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Abstract: We developed a Bayesian spline model for real-time mass concentrations of particulate
matter (PM10, PM2.5, PM1, and PM0.3) measured simultaneously in the personal breathing zone of
Parisian subway workers. The measurements were performed by GRIMM, a gravimetric method,
and DiSCmini during the workers’ work shifts over two consecutive weeks. The measured PM
concentrations were analyzed with respect to the working environment, the underground station,
and any specific events that occurred during the work shift. Overall, PM0.3 concentrations were
more than an order of magnitude lower compared to the other PM concentrations and showed the
highest temporal variation. The PM2.5 levels raised the highest exposure concern: 15 stations out of
37 had higher mass concentrations compared to the reference. Station PM levels were not correlated
with the annual number of passengers entering the station, the year of station opening or renovation,
or the number of platforms and tracks. The correlation with the number of station entrances was
consistently negative for all PM sizes, whereas the number of correspondence concourses was
negatively correlated with PM0.3 and PM10 levels and positively correlated with PM1 and PM2.5
levels. The highest PM10 exposure was observed for the station platform, followed by the subway
cabin and train, while ticket counters had the highest PM0.3, PM1, and PM2.5 mass concentrations.
We further found that compared to gravimetric and DiSCmini measurements, GRIMM results showed
some discrepancies, with an underestimation of exposure levels. Therefore, we suggest using GRIMM,
calibrated by gravimetric methods, for PM sizes above 1µm, and DiSCmini for sizes below 700 nm.

Keywords: occupational exposure; Bayesian spline model; time-series; public transport; particulate
matter; inhalation

1. Introduction

Particulate matter (PM) is a common proxy indicator for air pollution. It consists
of a complex mixture of solid and liquid particles of organic and inorganic substances
suspended in the air. PM affects more people than any other pollutant [1]. Short-term
exposures to coarse (PM10, i.e., particles with an average aerodynamic diameter < 10
µm) and fine (PM2.5, i.e., <2.5 µm) particles are clearly associated with all causes of
cardiovascular, respiratory, and cerebrovascular mortality [2], while long-term PM exposure
increases the risk of mortality from cardiovascular disease, respiratory disease, and lung
cancer [3]. These associations persist below the exposure level outlined in the 2006 WHO
guideline [4]. This led the WHO to reduce the recommended maximum annual average
exposure level for PM2.5 from 10 µg/m3 to 5 µg/m3 and for PM10 from 20 µg/m3 to
15 µg/m3 [5]. The recommended maximum 24-hour average exposure was reduced from

Sustainability 2022, 14, 5999. https://doi.org/10.3390/su14105999 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14105999
https://doi.org/10.3390/su14105999
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-7629-7336
https://orcid.org/0000-0002-6016-6120
https://orcid.org/0000-0001-7059-8421
https://doi.org/10.3390/su14105999
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14105999?type=check_update&version=2


Sustainability 2022, 14, 5999 2 of 16

25 µg/m3 to 15 µg/m3 for PM2.5 and from 50 µg/m3 to 45 µg/m3 for PM10 [5]. Regarding
levels of smaller particles (PM1 and PM0.1, i.e., <1 µm and 100 nm, respectively) that
are beyond the guideline exposure levels, increasing epidemiological evidence suggests
an association between short-term exposures and negative impacts on cardiorespiratory
health, as well as the health of the central nervous system [6].

Epidemiological and toxicological studies show varying types and degrees of health
effects related to PM, suggesting a role for both the chemical composition (such as transition
metals and combustion-derived primary and secondary organic particles) and physical
properties (size, shape, and surface area) along with concentration [7–17]. Yet, the research
in this field is limited and controversial, particularly when comparing the results from
epidemiological and experimental (in vivo and in vitro) studies [18]. This is especially true
for PM in underground subway systems, where PM concentrations can be significantly
higher than outdoors and have a very specific physio-chemical composition and size
distribution [19–21]. Ultrafine particles (UFP) are the strongest contributor to subway
pollution when the particle number concentration is used as the exposure metric [22].
Because of this size distribution and a highly ferruginous composition, along with the
presence of trace metals (Mg, Al, Si, Ti, V, Cr, Mn, Ni, Cu, Zn, Ba, and Pb) [23,24], subway
PM generates more reactive oxygen species (ROS) and oxidative-stress-related outcomes
compared to other PM [18,25]. A comprehensive assessment of individual exposure to
subway PM, particularly the finest size fractions, is urgently warranted in order to identify
the sources and factors that contribute to high PM levels in individual subway stations
and lines [26,27]. While the potential health impacts of subway PM on workers and/or
commuters remain uncertain, exposure assessment studies are essential for risk assessments
and exposure control interventions.

A Franco-Swiss epidemiological research project called “ROBoCoP” (Respiratory dis-
ease Occupational Biomonitoring Collaborative Project) was launched at the Parisian urban
transport company (RATP) to address this issue [28]. Within this project, a 6-week longi-
tudinal study was conducted among RATP workers to measure their personal exposures
in terms of particle number and particle mass concentration using direct-reading instru-
ments along with standardized gravimetric analysis [29]. The application of a Bayesian
spline method to the collected UFP number measurements and contextual data enabled
estimations of the differences in UFP exposure between subway professionals, stations,
and various locations [22]. The developed model proved informative for documenting the
magnitude and variability of UFP exposure and for understanding exposure determinants.

In the present study, we build on this existing work and aim to show that it can also
be applied to other size fractions and measurement techniques, thereby demonstrating the
general applicability of the model. Therefore, we apply a Bayesian spline method to the
real-time mass concentrations of PM10, PM2.5, PM1, and PM0.3 measured simultaneously
by an optical particle counter, and we analyze the exposure profiles and determinants of
these aerosol fractions in the personal air samples of Parisian subway workers. In addition
to covering the acute problem of PM exposure, our study also has a more general perspec-
tive. It gives insight into the limitations and intercomparability of different measurement
techniques and, as such, can help design future studies.

2. Materials and Methods
2.1. Data Collection

Data were collected in the frame of a longitudinal pilot study dedicated to a compre-
hensive exposure assessment, as described in the study protocol [28]. We focused primarily
on subway line 7. Line 7 entered into operation in 1910 and crosses Paris from the northeast
to the southeast following a slightly curved route. This entirely underground line is one of
the longest (22 km and 38 stations) and busiest (more than 136 million yearly passengers)
in the Parisian subway network.

Nine subway professionals, who primarily work on line 7, were included from three
different occupations: station agents (n = 3), locomotive operators (n = 3), and security
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guards (n = 3). Their tasks and exposure results were described in detail elsewhere [28,29].
The data collection lasted for a total duration of 6 weeks (from 7 October to 19 November
2019, i.e., 2 weeks per type of subway professional). RATP safety regulations do not allow
any RATP professionals to wear any equipment other than what is used for their regular
work. Therefore, airborne PM were collected as close as possible to the worker’s personal
breathing zone (PBZ) with appropriate equipment carried by two or three RATP technicians
who job-shadowed RATP workers for their entire 6–8-hour shifts.

For the continuous measurement of airborne particles, we used the portable GRIMM
Aerosol Spectrometer and Dust Monitor (GRIMM Aerosol Technik, Ainring, Germany)
Model 1.109, which is considered a research-grade device of moderate cost [30–32]. The
measuring principle of this model is based on light scattering off single particles with a
semiconductor laser as a light source. Model 1.109 possesses 31 size channels for measuring
particle size distribution within the range of 0.25 to 20 µm, recorded every 5 min (with
a time resolution of 6 s). For each size fraction, the mass concentration is estimated. For
these reasons, GRIMM Model 1.109 is considered suitable for aerosol research and the
compilation of occupational health data [30–32]. As GRIMM results are not in compliance
with European standards for PM10 and PM2.5, we complemented their measurement
by standard gravimetric analysis (EN 12341). For this, the sampling train was equipped
with a filter (PTFE Membrane Filters (37 mm), Sigma-Aldrich, Molsheim, France) in a
cassette holder (Personal Impactor H-PEM, BGI, USA) connected to a cyclone and attached
with flexible tubing to a pump (GilAir Plus, Sensidyne, Germany) operating at 4 L/min.
Moreover, we used the particle counter “DiSCmini” (Testo, Monchaltorf, Suisse) to measure
particles from 10 to 700 nm, yielding particle number concentration (#/cm3) and lung-
deposited specific area (LDSA) (recorded every 6 s; time resolution of 1 s). In addition to
instrumental PM measurements, technicians documented every participant’s location and
event that occurred during his/her work shift in a standardized activity logbook.

2.2. Data Management

The PM records and activity logbooks were processed as follows. First, we defined the
time-series from daily collected PM measurements, and each time-series corresponded to a
complete 6-hour work shift, linked with an activity logbook. The calibration of GRIMM
measurements with reference to PM10 or PM2.5 levels is recommended, although not yet
standardized [33,34]. In this study, we applied the most recent method [26] to standardize
the PM10 or PM2.5 time-series using the temperature and relative humidity measurements
as well as the gravimetric concentrations of PM10 or PM2.5. We tested several regression
functions and determined that the power function had the highest R2 fit to both the PM2.5
and PM10 gravimetric concentrations (Supplementary Figure S1). However, given the
absence of measurement standards for the calibration of PM1 and PM0.3, we also used
non-calibrated, raw time-series data to compare the aerosol dynamics according to the
size fraction. To analyze their variation, three independent variables were extracted from
activity logbooks: Station, Environment, and Event, along with their corresponding timing
and duration. The Event variable documented the events that occurred during the recording
(e.g., exposure to tobacco smoke, intervention on ticket distributor, subway cabin heater,
train passing), as previously described [22]. The Environment variable defines the type of
locality, or setting, that the participant was located in or visited during his/her work shift
(e.g., sampling room, cloakroom, ticket-counter, underground corridor, subway platform).
The variable Station corresponds to the participant’s location in the subway rail network.
When traveling underground between two subway stations on the same line, the Station
variable was set to Tunnel for all corresponding time points.

In order to better understand the PM variations between subway stations, additional
variables were retrieved from RATP records, namely the year of station opening, the year
of the last station renovation, the annual number of passengers entering the station in
2019, and the number of ventilators per station, as well as the factors contributing to
the natural station ventilation, such as station topography, the number of entrances, the



Sustainability 2022, 14, 5999 4 of 16

number of correspondence concourses, the number of platforms and tracks, and the type of
station design. The latter was assessed according to [35] and completed to account for local
architectural particularities, with seven types of station design (coded from A to G) overall.

2.3. Statistical Analysis

To explore the association between PM mass concentration and independent variables,
we developed a Bayesian spline model, as previously described [22]. We fitted four separate
models that considered the log10 transformed PM10, PM2.5, PM1, and PM0.3 time-series
as dependent variables and Station, Environment, and Event as independent variables, with
an inter-day-specific intercept absorbing the corresponding job random effect:

Yir ∼ N
{

µi + XStationT
irα + XEnvironementT

irβ + XEventT
irγ + ζT

i b(tir), σ2(Dayi)
}

. (1)

The models were fitted within a Bayesian framework and strictly validated using the
“When to worry and how to Avoid the Misuse of Bayesian Statistics” (WAMBS) check-
list [36]. This validation consisted of a convergence check for all 117 parameters (i.e.,
45 stations, 8 locations, 10 events, 24 inter-day-specific intercepts, 24 inter-day-specific
variances, and the 3 intercept and 3 variance parameters of the job random effect) using
Gelman and Rubin convergence diagnostics and by visualizing the trace and density plots
of all coefficients except the many ζ coefficients. A sensitivity analysis was performed on
the prior distribution of α, β, and γ coefficients by varying the standard deviation from
5 to 3 or 10. In addition, we checked for large degrees of autocorrelation in the Markov
chain using autocorrelation plots with lags varying from 1 to 20. Finally, we conducted
a posterior predictive checking step by predicting the particle number concentration for
complete time-series using the input data and then comparing it with the observed particle
number concentrations.

Moreover, we explored the station-related variables described above as explanatory
factors of β coefficients obtained by modeling. For this, we assessed the Pearson correla-
tion coefficients. Given the exploratory and not hypothesis-driven analytical framework
adopted here, we applied no correction for multiple comparisons.

All data management and statistical analyses were performed using the R software
package (version 3.6.2). In the Bayesian inference step, we used the R2Jags library and JAGS
standard software with the model described in Bayesian inference Using Gibbs Sampling
(BUGS) format (10.16909/DATASET/28, File S1).

3. Results
3.1. Descriptive Results

Figure 1 summarizes daily PM mass concentrations for the four size fractions measured
by GRIMM over six weeks in the PBZ of subway workers, stratified by their job. The values
of the daily PM mass concentration per size fraction can be consulted at the Unisanté
Research Data Repository (10.16909/DATASET/28, Excel File 1). It is worth noting that no
real-time measurement records were available for two days out of ten for every job. This
was due either to the difficulties in GRIMM use in the first two days of the field campaign
(despite the fact that all RATP technicians were trained and well-experienced), uncontrolled
disruptions in the dust monitor’s functioning, or an unexplained stoppage of measurement
recording. According to the available records, station agents had the most precise estimates
of their daily individual exposure (appearing with the narrowest confidence intervals
around the central estimates in Figure 1), regardless of the PM size fraction. This was in
line with our previous study and was due to the relative stability of their tasks and the
fixed nature of their workplace (in the ticket counter or its surrounding environment) [22].
As expected, the PM0.3 daily concentration was more than an order of magnitude lower
compared to the other PM fractions, and this difference was consistent over time and
across jobs. This is explained by the fact that the ultrafine particle contribution to the
PM mass is very limited [37]. The variability in the daily mass concentration was the
highest for PM0.3, followed by PM1. For PM2.5 daily mass concentration, the variability
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was the lowest overall; however, this was not consistent, as for some days PM10 mass
concentration showed less variability than PM2.5. Overall, PM10 exposure, estimated as
mass concentration, was predominant over that of the other PM size fractions in all jobs,
closely followed by PM2.5 (Figure 1).
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Figure 1. PM daily concentrations measured by GRIMM in the personal PBZs of Parisian subway
workers: station agents (top), locomotive operators (middle), and security guards (bottom).

The correlations between gravimetric and real-time PM2.5 and PM10 measurements
were rather fair (Supplementary Material, Figure S1), and this result is in line with previous
studies of calibration issues [34,38–40]. When comparing the PM2.5 and PM10 concentra-
tions before and after calibration (10.16909/DATASET/28, Excel Files 2 and 3, respectively),
the geometric means estimated based on raw real-time records appeared unrealistically
low (Excel File 3, sheet “GM_GSD_day”). Moreover, even after calibration, the real-time
measurement of PM2.5 and PM10 underestimated the personal exposure in locomotive
operators and security guards when measured as gravimetry mass [29], and this underesti-
mation seems more important for PM10 levels. For instance, the geometric mean for PM10
of locomotive operators was 4.24 µg/m3 before calibration, 88.12 µg/m3 after calibration
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(10.16909/DATASET/28, Excel Files 2 and 3, sheet “GM_GSD_job”), and 188.50 µg/m3

when measured by the gravimetric method [29].
Figure 2 illustrates the integration of the contextual information collected through the

daily activity logbooks to explain the variation in personal PM concentrations over the
workers’ work shifts. For the sake of clarity and comparability, we plotted data collected
during the last day of the first week of exposure monitoring in each job, corresponding
to the middle of the monitoring period. Professionals’ work shifts usually started and
ended in the sampling room at “Porte de la Villette” (Figure 2B,C), where the PM mass
concentration is very low compared to other environments. On the 11 October 2019, all
station agent PM records corresponded to the PM mass concentration in the ticket counter
situated at the station Corentin Carriou (Figure 2A). The only recorded event this day
was the opening of the ticket counter door, which consistently increased the PM mass
concentration of all PM sizes fractions, particularly for PM10. It is remarkable that all
PM size fraction mass concentrations evolved almost in parallel, although the increases in
PM0.3 observed in locomotive operators and security guards (Figure 2B,C) were greater
than those of other PM.
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Figure 2. Real-time measurements of PM mass concentrations over the work shift in the PBZ for
station agents (A) (11 October 2019), locomotive operators (B) (25 October 2019), and security guards
(C) (7 November 2019).

The first PM0.3 peak in Figure 2B is particularly large, corresponding to the walk from
the sampling room via the underground corridor before reaching the train and entering the
cabin. Opening the window during the initial phase of driving the train seemed to decrease
the PM mass concentration of all size fractions, while putting the heater on increased all
types of PM in a very similar way. For the security guard, PM concentrations changed with
environment, and every passing train event appeared to be followed by a peak in all PM size
fractions, particularly for PM0.3 (Figure 2C). The shape of PM variation in this illustrative
time-series clearly requires a model supporting the non-stationarity autocorrelation while
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taking into account different fixed effect variables (Station, Environment, and Event), and it
confirms the relevance of the Bayesian spline model.

3.2. Bayesian Modeling Results

The fitting of the Bayesian spline model to the personal PM time-series resulted in
a good mixing behavior in Markov chains. The model validity was supported by low
Gelman and Rubin convergence diagnostics and autocorrelations, conducted in accordance
with the WAMBS checklist [36]. Based on the visual examination of the trace and density
plots of coefficients, we identified no conditions invalidating our models. Furthermore,
we found that modifying the prior distribution for different parameters did not impact
the estimation of the posterior distribution, thus demonstrating the robustness of the
model. All of the estimated parameters of this model are available from the Unisanté
Research Data Repository (10.16909/DATASET/28, Excel File 3, sheets “alpha_station”,
“beta_environments”, and “gamma_event”). The model coefficients obtained when fitting
the model to calibrated data were very similar (10.16909/DATASET/28, Excel File 2).

Figure 3, using the last example of the security guards’ exposure monitored on the
7 November 2021, shows that the prediction of the PM mass concentration by the Bayesian
spline model overlaps reasonably well with the observed values for all size fractions.
Visually, the fit accuracy looks similar across size fractions, where some of the highest
observed concentration peaks are above the model prediction curve. This is particularly the
case for PM0.3. Although satisfactory according to the WAMBS guidelines [36], this model
fit is worse than the fit obtained in our previous study on PM0.3 number concentration
measured by DiSCmini [22]. This is due to the fact that fewer data were recorded by
GRIMM, and thus available for model training, because of a lower time resolution of
measurement recording compared to DiSCmini (5 min versus 6 s) and six days with
missing GRIMM records.

Figure 4, panel A represents the posterior distribution of the estimated coefficients
for every subway station along line 7. The coefficients are expressed as a fold change
(10coefficient) with respect to the reference station, Porte de la Villette, for each size fraction.
The personal mass concentrations measured at this station were 0.31 ± 2.86 µg/m3 for
PM0.3, 2.71 ± 2.00 µg/m3 for PM1, 3.32 ± 2.00 µg/m3 for PM2.5, and 3.91 ± 2.03 µg/m3

for PM10. The calibrated values for PM2.5 and PM10 were 70.08 ± 1.52 µg/m3 and
82.66 ± 1.85 µg/m3, respectively.

In line with the results of descriptive analysis, the coefficients corresponding to the
different PM size fractions are rather similar at most subway stations (Figure 4A). However,
a closer look reveals that PM2.5 raises the highest exposure concern, with 15 stations out
of 37 showing significantly increased mass concentrations compared with the reference
station. The coefficients corresponding to these PM2.5-polluted stations have credible
intervals above 1. Twelve of these stations also had significantly higher PM1 mass con-
centrations compared to the reference. Regarding PM10, only 7 stations out of 37 had
significantly higher mass concentrations, and an additional 4 stations presented an increase
with borderline credibility. Finally, with respect to PM0.3, eight stations were significantly
more polluted than the reference station. It is noteworthy that the magnitude of change
in PM mass concentration between stations was not high and was rarely greater than 10%
(Figure 4A). In this respect, the most polluted stations were Villejuif-Léo Lagrange, with
the highest levels of PM10, PM2.5, and PM0.3; Louis Blanc, with the second-highest mass
concentrations of PM0.3 and PM10; and Villejuif-Louis Aragon, with the highest PM1 and
the second-highest PM2.5 and PM0.3 mass concentrations. Further analysis of the station
characteristics revealed no correlation with the annual number of passengers entering the
station, the year of station opening or renovation, or the number of platforms and tracks. In
contrast, we observed a consistent negative correlation with the number of entrances for all
size fractions (−0.11 for PM0.3, −0.15 for PM1, −0.24 for PM2.5, and −0.06 for PM10). The
number of correspondence concourses for other stations was negatively correlated with
PM0.3 and PM10 (−0.07 and −0.03, respectively) and positively correlated with PM1 and
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PM2.5 (0.34 and 0.06, respectively). Station types C and F were associated with the highest
levels of PM in all size fractions, whereas high PM0.3 concentrations were also observed in
type A stations and PM10 in type G stations (results not shown). These findings are in line
with the previously reported data suggesting the importance of general (natural) ventila-
tion, which can be determined by the station architecture and topography [35]. Regarding
the latter, the correlation coefficients between PM coefficients and minimal station altitude
decrease with increasing PM size (0.28 for PM0.3, 0.19 for PM1, 0.06 for PM2.5, and 0.08
for PM10).
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Figure 4. PM mass concentration variation on subway line 7 for Stations (A), Environments (B), and
Events (C). The plots represent the posterior distribution of the coefficient transformed as fold change
(10coefficient) for every category of the studied factors. The bar is the 95% credible interval, and the
point is the median of that distribution. The bottom sub-panel in panel (A) represents the subway
line 7. The discontinuity shown at the “Maison Blanche” station corresponds to two embranchments,
one towards “Villejuif-Louis Aragon” and the second towards “Mairie d’Ivry”. The reference category
is noted with (ref).
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Figure 4B shows that, with the exception of the cloakroom, all studied environments
had higher PM exposure compared to the sampling room, although the highest levels of
PM were measured outdoors. The highest PM10 exposure was observed at the station
platform, followed by the subway cabin and train, while ticket counters had the highest
PM0.3, PM1, and PM2.5 mass concentrations. Regarding the effect of studied events on the
PM level (Figure 4C), only the event called “Passenger entry into cabin” was associated
with a significant increase in the mass concentration of all size fractions. Indeed, despite
the name, this event corresponds to opening the train cabin door to enter the cabin or
have a study technician bring in some equipment; passengers, who should not disturb
the locomotive operator, did not enter. Turning the heater on was also associated with a
concentration increase, but only for fine and ultrafine particles. The increase in PM mass
concentration when or after a train was passing or a cabin door was opened was small and
not statistically significant.

3.3. Comparison of GRIMM and DiSCmini Results

It is noteworthy that in our previous study of UFP number concentration, we observed
the opposite effect for the train passage, which lowered the UFP number concentration
measured with DiSCmini [22]. The other increases in particle number concentration were
identified in the same environments as in this study, although with different absolute
concentrations. For instance, the subway platform was found to be more polluted with
UFP than the ticket counter, identified as the second most UFP-polluted environment in
that study, while the outdoor UFP number was not significantly higher than the refer-
ence UFP concentration [22]. In order to investigate these discrepancies, we compared
GRIMM and DiSCmini measurement results in terms of particle number concentrations.
For this, we integrated the GRIMM number concentration values—from 0.25 to 0.70 µm—in
the particle size range corresponding to the DiSCmini operating range (0.01 to 0.7 µm)
(Supplementary Material, Figure S2, 10.16909/DATASET/28, File 4).

As illustrated in Figure 5, using the measurements corresponding to the mid-point
days in the PM monitoring interval, the two devices reflect relatively similar patterns in
concentration changes over time. Although the latter records more peaks, probably due to
a better time resolution (lower averaging span), the increases in concentration recorded
with GRIMM correspond to increases in DiSCmini measurement results. Quantitatively, the
particle number concentrations measured by the DiSCmini are three orders of magnitude
higher than the ones measured by the GRIMM. This observation can be explained by the size
distribution of the analyzed environmental aerosols, where the contribution of ultrafine
particles (<100 nm) to the overall number concentration is particularly high [18,21,24].
Burkart et al. showed that, due to the number size distribution of urban environment
aerosols, GRIMM (model 1.109) only measures a tiny part (6%) of the total particle number
determined via a Vienna-type differential mobility analyzer (DMA) [41]. Although the
particle number concentrations obtained with DiSCmini and GRIMM follow the same
trends, particles with aerodynamic diameters below the GRIMM lower cut-off (0.25 µm) are
expected to contribute largely to the aerosol distribution, thereby explaining the differences
in Figure 5.
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Figure 5. Total particle number concentration measured by DiSCmini for sizes from 0.01 to 0.7 µm
(blue) and by GRIMM for sizes from 0.25 to 0.7 µm (red) in the personal breathing zone samples of
Parisian subway workers. (A) Station agents (10 October 2019), (B) locomotive operators (25 October
2019), and (C) security guards (7 November 2019).

4. Discussion
4.1. Detection Physical Principles

Most of the commercially available direct-reading particle counters rely on a few
physical principles that determine their strengths and limitations in a given context of
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use [39]. In a very generic manner, the use of instruments based on different physical
principles implies questions to consider beyond the manual instructions: (i) which physical
event generates a measurable change, and (ii) what is the nature of this change? In the case
of particle counters, OPCs such as the GRIMM rely on light scattering properties inherent
to particles in the micron-domain, with an exponential decrease in the scattering intensity
with the particle diameter. Here, the instrument’s lower cut-off diameter of about 0.25 µm
is explained by the Mie diffusion domain at the laser wavelength. The scattering-based
approach implies that the size determination is sensitive to a series of physical variables
such as refractive index, density, and shape of particles. In addition, the conversion of the
particle number distribution into mass concentration is done by applying a mathematical
model with approximated values for particle density and morphology. Thus, in addition to
the standard calibration (dolomite dust), the GRIMM instrument enables the possibility
of adjusting the density variable through the correction-factor (C-factor) adapted to a
particular aerosol [34]. Despite this measurement correction approach, one assumption still
remains: namely, that the sensitive physical variables—density, refractive index, and shape—
are unchanged during the period of measurement. For environmental, non-standardized
aerosols, this assumption is even more problematic because a direct link between particle
size and chemical composition, and thus refractive index and reflectivity, can be expected.
An earlier comparison study performed in urban environments reports that GRIMM
underestimates the mass concentration by about 20% when considering gravimetric data
as reference and a comparable particle size range [41]. In accordance with this, in the
present work, the GRIMM results underestimated PM2.5 and PM10 exposure as compared
to the gravimetric method, and this was the case for both calibrated and non-calibrated
comparisons. However, the positive effect of calibration on GRIMM measurements was
clearly visible as it significantly reduced the gap with corresponding gravimetric data for
both PM fractions.

In turn, personal monitors such as DiSCmini, Partector, or NanoTracer rely on the elec-
trical measurement (current intensity) of the particle-borne charges resulting from the initial
electrical diffusion charging of the aerosol. Since the electrical diffusion charging behavior
of submicron particles is size-dependent, these devices provide quantitative information
on both the particle number concentration and the modal diameter in the UFP domain
(typically from 20 to 400 nm). The conversion of electrical mobility into aerodynamic
diameter requires a series of approximations of the particle shape (spherical) and the size
distribution (lognormal). Considering the ultrafine condensation particle counter (UCPC)
as a reference instrument, Todea et al. showed that the DiSCmini overestimates the number
concentration by about 30% in the aforementioned size range [42]. The same authors
identify as interfering variables the presence of particles with sizes > 400 nm—discarded
via the use of an impactor—and aggregates in the aerosol for which the charge is greater
than for the equivalent non-aggregated particle. Similarly, Mills et al. reported a deviation
from reference—here the scanning mobility particle sizer (SMPS)—for DiSCmini number
concentration of about 21% in the case of polydisperse aerosols [43].

4.2. Qualitative Reliability of Measurements and Inter-Device Comparison Issues

It can be argued that the data obtained with the GRIMM and DiSCmini shown in
Figure 5 follow a similar trend and that differences are due to the time resolution and
different sensitivities to UFP for the two techniques. However, this cannot explain the op-
posite results for the “train passing” event obtained from the model, nor the quantitatively
different response to other events and environments. A closer inspection of Figure 5 reveals
some hints about the qualitative differences in the responses of both methods. For example,
around 14h00 in Figure 5C, DiSCmini shows a dip where GRIMM shows a peak, similar to
around 10h00 in Figure 5B. Such comparisons for both methods, including Station, Location,
and Event indicators, can be found in the full online data set (10.16909/DATASET/28,
File 4), and some representative mismatches are reproduced in Figure S3. Many occasions
can be found where DiSCmini and GRIMM show opposite trends, and the measurements
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on 30 October 2019 even show a completely different shape. This clearly indicates a problem
with the direct comparison of data from both methods.

Based on the qualitative consistency of the data, our opinion is that the results from
DiSCmini are more representative of the real submicron PM concentration. This is based on
the observation that all DiSCmini measurement sessions show a similar type of behavior
with features clearly related to Event, Location, or Station variables, whereas the GRIMM
data appear to show a less structured response. This is directly reflected in the Bayesian
model fits and the uncertainties in the changes to all model parameters. Furthermore,
the GRIMM results show almost identical curves, different by a multiplication factor,
for all PM sizes (Figure 2). This suggests that results for the smallest particle range are
strongly influenced by the presence of PM10 and PM2.5. These factors lead us to conclude
that the GRIMM is not well suited to characterize PM concentrations for sizes below
700 nm in a typical underground aerosol environment with a mixture of particle sizes
and compositions. Instead of a straightforward interpretation of the particle number
concentration that considers the full operational capability of each instrument, the rational
delimitation of the optimal particle size range for both the GRIMM and DiSCmini enables
a useful co-deployment covering all the aerosol dimensions.

5. Conclusions

One of the aims of our study was to use the GRIMM as an intermediate link between
the standardized gravimetric method for coarse and fine particles and the real-time mea-
surement method for UFP using DiSCmini. Unfortunately, the large discrepancy in trends
between GRIMM and DiSCmini for PM with sizes below 700 nm (the upper limit of the
latter method) renders this approach unfeasible. Given the high quality of the Bayesian
model fit for the DiSCmini, we have good confidence in this method for real-time mea-
surements of UFP. However, an independent calibration would be needed to determine
absolute particle concentrations [30,40]. This goes beyond the scope of this study, but one
could envision combining DiSCmini measurements with scanning electron microscopy
(SEM) or transmission electron microscopy (TEM) analysis on representative samples.

Another goal of this study was to independently measure the PM concentrations of
four different size fractions in a real-time fashion as a function of various parameters appli-
cable to workers in the Parisian subway. The GRIMM promises exactly this functionality;
however, based on the results discussed above, it is clear that a single device is not suitable
for this aim, and further instruments are needed. We suggest using a GRIMM, previously
calibrated by gravimetric methods in the environment of interest, for PM sizes above 1 µm,
and a DiSCmini for sizes below 700 nm. This co-deployment of DiSCmini and GRIMM in
urban sites delivers valuable information on the dynamic evolution of the aerosol in terms
of the number concentration and size distribution (or modal size), covering a large size
domain from ultrafine to fine particles. Such dynamic information is particularly useful for
identifying possible sources of emissions and for understanding the interventions/changes
that govern the aerolics of the system.

Despite the above-discussed discrepancies between the measurement results of GRIMM
and the gravimetric method on the one hand and GRIMM and DiSCmini on the other hand,
we demonstrated the relevance of our Bayesian spline model for analyzing four time-series
of PM concentrations according to subway stations, locations, and events. The strengths of
this study lie in the assessment of personal (breathing zone) exposure using multiple devices
and ad hoc modeling of exposure variations for four PM sizes simultaneously. This enabled
us to evidence a differential exposure profile in terms of PM sizes in subway stations and
workplaces, a singular behavior of UFP compared with fine and coarse particles. Further
effort should be focused on the development and improvement of portable and affordable
devices as well as calibration methods that provide reliable estimates for different exposure
components in complex environments, such as underground railways.
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