR4 show attenuated neuropathic pain (Kim et al., 2007; Tanga et al., 2005). However,
the cellular localization and injury-induced regulation of TLRs in the spinal cord remain to be
investigated.

Activation of complement cascade in spinal microglia also plays a role in neuropathic pain
(Griffin et al., 2007). A recent microarray study shows that the most regulated transcripts
among different nerve injury models are related to complement components (e.g., C1q, C3,
and C4). In addition, the terminal complement component C5 and its receptor C5aR are
upregulated in spinal microglia after peripheral nerve injury and are required for neuropathic
pain sensitivity (Griffin et al., 2007).

Although these TLRs and receptors of chemokines, complement components, and ATP are
important for microglia activation and development of chronic pain, the signaling mechanisms
linking these receptors to the production of inflammatory mediators are still missing.

MAP kinase activation in microglia and pain control

Mounting evidence suggests that mitogen-activated protein kinases (MAPKS), including
extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), play
important roles in pain sensitization (Ji et al., 2007). Specific antibodies against activated
(phosphorylated) forms of MAPKSs and specific inhibitors available for all three MAPK
pathways have allowed us to study both the activation of MAPKSs in the spinal cord and
behavioral consequences of the activation. Inhibition of all three MAPK pathways at the spinal
level have been shown to alleviate inflammatory pain and neuropathic pain (reviewed in Ji et
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al., 2007; also see Daulhac et al., 2006; Obata et al., 2004; Schafers et al., 2003; Svensson et
al., 2003; Zhao et al., 2007a). Interestingly, some glial inhibitors such as minocycline can
inhibit the activation of MAPKSs (Nikodemova et al., 2006). Among three major MAPKSs, p38
and ERK are activated in spinal microlgia under injury conditions, and the activation of these
two MAPKSs are important for microglial signaling.

Many studies from different groups have shown that activation of p38 MAPK in spinal
microglia is essential for the pathogenesis of chronic pain (Ji & Suter, 2007). p38 is required
for central sensitization in the spinal cord dorsal horn and in the trigeminal subnucleus caudalis
(medullary dorsal horn) (Svensson et al., 2003; Xie et al., 2007). p38 is normally activated by
stress signals, such as heat shock, ultraviolet light, and ischemia, as well as proinflammatory
cytokines (Widmann et al., 1999). After spinal nerve ligation, we have shown that p38 is only
activated in OX-42-positive microglia in the spinal cord. This activation is evident as early as
12 hours and peaks after 3 days (Jin et al., 2003). Another groups using the same model also
shows p38 activation in spinal microglia with slightly delayed time course (Tsuda et al.,
2004). Other groups also demonstrate p38 activation in spinal microglia in different pain
conditions (Hains & Waxman, 2006; Hua et al., 2005; Kim et al., 2002; Svensson et al.,
2003; Svensson et al., 2005b; Xu et al., 2007a; Xu et al., 2007b). In the SNI model of
neuropathic pain, the microglia activation of p38 is mostly seen in the medial part of the dorsal
horn, where the injured tibial and peroneal nerves terminate (Wen et al., 2007).

Several molecules, such as proinflammatory cytokines and chemokines have been implicated
in injury-induced p38 activation in the spinal cord. Intrathecal administration of TNF-a
inhibitor suppresses p38 activation after spinal nerve ligation (Svensson et al., 2005b), ventral
root transection (Xu et al., 2007a), and joint arthritis (Boyle et al., 2006). We have recently
demonstrated that spinal fractalkine injection causes p38 activation. Conversely, antagonizing
CX3CR1 inhibits nerve injury-induced p38 activation and neuropathic pain (Zhuang et al.,
2007). Consistently, cysteine protease cathepsin S activates p38 in spinal microglia by cleavage
of fractalkine (Clark et al., 2007b). ATP may also causes p38 activation in spinal microglia
(Inoue, 2006).

Nerve injury induces spontaneous electrical activity in the axons and cell bodies of DRG
neurons, which is important for the genesis of neuropathic pain. We have shown that
spontaneous activity is also required for the activation of p38 in spinal cord microglia. Blocking
peripheral nerve activity by bupivacaine, a local anesthetic, can prevent nerve injury-induced
p38 activation in the spinal cord (Wen et al., 2007). Injury-evoked hyperactivity in DRG
neurons is likely to release several microglia activators, such as ATP, cytokines, and
chemokines for activating microglia (Ji & Suter, 2007).

Injury-induced spontaneous activity can also release the matrix metalloproteinase-9 (MMP-9)
from DRG neurons. We have shown that MMP-9 upregulation following nerve injury is
required for the early phase development of neuropathic pain (Kawasaki et al., 2008).
Intrathecal injection of MMP-9 induces both microglia activation (p38 phosphorylation and
OX-42 upregulation) in the spinal cord and neuropathic pain symptoms such as mechanical
allodynia. Importantly, MMP-9-induced allodynia is blocked by spinal inhibition of p38.
Furthermore, MMP-9 activates microglia via cleavage of pro-IL-1p to produce active IL-1
(Kawasaki et al., 2008), although MMP-9 may also have other substrates such as fractalkine.
Thus MMP-9 is another important player for mediating neural-glia interaction.

How can p38 activation in spinal microglia result in pain sensitization? Increasing evidence
supports a role of IL-1p in inducing central sensitization. Nerve injury increases the synthesis
of IL-1p in the spinal cord and blocking IL-1p signaling inhibits neuropathic pain sensitization
(Sweitzer et al., 2001). IL-1p in the spinal cord can directly enhance excitatory synaptic
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transmission and suppress inhibitory synaptic transmission (Kawasaki and Ji, unpublished
results). IL-1p expression in the spinal cord is mediated by p38, because intrathecal p38
inhibitor can suppress nerve injury-induced IL-1f upregulation, presumably via NF-xB
mechanisms. The transcription factor NF-xB has been strongly implicated in regulating the
transcription of inflammatory mediators such as IL-13 (Ji & Suter, 2007) and pain
hypersensitivity (Ledeboer et al., 2005a). After nerve injury, NF-kB is induced in spinal
microglia (Fig. 5). p38 activation should also regulate the transcription of other inflammatory
mediators such as TNFa and cyclooxygenase-2 (Bhatetal., 1998; Jana et al., 2003). In addition,
activation of spinal p38 also causes rapid IL-1p release in spinal cord slices following LPS
stimulation (Clark et al., 2006) and PGE release in the spinal cord following intrathecal
injection of A-dynorphin (Svensson et al., 2005a).

Compared with p38 activation, ERK activation in the spinal cord is more dynamic (Ji, 2007).
Following intense noxious stimulation, acute or chronic inflammation, ERK is activated in
dorsal horn neurons and contributes importantly to central sensitization (Ji, 2007). However,
after spinal nerve ligation, ERK is sequentially activated in neurons (first several hours),
microglia (first several days), and astrocytes (after 3 weeks) (Zhuang etal., 2005). Consistently,
ERK is predominantly activated in spinal microglia three days after SNI, as seen by
colocalization of pERK with Iba-1 (Figs 3,4). In this model, spinal inhibition of ERK activation
with U0126, an ERK kinase (MEK) inhibitor, prevents the development of mechanical
allodynia (Fig. 3e). Intrathecal MEK inhibitors were also shown to alleviate neuroapthic pain
after spinal nerve ligation at time points when ERK is activated in spinal microglia (Obata et
al., 2004;Zhuang et al., 2005). Thus, both ERK and p38 activation in spinal microglia are
important for the pathogenesis of neuropathic pain. Most studies on ERK pathway focus on
ERKZ1/2 that are activated by MEK1/2. However, ERK subfamily also contains ERKS5 that is
activated by MEKS5. Notably, the MEK inhibitor U0126 inhibits the activation of both ERK1/2
and ERK5. ERKS5 has recently been shown activated in dorsal horn microglia after nerve injury.
This activation is also necessary for neuropathic pain development, since inhibition of ERK5
with antisense knockdown shows reversal of allodynia (Obata et al., 2007).

The tyrosine kinase Src appears to be upstream of ERK. The Src-family kinases are
hyperphosphorylated in spinal microglia after nerve injury. Inhibiting Src can attenuate
neuroapthic pain by suppressing ERK activation in the spinal cord. However, p38 activation
in the spinal cord is not affected by Src inhibitor (Katsura et al., 2006). ERK is also downstream
of Src activation in cultured microglia. However, ERK only mediates Src-induced chemokine
release, but not Src-induced microglia phagocytosis. Instead, phagocytois is mediated by the
phosphatidylinositol-3 kinase (P1-3K) pathway. Downstream, ERK activation in microglia
results in the activation of TNF-a converting enzyme (TACE or ADAML17), leading to the
cleavage of pro-TNF-a and subsequent release of mature TNF-o (Jana et al., 2003). Our
electrophysiological studies in spinal cord slices show that TNF-a enhances glutamate synaptic
transmission and potentiates NMDA currents in superficial dorsal horn neurons (Kawasaki and
Ji, unpublished observation). Activation of ERK in spinal microglia can also induce
transcription of many genes, further maintaining enhanced pain states (Ji, 2007). For example,
ERK activation leads to COX-2 upregulation in spinal microglia leading to increased
production of PGE, (Zhao et al., 2007a), another important pain mediator for central
sensitization (Scholz & Woolf, 2002). In addition to COX-2, COX-1 was also shown to be
activated in spinal glia presumably microglia after nerve injury and essential for neuropathic
pain sensitization (Zhu & Eisenach, 2003).

There is little evidence demonstrating the existence of different populations of microglia in the
brain (Hanisch and Kettenmann, 2007). However, microglia are not homogenous. Different
microglia can display diverse phenotypes, expressing different markers and probably exhibit
different functions. Even though both p38 and ERK are activated in microglia at early times
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after nerve injury, they appear to be activated in different populations of microglia. As shown
in Fig. 4, phosphorylated ERK and p38 (pERK and p-p38) are not expressed in the same cells
3 days post SNI, in agreement with another study showing a small portion (33%) of overlapping
after spinal nerve ligation (Katsura et al., 2006). Although blocking either ERK or p38 pathway
can attenuate neuropathic pain, nerve injury-induced Ibal increase in the spinal cord is not
suppressed by inhibition of ERK or p38. However, a combination of MEK and p38 inhibitors
can reduce Ibal levels (Suter and Ji, unpublished observation). Thus, it is likely that blocking
both MAPK pathways is a more effective treatment for neuropathic pain. The heterogeneity
of microgliais also supported by a recent study showing that Ibal-positive microglia population
in the spinal cord is composed of a mixture of resident microglia and invading monocytes
(Zhang et al., 2007).

Conclusions and clinical implications

Chronic pain is an increasing burden for the society, affecting 20% of the population.
Unfortunately, current treatments that focus mostly on targeting neuronal excitability and
transmission are not satisfying. The emergence of glial cells as important players in pain control
and also as new targets for pain medicine has brought great excitement to the pain research
field. We have discussed the role of astrocytes in the previous review (Ji et al., 2006) and the
role of microglia in the current review. In the normal conditions, there seems to be limited role
of glia, as none of the treatments cited above really changes the baseline pain thresholds in
animals. It is important that a drug can alleviate pathological pain without inhibiting normal
pain perception, as this protective pain is important for our survival as a warning for danger.

According to a current view, microglia are not dormant in the normal conditions by having an
active surveying function. After injury, microglia just shift their activation status (being
reactive) rather than “become activated” (Hanisch and Kettenmann, 2007). In this review, we
refer “microglia activation” to a dramatic change of activation status in the spinal cord that is
associated with different injury conditions (e.g., nerve injury) that can lead to chronic pain.
Microglia have dual role in diverse neurologic pathologies and can be both destructive and
protective, depending on whether microglia release neurotoxic factors (e.g., TNF-a, IL-1p,
reactive oxygen species) or neuroprotective factors (e.g., growth factors BDNF, NGF, bFGF).
It is important to emphasize that, in the spinal cord, all these mediators promote pain (Fig. 6).
Thus, microglia activation is a long-standing problem for chronic pain, and targeting microglia
should be an effective strategy for clinical management of chronic pain

There are several types of “microglia-targeting” drugs that can be developed and tested for
pain control. First, many receptors, such as chemokine receptors (CCR2, CX3CR1), ATP
receptors (P2X4, P2X7), TLRs (TLR2, TLR4), and complement receptor (C5aR), are
expressed in spinal microglia and regulated after injury (Table 1). Development of antagonists
for these receptors may lead to new therapy. Also, cannabinoid receptor type 2 (CB2) is
expressed in spinal microglia, and CB2 agonist can reduce incision-induced microglial
activation in spinal cord and reverse incisional pain without inducing behavioral and
psychological side effects as CB1 agonists do (Romero-Sandoval and Eisenach, 2007). Second,
drugs that target downstream common pathways such as MAPK pathways or TNF-a and
IL-1p signaling (Fig. 6) could be very effective, if the side effects can be tolerated (Watkins
and Maier, 2003; Ji et al., 2007). p38 MAPK inhibitors show high efficacy in different animal
models, but they may produce side effects when high doses or long-term treatment are
employed. The beta isoform of p38 MAPK (p38p) could be a valid target due to its relatively
restricted expression compared to p38a isoform (Svensson 2005; Xu et al., unpublished
observation). Third, those drugs, such as minocycline, propentofylline, and methotrexate,
which have already been tested clinically for other indications, are certainly easier to get
approved for pain treatment than new compounds. Unfortunately, minocycline fails in a recent
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trial for treating multiple sclerosis (Gordon et al., 2007), in part due to delayed treatment.
Minocycline may show efficacy when given during the early phase of disease development.
Propentofylline, a glial modulating agent, shows efficacy in different pain models including
neuropathic pain model (Watkins and Maier., 2003; Tawfik et al, 2007). Methotrexate has
recently been shown to reduce neuropathic pain and microglia activation in animals (Scholz
et al., 2008). However, it is difficult for clinical studies to choose appropriate patients, times,
doses, and route of administration. Finally, co-administration of a glial modulating agent (e.g.,
minocycline or p38 inhibitor) with an analgesic (e.g., morphine) would improve the efficacy
of that analgesic. Since opioids are still the most used analgesics for chronic pain management,
enhancing morphine analgesia with a glial activation inhibitor will be therapeutically practical.
Long-term morphine treatment produces glial activation and morphine tolerance (Song and
Zhao, 2001; Cui etal., 2006; Watkins et al., 2005). Interestingly, p38 inhibitor has been shown
to attenuate morphine tolerance (Cui et al., 2006) and enhance morphine analgesia after nerve
injury (Cheng and Ji, unpublished results). It would be a major advance in pain treatment even
by reducing tolerance and side effects of opioids.
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Figure 1. (a—d). Spared nerve injury (SNI) induces proliferation of microglial cells in the spinal
cord

(a) Sham control (Cont) animals show almost no BrdU immunostaining. (b) Three days
following SN, there is a profound proliferation in the ipsilateral dorsal horn. Scale, 100 um.
(c) Double immunostaining of BrdU with the microglial marker Ibal in the dorsal horn. Note
that most BrdU positive cells also express Ibal (indicated with arrows). White lines show the
borders of the dorsal horn. Scale, 100 um. (d) Number of BrdU-positive cells (per 30 um-thick
section) in the spinal cord dorsal horn. Note that proliferation starts rapidly after SNI.
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SNI-contralateral

Figure 2. (a—d). SNI induces CD11b (OX-42) upregulation in the spinal cord dorsal horn area that
is terminated by injured nerve branches

(a, b) Isolectin B4 (1B4) staining for primary afferents shows a reduction of the staining in the
medial ipsilateral dorsal horn (L4 level), an area terminated by the injured branches (tibial and
peroneal) of the sciatic nerve, at 3 days after SNI. (¢, d) Immunohistochemistry shows increased
expression of OX-42 in the medial dorsal horn on the ipsilateral side 3 days after SNI. White
lines indicate the borders of the dorsal horn. White stars indicate the spinal area terminated by
the intact sural nerve. Scale, 100 um. Modified from Wen et al., 2007.
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Figure 3. (a—e). Activation of p38 and ERK in the spinal cord after SNI is required for neuropathic
pain development

(a—d) Immunohistochemistry shows an increase in phosphorylation of p38 (p-p38, a, b) and
ERK (pERK, c, d) in the medial dorsal horn on the ipsilateral side (L4) 3 days after SNI. White
lines indicate the borders of the dorsal horn. Scales, 100 um. (e) SNI-induced mechanical
allodynia is prevented by the p38 inhibitor FR167653 or the MEK (ERK kinase) inhibitor
U0126. FR167653 (30 pg/ul) or U0126 (1 ug/ul) was infused into intrathecal space via an
osmotic pump (0.5 ul/h for 5 days) starting 2 days before SNI. Note that the basal mechanical
sensitivity does not change after FR167653 or U0126 infusion. **, P < 0.01, t test, compared
to corresponding vehicle controls (30% DMSO), n = 4. Modified from Wen et al., 2007.
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p-p38/ pERK

Figure 4. (a—g). p38 and ERK are activated in different populations of microglia in the spinal cord
following SNI

(a—f) Double immunofluorescence shows colocalization of p-p38 and OX-42 (a—c) and
colocalization of pERK and OX-42 (d-f) in the medial superficial dorsal horn. (g) Double
immunofluorescence shows that p-p38 and pERK are not activated in the same cells. ¢ is an
overlay of a and b, f is an overlay of d and e. Scales, 50 pum.
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Figure 5. (a—c). Spinal nerve ligation (SNL) increases NF-kB expression in spinal microglia

(a, b) SNL increases the immunoreactivity of NF-xB (65kD unit) on day 3 in the medial
superficial spinal cord, compared to non-injured control (Cont) spinal cord. Scale, 50 um.
(c) Double immunofluorescence shows colocalization of NF-kB and OX-42. Scale, 20 um.
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Figure 6. (a—c). Schematic representation of microglial control of pain

After various injury conditions (such as nerve injury, spinal cord injury, and inflammation),
injured or affected neurons (e.g., DRG or spinal cord neurons) can release factors that are
capable of activating microglia in the spinal cord. These factors include ATP, chemokines such
as MCP-1, fractalkine (FKN), and CCL21, and proinflammatory cytokines such as TNF-a and
IL-1B. These microglia activators can bind their receptors on microglia, leading to the
activation of microglia. These activated spinal microglia are mainly residential microglia, but
may also be migrating microglia from circulation. Activated microglia contain three
subpopulations in the spinal cord: pERK + population, p-p38 + population, and unknown
population. While ERK is activated by Src and nerve injury, p38 is activated by both nerve
injury and inflammation. ERK activation releases TNF-a. via activation of TNF-a converting
enzyme, whereas p38 activation enhances IL-1f release. Activation of p38 and ERK can also
regulate the synthesis of the inflammatory mediators via transcription factor (e.g., NF-«B).
Microglia also produce the growth factor BDNF. Finally, these pain mediators collaborate to
induce and maintain abnormal pain in injury conditions by enhancing synaptic strength and
central sensitization in dorsal horn neurons.
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Table 1

Chemokine receptors

CX3CR1 (Fractalkine) Up-regulation Enhance pain Verge et al., 2004; Zhuang et al., 2007

CCR2 (MCP-1) Up-regulation Enhance pain Abaadie et al., 2003; White et al., 2005
Zhang et al., 2007

CCR7 (CCL21) Unknown Enhance pain Zhao et al., 2007b

ATP receptors

P2X4 Up-regulation Enhance pain Tsuda et al., 2003

P2X7 Unknown Enhance pain Donnelly-Roberts et al., 2007
Inoue, 2006

Toll like receptors

TLR-4 Unknown Enhance pain Tanga et al., 2005

TLR-2 Unknown Enhance pain Kim et al., 2007

Cannabinoid receptor

CB2 Up-regulation Reduce pain Zhang et al., 2003
Romero-Sandoval & Eisenach, 2007

Complement cascades

Clq Up-regulation Unknown Griffin et al., 2007

C3 Up-regulation Unknown

C4 Up-regulation Unknown

C5 Up-regulation Enhance pain

C5aR Up-regulation Enhance pain

Protein kinases

p-p38 Up-regulation Enhance pain Jinetal., 2003; Tsuda et al., 2004

pERK1/2 Up-regulation Enhance pain Zhuang et al., 2005

pERK5 Up-regulation Enhance pain Obata et al., 2007

pSrc family Up-regulation Enhance pain Katsura et al., 2006

Proteinases

Cathepsin S Up-regulation Enhance pain Clark et al., 2007b

Transcriptional factors

NF-xB Up-regulation Enhance pain Fig. 5, Ledeboer et al., 2005

Pain mediators

BDNF Unknown Enhance pain Coull et al., 2005

TNF-a Up-regulation Enhance pain Kim et al., 2007

COX-1 Up-regulation Enhance pain Zhu and Eisenach, 2003

COX-2 Up-regulation Enhance pain Zhao et al., 2007a
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