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Preface

We must understand life as it is and understand that diversity is its most essential feature.

– Mary Parker Follett

Ever since childhood, I have been fascinated by the incredibly many forms that life can take. By acting as a
substrate for evolution, genetic diversity has been intertwined with life since its origin, defining taxonomic
branches down to its smallest unit, the species. In humans, diversity manifests itself in terms of appearance,
predisposition to diseases, culture, interests, and behavior. While this multiplicity is at the root of many
conflicts, it also represents a source of growth and strength, and only by embracing it can we truly grasp the
complexity of our world. As such, understanding how variation encoded in our genomes is translated into
the tremendous diversity observed in our species represents one of the most enticing but also challenging
questions in biology. And what better way is there to do so, than a PhD in genetics?

Painting by Rene Auwerx. Reproduced with permission for https://www.auwerx.org/.

https://www.auwerx.org/
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Abstract

Completion of the Human Genome Project has democratized access to genomic data and led to the creation
of large biobanks that couple genotype information with phenotypic and medical data for hundreds of
thousands of individuals. The latter fostered the boom of genome-wide association studies (GWASs) that
aim at identifying associations between common single nucleotide polymorphisms (SNPs) and complex
traits. In parallel, studies in clinical cohorts ascertained for neurodevelopmental disorders have revealed that
large, recurrent copy-number variants (CNVs) represent the etiology of various genomic disorders. CNVs
are a class of structural variants defined by the deletion or duplication of large (> 50 bp) DNA fragments.
Despite their evident relevance to human health, technical challenges linked to their detection have prevented
assessment of their presence and phenotypic consequences in the general population.

The research conducted during my PhD aimed at filling this gap. Firstly, we called CNVs based on microarray
data for 500,000 individuals from the UK Biobank. About 40% of individuals carried at least one high
confidence CNV. We then developed a framework to conduct CNV-GWAS and applied it to test the association
between the copy number of CNV-proxy probes and 117 medically relevant quantitative traits and complex
disease diagnoses. We identified over 200 independent CNV-trait associations, as well as a negative impact of
a high CNV load on an individual’s disease burden, socio-economic status, and proxied lifespan, suggesting
profound repercussions of this mutational class on global health. Follow-up studies revealed general patterns
related to the CNV architecture of complex traits, as well as insights into the epidemiology and biology
of specific examples. First, our signals colocalized with both common SNP-GWASs and rare Mendelian
disorder genes, suggesting phenotypic convergence of different genetic lesions at the same locus. Second,
CNVs exhibited variable expressivity, illustrated by well-established pathogenic CNVs leading to subclinical
phenotypic alterations and heterozygous CNVs causing phenotypic changes reminiscent of the recessive
associated disease. Overall, the same physiological systems are implicated by both clinical and population
studies, suggesting that the same CNV can generate a spectrum of phenotypic consequences with variable
degrees of severity. Third, many multi-genic CNVs exhibited high levels of pleiotropy. Dissection of these
signals revealed insights into molecular mechanisms, highlighting putative drivers for specific phenotypes.
Fourth, CNVs were found to act through different dosage mechanisms, even at the same locus. Fifth, CNVs
cause early disease onset, in line with the earlier onset of diseases with a genetic etiology and supporting the
view that common diseases represent aggregates of multiple rarer conditions.

The second part of my thesis focused on three genomic disorders with variable expressivity caused by CNVs
mapping to chromosomes 22q11.2 (DiGeorge syndrome), 16p11.2 BP2-3, and 16p11.2 BP4-5. Specifically, we
used phenome-wide association scans (PheWASs) to reveal the full pleiotropic spectrum of these CNVs. We
leveraged data from known Mendelian disorders, rare protein-coding burden tests, SNP-GWASs, and gene
expression to gain insights into driver genes and the molecular mechanisms of uncovered associations. In a
second time, we used causal inference approaches, such as Mendelian randomization, and matched-control
analyses, to disentangle direct pleiotropic effects from secondary consequences of the CNV’s impact on
intermediate mediator traits, such as adiposity levels and socio-economic factors.

Overall, the body of work presented in my thesis provides numerous methodological aspects that help
to address challenges linked to performing association studies with rare CNVs in the general population.
More importantly, it sheds light on the previously underappreciated mechanisms through which rare CNVs
contribute to shaping human traits and disease risk, with important implications in terms of personalized
medicine.





Résumé

L’achèvement du Human Genome Project a démocratisé l’accès aux données génomiques, entraînant la création
de biobanques qui associent informations génotypiques à des données phénotypiques et médicales pour des
centaines de milliers d’individus. Ces dernières ont favorisé l’essor des études d’association pangénomique
(en anglais genome-wide association study, GWAS) qui visent à établir des liens entre polymorphismes
nucléotidiques (en anglais single nucleotide polymorphism, SNP) et traits complexes. En parallèle, des études
menées dans des cohortes cliniques de troubles neurodéveloppementaux ont révélé que des variants
récurrents du nombre de copies (en anglais copy number variation, CNV) représentaient l’étiologie de divers
troubles génomiques. Les CNVs sont une classe de variants définis par la délétion ou la duplication de long
fragments d’ADN. Malgré leur importance évidente pour la santé humaine, les défis techniques liés à leur
détection ont empêché d’évaluer leur présence et leurs conséquences phénotypiques dans la population
générale.

Les recherches menées dans le cadre de ma thèse ont visé à combler cette lacune. Nous avons détecté des CNVs
sur la base de données de puces à ADN pour 500’000 individus de la UK Biobank. Environ 40% des individus
étaient porteurs d’au moins un CNV. Nous avons ensuite développé une méthodologie pour effectuer des
GWAS entre CNV et 117 traits quantitatifs et diagnostics de maladies complexes. Nous avons identifié plus
de 200 associations, ainsi qu’un impact négatif des CNVs sur la comorbidité, le statut socio-économique, et
l’espérance de vie, suggèrant de profondes répercussions sur la santé de ce type de variants. Des analyses
complémentaires ont révélé des tendances générales décrivant l’architecture CNV des traits complexes,
ainsi que de nouvelles connaissances sur l’épidémiologie d’exemples spécifiques. Premièrement, nous
observons une convergence phénotypique de différentes lésions génétiques communes et rares sur le même
locus. Deuxièmement, les CNVs présentent une expressivité variable, illustrée par des CNVs pathogènes
entraînant parfois seulement des altérations subcliniques, ainsi que des CNVs hétérozygotes entraînant
des changements évoquant des maladies récessives. Globalement, les mêmes systèmes physiologiques sont
impliqués par les études cliniques et les études de population, suggèrant qu’un même CNV peut générer un
spectre de conséquences à sévérité variable. Troisièmement, la plupart des CNVs multigéniques récurrents
sont pléiotropiques. Quatrièmement, les CNVs agissent par le biais de mécanismes de dosage distincts.
Cinquièmement, les CNVs entraînent une apparition précoce de maladies, conformément à leur étiologie
génétique et à la thèse selon laquelle les maladies communes représentent des agrégats de plusieurs affections
plus rares.

La deuxième partie de ma thèse se concentre sur trois troubles génomiques à expressivité variable causés par
des CNVs des chromosomes 22q11.2 (syndrome de DiGeorge), 16p11.2 BP2-3, et 16p11.2 BP4-5. Nous avons
utilisé des études d’association phénomique pour révéler le spectre pléiotropique de ces CNVs. Se basant sur
des données provenant de troubles mendéliens connus, de tests d’association pangénomique et d’expression
génique, nous avons mis en évidence des gènes présumés responsables. Dans un deuxième temps, nous
avons utilisé des approches d’inférence causale, comme la randomisation mendélienne, et des analyses de
contrôle appariés, pour distinguer les effets pléiotropiques directs des conséquences secondaires des CNVs
sur des traits médiateurs, tels que le taux d’adiposité et les facteurs socio-économiques.

En conclusion, ma thèse présente de nombreux éléments méthodologiques permettant de surmonter
les difficultés inhérentes à la réalisation d’études d’associations avec des CNV rares dans la population
générale. Cette recherche met en lumière les mécanismes jusqu’ici sous-estimés par lesquels les CNV rares
façonnent les traits humains et le risque de maladie, avec d’importantes implications en termes de médecine
personnalisée.
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List of abbreviations

I here provide a list of abbreviations used recurrently throughout my dissertation. Some abbreviations, which
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Genetics has always turned out to be much more complicated than it seemed
reasonable to imagine. Biology is not like physics. The more we know, the less it
seems that there is one final explanation waiting to be discovered.

– Steve Jones

In this dissertation entitled "Where rare meets common: Leveraging popula-
tion cohorts to study rare copy-number variants" I present the work that I
conducted over the last four years under the supervision of Alexandre
Reymond and Zoltán Kutalik at the University of Lausanne, Switzerland.
The main aim of my thesis was to develop a framework to study the
phenotypic consequences of copy-number variants (CNVs) within the
general population. Focusing on rare, mostly recurrent, large CNVs typi-
cally associated with severe phenotypic outcomes, this work shed light
on the pleiotropy and variable expressivity of these CNVs, providing
insights into the CNV architecture of complex traits.

I start my dissertation with an introduction that provides background
as to the state of the field and defines concepts that are key to the
understanding of the ensuing research. Human genetics and genomics
are rapidly evolving disciplines, and what was state-of-the-art four years
ago, when I started my PhD in 2020, might not reflect the current stand
of the field. To name only a few major advances, the last years have seen
the completion of the first Telomere-to-Telomere (T2T) reference genome
(1), the release of hundreds of thousands of whole exome and genome
sequences coupled to telomere, protein, and metabolite measurements,
as well as electronic health record data (2–9), the generation of the first
long-read sequencing datasets (10–14), and an overall push towards
increasing diversity in genetic datasets. This chapter aims to provide a
clear view of the motivations that fueled the research I conducted during
my PhD. To provide background to the discussion, I included references
to some advances that emerged over the last four years.

Next, I dedicate five chapters to studies to which I provided a major
contribution. In each of these chapters, I introduce the study by briefly
summarizing the aims and major findings, before presenting an extended
version of the work, that in the case of published manuscripts integrates
supplemental content. Finally, I finish by discussing how these works
relate to each other and contribute to advancing our understanding of
the role of CNVs as modulators of complex traits, while providing a
perspective on future challenges and open questions.

Some of the figures were created with BioRender.

https://www.biorender.com/


4 1 Introduction

1.1 The human genome

1.1.1 DNA as a vehicle to store genetic information

A core characteristic of all living organisms is the ability to transmit
the information required to build the next generation. The molecule
encapsulating this information is called DNA (deoxyribonucleic acid).
DNA is a macromolecule composed of four distinct building blocks,
namely nucleotides harboring either of the bases adenine (A), cytosine
(C), guanine (G), or thymine (T), which are assembled into polynucleotide
chains, also called nucleic acids. In humans, DNA is most commonly
found in a double-stranded form, wherein two complementary polynu-
cleotide chains face each other – through a base pairing rule wherein A
always opposes T and C opposes G – and coil into a double helix (15).
According to the latest estimates from the T2T Consortium, each copy of
the human genome is composed of 3.055 billion base pairs (bp) (1), which
are split into 23 separate entities called chromosomes (Figure 1.1).

Figure 1.1: Human chromosomes.
Haploid set of 22 autosomes and sex
chromosomes (X or Y), colored accord-
ing to the position of the centromere,
with females being XX and males XY.
Except for gametes, each human cell con-
tains two sets of chromosomes. Zoom on
chromosome 8 to highlight the different
regions of the chromosome and illustrate
the cytogenic bands used to define ge-
nomic positions.

Humans are diploid organisms, meaning that each cell harbors two copies
of the human genome, one being inherited from the mother and the
other from the father. These 46 chromosomes can be further categorized
into 22 homologous autosomal pairs, labeled from 1 to 22 by decreasing
size, and one sex chromosome pair that will define an individual’s
biological sex: females have two copies of chromosome X, while males
carry a single X chromosome and a much smaller Y chromosome. At their
ends, the two sex chromosomes share two regions of homology, called
pseudoautosomal regions, which allow them to pair during male gamete
formation. Zooming in, each chromosome can further be divided into
five regions (Figure 1.1). At the tips are two telomere regions composed
of repetitive DNA sequences that act as buffers, protecting genomic
content from degradation. Each chromosome also has a centromeric
region, composed of repetitive DNA sequences. The centromere plays
a key role in cell division by acting as the connecting point for sister
chromatids and the attachment point for the mitotic spindle. It also
delimits the short (p arm, from the French "petit") from long (q arm)



1.1 The human genome 5

1: They are termed by chromosome num-
ber, arm, region, band, and sub-band, the
three last ones being numbers of increas-
ing value from centromere to telomere
(e.g., 22p11.2).

2: RNA molecules have a similar struc-
ture to DNA. These mobile copies of the
genetic content distinguish themselves
from DNA by i) usually being single-
stranded, ii) harboring nucleotides con-
taining ribose instead of deoxyribose,
and iii) using uracil instead of thymine.

chromosomal arm, which are often used as reference points in cytogenetic
nomenclature. The latter describes genomic positions as cytobands1,
which reflect approximate chromosomal locations defined based on
chromosomal staining techniques. The length ratio between the two
arms will determined if the chromosome is metacentric (equal length),
submetacentric (slightly longer q arm), or acrocentric (much longer q
arm).

Zooming in, chromosomes harbor genes, which represent the most basic
genetic units and account for ∼1-2% of the human genome sequence.
Humans harbor ∼19,969 protein-coding genes (1), i.e., genes whose
sequence will be transcribed into RNA (ribonucleic acid)2 and eventually
translated into proteins, following the central dogma of biology (Figure
1.2). More specifically, transcription of protein-coding genes results into
RNA molecules from which introns are cut out in a process called splicing,
resulting in messenger RNA (mRNA) molecules that only contain exons.
Importantly, what is defined as intron and exon is transcript-specific,
so that sequences retained in one transcript might be eliminated into
another one, resulting in different isoforms through alternative splicing.
After being processed, mRNA molecules leave the nucleus, where the
DNA is stored, for the cytoplasm. There, ribosomes read mRNA in
a process called translation. Specifically, each group of three mRNA
nucleotides forms a codon corresponding to one of the 21 amino acids
used by humans. The mRNA molecule is thus translated, codon by codon,
into a chain of amino acids that will fold into a 3D functional protein,
depending on the size and physio-chemical properties of the amino acids
it is composed of. In turn, proteins will carry out the vast majority of
cellular processes.

Figure 1.2: The central dogma.
Schematic representation of the central
dogma of biology. Genetic information
is encoded into DNA, which is trans-
mitted through replication. Once DNA
polymerase has duplicated the genetic
content, the cell can undergo cell divi-
sion, illustrated here by some key steps of
mitosis, generating two cells harboring
identical genetic content. Within a cell,
information flows from DNA to RNA
through transcription, which is medi-
ated by RNA polymerase (gray) in the
nucleus. The RNA molecule is processed
and spliced to retain only protein-coding
exons in the mRNA molecule. In the
cytoplasm, the mRNA molecule is trans-
lated into a polypeptide chain of amino
acids by the ribosome. The latter in turn
folds to adopt a final, stable conforma-
tion, forming a functional protein.
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3: One of two or more versions of a DNA
sequence at a given genomic position.
The two alleles present in a diploid indi-
vidual form the genotype.

4: Process through which an allele be-
comes the only one present in a popula-
tion, eliminating variation at that locus.

1.1.2 Inheritance of genetic information

The double helix conformation of DNA implies that both strands contain
the same information, allowing DNA replication and transmission of
genetic material to the next generation (Figure 1.2). While the replication
process operates with high fidelity and includes proofreading mecha-
nisms, it is not perfect and can lead to de novo mutations – in opposition
to mutations inherited from either parent – at a rate of 1 mutation per
108-10 nucleotides (16, 17). In the human germline, this corresponds to
about 50 to 90 new mutations per generation (17). Germline mutations
are present in the gametes and can thus be transmitted to offspring. They
oppose somatic variants that occur post-fertilization in non-germline
cells. Because their detection and interpretation require special considera-
tions, this introduction, as well as the research conducted in the following
chapters focuses on germline mutations.

When a mutation appears, it faces two possible outcomes. Either it will
remain in the population and become an allele3 that can be further
transmitted, or it will be wiped out as the individuals carrying it fail
to transmit it. Which of these outcomes will materialize depends on
genetic drift and natural selection. While genetic drift is a random
process, the impact of natural selection depends on the fitness cost of the
mutation: if it provides an advantage in a given environment, its frequency
in the population will rise, sometimes up to fixation4; otherwise, it
will be eliminated. Throughout millions of years, these processes – in
combination with geographical and environmental factors – have led
to speciation events wherein two groups of individuals (populations)
accumulate such a large number of genetic variation that they become
incompatible, i.e., they cannot mate and produce fertile offspring.

Figure 1.3: Zygosity.
At each genomic position, an individual
can either carry zero (homozygous ref-
erence), one (heterozygous), or two (ho-
mozygous alternate) copies of a given
variant (yellow star). Compound het-
erozygosity is a special case where two
distinct mutations affect the two differ-
ent alleles of a single entity, represented
by the blue box (e.g., a gene). Compound
heterozygotes can functionally mimic ho-
mozygotes alternates, leading to reces-
sive phenotypes (see Table 1.5) despite
each variant being heterozygous.

Even within a single species, a large amount of genetic variation can be
found. Recent efforts sequencing hundreds of thousands of individuals
revealed the existence of billions of mutations, with the number of rare
mutations being discovered steadily increasing with the addition of more
samples (3, 9). While this threshold is arbitrary, mutations present in less
than 1% of a population, i.e., with a minor allele frequency (MAF) < 1%,
are referred to as rare – or even as private when documented only in a sin-
gle individual or family. This opposes common polymorphisms, present
in > 1% of a population. Of note, as humans are diploids, within a single
individual a given allele or mutation, can be present in a heterozygous
(single copy) or homozygous (two copies) state (Figure 1.3). Importantly,
allele frequencies are population-specific, so that alleles that are common
in one ancestry group might be rare in another one. This observation
is particularly relevant as it means that the minor allele, defined as the
allele with the lowest frequency, is population-specific. This is not the
case for the reference and alternate alleles, which have been predefined
historically from the first human reference genome build produced by
the Human Genome Project completed over 20 years ago (18). Because
the reference genome was derived from individuals of European ancestry,
the alternate allele often matches the minor allele in the latter ancestral
group, but not necessarily in populations of other ancestries. To counter
this, recent efforts by the Human Pangenome Reference Consortium have
pushed for the transition to a pangenomic reference that better captures
the full spectrum of human genetic diversity (19, 20).
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1.1.3 The landscape of human genetic variation

Genetic variation can take on different forms. One way to distinguish
them is by the number of base pairs they affect: short variants affect 1 to
50 bp of DNA sequence while structural variants (SVs) affect ≥ 50 bp
(Figure 1.4).

Figure 1.4: Landscape of genetic variation.
Summary table of the main classes of genetic variants observed in the human genome, adapted from (21). Common subclasses are
listed, along with whether the mutations are balanced (B; light gray circle) or not (U; dark gray square). One example is given for each
mutational class, with the changed sequence marked in red. Variant classes are ordered by increasing size, which roughly negatively
correlates with the number of events per genome. LINEs = long interspersed elements (e.g., ∼6k L1 elements); LTRs = long terminal
repeats; SINEs = short interspersed elements (e.g., ∼300 bp Alu elements); STRs = short tandem repeats (1-6 bp); SVA = SINE-VNTR-Alu;
VNTR = variable number tandem repeats (few kb).

Short variants can be further subdivided into single nucleotide variants
(SNVs) – also referred to as single nucleotide polymorphisms (SNPs)
when their frequency exceeds 1% – where a single base is swapped for
another one, and short insertions and deletions, collectively referred to as
indels. Together, they represent by far the most common type of mutation,
with an estimate of ∼4-5 million SNVs and ∼0.6-1.2 million indels in each
genome, compared to the reference (3, 11, 22). When arising in coding
regions, mutations are typically categorized depending on their impact
on the protein sequence. Synonymous mutations do not affect the protein
sequence and often result from an SNV in the last nucleotide of the codon,
which due to redundancy of the genetic code, will still produce the same
amino acid. Although synonymous changes can impact splicing, trans-
lation speed, and mRNA stability, their contribution to human disease
is perceived as marginal (23). Missense mutations change the codon so
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5: Located at or near exon-intron bound-
aries, splicing variants are not necessar-
ily coding but they can disrupt splicing,
leading to erroneous exon skipping or
intron retention (27, 28).

that it encodes for another amino acid. The consequence of such a change
depends on the exact amino acid substitution and how it disrupts protein
folding, activity, or stability. Tools such as SIFT (24) or PolyPhen-2 (25)
leverage sequence conservation to predict deleteriousness, while more
recent tools, such as AlphaMissense (26), additionally leverage variant
population frequencies, sequence context, and protein folding prediction
tools to improve pathogenicity predictions. Nonsense mutations, also
refereed to as protein-truncating variants (PTVs), lead to the premature
insertion of a stop codon. Transcripts harboring such mutations are
usually degraded by nonsense-mediated decay (i.e., if the mutation is
before the last exon junction complex) to prevent the accumulation of
defective proteins. Finally, frameshift mutations, resulting from indels
that are not multiples of three, shift the transcript reading frame, altering
the downstream amino acid sequence.

Mutations can also be classified according to their impact on cellular
function, often by considering how the mutation affects encoded gene
products. One such classification scheme is provided by Muller’s morphs
(Table 1.1). While any protein-coding mutation can result in protein
loss-of-function (LoF), i.e., reduction or absence of functional protein,
nonsense and frameshift mutations, as well as splicing variants5, are the
most likely to do so (27). LoF variants are particularly pathogenic when
they occur in a homozygous state or affect a happloinsufficient gene, for
which a single functional copy is not sufficient to sustain the wildtype
phenotype. This opposes triplosensitivity, which denotes intolerance to
excess of gene product caused e.g., by gain-of-function (GoF) mutations.
How well LoF mutations are tolerated is described by evolutionary
constraint scores, such as the probability of LoF intolerance (pLI) or
the LoF observed over expected upper bound fraction (LOEUF) scores
(29, 30), which have been derived for most protein-coding genes by the
genome aggregation database (GnomAD) (29). These scores interpret
absence of LoF mutations in a large population as a sign of purifying
natural selection on that gene. This concept was extended to build
genome-wide constraint maps for non-coding variants by e.g., the CADD
score (31) or the more recent Gnocchi score (32), that take a step towards
improving the interpretation of non-coding SNVs/indels, which remains
comparatively more complex (33).

Table 1.1: Muller’s morphs.
Mutation classification scheme accord-
ing to its consequence on the gene prod-
uct (i.e., protein) and the interaction of
that product with the one resulting from
the wild type allele. Type indicates if the
morph is generally considered as loss-of-
function (LoF) or gain-of-function (GoF).

Morph Type Consequence
Wild type reference Reference gene product
Amorph LoF No active gene product (null allele)
Hypomorph LoF Incompletely functioning gene product (leaky allele)
Hypermorph GoF More of the same, active gene product
Neomorph GoF Active gene product with a new, different function
Antimorph other Antagonizing or interfering gene product
Isomorph other Identical gene product

Small-scale mutations are abundant, relatively easy to detect, and rep-
resent the best-studied type of genetic variants. Calling of SVs is much
more challenging (see section 1.4.2) and our knowledge about this highly
diverse mutational class lags behind. Recent studies estimate the num-
ber of SVs per genome to 3,000-12,000 using short-read (3, 34–36) and
23,000-28,0000 using long-read (10–14) sequencing. While true numbers
are more likely to be close to the latter estimate, long-read sequencing
approaches have not been applied at very large scale yet, with the largest

https://sift.bii.a-star.edu.sg/index.html
http://genetics.bwh.harvard.edu/pph2/
https://github.com/google-deepmind/alphamissense?tab=readme-ov-file
https://gnomad.broadinstitute.org/
https://cadd.gs.washington.edu/
https://github.com/atgu/gnomad_nc_constraint?tab=readme-ov-file
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6: Aneuploidy refers to an abnormal
chromosome number. In humans, only
trisomy 13, 18, and 21 – also known as
Patau, Edwards, and Down syndromes,
respectively – are viable, even though
only carriers of the latter are expected to
survive infancy (37). Sex chromosome
aneuploidies are better tolerated, the
most common one being Turner (45,X),
Klinefelter (47,XXY), triple X (47,XXX),
and 47,XYY syndromes.

7: Briefly, the transposable element
is transcribed, resulting in an RNA
molecule that is used as a template to
generate a DNA fragment through re-
verse transcription that is then inserted
in the genome.

studies assessing ∼1000 genomes. Despite the number of SVs being much
lower than short variants (∼2 orders of magnitude), they affect a much
larger number of base pairs (22), making them a major source of human
genetic variation.

SVs can be classified according to various characteristics, including their
size and copy number. A first consideration is whether the mutation is
balanced or not, i.e., whether there is a net gain or loss of genetic material
compared to the two expected copies in humans. Balanced SVs tend to
be rare and difficult to detect. They include inversions, where a DNA
fragment is positioned in the wrong direction, and translocations, where
large DNA segments break off and are swapped between chromosomes.
For unbalanced SVs, the number of copies should be considered. Dele-
tions and duplications, collectively referred to as copy-number variants
(CNVs), reflect the loss or gain of at least one copy, respectively, and are
the best-studied type of SV. CNVs of median length (∼1 kb) are common
(21); more rarely, they can affect several Mb or even a full chromosome,
leading to aneuploidies6. Usually, a deviation of a single copy is observed
but some multiallelic CNVs can exhibit higher copy number changes.
Multiallelic CNV regions have often been linked to evolution, as through
gene duplication, the additional copy is free to accumulate changes that
might result in the acquisition of new properties, while the original
copy retains its primary function (38). Higher copy number can also be
adaptive through increased expression of encompassed genes (39). This
has been suggested for the iron-metabolism gene BOLA2 (40), present in
3-8 copies in modern humans but only in a single copy in archaic humans
(41). Another example is the starch-digesting gene AMY1, whose copy
number correlates with salivary amylase levels and is present in a higher
copy number in populations with a starch-rich diet (42). SVs present
in extremely high copy numbers are referred to as repeats, which are
further divided depending on their relative position to each other. Inter-
spersed repeats, also called mobile or transposable elements, propagate
through retrotransposition7 so that 42.4% of our genome is estimated to
be composed of these elements (43). They contrast with tandem repeats,
which are composed of consecutive repetitive DNA units highly prone
to expansion. Over 1 million tandem repeat sites exist genome-wide,
making them important sites of human genetic variation (44). SVs that do
not fit in any of these categories are termed complex SVs. They typically
involve multiple DNA segments and might be generated by rare events,
such as chromothripsis, where a single catastrophic event shatters one
or multiple chromosomes which are then reassembled erroneously (45).
Complex SVs can also happen at a smaller scale, and a median of a few
dozen events per genome has been estimated (34).

One global trend across the spectrum of human genetic variation is that
the size of a mutational class negatively correlates with the number of
events per genome and the frequency of individual events (Figure 1.4)
(21, 34, 35). This aligns with larger variants having a higher disruptive
potential, making them more likely to exert phenotypic consequences and
to be pruned out by natural selection. In the remainder of the introduction,
I describe how genetic variants can be detected and linked to phenotypic
variation and how this fits into a global understanding of the genetic
architecture of complex traits, with a special focus on CNVs.
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1.2 Biobanks

To fully capture the spectrum of human genetic diversity, one has to
scrutinize many genomes. This is where biobanks, which collect large
amounts of genetic, biological, medical, and environmental data for
research purposes come into play. Through their large sample size,
biobanks provide the statistical power to detect associations between
variation genome-wide and phenotypes. The latter are defined as any
measurable or observable traits resulting from the interaction between
an individual’s genome and its environment. Phenotypes can be clas-
sified according to their characteristics (Table 1.2). In genetic research,
biobanks typically link genetic information with phenotypes such as
questionnaire data regarding health, lifestyle, and occupation, external
information related to demographics, socio-economic status, and en-
vironmental exposures, anthropometric and physical (e.g., cognitive,
cardiac, pulmonary, auditory, or ophthalmic function) measurements,
blood and urine biomarkers, stool samples for microbiome analysis,
medical imaging, electronic health record data, drug usage and purchase
information, and large-scale measurements of transcript, protein, and
metabolite levels, collectively referred to as omics data. Depending on
the biobank’s protocol, longitudinal data might be available, along with
genetic and phenotypic data for related individuals. Some biobanks
can also return useful medical information to the participants or recall
individuals to validate hypotheses generated from the initial data. This
is particularly useful as phenotypic data might be noisy, especially if
relying on self-reported data (46). Hence, careful thought should be put
into selecting and defining phenotypes used to answer targeted research
questions.

Table 1.2: Types of phenotypes.
Classification of different types of phe-
notypes with examples.

Category Definition Example
Quantitative Trait that can be measured numer-

ically in each individual, taking a
continuous or discrete value.

Height

Ordinal Trait with multiple categories that
have an implied order.

Relative size (smaller vs taller)

Nominal Trait with multiple values that can-
not be ordered.

Ethnicity

Binary Trait that can take two values. Disease status (case vs control)

Besides sample size and phenotyping depth, sample diversity in terms of
ancestry, demographics, and ascertainment are important, as discussed
in more detail in Chapter 6. Indeed, different genetic variants will be
identified depending on how participants were recruited. Similarly to the
common saying "All models are wrong but some are useful", most biobanks
will present with some form of selection bias and are thus not truly
representative of their target population (Figure 1.5). Yet each is useful
in its own way, as long as one is aware of the recruitment protocol and
takes the biases ascertainment induces into account when interpreting
results.
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8: Simplex families only have one af-
fected individual, the proband. This op-
posed multiplex families, in which there
are multiple affected individuals.

Figure 1.5: Ascertainment bias.
The disease liability distribution (see
1.3.4 – Age of disease onset) of the tar-
get population forms a Gaussian dis-
tribution, with individuals surpassing
a threshold (dashed red line) being af-
fected (red area), while others are not
(blue area). Disease liability can refer to
a specific disease or general health. The
range in which individuals from different
types of cohorts are sampled is indicated.
Except for birth cohorts, none sample
the full distribution, biasing variant fre-
quency, effects size, and penetrance esti-
mates derived from these cohorts.

1.2.1 Clinical cohorts

Clinical cohorts where patients are recruited based on the presence
of a given phenotype are enriched for genetic variants associated with
that phenotype. This approach is useful to recruit individuals with a
homogeneous phenotypic presentation to study the etiology of that
condition. For some rare disorders, it is the only approach to gather a
sufficiently large number of patients. For instance, the Simons Simplex
Collection (SSC) (47) and the more recent Simons Foundation Powering
Autism Research for Knowledge (SPARK) (48) coordinated by the Simons
Foundation Autism Research Initiative (SFARI), have collected genetic
and phenotypic data on over 50,000 simplex8 autism spectrum disease
(ASD) families. Given the high genetic heterogeneity of ASD, SFARI
launched a subprogram, the Simons Variation in Individuals Project
(Simons VIP, now part of Simons Searchlight) that studies a subset of
over 200 individuals with a common etiology of ASD, namely 16p11.2
CNVs. Despite the tremendous positive impact of such initiatives, clinical
cohorts are not well suited to estimate the prevalence of phenotype-
associated variants and are likely to overestimate their impact. Indeed,
individuals who carry these variants but present with a different, milder,
or no phenotype will not be present in the cohort. This concept is
well illustrated by initiatives such as the Danish Lundbeck Foundation
Initiative for Integrative Psychiatric Research (iPSYCH). The study has two
branches: 57,000 individuals affected with at least one severe psychiatric
condition and 30,000 randomly sampled individuals from the same birth
cohort that are not ascertained based on any phenotype (49). As detailed
in Chapter 6, 16p11.2 BP4-5 duplications – a major factor for psychiatric
diseases – are twice as prevalent in the cases vs control branch of the
study.

1.2.2 Birth cohorts

To obtain unbiased estimates of disease prevalences, allele frequencies,
and effect sizes, one would ideally study birth cohorts, which aim at
providing an unselected population sample. These studies are designed
to enroll all or a representative sample (e.g., control branch of iPSYCH) of
individuals born during a given time period at a given place. Participants,
and sometimes close relatives, are then followed up on over several years,

https://www.sfari.org/
https://www.sfari.org/resource/simons-searchlight/
https://ipsych.dk/en/


12 1 Introduction

allowing collection of genetic and environmental data and monitoring
of their phenotypic and clinical development. Some examples include
the Avon Longitudinal Study of Parents and Children (ALSPAC; N =
13,000) (50), the Northern Finland Birth Cohorts (NFBC; N = 22,000)
(51), the Danish National Birth Cohort (DNBC; N = 100,000) (52), or the
Norwegian Mother and Child Cohort Study (MoBa; N = 114,000) (53), as
well as a series of UK national birth cohorts covering four decades hosted
by the Centre for Longitudinal Studies (CLS; N > 17,000 per cohort).
In practice, birth cohorts represent a considerable time and resource
investment and are thus often limited in size, which represents a major
limitation when studying rare genetic variants, as will be detailed in
section 1.3.4. An additional consideration is that participant drop-out
can further reduce sample size and generate selection bias.

1.2.3 Healthcare cohorts

Healthcare cohorts make use of existing infrastructure. Specifically, indi-
viduals within a given healthcare system are offered the possibility to
donate a biological sample for research purposes. Genetic information
can be extracted from these samples and linked to pre-existing med-
ical records. Over the last years, many hospitals and health systems
have established such cohorts, including the Vanderbilt University Medi-
cal Center’s biobank (BioVU; N = 300,000; whole genome sequencing
planned for 250,000 samples) (54), the Geisinger MyCode Community
Health Initiative (N = 245,000; including 185,000 with genetic information
through the DiscovEHR Project) (55, 56), the Icahn School of medicine
BioMe program (N = 55,000, with genetic information), or the Mass
General Brigham Biobank (N = 145,000, including 65,000 with genetic
information) (57). Importantly, these programs are constantly growing,
which represents one of the main strengths of healthcare cohorts. Yet,
because participants are ascertained based on their interaction with the
healthcare system, there is usually an overrepresentation of diseased
individuals, which is reflected in the higher prevalence of pathogenic
mutations (58).

1.2.4 Population cohorts

Population biobanks are initiatives that invite a large number of volun-
tary participants. Despite, aiming at sampling a representative subset of
the general population, population biobanks have been shown to exhibit
healthy cohort bias (59), i.e., participants are more educated, have a
healthier lifestyle, and experience a lower disease burden compared to
the general population. Population biobanks also tend to have a higher
percentage of female participants (Table 1.3). The extent of this bias
depends on the recruitment scheme and will be strongest in cohorts like
the UK Biobank (UKBB), which is composed of ∼500,000 individuals
that agreed to participate in the study, out of the nine million that were
invited (60, 61). Conversely, it might be milder for national biobanks
that sample a larger fraction of their population, such as the Estonian
Biobank (EstBB) that with ∼200,000 participants samples about a fifth of
the country’s adult population (62). UKBB and EstBB have pioneered the

Sample sizes for healthcare cohorts are reported as of March 2024.

https://www.bristol.ac.uk/alspac/
https://www.oulu.fi/en/university/faculties-and-units/faculty-medicine/northern-finland-birth-cohorts-and-arctic-biobank/northern-finland-birth-cohorts
https://www.dnbc.dk/
https://cls.ucl.ac.uk/
https://victr.vumc.org/biovu-description/
https://news.vumc.org/2023/01/09/nashville-biosciences-and-illumina-announce-sequencing-agreement-with-amgen/
https://www.geisinger.edu/gchs/research/mycode
https://icahn.mssm.edu/research/ipm/programs/biome-biobank
https://www.massgeneralbrigham.org/en/research-and-innovation/participate-in-research/biobank
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field of large-scale biobanks, and they are the biobanks I have worked
with in the context of my dissertation. Over the last few years, many new
biobanks have been created (Table 1.3), while efforts to facilitate collabo-
ration and meta-analyses across biobanks, such as the Global Biobank
Meta-analysis initiative (GBMI) (63), have been undertaken. Thanks to
their large sample size, population biobanks offer the opportunity to
study rare variants in a new light, i.e., in a non-clinical setting. Given the
healthy cohort selection bias, population biobank studies are likely to
underestimate the true allele frequency and effect of these variants. While
strategies to account for this bias have been proposed (64), these studies
can also be seen as complementary to the ones conducted in clinical and
healthcare cohorts. If population cohorts typically have a defined sample
size, it is not uncommon for them to accrue the number of phenotypes
available for the fixed set of participants, making them a great resources
for studying the global health impact of genetic variants. In the following
section, I will review the basic principles of phenotype-genotype associa-
tion studies and elaborate on some more sophisticated approaches that
allowed to tackle challenges encountered in my research.

https://www.globalbiobankmeta.org/
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Table 1.3: List of 10 major population biobanks.
Major population biobanks ordered by decreasing number of individuals with available genetic information. The country of recruitment
is indicated, along with the dominant ancestry group of the cohort. Target sample size is given and current status is indicated for cohorts
that are still recruiting participants. Note that EstBB and deCODE do not have a target sample size. Demographics, including age range
in years and proportion of female individuals (~) are given. Available genetic and selected phenotypes are listed with the number of
individuals (N) for which the data are available in parenthesis. If no sample size is indicated, data are available for the entire current
sample. The baseline assessment typically involves basic questionnaire and physical examination. RNA-seq = RNA-sequencing; WGS =
whole genome sequencing; WES = whole exome sequencing; EHR = linkage to electronic health record.

Name
Country
(ancestry)

Size
(current)

Enroll Age ~ Genotype (N) Phenotypes (N)

UK Biobank
(UKBB) (60, 61)

UK
(European)

500,000
2006-
2010

40-69 54%
Genotyping
WES
WGS

Baseline assessment
EHRs
Biomarkers
Telomere length
Metabolomics
Proteomics (50,000)
Imaging (50,000)

All of Us (9)
US
(European;
African)

1,000,000
(400,000)

2018- ≥ 18 61%
Genotyping (300,000)
WGS (250,000)
Long-reads (1,000)

Baseline assessment
EHRs (250,000)
Biomarkers (250,000)

FinnGen (8)
Finland
(European)

500,000
(400,000)

2017- ≥ 18 57%
Genotyping (250,000)
WGS (3,700)

EHRs

Estonian Biobank
(EstBB) (62)

Estonia
(European)

200,000 2002- ≥ 18 65%
Genotyping
WES (2,500)
WGS (3,000)

Baseline assessment
EHRs
Biomarkers
Metabolomics
RNA-seq (600)
DNA methylation (800)
Microbiome (2,500)

BioBank Japan
(BBJ) (65)

Japan
(East Asian)

200,000
2003-
2008

20-80 47% Genotyping
Baseline assessment
Medical records review

deCODE (10, 66)
Iceland
(European)

160,000 1996- ≥ 18 56%
Genotyping;
WGS (60,000)
Long-reads (3,500)

EHRs
Proteomics (35,500)

Taiwan Biobank
(TWB) (67)

Taiwan
(Han Chinese)

200,000
(150,000)

2012- 20-70 64 %
Genotyping
WGS (2,000)

Baseline assessment
EHRs
Biomarkers
Imaging (38,000)
DNA methylation (2,500)
Metabolomics (1,100)

China Kadoorie
Biobank (CKD)
(68)

China
(Han Chinese)

500,000
2004-
2008

30-79 59% Genotyping (100,000)

Baseline assessment
EHRs
Biomarkers (35,000)
Imaging (35,000)
Proteomics (3,000)

Trøndelag Health
Study (HUNT)
(69, 70)

Norway
(European)

230,000
1984-
2019

18-90 52%
Genotyping (88,000)
WGS (2,200)

Baseline assessment
EHRs
Biomarkers (123,000)
Imaging (1100)
Microbiome (13,000)

Uganda Genome
Resource (UGR)
(71)

Uganda
(African)

7,800 2011 13-60 56%
Genotyping (5,000)
WGS (2,000)

Baseline assessment
Self-reported diseases
Vaccination
Biomarkers

Sample sizes for population biobanks are reported as of March 2024.

https://www.ukbiobank.ac.uk/
https://allofus.nih.gov/
https://www.finngen.fi/en
https://genomics.ut.ee/en/content/estonian-biobank
https://biobankjp.org/en/
https://www.decode.com/
https://www.biobank.org.tw/
https://www.ckbiobank.org/
https://www.ntnu.edu/hunt
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9: Also known as population stratifi-
cation, this phenomenon described the
cryptic presence of multiple subpopu-
lations with different allele frequencies,
which can lead to spurious associations.

10: Typically, one estimates the 95% CI:

95% CI = �̂� ± 1.96 · 𝑆𝐸, assuming
that the parameter estimate comes from
a Gaussian distribution

1.3 Link genotype to phenotype

One of the key goals of quantitative genetics is to establish relations
between genetic variants and phenotypes. Early human genetics studies
used family studies to demonstrate the genetic basis of a particular
phenotype (72). These typically rely on segregation analysis in pedigrees
to confirm the genetic basis of the phenotype and determine its inher-
itance mode, followed by linkage mapping to locate the allelic region
responsible for the phenotype, and targeted investigation of candidate
genes. Completion of the Human Genome Project in the early 2000s (18,
73) has marked a shift in human genetics by facilitating access to genotype
information and bypassing the need for linkage and candidate genes stud-
ies. This opened the doors for genome-wide association study (GWAS).
Conceptually, GWASs consist of running a large number of association
tests to probe the phenotypic impact of genetic variants scattered over
the entire human genome. The first large-scale GWAS by the Wellcome
Trust Case Control Consortium in 2007 showcased the effectiveness of
GWAS in identifying regions contributing to the genetic susceptibility
of seven diseases (74). The study also emphasized the importance of
large sample sizes and the need to adequately control for population
structure9. Since then, GWASs have become a staple of the statistical
genetics toolbox and have been applied to a broad range of human
traits. In the following section, I describe multiple strategies to perform
genotype association tests, with an increasing degree of sophistication,
and a focus on methodology relevant for the ensuing chapters.

1.3.1 Basic statistical concepts behind GWASs

The ultimate goal of a GWAS is to estimate the effect of a variant on
the studied phenotype. For simplicity, let’s start by assuming a haploid
genome, where at a given position, an individual carries either the effect
allele 𝐺1 or the other allele 𝐺0. At its most basic form, the effect 𝛽 of 𝐺1
on a quantitative trait can be viewed as the difference in mean phenotype
values between individuals carrying the effect allele (𝜇𝐺1 ) and those that
do not (𝜇𝐺0 )

𝛽 = 𝜇𝐺1 − 𝜇𝐺0 (1.1)

Estimated effect size, �̂�, can take values between −∞ and +∞. Both the
effect magnitude and significance are considered to determine if 𝐺1
has a meaningful impact on the phenotype. The magnitude of the effect
indicates how much 𝐺1 increases (positive sign) or decreases (negative
sign) the phenotype, with values around zero corresponding to no
effect. To establish whether an effect is significant, uncertainty around
parameters is taken into account. The most frequently used measure of
uncertainty is the standard deviation (SD) or 𝜎, which describes the
variability across observations. The standard error (SE), which describes
how accurately a parameter can be estimated, can be derived from the
SD by dividing it by the square root of the sample size. The SE is used
to calculate the confidence intervals (CI)10, which reflects the range in
which the parameter is expected to be contained 95% of the time. The SE
of 𝜇𝐺1 (𝑆𝐸𝐺1 ) and 𝜇𝐺0 (𝑆𝐸𝐺0 ) can also be used to derive a test statistic
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11: The difference is whether one as-
sumes an error (t-test) or not (z-test)
in the SE estimators. At small sample
sizes, the t-test is more accurate but the
resulting p-values become virtually in-
distinguishable at large sample sizes.

12: The Cochran–Armitage test for
trend offers an alternative for 2 × 3 con-
tingency tables, allowing to test the as-
sociation with an ordinal variable (e.g.,
three genotype groups under an additive
model).

13: As reported by others (76) and ex-
plored in further detail in Chapter 6,
adjustment for covariates should not be
applied blindly as it can bias effect size
estimates.

𝑡 =
𝜇𝐺1 − 𝜇𝐺0√
𝑆𝐸2

𝐺1
+ 𝑆𝐸2

𝐺0

(1.2)

The estimator 𝑡 can be used to perform a t-test or a z-test11, from which
a p-value can be derived. The two-sided p-value corresponds to the
probability of obtaining a value of |𝑡 | at least as extreme as the one
observed under the assumption that the true effect size is null. The latter
are typically considered statistically significant when the probability is
lower than 5%.

While ordinal traits can be treated as quantitative traits, associations
between genotype and binary traits are typically assessed through Fisher
tests (or chi-squared tests) which return the effect of the genotype on the
trait as an odds ratio (OR). Odds indicate how many times more likely it
is for an event to occur (e.g., case) than it is not to occur (e.g., control),
so that if an event has a probability 𝑝, its odds are 𝑝/(1 − 𝑝). Hence, the
𝑂𝑅𝐺1 reflects the relative change in odds for individuals carrying 𝐺1,
compared to those carrying 𝐺0. Based on the contingency Table 1.412 it is
defined as

𝑂𝑅𝐺1 =
𝑏/𝑑
𝑎/𝑐 =

𝑏𝑐

𝑑𝑎
(1.3)

Table 1.4: Contingency table.
𝑎 and 𝑏 represent the number of cases,
and 𝑐 and 𝑑 represent the number of
controls, carrying 𝐺0 and 𝐺1.

G0 G1
case 𝑎 𝑏

control 𝑐 𝑑

Estimated �𝑂𝑅𝐺1 can take values between 0 and +∞, indicating whether
𝐺1 increases (OR > 1) or decreases (OR < 1) the risk to be a case. OR are
often transformed to log(OR), which analogously to 𝛽, range from −∞
and+∞. This transformation notably allows estimation of the uncertainty
parameter

𝑆𝐸(𝑙𝑜𝑔(�𝑂𝑅𝐺1)) =
√

1
𝑎
+ 1
𝑏
+ 1
𝑐
+ 1
𝑑

(1.4)

which can then be used to calculate the 95% confidence of the �𝑂𝑅𝐺1

95% 𝐶𝐼 = 𝑒 𝑙𝑜𝑔(
�𝑂𝑅𝐺1 ) ± 1.96 · 𝑆𝐸(𝑙𝑜𝑔(�𝑂𝑅𝐺1 )) (1.5)

While the above-described approaches allow to obtain an estimate for
genetic effect sizes, along with measures for the parameter uncertainty
and significance, they suffer a major caveat, i.e., they fail to account for
covariates, which are defined as variables that show an association with
the phenotype of interest. Typically, these include demographic factors
such as age, age2, and sex, as well as the principal components (PCs) of the
SNP genotype matrix, which capture population stratification patterns
(75). Adjusting for covariates is paramount to obtain unbiased genetic
effects and avoid detection of spurious associations (e.g., adjusting for
population structure) and can increase statistical power by accounting for
phenotypic variance that is not caused by genetic factors (e.g., adjusting
for age or sex)13. Hence GWAS are practically always implemented
using multivariate regression models that allow to account for possible
confounding factors and offer more flexibility in terms of genotype
encoding.
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14: There are multiple methods to esti-
mate parameter values, all of which also
provide a measure for the parameter’s
uncertainty and significance. A popular
method is the least-squares approach
that aims at minimizing the sum of the
squared residuals (i.e., the difference be-
tween observed and fitted values) to iden-
tify the best fitting equation model.

15: This framework aims at estimating
parameter values by maximizing the
probability of observing the data at hand,
through an iterative process. It further
assumes that the parameter follows a
particular distribution, namely a Bino-
mial distribution for the data sample,
where each example is one outcome of a
Bernoulli trial.

16: Scenario wherein the predictor(s)
perfectly predict(s) the outcome, gener-
ating infinite coefficients with large SEs.

1.3.2 Fixed effect models

Early GWASs were conducted in cohorts of unrelated individuals of
homogenous ancestry, with the choice of the regression model depending
on the nature of the assessed trait. For quantitative (and ordinal) traits
fixed effect linear regressions are typically used. For each variant, one
fits a model:

𝑌 = 𝛽0 + 𝑋𝛽𝐺 +𝑊𝛽𝐶 + 𝜖 , where 𝜖 ∼ N(0, 𝜎2) (1.6)

In this equation, the input data represent:

▶ 𝑌: a vector of quantitative phenotype values, that can be normal-
ized to obtain effect sizes in SD instead of phenotype units.

▶ 𝑋: a vector of genotype values for the investigated variant. GWAS
typically consider SNV genotypes under an additive model, which
assumes that the phenotype is proportional to the dosage of the
effect allele (Table 1.5; Figure 1.8).

▶ 𝑊 : a matrix of covariates tailored to the research question but
typically including age, sex, and genotype PCs.

Both 𝑋 and𝑊 are referred to as predictors of the outcome 𝑌. For each
predictor, we estimate a parameter14 that reflects the weight of this
predictor in determining the outcome. These correspond to:

▶ 𝛽0: the intercept, which is typically not further considered and
corresponds to the phenotype value if all other predictors are null.

▶ 𝛽𝐺: genetic effect of the effect allele on the the phenotype (Figure
1.8).

▶ 𝛽𝐶 : covariates effects on the phenotype, which are typically not
further considered.

For binary traits, the method of choice is fixed effect logistic regression,
a form of generalized mixed model that explains the logarithm of the
odds for an event with a probability 𝑝 to occur, as a linear function of the
genotype 𝑋 and the covariates𝑊

𝑙𝑜𝑔( 𝑝

1 − 𝑝 ) = 𝛽0 + 𝑋𝛽𝐺 +𝑊𝛽𝐶 (1.7)

As such, the same parameters as for the linear regression presented
in equation (1.6) are estimated, usually through maximum likelihood
estimation15. Following the reverse procedure than the one described in
section 1.3.1, �𝑂𝑅𝐺 can be derived as the exponential of 𝛽𝐺 . Alternatively,
one can also derive the probability 𝑝 as

𝑝 =
1

1 + 𝑒−(𝛽0+𝑋𝛽𝐺+𝑊𝛽𝐶 )
(1.8)

Unlike linear regression, logistic regression might fail to converge, i.e., the
maximum likelihood estimation could not find an appropriate solution.
This can occur due to the inclusion of a too large number of predictors (i.e.,
covariates) compared to the number of cases, high correlation between
predictors, sparseness in data, or data separation16.



18 1 Introduction

17: 𝜆 corresponds to the median of
observed chi-squared test statistics di-
vided by the expected median of the
chi-squared distribution

18: False positives (type I error) are asso-
ciations deemed significant but for which
the true effect is null; They oppose false
negatives (type II error), which are not
deemed significant but have a true non-
null effect.

1.3.3 Reporting & interpreting GWASs

Summary statistics & data reporting
Effect size estimates for all assessed variants, including non-significant
ones, are reported in GWAS summary statistics. Because GWAS sum-
mary statistics do not contain any individual-level data, they can be pub-
licly shared without data privacy concerns. This is often done through
the NHGRI-EBI GWAS Catalog (77, 78), a free and user-friendly database
hosting over 60,000 summary statistics. In an effort to promote data
portability and reproducible, the GWAS-SSF format has been proposed
(79), which requires reporting of specific information in a standardized
way (Figure 1.6A).

Figure 1.6: GWAS summary statistics.
(A) Example of summary statistics in
GWAS-SSF format. Mandatory columns
include variant chromosome and posi-
tion, effect (EA) and other (OA) allele,
effect size (beta) with standard error (SE),
EA frequency (EAF), and p-value. Data
encouraged to be reported are listed,
with the option to add further columns.
A metadata file should be provided. (B)
Representation of the GWAS summary
statistics as a Manhattan plot showing
the negative logarithm of the p-value
(y-axis) against the genomic position (x-
axis; labels indicate chromosomes) for
each variant (dot). Variants surpassing
-log10(5 × 10-8) (red dashed line) are con-
sidered as significant.

GWAS quality control and interpretation
Once associations have been computed for all variants, results are typi-
cally visualized as Manhattan plots (Figure 1.6B). In addition, deviation
of the observed -log10 transformed p-values against the expectation under
a null model of no significant associations is assessed through QQ plots
(quantile-quantile plot), where one expects a late and abrupt deviation
from the expectation. This is often complemented by calculating the
genomic inflation factor 𝜆17, whose value is expected to be close to 1.
Genomic inflation (𝜆 > 1) indicates either poor control for relatedness
and/or population structure or a polygenic genetic architecture (80).
Polygenicity refers to traits influenced by a large number of independent
loci and represents the dominant genetic architecture of complex phe-
notypes (81). More rarely, 𝜆 will show deflation (𝜆 < 1), which can be
caused by pre-correction of the phenotype for population stratification
(assuming a strong correlation between the latter and the tested variants),
rare variants, or strong correlation across variants (82, 83).

Significant associations are selected based on a Bonferroni correction
that accounts for multiple testing. Indeed, if each test has a 5% chance
for type I error18, the number of false positives becomes unacceptable
(e.g., 1,000,000 × 0.05 = 50,000). Bonferroni correction adjusts for this
by controlling the family-wise error rate, defined as the probability of
making at least one type I error. For an association to be significant,
𝑝 < 𝑝𝐵𝑜𝑛 𝑓 𝑒𝑟𝑟𝑜𝑛𝑖 = 𝛼

𝑚 , where 𝛼 is the accepted probability for type I

Number of summary statistics hosted by the GWAS Catalog as of February 2024.

https://github.com/EBISPOT/gwas-summary-statistics-standard


1.3 Link genotype to phenotype 19

Figure 1.7: GWAS stepwise conditional analysis.
Schematic representation of the stepwise conditional analysis procedure. In the first iteration, the lead genome-wide signal (i.e., most
significant) is selected (orange dot). The GWAS is performed anew, conditioning on the genotype of the lead variant, i.e., by including it
as a covariate in the regression model. As a result the association p-value of that variant – and all the ones in linkage disequilibrium
with it – nears one. The same procedure is repeated on the new summary statistics and repeated until there are no more genome-wide
significant signals. Variants selected as lead variants generate a list of independently associated signals. Note that it is possible to have
multiple independent signals in the same "skyscraper" of the Manhattan plot.

19: Imputation refers to the inference of
genetic variants that were not directly
genotyped using a references panel,
i.e., a set of high-quality, deeply se-
quenced genomes. Imputation is pos-
sible as blocks of variants in linkage
disequilibrium, i.e., haplotypes, tend to
be co-inherited. Hence, the presence of
a variant predicts the genotype at adja-
cent locations (84). Because patterns of
linkage disequilibrium vary across popu-
lations, the reference panel should match
the ancestry of the imputed samples.

error (usually 𝛼 = 0.05) and 𝑚 is the number of independent tests
performed. While GWASs making used of imputed variants19 typically
perform several million tests, these are not independent due to linkage
disequilibrium (LD). It has been estimated that there are about 1,000,000
independent loci or effective tests. Hence, the commonly accepted
threshold for significance is set at p ≤ 0.05/1,000,000 = 5 × 10-8. This
threshold might need adjustment when working with other mutational
classes to accommodate the number of effective tests performed. The
latter can be determined as the number of eigenvalues required to explain
99.5% of the variance in the genotype matrix (85).

Because of LD, the number of significant tests might not correspond to the
number of independent signals, and many variants will appear significant
because they are correlated with the causal variant. This phenomenon can
be visualized as the Manhattan plot "skyscrapers" formed by correlated
data points. Stepwise conditional analysis determines the number of
independent signals by iterative conditioning on the lead variant (Figure
1.7). A caveat of this approach is that the most significantly associated
variant is not necessarily the causal one, which often is not even assessed.
The process of prioritizing and identifying causal variants is called fine-
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20: Consanguinity refers to mating be-
tween close relatives. It will increase
homozygosity (also termed loss of het-
erozygosity (LOH)) and thereby the ex-
pression of recessive phenotypes.

mapping and often relies on Bayesian models that incorporate prior
assumptions, e.g., on the number of causal effects and their distribution,
and will output a credible set of plausible causal variants. Commonly
used tools include FINEMAP (86) or SuSIE (87), which generate lists of
independent, prioritized GWAS signals that form the starting point for
mechanistic and functional studies.

1.3.4 GWAS model extensions

Linear and logistic regression represent the foundation of GWASs and
have been widely implemented in software such as PLINK (88). Since,
extensions have been implemented that address various shortcomings.

Alternative association models
While there exist multiple models of inheritance (Table 1.5), determining
which one is the best fitting comes at the cost of power as it requires
estimation of multiple parameters. For this reason, GWAS favor additive
models, which only necessitate estimation of a single parameter and
were shown to capture the bulk of phenotypic variability explained
by genetic variance, also known as heritability (89, 90). Sometimes,
genotype-phenotype relations are better captured by models that use a
different genotype encoding (Table 1.5; Figure 1.8). Recessive models are
particularly useful in populations with a high degree of consanguinity20,
such as in Pakistani individuals, where a recent study identified 185
recessive effects, 82% of which did not show an additive effect (91).
Another situation in which recessive models should be applied are
isolated populations having undergone a population bottleneck, such
as in Finland (92) or Greenland (93). Bottlenecks are characterized by a
strong population size reduction that diminishes genetic diversity. While
this leads to the loss of many rare alleles, the ones that are retained will be
present at higher frequencies, increasing homozygosity and facilitating
the study of recessive phenotypes (94, 95). Examples include the "Finish
Disease Heritage" (96) or the "Jewish Genetic Disorders" (97), which
represent primarily recessive disorders that are particularly frequent in
Finish and Ashkenazi Jewish populations, respectively, due to the high
rate of carriers in these populations.

An alternative approach to genotype re-coding is to adjust phenotypes
for known additive effects and test for residual contribution to trait
variation, which allows to identify loci that contribute to the phenotype
in a non-additive fashion. This approach is termed dominance GWAS,
with dominance being defined as any deviation from a purely additive
effect, thus encompassing all non-additive models in Table 1.5. Applying
this approach to 1,060 phenotypes in UKBB revealed 183 such loci (98).
Still, contribution of non-additive effects to phenotypic variance was
minimal and sample sizes in the orders of millions will be necessary to
capture dominance effects with effect sizes similar to the ones currently
detected with additive models (98).

Heritability

Phenotypic variance can be decomposed into genetic and environmen-
tal variance. The former is composed of additive, dominance, and

http://christianbenner.com/
https://stephenslab.github.io/susieR/articles/finemapping.html
https://www.cog-genomics.org/plink/2.0/
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epistatic variance, which capture the phenotypic contribution of indi-
vidual alleles, within locus interactions, and cross-loci interactions,
respectively. Based on this, broad-sense heritability (H2) is defined
as the proportion of phenotypic variance that can be explained by
the total genetic variance in a given population at a given time point.
It contrasts with narrow-sense heritability (h2), that is attributable
to additive genetic variance (99). Historically, twin and family studies
were used to estimate heritability. Because these methods rely on
assumptions regarding the relatedness of the individuals and the
extent of shared environment, they tend to overestimate heritability
(100). More recently, results from GWASs have been used to estimate
SNP-based h2

SNP in unrelated individuals, including contribution
of variants that do not pass the genome-wide significance thresh-
old (101). Two popular methods to estimate h2

SNP include genomic
relatedness restricted maximum-likelihood (GREML) implemented
in GCTA (102) and linkage disequilibrium score regression (LDSC)
(103). Many extensions have been developed that go beyond the scope
of this introduction. An interesting concept is that these approaches
allow partitioning of heritability estimates based on genomic region,
annotations, or allele frequency (e.g., (104–107)), allowing to compare
the contribution of various sets of variants to phenotypic variability.

In the late 2000s, h2
GWAS estimated from genome-wide significant

GWAS signals were largely discrepant from the ones estimated
through twin studies (108). For instance, height had a h2

GWAS of
∼5%, compared to a ∼80% heritability estimated based on twin stud-
ies. Explanations for this missing heritability included unmeasured
contribution of:

▶ Variants with small effect size.
▶ Rare variants.
▶ Structural variants.
▶ Non-additive effect (i.e., dominance and epistasis).
▶ Inadequate accounting for shared environment.

Fifteen years later, we know more about the contribution of these
individual factors. Variants with small effect sizes indeed contribute
to a vast part of the missing heritability, with recent h2

SNP estimates
for height being at ∼50% (109). Despite still being far from estimates
from twin studies, the study shows that in individuals of European
ancestry, h2

SNP from common additive effects reached saturation (109).
This gap can partly be filled when accounting for additive effects from
rare variants (MAF > 0.01%), yielding a heritability estimate of ∼70%
(110). Yet, assessing a broader spectrum of phenotypes, the average
heritability explained by rare coding variants was estimated to only
∼1% (106). This discrepancy suggests that rare non-coding variants
might substantially contribute to heritability, as supported by the
recent identification of rare non-coding variants regulating height
(111). On the other hand, the global contribution of non-additive effect
was repeatedly also shown to be minimal (89, 90, 98), in spite of
striking examples of clinically relevant epistasis (112).

The contribution of SVs to heritability has not yet been properly
assessed for complex traits, but several studies have shown that SVs
contribute to up to 8% of heritability of gene expression (113–116). In
Chapter 3, I crudely explore the contribution of large and rare CNVs
to the heritability of the disease burden in the UKBB, suggesting a
minimal contribution.

https://yanglab.westlake.edu.cn/software/gcta/#Overview
https://github.com/bulik/ldsc
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21: Spike-and-slab priors, which assume
that only a fraction of all variants are
causal, are popular. Being more realistic
than earlier Gaussian priors for effect
size distribution, they explain a larger
fraction of phenotypic variance.

Table 1.5: Inheritance models.
Models describing genotype-phenotype
relation used in GWASs. Encoding of the
homozygous reference, heterozygous,
and homozygous alternate genotypes is
indicated in the right column. For the ad-
ditive model, the encoding corresponds
to the dosage of the alternate or effect
allele. Intermediate models of e.g., dom-
inance with reduced penetrance (0-0.8-1)
or recessiveness with rare expressing het-
erozygotes (0-0.2-1) are possible. As de-
scribed in Chapters 2 and 3, GWAS with
other types of variants, such as CNVs,
opens the door to an even larger number
of association models.

Model Description Encoding

Additive Each additional copy of the effect allele contributes
equally to the phenotype. All genotype groups have a
different phenotype.

0-1-2

Dominant Carrying a single copy of the effect allele is sufficient
to produce the phenotype. Both individuals that are
heterozygous and homozygous for the effect allele
have the same phenotype.

0-1-1

Recessive Carrying two copies of the risk allele is required to
express the phenotype. Only individuals homozygous
for the effect allele exhibit the phenotype.

0-0-1

Over-dominant Heterozygous individuals exhibit a different pheno-
type than the two homozygous groups, which exhibit
the same phenotype.

0-1-0

Figure 1.8: GWAS association models.
Schematic representation of the models
in Table 1.5. For each variant, phenotypic
values (quantitative traits) or disease risk
(binary trait) (y-axis) are plotted against
genotype groups (x-axis). Top: Qualita-
tive genotype groups (top x-axis) are
encoded numerically (bottom x-axis) to
fit different association models. Bottom:
Plotting of data according to their nu-
merical encoding allows to estimate the
effect of the variant, 𝛽, as the slope of the
fitted regression line (dotted gray line).

Mixed effect regression
The introduction of mixed effect models that condition on various
covariates without estimating each regression coefficient, but only certain
distributional properties of them, represent a major advancement in
GWAS methodology (117, 118). One of the first applications has been to
include a second error term, 𝑢, that captures the heritable component of
random variation as its variance is proportional to the kinship matrix.
The latter can be derived from genetic data and encompasses fine-
scale population structure and cryptic relatedness, which represent
important confounding factors in GWASs. By conditioning on 𝑢, the
false positive rate and the error variance of estimated genetic effects
are reduced. Because exclusion of related individuals becomes obsolete,
these models can be applied to larger sample sizes, leading to a gain in
power. Another mechanism through which mixed models increase power
is by conditioning on genetic variants – other than the variant of interest
– that are linked to the phenotype by either being causal, tagging causal
variants, or through confounding mechanisms. This concept, known
as whole-genome regression, reduces phenotypic variance that is not
caused by the variant of interest, leading to more accurate effect size
estimation (101, 119).

Although computationally intensive due to the requirement of large
matrix inversions, several software tools have implemented efficient
versions of both linear and generalized linear mixed models. These allow
for flexible prior distribution of SNV effect sizes21 and can deal with
both quantitative (e.g., GEMMA (120), BOLT-LMM (121), or fastGWA
(122)) and binary (e.g., SAIGE (123)) traits. Typically, these methods rely
on a two-step approach. Firstly, a model is fitted to a restricted set of

https://github.com/genetics-statistics/GEMMA
https://alkesgroup.broadinstitute.org/BOLT-LMM/BOLT-LMM_manual.html
https://yanglab.westlake.edu.cn/software/gcta/#Overview
https://github.com/weizhouUMICH/SAIGE
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22: Multi-trait analysis or simultaneous
analysis of multiple traits reduces com-
putation time by requiring a single pass
over the genetic data. It was originally
developed by BEGENIE.

23: When sample size or case count
is too low, the log-likelihood function
will not take the assumed asymptotically
quadratic shape, and resulting p-values
estimations will be off.

24: The probability density function is
estimated with a flexible with a flexible
function of the cumulant generating func-
tion, which corresponds to the logarithm
of the moment generating function, i.e.,
𝐾𝑋 (𝑡) = log(𝐸[𝑒 𝑡·𝑋 ]).

genome-wide SNVs. This model is used to generate individual-level
phenotype predictors through a leave-one-chromosome-out scheme,
wherein one predictor per chromosome is built, using variants located
on all other chromosomes. In the second step, a larger set of variants
(from the same sample) is tested for association, conditioning on the step
1 predictor that does not include the chromosome on which the assessed
variant is located. By fully decoupling steps 1 and 2 and allowing them
to be calculated in parallel for multiple quantitative and binary traits22,
REGENIE (124) tremendously reduced computation time and memory
usage without compromising statistical efficiency.

Case-control imbalance
A common problem when performing GWASs in population biobanks
that tend to be depleted of disease cases (Figure 1.5), is that the number
of controls outnumbers the number of cases, sometimes by several orders
of magnitude. Imbalance in the case-control ratio leads to inflation of
type I error, a phenomenon further exacerbated in the context of rare
variant analyses due to invalidation of the asymptotic assumptions23

for logistic regression (125). Two approaches are commonly used to
mitigate this issue. Firth bias-corrected logistic regression (126) uses a
penalized likelihood function to correct the parameter estimates, resulting
in well-calibrated type 1 error and sensible effect size and SE estimates. A
second approach is to use a saddlepoint approximation (SPA) (127, 128)
which approximates the probability density function in a more flexible
manner24. Unlike SPA, which better approximates the full shape of the
distribution, the normal approximation only considers the distribution’s
mean and variance and thus performs poorly at the tails, especially if
these are skewed as would be the case when the case-control ratio is
imbalanced. While both Firth and SPA corrections efficiently control type
I errors in genetic studies (125, 129), they are computationally intensive.
A fast SPA implementation has been proposed (129) and is used in
SAIGE (123), although it was found to inflate effect size estimates (124).
REGENIE includes both SPA and Firth correction, including a 60-times
faster approximate Firth correction yielding highly concordant results to
exact Firth regression (124). This approximation is also implemented in
the generalized linear model function of PLINK v2 (88).

Age of disease onset
Diseases with a stronger genetic, as opposed to environmental, compo-
nent tend to have an earlier age of onset (130), suggesting that the age
of onset captures information that could be included in GWAS. Modern
biobanks are often coupled with electronic health records that include the
date on which a diagnosis was received. This information can be incorpo-
rated through time-to-event or survival analysis. The latter focuses both
on whether an event has occurred and when it occurred, leading to a gain
in power over logistic regression under certain circumstances (131–133).
In a GWAS context, time-to-event analysis can inform whether a specific
mutation associates with an earlier or later age of disease onset.

Models used for time-to-event analysis need to be able to handle censored
data, a type of missing data where the subject did not experience the
event of interest during the follow-up time (Figure 1.9A). For instance,
multivariable Cox proportional hazards (CoxPH) models (134) have
been efficiently implemented for genome-wide applications in both fixed
and random models and often make use of SPA to deal with heavily

https://rgcgithub.github.io/regenie/
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25: Despite many similarities, HR and
OR differ in that they reflect the instanta-
neous risk over the study period, as op-
posed to the cumulative risk. This makes
HR less prone to biases linked to the
selection of the assessment endpoint.

censored data or low-frequency variants (135–137). CoxPH regression is
a semi-parametric model of the hazard function

𝜆(𝑡) = 𝜆0(𝑡) · 𝑒𝛽0+𝑋𝛽𝐺+𝑊𝛽𝐶 (1.9)

The instant risk for experiencing an event at time 𝑡, given by𝜆(𝑡), depends
on a non-parametric and parametric component. The non-parametric
component, 𝜆0(𝑡), is termed baseline hazard. It varies with time (mono-
tonic increase) and corresponds to the hazard if the parametric part of
the equation is null. The latter represents the additional contribution
to the hazard by a set of predictors – here the the genotype vector 𝑋
and the covariate matrix 𝑊 , using the same notation as in the linear
regression Equation 1.6 – and is not time-dependent. The independence
between the parametric component of the equation and time is key to the
proportional hazard assumption underlying the model. It implies that
the hazard function is proportional over time, making the hazard ratio
(HR) time-invariant (Figure 1.9B). The HR of the genetic effect represents
the ratio between the hazards of individuals that carry the effect allele
(𝐺1) and those that do not (𝐺0)

𝐻𝑅 =
𝜆(𝑡 |𝑋 = 𝐺1)
𝜆(𝑡 |𝑋 = 𝐺0)

= 𝑒𝛽𝐺 (1.10)

The HR thus represents the exponent of the effect size in the survival
model, which is estimated by maximizing the Cox partial likelihood func-
tion. Estimated for each predictor in the parametric part of the equation,
HR takes values between 0 and +∞25. HR > 1 indicates increased risk
(i.e., earlier occurrence) and HR < 1 indicates decreased risk (i.e., later
occurrence). A common way of visualizing results from survival analysis
is by leveraging a non-parametric approach to survival analysis based
on the Kaplan-Meier estimator (Figure 1.9C).

Figure 1.9: Survival analysis.
(A) Example of 12 individuals assessed for a disease diagnosis (dot) in a study period from 1985-2005 (blue window). Some individuals
developed the disease after the assessment window or have not developed it to date (arrow), corresponding to right censoring. (B)
Hazard (y-axis) over time (x-axis) for a univariable Cox proportional hazards model whose only predictor is the presence of the risk
increasing 𝐺1 allele. The baseline hazard function (blue curve) has a monotonic increase over time and corresponds to the hazard
function of individuals that do not carry 𝐺1. Individuals carrying 𝐺1, have a time-constant additional contribution to the baseline hazard,
resulting in a higher hazard (red dashed curve). Because hazard functions are proportional, the hazard ratio (HR) is constant over time.
Note that baseline hazard does not have to be estimated to infer the HR. (C) Representation of time-to-event analysis as a Kaplan-Meier
survival curves that depict the percentage of individuals that did not receive a diagnosis for the disease of interest (y-axis) against time
(x-axis) for individuals belonging to the two same groups as in (B).
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26: Statistical power is defined as the
probability to detect a true effect, i.e.,
with 80% power, on average, 8 out of
10 true effects will be called significant.
In a linear regression model, to detect
a non-zero effect at a fixed significance
threshold (𝛼), approximately the
following inequality needs to hold:
−
√

2𝑞(1 − 𝑞) · |𝛽 | ·
√
𝑁 < 𝑇𝛼 , where 𝑞 is

the variant’s frequency, 𝛽 its effect size,
𝑁 the sample size, and 𝑇𝛼 = Φ−1(𝛼/2).
When the variant is extremely rare
((1 − 𝑞) ≈ 1), the lower bound for the

squared effect size is 𝛽2 > 1
𝑞 · 𝑇

2
𝛼

2𝑁 .

27: The term is derived from auctions,
where each bidder estimates in an unbi-
ased way the true value of the item, with
an error margin. Yet, the bidder that over-
estimates the true value will provide the
highest bid and win the auction.

Recently, creative alternatives to CoxPH have been developed to integrate
age of disease onset information. These are based, for example, on
liability threshold models (138) that stipulate that for a given disease,
each individual has a liability 𝑙 that follows a normal distribution (Figure
1.5). If 𝑙 exceeds a certain threshold, the individual is a case, otherwise a
control. Notably, the probability for 𝑙 to exceed the threshold corresponds
to the disease’s lifetime prevalence. The ADuLT framework estimates
each individual’s genetic liability by incorporating birth year, sex, and
age-of-onset information to generate personalized thresholds (139). The
estimated genetic liability can then be used as a phenotype to perform
GWAS through any software handling quantitative traits.

Rare variants
Historically, GWASs have focused on common SNPs, i.e., the ones that
are either directly genotyped or that can be imputed with good accuracy.
Sequencing has made it possible to assess rare variants. By definition,
these variants are only present in a handful of individuals. At constant
power, there is a hyperbolic increase in the required (squared) effect
size to detect an association with a variant as its frequency decreases
(Figure 1.10)26. As such, only variants with extremely large effects will
be identified as genome-wide significant. This loss of power also makes
rare variant association testing more prone to Winner’s curse27, as in
a situation where power is not adequate, signals called significant are
more likely to have been over-estimated (140).

Figure 1.10: GWAS detection power.
The orange area depicts the range of vari-
ant effects size (y-axis) and frequency
(x-axis) combinations in which signal de-
tection power is > 80%. The dotted black
line delimits the 1% frequency threshold
used to define rare variants.

A common strategy to counter the loss of power linked to rare variant
association testing is to perform a joint analysis of multiple rare variants
grouped into a single analysis unit, most often a gene or an exon (141).
Included variants are usually selected by applying various filters or masks
on the variant’s frequency or predicted functional impact (e.g., LoF). The
advantage of such an approach is double as not only does it increase
signal strength, but it also reduces the number of performed statistical
tests, hence the multiple testing burden. Simple burden tests summarize
information across considered variants either as i) a binary variable
reflecting the presence of at least one rare allele, ii) a discrete variable
reflecting the count of rare alleles, or iii) a weighted sum that gives more
weight to specific variants (e.g., based on frequency). A limitation of this
approach is that it assumes that all variants affect the phenotype with the
same magnitude and direction of effect, which is not always realistic and
can lead to power loss. Variance component tests, such as the sequence
kernel association test (SKAT) (142), do not rely on these assumptions
and allow simultaneous testing of both rare and common variants. The
optimal unified SKAT-O test further improves on both approaches by
selecting the best linear combination of the burden test and SKAT to
maximize test power, even in low sample sizes (143). These methods have
been implemented in major GWAS software, including REGENIE (124)
and SAIGE-GENE+ (144), and have been applied to perform gene-level
burden tests in cohorts such as UKBB on thousands of phenotypes (6,
145). Results are publicly available through Genebass (145).

Phenome-wide association studies
Instead of testing all variants genome-wide for association with a specific
trait, one can also test the association between a single genetic variant
and a large spectrum of phenotypes, an approach termed phenome-wide
association studies (PheWASs). Conceptually similar yet complementary

https://www.leelabsg.org/software
https://www.leelabsg.org/software
https://app.genebass.org/
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28: A textbook example is a GWAS sig-
nal for obesity mapping to FTO (163, 164).
Later mechanistic studies showed that
the variant acts by de-repressing expres-
sion of the adipocyte regulator genes
IRX3 and IRX5, located hundreds of kilo-
base pairs away (165).

to GWASs, PheWASs require special consideration regarding phenotype
definition, as well as tailored multiple-testing correction approaches (146).
Notably, PheWASs reveal the pleiotropy of genetic variants, allowing the
detection of shared genetic mechanisms. These are particularly relevant
when considering intermediate molecular phenotypes, as I discuss in the
following section.

1.3.5 Leveraging molecular phenotypes

Molecular quantitative trait loci (QTLs)
GWASs can establish associations between genetic variants and pheno-
types, yet due to phenomena such as confounding and reverse causality,
correlation does not equate to causation. In genetics the concept of causal-
ity is more often probabilistic than deterministic. Yet, the concept remains
key in the optic of developing interventional approaches, which often
rely on knowledge about the gene whose disruption causes the altered
phenotype. Only 2–3% of GWAS signals are fine-mapped to coding
variants and thus have a clear candidate gene (81). For the remaining
signals, the gene closest to the GWAS signal has been shown to often
be the causal gene (6, 161, 162), despite some notably misleading exam-
ples28. A strategy that gained traction over the last decade is to leverage
molecular phenotypes to identify causal genes. GWAS can be performed
on these phenotypes to identify molecular quantitative trait loci (QTLs),
i.e., genetic variants that affect the levels of DNA methylation (mQTLs),
gene expression (eQTLs), proteins (pQTL), or metabolites (metQTLs)
(Table 1.6). Given the high combinatorial space (genome-wide variants
× hundreds of molecular traits) and the strong holding of the nearest
gene hypothesis (151, 155), QTL studies often restrict association testing
to the cis region, which corresponds to variants ± 1 Mb away from the

Table 1.6: List of major molecular QTL studies.
List of studies coupling genotype to molecular phenotype measurements, enabling QTL analyses. For each study, the used technology,
number of participants (N), number of assessed molecular entities (Phenotypes), and analyzed tissue(s) are indicated. Methylation/ex-
pression array and RNA-sequencing (RNA-seq) rely on the same principle as genotyping arrays and short-read sequencing, which are
described in the context of CNV detection in section 1.4.2. SOMAscan and Olink are affinity proteomics approaches that rely on binding
of proteins by nucleotide-based antibodies/reagents, enabling protein detection and quantification through standard DNA analysis
tools. Advantages of these technologies over mass spectrometry-based proteomics include higher throughput and low sample volume
requirement, at the cost of being targeted, and having lower molecular specificity (147). Metabolomics quantification typically uses mass
spectrometry or nuclear magnetic resonance (NMR). While the former offers the best sensitivity, NMR spectroscopy has the advantage of
being highly reproducible, requiring low sample preparation, and being non-destructive (148).

Omics Study Technology N Phenotypes Tissue
Methylome

(mQTLs)
GTEx (149) Methylation array 424 ∼750,000 9 tissues
GoDMC (150) Methylation array 27,750 ∼420,000 whole blood

Transcriptome
(eQTLs)

GTEx (151) RNA-seq 838 ∼27,000 49 tissues
eQTL Catalog (152) RNA-seq & expression array 5,714 ∼35,000 69 tissues
MetaBrain (153) RNA-seq 6,518 ∼19,000 7 brain tissues
eQTLGen (154) RNA-seq & expression array 31,684 ∼20,000 whole blood

Proteome
(pQTLs)

INTERVAL (155) SOMAscan 3,301 3,622 plasma
SCALLOP (156) Olink 30,931 90 plasma
deCODE (157) SOMAscan 35,559 4,719 plasma
UKBB (4) Olink 54,219 2,923 plasma

Metabolome
(metQTLs)

KORA/TwinsUK (158) Mass spectrometry 7,824 486 plasma
CLSA (159) Mass spectrometry 8,299 1,091 plasma
Meta-analysis (160) Mass spectrometry 8,569-86,507 174 plasma
UKBB (5) NMR 118,461 249 plasma

https://gtexportal.org/home/aboutAdultGtex
http://www.godmc.org.uk/
https://gtexportal.org/home/aboutAdultGtex
https://www.ebi.ac.uk/eqtl/
https://www.metabrain.nl/
https://www.eqtlgen.org/phase1.html
https://www.donorhealth-btru.nihr.ac.uk/studies/interval-study/
https://www.scallop-consortium.org/
https://www.decode.com/
https://www.ukbiobank.ac.uk/
https://www.helmholtz-munich.de/en/epi/cohort/kora
https://twinsuk.ac.uk/
https://www.clsa-elcv.ca/
https://www.ukbiobank.ac.uk/
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29: Due to increased exposure to exter-
nal factor and regulatory processes, QTL
effects weaken across omic layers, the fur-
ther downstream from DNA (e.g., tran-
script > protein > metabolite) (166).

30: Marginal effects are estimated by
testing one variant at the time and can
be affected by other variants in LD. They
oppose joint effects, which do account
for variants in LD.

methylation site or gene encoding for the assessed transcript/protein.
This opposes trans studies that estimate association with all variants
genome-wide. Due to differences in the throughput of technologies used
to measure molecular phenotypes, eQTLs have benefited from larger
sample sizes, which combined with their straightforward interpretation
and proximity to the genotype29, makes them the most widely studied
type of QTL. Here, I briefly discuss two methods that leverage QTLs:
colocalization and Mendelian randomization (MR).

Integrating QTLs & GWAS results
Colocalization can be viewed as an extension of fine-mapping to multiple
traits. Providing that two traits show an association at a given genetic
locus, colocalization leverages the association signal of a large number of
variants in the region to distinguish between two scenarios: the signals
are caused by the same causal variant (i.e., colocalization) or by two
different variants, that are possibly in LD30. Often, one of the traits will
be a molecular phenotype, e.g., expression levels of a gene mapping to
the region. Colocalization would then provide support that the same
variant that affects gene expression also affects the other phenotype,
providing support for the involvement of that gene. One of the most
popular colocalization methods is coloc (167). It makes use of a Bayesian
framework that outputs a posterior probability for five hypotheses (Figure
1.11):

▶ H0: none of the two traits are significantly associated.
▶ H1: trait 1 is associated but not trait 2.
▶ H2: trait 2 is associated but not trait 1.
▶ H3: both traits are associated but through different causal variants.
▶ H4: both traits are associated through the same causal variant.

The latter hypothesis denotes colocalization, which is often accepted
when the posterior probability for H4 is > 0.8. One important caveat
is that coloc works under the assumption of a single causal variant per
trait. This assumption is relaxed in SuSiE-coloc (168), as well as by other
colocalization software tools, such as eCAVIAR (169).

Figure 1.11: Colocalization.
Schematic representation of the hypotheses (H) tested by coloc, plotting the negative logarithm of the association signal (y-axis) against
the local genomic position (x-axis). Of interest are the posterior probabilities for H3 and H4, which determine if the QTL (blue) and
GWAS (orange) summary statistics are concordant with the presence of distinct or a common causal variant (red star), respectively. A
high probability for H4 indicates colocalization.

https://chr1swallace.github.io/coloc/
https://chr1swallace.github.io/coloc/articles/a06_SuSiE.html
https://github.com/fhormoz/caviar
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31: Non-random mating of individuals
that share more (positive) or less (nega-
tive) often than by chance a given pheno-
type. Assortative mating can also occur
across two distinct traits.

A related, yet distinct, approach for causal gene identification is Mendelian
randomization (MR). MR is a causal inference framework that lever-
ages genetic variants, termed instrumental variables (IVs), to estimate
whether an exposure has a causal impact on an outcome (Figure 1.12).
Specifically, IVs are selected to be significantly associated with the expo-
sure before assessing their impact on the outcome, from which the causal
effect is derived. The most commonly used MR method is called inverse-
variance weighted (IVW). It estimates the causal effect (𝛼) as a weighted
meta-analysis of each IVs’ Wald ratio, computed as the effect of the IV on
the outcome (𝛽𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ) divided by its effect on the exposure (𝛽𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ).
Importantly, MR relies on three key assumptions whose violation can
bias causal effect estimates (170):

1. Relevance: IVs are associated with the exposure.
2. Exchangeability: no confounder affects both the IVs and the out-

come (e.g., due to assortative mating31 or population stratification).
3. Exclusion restriction: IVs affect the outcome only through the

exposure. This assumption is often violated by pleiotropy.

Figure 1.12: Mendelian randomization assumptions and causal effect estimation.
Mendelian randomization (MR) framework and its three core assumptions, which state that the genetic variants used as instrumental
variables (IVs) should impact the exposure (1), not be associated with a confounder of the exposure-outcome effect (2), and not impact
the outcome through pathways other than the exposure (3). Providing these assumptions hold, the causal MR effect of the exposure on
the outcome (𝛼; blue arrow) is estimated from the IV’s effects on the outcome (𝛽𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ; thin light gray floating arrow) divided by its
effect on the exposure (𝛽𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ; thick gray arrow), both of which originating from GWAS/QTL summary statistics. This estimator is
termed the Wald ratio. To obtain more robust causal estimates, multiple IVs are typically used. The most popular multi-IV approach is
inverse-variance weighted (IVW) MR. IVW-MR estimates can be computed as a meta-analysis of the Wald ratio obtained for each IV,
weighted by the inverse variance of 𝛽𝑜𝑢𝑡𝑐𝑜𝑚𝑒 . This is equivalent to regressing 𝛽𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (y-axis) on 𝛽𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (x-axis), weighted by the
inverse variance of 𝛽𝑜𝑢𝑡𝑐𝑜𝑚𝑒 , as depicted in the blue box. In this scatter plot, each dot represents an IV whose error bars represent effect
size standard errors. The IVW estimate, 𝛼, is the slope of the best-fitting line through these data points that also passes through the
origin (blue line).

Pleiotropy

Pleiotropy refers to the genetic phenomenon wherein a single genetic
variant or locus is associated with multiple phenotypes. After a decade
of GWAS and PheWAS powered to detect ever smaller genetic effects
on a broad variety of phenotypes, it has become apparent that the
vast majority of the genome impacts the human phenome in some
way and that most loci (90%) are associated with multiple traits (171)
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implying the ubiquitousness of pleiotropy. With an increasing number
of molecular QTL studies measuring intermediate phenotypes, we
can expect these trends to become even more pronounced.

Pleiotropy is particularly relevant for MR, as its presence often leads to
violation of the 3rd assumption. Yet, not all types of pleiotropy are the
same. Mechanistically, we distinguish between direct or horizontal
pleiotropy, where the genetic variant is independently associated
with different phenotypes, and indirect or vertical pleiotropy, where
the genotype first affects one trait, which in turn affects another trait
(Figure 1.13). Horizontal pleiotropy can bias MR causal effect estimates,
especially in the presence of correlated pleiotropy, i.e., when there is
correlation between the IV-exposure effect and the pleiotropic effect.
The latter is likely to occur when the IVs associate with a confounder
of the exposure-outcome association. Conversely, vertical pleiotropy
does not bias causal effect size estimate and can even help identify
mediators of the exposure-outcome relation (170). Of note, unlike MR,
association studies cannot disentangle the order of vertical pleiotropy
as both traits will appear associated.

As discussed in section 1.4.3, some recurrent CNVs show extreme
pleiotropy. Throughout Chapters 4 to 6, I describe studies aiming at
assessing and better understanding the mechanisms of pleiotropy of
three distinct CNV regions.

Figure 1.13: Types of pleiotropy.
Schematic representation of pleiotropy
types in an MR framework, where a ge-
netic variant (G) affects two traits: the ex-
posure, X, and the outcome, Y. The blue
arrows depict indirect vertical pleiotropy,
where the effect of G on Y goes through
X. The red arrows depict direct horizon-
tal pleiotropy, where G directly impacts
both X and Y.

While the first MR assumption can formally be tested, this is not the
case for the other ones. IVW further relies on the InSIDE assumption
(INstrument Strength Independent of Direct Effect) that states that there
is no imbalanced (i.e., mean effect of IVs through paths other than the
exposure is null) or correlated pleiotropy (172). Hence, it is common to
perform sensitivity analyses with other MR methods that relax some
of these assumptions (170). Which method is best suited depends on
the research question. Historically, MR has most often been used as
an epidemiological tool to assess the impact of risk factors (e.g., alco-
hol consumption) on health outcomes (e.g., cardiovascular disorders).
More recently, it was adapted to assess the causal impact of molecular
traits. During my PhD, I collaborated with colleagues from the Statisti-
cal Genetics Group that developed such frameworks, e.g., to infer the
causal impact of the change in expression of one or multiple genes on
complex traits by transcriptome-wide MR (TWMR) (173), as well as
the reverse causal effect of diseases on the transcriptome (174) (Figure
1.14A). Using multivariable MR (MVMR) approaches, these frameworks
can be adapted to decipher causality chains across molecular layers.
For instance, to explore the mediatory role of gene expression on DNA
methylation-phenotype relations (175), or the role of metabolites in me-
diating transcript-phenotype associations (176) (Figure 1.14B).

One important specificity of MR with molecular exposures is that unlike
complex exposures, for which there exist genome-wide IVs, the number
of IVs fulfilling the first assumption is often limited to one or a few
uncorrelated variants clustering at the locus encoding for the assessed
molecular trait. Under such circumstances, a parallel can be drawn
between MR and colocalization, which by definition focuses on a single
genetic region. Strengths of both approaches are exploited by MR-link-2,
which, unlike most MR methods that rely on independent IVs, makes

https://github.com/adriaan-vd-graaf/mrlink2
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Figure 1.14: MR frameworks with molecular exposures.
(A) Schematic representation of bidirectional causal MR effect estimation between a molecular phenotype (blue) and a complex trait
(orange). Instrumental variables (IVs) for the forward (blue) and reverse (orange) effect estimation are selected from QTL (𝛽𝑄𝑇𝐿) and
GWAS (𝛽𝑄𝑇𝐿) summary statistics, respectively (thick arrows). To calculate MR effects as in Figure 1.12, the effects of these IVs on the
outcome are assessed. The sum of forward and reverse MR effects plus the confounder contribution equals the observational correlation.
Porcu et al., show that the observational correlation between the transcriptome and BMI, triglycerides, and HDL is mainly due to
confounding, followed by reverse effects (10-30%), and only a marginal contribution of forward effects (174). (B) Schematic representation
of a multivariable MR (MVMR) framework for mediation analysis of a molecular trait (blue) on a complex phenotype (orange) by another
(downstream) molecular trait (green). Dark gray arrows are estimated using MR, using IVs selected from QTL (𝛽𝑄𝑇𝐿) summary statistics
(blue/green thick arrows), following the same framework as depicted in (A). The effect of the main molecular trait (blue) on the complex
trait (orange) is defined as the total effect (𝛼𝑡𝑜𝑡𝑎𝑙 ). The total effect is the sum of the direct effect between these traits, estimated by MVMR
(red arrow; 𝛼𝑑𝑖𝑟𝑒𝑐𝑡 ) accounting for the molecular mediator (green), and the indirect effect (light gray arrow; 𝛼𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 ), mediated by the
second molecular phenotype (green). Auwerx et al., shows that while the majority (77%) of transcript-to-trait effects show no mediation
through metabolite levels, mediation analysis recovers biological plausible mediated transcript-metabolite-trait triplets that are not
captured by simple transcript-to-trait MR (176).

use of LD information to estimate pleiotropy-robust causal MR effects
(177). The method was shown to improve power and reduce type 1 error
over other MR methods (177). Higher false positive rates are a major
distinction between MR and colocalization methods. While MR is prone
to false positives, colocalization is more conservative as it requires strong
statistical evidence of associations with traits to conclude colocalization,
potentially generating false negatives (178). Other caveats are common to
both methods. For instance, some genes lack QTLs altogether, while others
share QTLs with other genes in proximity, making it hard to distinguish
the causal gene. In addition, many QTLs are context-dependent and
can only be captured in certain cell types, developmental stages, or
environmental exposures (151–153, 179). Recent years have seen the
release of ever larger and deeper QTL studies (Table 1.6), which should
at least partially address the mentioned caveats.

The presented extensions to GWASs only detail a fraction of the method-
ological developments aiming to address challenges in the field of genetic
association studies, which mainly focused on SNPs and more recently
rare SNVs. One area that remains underexplored is how to adapt these
tools to study a broader set of variants, notably SVs, which require
particular considerations. In the context of my dissertation, I focused on
CNVs. The following section provides an overview of mechanisms of
CNV formation, tools to detect them, and special considerations when
interpreting their phenotypic consequences.
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32: Termed homeologous sequences (75-
91% homology), these include for in-
stance mobile Alu elements.

33: Some CNVs have been found to pre-
dominantly arise in male (189–191) or
female (192, 193) gametogenesis.

1.4 Copy-number variants

1.4.1 CNV mechanisms

3R CNV mechanisms

Most CNVs appear through either
of these three mechanisms:

▶ Recombination
▶ Repair
▶ Replication

The specific mechanisms of formation underlying a given CNV can often
be inferred from the genomic context surrounding its breakpoints as
different mechanisms leave different mutational signatures. Here we will
focus on the three main mechanisms at the origin of most CNVs (180–182),
although it should be noted that these can further be divided into more
precise subcategories. A first consideration is whether the CNV is recur-
rent, i.e., whether unrelated individuals have the same breakpoints. If this
is the case, the CNV is likely to be mediated by non-allelic homologous
recombination (NAHR) between regions of repeated elements sharing
high similarity called low copy repeats (LCRs). Also called segmental
duplications, these regions are ≥ 1 kb long and typically share ≥ 90%
sequence identity (180). Frequency of NAHR is affected by the distance
between LCRs, their degree of homology, size, orientation, as well as the
identity of the sequence itself (e.g., GC content or presence of PRDM9
recombination hotspot motifs). Recombination between sequences with
lower degree of homology32, have been described to cause intragenic
CNVs (183–187), but current consensus suggests that they arise through
mechanisms distinct from NAHR (180, 181). Due to their high degree of
similarity, non-allelic LCRs might align, or rather misalign, during meiosis
or mitosis. Ensuing recombination between LCRs with direct orientation
(i.e., same direction) typically results in one cell with a deletion and one
with a duplication (Figure 1.15A). More precisely, during meiosis, faulty
recombination can occur between homologous chromosomes (interchro-
mosomal), sister chromatids (interchromatid), or paralogous LCRs on
the same chromatid (intrachromatid). The latter results in a deletion
and a ring chromosome, stipulating that deletions should be more fre-
quent than duplication, with the difference in frequencies reflecting
the frequency of intrachromatid NAHR. This prediction was validated
experimentally in a study identifying twice as many deletions than du-
plications at NAHR hotspots in the sperm population of five men (188).
It remains unclear whether this ratio holds for all loci, varies between
male and female gametogenesis33, and to which extent it is affected by
differential selection on deletions and duplications. Furthermore, twin
studies have suggested that other genetic, environmental, and life history
factors might regulate NAHR rates (194). Balanced SVs result from NAHR
between LCRs with inverted orientation (i.e., opposing direction) or on
different chromosomes (Figure 1.15B-C).

Figure 1.15: Non-allelic homologous re-
combination outcomes.
(A) NAHR between LCRs with direct
orientation on the homologous chromo-
somes or sister chromatids results in a
deletion and a duplication. (B) NAHR
between LCRs with inverted orientation
on the same chromosomal arm results
in inversions. (C) NAHR between LCRs
on different chromosomes results in a
translocation.
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While NAHR is the best-studied mechanism for CNV formation, the
majority of CNVs do not have recurrent breakpoints (195). Non-recurrent
CNVs are usually attributed to either non-homologous end joining
(NHEJ) or replication-based mechanisms. NHEJ is a salvage cellular
mechanism for the repair of physiological and pathological double-strand
DNA breaks. CNVs caused by this mechanism are characterized by a
scaring pattern caused by the editing of DNA ends (i.e., small deletions
and insertions) before reattachment (Figure 1.16), and in some cases, short
stretches (1-3 bp) of shared nucleotides at breakpoints, i.e. microhomology
(196). Double-strand DNA breaks can also be repaired by another error-
prone mechanism, microhomology-mediated end joining (MMEJ) (Figure
1.16). Unlike NHEJ, MMEJ is dependent on microhomologies but leaves
a similar scaring pattern than NHEJ, making it difficult to distinguish
these mechanisms (197).

Figure 1.16: CNV formation through re-
pair mechanisms.
Schematic representation of two error-
prone double-stranded DNA break re-
pair mechanisms. Non-homologous end
joining (NHEJ; left) will rejoin broken
ends, leading either to an identical se-
quence or the insertion (yellow) or dele-
tion (blue/green) of a few nucleotides.
Microhomology-mediated end joining
(MMEJ; right) occurs through annealing
of two single-stranded overhangs with
exposed microhomology (pink). After
trimming of the 3’ extended strands, the
gaps are filled (black) and ligated, result-
ing in a small deletion.

Non-recurrent CNVs generated by replication-based mechanisms have
larger regions of microhomology (2-33 bp) and frequently insert tem-
plate fragments of up to 100 bp around breakpoint regions. There exist
many subcategories of replication-based mechanisms, including fork
stalling and template switching (FoSTeS), serial replication slippage,
break-induced replication (BIR), and microhomology-mediated break-
induced replication (MMBIR) (180, 197) but a detailed review of these
mechanisms goes beyond the scope of this introduction. Notably error-
prone, replication-based mechanisms have been linked to complex ge-
nomic rearrangements with multiple breakpoints, as well as increased
local mutation rate, creating clusters of de novo SNVs and indels near
breakpoints (195, 198).

Importantly, non-recurrent CNVs do not have a random distribution
and tend to cluster at specific sites, often co-occurring with repeated
sequences. This suggests that while repeats do not mediate NHEJ or
replication-based mechanisms, they do promote non-recurrent CNV
formation. One explanation is that sequences such as fragile sites or
short inverted repeats lead to the formation of secondary DNA structures
(180, 197). Secondary structures might promote stalling and eventually
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34: Genetic abnormality wherein both
chromosomes (or chromosome seg-
ments) originate from the same parent.
35: The logarithmic behavior of the LRR
makes it easier to detect deletions than
duplications, as the increase in LRR does
not grow linearly with the copy num-
ber. This renders multiallelic CNV detec-
tion particularly difficult. Like for CGH,
position of additional copies cannot be
determined, but sequencing studies sug-
gest that they most often appear in tan-
dem (i.e., adjacent) with direct orienta-
tion (199).

collapse of the replication fork, generating double-strand DNA breaks
and leading to genomic instability. Many other features and mechanisms
might contribute to sensitizing some regions to CNV formation and
advances in CNV technologies will be key in unraveling these.

1.4.2 CNV detection tools

Cytogenetics
The first detected CNVs were gross chromosomal abnormalities (> 5 Mb)
that could be detected through karyotyping, a technique developed in
the 1950s. Through staining of cytobands and alignment of condensed
chromosomes of mitotic cells, karyotypes enable detection of CNVs
with low resolution. In the context of CNV detection, resolution refers
to the ability to detect small events, which is linked to the concept
of breakpoint resolution, which reflects the ability to determine the
exact position of a CNV’s breakpoints. As a remnant of the early days
of cytogenetics, large recurrent CNVs are still named according to the
cytogenic band in which they occur. A major improvement came from
fluorescence in situ hybridization (FISH) in the early 1980s. FISH relies
on fluorescently labeled hybridization probes. The latter are short
sequences of single-stranded nucleic acids that bind to the targeted
sequence with a high degree of complementarity in the probed genome.
This allows visualization of the position of the targeted genomic region
(or its absence) under the microscope, allowing detection of events with
a resolution of 100-200 kb.

Microarrays
The major limitations of FISH are that its resolution is bound to the
resolution of the used microscope and that it only allows detection of
CNVs in actively probed regions. Chromosomal microarray analysis
(CMA), addresses this by providing a solid support on which hundreds of
thousands of probes are immobilized. This allows to probe hybridization
at a genome-wide scale in a single experiment. Two major types of arrays
are used for CNV detection. Comparative genomic hybridization (CGH)
arrays were specifically designed for CNV detection in the 1990s (Figure
1.17). An alternative approach is to use the signal produced by SNP arrays,
later referred to as (micro)arrays. As this is the technology that I used to
infer CNV calls in my research, I will dedicate the largest fraction of this
section to this technology, even though sequencing-based technologies
offer considerable advantages and have become increasingly used over
the course of my PhD.

Figure 1.17: Comparative genomic hy-
bridization CNV detection.
In CGH, sample and reference DNA la-
beled with different fluorescent dies are
added simultaneously to the array, where
they hybridize competitively. For each
probe (dot on the array), the intensity of
the two colors is assessed. Probes, where
the sample and reference do not have the
same signal intensity, correspond to the
genomic locations of CNVs.

The clear advantage of SNP arrays is that they allow the simultaneous
detection of SNPs and CNVs. Given that small mutations are more
widely studied, SNP microarray data are already abundantly available
for numerous samples and can be generated at low cost. From a technical
perspective, SNP arrays have the advantage that they also detect regions
with LOH. LOH regions are informative for clinical diagnosis as they
indicate consanguinity or uniparental disomy (UPD)34. SNP arrays
differ from CGH arrays in the fact that no reference DNA sample is used.
Instead, two readouts termed log R ratio (LRR) and B allele frequency
(BAF) are used to detect CNVs (Figure 1.18). Hybridization intensity
is quantified through the LRR, which is computed as the log2 of the
ratio between the observed and expected signal35. In addition, detection
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Figure 1.18: SNP array CNV detection.
Signature of deleted, copy-neutral, loss of heterozygosity (LOH), or duplicated regions, with corresponding copy number state. Each
dot represents a probe assessed by the SNP microarray, ordered by genomic position (x-axis). The top plots show the log R ratio (LRR;
y-axis), which is null (red line) for regions present in two copies (log2(2/2) = 0). Conversely, it is negative for deletions (log2(1/2) = -1)
and positive for duplications (log2(3/2) = 0.58). The bottom plots the B allele frequency (BAF; y-axis). In deleted regions, a single copy is
present with the only possible genotypes being A (BAF = 0/1) or B (BAF = 1/1). Copy-neutral regions have three possible genotypes: AA
(BAF = 0/2), AB (BAF = 1/2), or BB (BAF = 2/2). In LOH, only the two homozygous genotypes are observed. Duplications generate a
larger spectrum of BAF values, i.e., AAA (BAF = 0/3), AAB (BAF = 1/3), ABB (BAF = 2/3), and BBB (BBB; BAF = 3/3). Genotype groups
are indicated on the plot.

36: Microarray readouts are particularly
noisy and prone to biases e.g., due to
probe cross-hybridization or variability
in CG content.

algorithms also make use of a qualitative readout derived from the array’s
primary purpose as an SNV detection tool, the BAF. The BAF corresponds
to the fraction of the intensity signal generated by the minor (B) allele.
How these are used to detect CNVs is described in Figure 1.18.

Various software tools have been developed to call CNVs based on
genome-wide BAF and LRR values (200–202). Among the most popular
ones is PennCNV (203), which relies on a hidden Markov model (HMM)
with six states. These correspond to copy numbers ranging from zero
to four, plus an additional state for LOH. HMMs aim at inferring a
sequence of states, based on the assumption that the probability of
observing a given state depends only on the current state. In other words,
if we consider two adjacent probes 𝑝0 and 𝑝1, the copy-number state of
𝑝1 will depend only on the copy-number state of 𝑝0. HMMs have two
parameter types, whose values are known: emission probabilities, which
corresponds to the probability of each state, and transition probabilities,
which correspond to the probability of transitioning from one state to
another. The latter are used to estimate the most likely state-transition
path across probes on a chromosome, given the observed data. Besides
the BAF and LRR values, PennCNV uses the population frequency of
the B allele, the distance between SNPs, and the GC content to improve
its performance. PennCNV outputs CNV calls, along with CNV- and
sample-level parameters. Because multiple probes are required to reliably
call a CNV36, resolution is determined by the density of probes in a given
region and is thus strongly dependent on the array design. Hence, regions
of known biological importance tend to have a higher probe density,
while others whose function is less well known or for which it is hard

https://penncnv.openbioinformatics.org/en/latest/
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37: Considered were three CNV-level
(CNV confidence score, length [bp],
length [probes]) and seven sample-level
(mean LRR, LRR SD, mean BAF, BAF
SD, BAF drift, waviness factor, and total
CNV numbers) parameters. The three
BAF parameters have weights of zero
for deletion QS computation. Length in
number of probes has the highest weight.

to design probes (e.g., LCRs) have lower probe coverage. As LCRs are
key to CNV formation (see section 1.4.1), some arrays have added special
non-polymorphic probes in these regions (204). Overall, a resolution in
the orders of 10-100 kb can be expected for modern microarrays.

PennCNV still suffers from high false positive rates (205). To address this,
Aurélien Macé, a previous PhD in the group, introduced an approach
to attribute a quality score (QS) to each PennCNV call, reflecting the
probability that this CNV is a consensus call (> 70% probe overlap) with
two other calling algorithms, QuantiSNP (202) and CNVpartition, and
thus a true positive (206). The score is defined as:

𝑄𝑆 =
1

1 + 𝑒(−𝛽0+
∑𝑛
𝑖=1 𝛽𝑖𝑉𝑖 )

(1.11)

where 𝛽𝑖 corresponds to the weights for the PennCNV output parame-
ters37 that were found to significantly affect the probability for a CNV call
to be consensus, and 𝑉𝑖 the actual parameter value. Weights have been
pre-computed for deletions and duplications separately and are publicly
available. By multiplying the QS by −1 for deletions, a continuous value
reflecting the probabilistic dosage of the region is obtained, with values
close to −1, 0, and, 1 reflecting a deletion, copy-neutral, and duplication
state, respectively. The QS was shown to perform better than previously
used filtering strategies and simulations found that it could yield up to
20% power increase in the context of association studies (206). The QS
framework was further developed to use sequencing, RNA expression,
and DNA methylation data to gauge the reliability of PennCNV calls
(207). The rationale is that a true positive CNV call is more likely to
be detectable by an alternative detection method (e.g., sequencing), to
alter expression levels of the genes it deletes, disrupts, or duplicates,
and to affect the intensity of DNA methylation signal in the overlapping
region. This omics-informed QS outperforms the consensus-based QS
by explaining a larger fraction of the phenotypic variation in real-data
association studies conducted in the EstBB and UKBB. While a probabilis-
tic dosage has many benefits, in practice, QSs tend to follow a bimodal
distribution with peaks around 0 and 1 (208). Hence, high-confidence
CNVs can be selected by applying a cutoff at |QS| > 0.5 without losing
much information. As is described in detail in the ensuing chapters, this
is the approach I followed to retain CNVs for association studies.

Sequencing
By assessing the identity of every single nucleotide, sequencing strategies
can contend with some of the major limitations of microarray CNV calling,
namely the dependence on probe coverage, the low resolution, the
inability to accurately determine breakpoints, the calling of multiallelic
CNVs, and the inference of the position and orientation of duplications.
Sequencing approaches can be split according to the length of generated
reads, which correspond to the inferred sequences.

Modern short-read sequencing, also referred to as next-generation
sequencing (NGS), is based on massively parallel sequencing of millions
of short reads that are 50-300 nucleotides long. NGS can be applied to
perform either whole exome sequencing (WES), which uses capture
and enrichment methods to only sequence the protein-coding portion
of the genome, or whole genome sequencing (WGS), where the entire

https://github.com/cwcyau/quantisnp
https://www.illumina.com/documents/products/technotes/technote_cnv_algorithms.pdf
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Table 1.7: Approaches to short read sequencing-based CNV detection.
Summary of the four main approaches to CNV detection based on short-read sequencing data, with weaknesses and strengths. The
second column indicates whether the approach relies on paired-end sequencing (PR), i.e., both ends of the DNA fragments are sequenced.
Y = yes. Approaches can be combined for optimal detection.

Approach PE Description Strengths Weaknesses
Paired-end
mapping

Y Identify mate pairs with discordant mapping. Specifically,
mates will map too far apart in the presence of a deletion and
too close or in the wrong order in the presence of a duplication.

- Repeats (providing
the reads do not map
within them)

- Resolution limited by
DNA fragment size

Read-depth Read coverage is proportional to the region’s copy number,
i.e., increased for duplications and decreased for deletions.

- Intuitive, popular
- Balanced SVs
- Repeats

Split-read Y Detect mate pairs where only one mate can be uniquely
mapped. The other mate is assumed to overlap the SV break-
point and is split into multiple fragments that are tentatively
mapped at the presumed breakpoint. The latter’s position
is inferred from the mapped mate and the DNA fragment
length.

- Accurate breakpoint
- Read length
- Repeats

Sequence
assembly

Perform de novo assembly of the sample genome and compare
it to the reference.

- Detect small events
- High coverage
- Repeats

genome is assessed. WES is cheaper and represents a good option to
detect small, exon-level CNVs that are typically missed by microarray
approaches and can be of clinical significance (209–211). Furthermore,
a recent study found that WES CNV detection performed based on
a workflow integrating multiple CNV calling algorithms has similar
sensitivity than high-resolution CMA to detect pathogenic CNVs in
a patient cohort (212). WES CNV calling can be further improved by
leveraging off-target reads (i.e., up to 60% of reads generated by WES do
not map to regions specifically enriched for) to call CNVs genome-wide
(213). Still, WGS remains the gold standard to fully address limitations of
microarray-based CNV calling, simultaneously allowing the detection of
small and large CNVs, as well as other SVs, at most locations in the genome.
Many software tools have been developed to call CNVs from short-read
sequencing data (214). Among the most widely used are cn.MOPS (215),
LUMPY (216), DELLY (217), Manta (218), and GATK-gCNV (210). They
can be divided into four approaches (Table 1.7), read-depth approaches
being the most popular. Despite the abundance of tools, no method
so far performs better than the others on all fronts, and each has its
own strengths and caveats. As such, multiple tools are typically used to
generate a set of high-confidence CNV calls for downstream analyses,
paralleling the idea behind the consensus QS previously discussed in
the context of microarray CNV calls.

One important limitation of NGS is that the read length is shorter than
many SVs, hindering their detection. With reads that can reach over
200 kb in length and new generation sequencers having high accuracy,
long-read sequencing (LRS) or third generation sequencing, has come
forward as a solution to this problem (219). The first large LRS studies
systematically identify about three times more SVs than studies based
on short reads (10, 11, 14, 34–36). Another advantage of LRS is that it
allows for nucleotide modification detection, such as DNA methylation.
Tools for CNV detection from LRS data have been developed, including
Sniffles2 (220), pbsv, cuteSV (221), or SVIM (222), which are often used
in combination. Elected method of the year by Nature Methods in 2022
(223), there is no doubt that LRS will revolutionize sequencing. Yet the
technology remains expensive and has limited throughput, which – so
far – has hindered its application to large biobanks with hundreds of
thousands of samples. LRS is usually used in a WGS setting but a solution

https://bioconductor.org/packages/release/bioc/html/cn.mops.html
https://github.com/arq5x/lumpy-sv
https://github.com/dellytools/delly
https://github.com/Illumina/manta
https://github.com/broadinstitute/GATK-gCNV-publication/tree/master
https://github.com/fritzsedlazeck/Sniffles
https://github.com/PacificBiosciences/pbsv
https://github.com/tjiangHIT/cuteSV
https://github.com/eldariont/svim
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38: Translocation between acrocentric
chromosomes (Figure 1.1), leading to the
fusion of their q arms. Fused p arms
are often lost, resulting in 45 chromo-
somes. As the p arms contain rRNA
copies present on other acrocentric short
arms, no critical genetic material is lost.

to lower its cost is to apply it in a targeted fashion (224).

Optical mapping
Another technology in the arena of SV detection is optical mapping,
which relies on fluorescent labeling of specific motifs in large DNA
fragments (> 250 kb) that are subsequently passed through nanochannels
for imaging. The signal is converted into a digitized genomic map used
to call CNVs by comparing it to a reference map. Optical mapping has
a much higher resolution than classical cytogenetic techniques, allows
balanced SV detection unlike array-based approaches, and is less biased
than sequencing-based methods. It thus represents a suitable detection
tool for large and complex SVs, especially those involving repetitive
structures such as segmental duplications (225), even though it was
noted that the technology is not ideal for aneuploidies and Robertsonian
translocations38 (226).

1.4.3 Functional consequences of CNVs

Through their size and diversity, SVs can induce a plethora of functional
consequences (21, 227, 228). Often affecting multiple protein-coding
genes and/or non-coding regulatory elements simultaneously, predict-
ing their functional impact is typically more complex than for short
variants. Because of their large genetic footprint, SVs are more likely to
disrupt important genetic entities or configurations, which translates into
pathological consequences in the carrier. This idea is supported by SV
size inversely correlating with frequency (34, 35), suggesting negative
selection against larger – and likely more deleterious – SVs. Indeed, SVs
tend to have low frequencies in the general population, and excess of
rare SVs cannot be explained by lower de novo rates (∼0.3 events per
generation) (21, 34, 35). Here, I briefly review the functional impact of
SVs at the molecular level before focusing on their pathophysiological
consequences.

Molecular consequences
A key distinction is whether the SV affects protein coding sequence or
not. Full deletions or duplications of a single gene have the most straight-
forward interpretation, as the change in copy number will generally
lead to lower (i.e., a "human knockdown") or higher gene expression,
respectively. It should be noted, however, that the change in expression is
usually not entirely proportional to the copy number, i.e., deletions will
not halve the expression but reduce it, while duplications will increase
it but not by fifty percent (227). There are exceptions to this paradigm,
and even if such a change is observed at the transcript level, it might not
be reflected at the protein level. Alternatively, SV breakpoint might fall
within the gene body, which most of the time results in LoF. Notable
exceptions include gene fusion events that can lead to GoF (through
newly acquired function or dominant negative effect) if the genes have
the same orientation and the reading frame remains intact.

Severity of functional consequences is determined by whether affected
genes are sensitive to changes in dosage. SVs leading to gene LoF have a
functional impact if they affect a haploinsufficient gene or if they unmask
another pathogenic variant in the remaining copy of a gene associated



38 1 Introduction

39: Disorders whose onset is triggered
by repeat expansions (e.g., Huntington’s
disease or Friedreich’s ataxia) represent
an exception, as for them, SVs tends to
represent the main genetic etiology.

with a recessive inheritance (Table 1.5), leading to compound heterozy-
gosity (Figure 1.3). Conversely, gene duplication SVs have a functional
impact if they affect triplosensitive genes. While haploinsufficiency can
be inferred from abundant data on LoF SNVs associating with dominant
phenotypes, knowledge on triplosensitivity is more sparse. Throughout
my PhD, continuous metrics assessing the probability for haploinsuffi-
ciency (pHaplo) and triplosensitivity (pTriplo) of all autosomal genes
have been developed. Overall, 2,987 haploinsufficient and 1,559 triplosen-
sitive genes – including 648 that are uniquely triplosensitive – were
identified (229), helping with the interpretation of novel SVs.

SVs that do not affect protein-coding regions can exert their impact
through positional effects leading to altered gene expression (230). SVs
occurring within the boundaries of a topologically associating domain
(TAD), defined as conserved units of self-interacting genetic region,
might alter dosage of regulatory elements. By breaking up activating (e.g.,
enhancer) or repressive (e.g., silencer) elements, SVs decrease or increase
the expression of genes under the control of these elements, respectively.
Similarly, duplication of an enhancer can lead to gene overexpression.
Accordingly, SVs are depleted from regulatory elements (34, 35, 231). In
Chapter 2, I describe a non-coding, height-associated CNV region in the
gene desert surrounding SHOX (208). CNVs disrupting distant SHOX
regulatory elements (> 250 kb) have been shown to phenocopy, or cause
the same phenotype, as disruption of the gene itself (232), illustrating
how SVs can have functional consequences over long distances. Indeed,
non-coding SVs form potent eQTLs. Common SVs (MAF ≥ 5%) are
more likely to act over long ranges and have stronger cis effects than
SNV-eQTLs, accounting for about 8% of the transcriptome’s heritability
(113). Others found that rare CNVs strongly contributed to extreme
patterns in gene expression (114–116). Integrating gene expression with
long read-sequencing data was shown to efficiently prioritize causal SVs
in rare disease patients lacking a genetic diagnosis (233). Alternatively,
SVs can also span across TAD boundaries, leading to more profound
changes in the genome 3D organization. Typically, deletions cause TAD
fusion, duplications create neo-TADs, while inversions and translocations
shuffle TADs. TAD disruption can lead to enhancer adoption, which
describes the ectopic expression of a gene brought under the control of an
enhancer normally located in another TAD, or enhancer disconnection,
leading to loss of expression of the enhancer’s target due to the enhancer
being shuffled to another TAD. Such positional effects can have severe
consequences, especially when they affect TADs encompassing key
developmental genes and their regulatory elements, the context in which
they have been predominantly studied (230).

Phenotypic consequences
SVs disrupting a single gene mediating a key physiological process and
whose dosage is tightly regulated can have serious phenotypic conse-
quences, often confined to a single or a few related physiological systems
(Figure 1.21A). Table 1.8 provides a few examples of SVs involved in spe-
cific phenotypes’ etiologies or causes. Disruption of these genes by other
classes of variants (e.g., SNVs) can also give rise to the same phenotypes,
so that SVs only account for a fraction of cases39. Among these examples,
the link between genotype and phenotype can be explained through
different models that reflect different genetic architectures.
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Figure 1.19: Genetic architecture.
Genetic architecture is typically defined
based on the frequency (x-axis) and effect
size (y-axis) of the variants contributing
to a trait. It forms a continuum rang-
ing from a monogenic (Mendelian) to a
polygenic (complex) architecture. Some
complex diseases might have monogenic
forms. The genetic contribution of vari-
ants in the orange area (rare, small effect
size) is hard to detect due to low power
(see Figure 1.10). Variants in the blue area
(common, large effect) are rare as they
are pruned by selection or fixed.

Figure 1.20: Penetrance & expressivity.
Penetrance refers to the percentage of
individuals with a given genotype that
expresses a phenotype. It can be com-
plete (i.e., all individuals express the
phenotype) or incomplete (i.e., a frac-
tion expresses it, here 66%). Expressivity
refers to the extent to which a phenotype
is expressed in individuals with a given
genotype. It can be narrow (i.e., simi-
lar across individuals) or variable (i.e.,
strong in some individuals and weak
in others). Incomplete penetrance and
variable expressivity describe a scenario
wherein only a fraction of the individ-
uals carrying the genotype express the
phenotype and those that do, express the
phenotype more or less strongly.

Genetic architecture & variable expressivity and penetrance

The genetic architecture describes the number and characteristics of
genetic variants that contribute to a given phenotype (Figure 1.19).

In a classical view on genetic architecture, rare diseases are caused
by a single or a few variants with low frequency but a strong effect
size. These diseases are often termed monogenic (i.e., caused by a
single gene) or Mendelian, in reference to the fact that disruption of
the gene is both necessary and sufficient to develop the disorder. This
definition implies that the variant has a near complete penetrance
(Figure 1.20) so that the presence of the variant in a family pedigree
tracks with the presence of the phenotype and allows to infer its in-
heritance mode. In Table 1.8, one example is the LoF of LDLR causing
familial hypercholesterolemia. At the other end of the spectrum are
common variants with small effect sizes, which tend to be linked to
altered susceptibility to common diseases. In line with the liability
threshold model, a large number of such risk-increasing variants –
as well as environmental factors – is required to develop a disease
that has a polygenic (i.e., caused by multiple genes) or complex
architecture. One example is the copy number polymorphism at LPA,
which represents one of the many other genetic and environmental
(e.g., diet) risk factors for developing coronary heart disease. Some
common disorders, such as Alzheimer’s disease, can be caused either
by the cumulative effect of unknown etiologies (i.e., idiopathic) or
they can be primarily driven by a single, rare, and highly penetrant
variant, such as the APP duplication. The latter strongly predisposes
for early-onset familial Alzheimer’s disease through a Mendelian,
autosomal dominant inheritance pattern. Deviating from the archety-
pal rare variant - rare disease vs common variant - common disease
paradigm, the latter example illustrates a more complex view of
genetic architecture, where rare variants can contribute to common
diseases. Such observations have led to the interesting perspective
that many common diseases encompass subsets of rarer diseases with
distinct genetic etiologies, subtle phenotypic specificities, and differ-
ent (usually earlier) ages of onset. Dissection of common disorders
into smaller entities is at the heart of personalized medicine strategies
and is receiving increasingly more attention. An excellent discussion
about the distinctions and commonalities between rare and common
diseases can be found in "Rare Diseases and Orphan Drugs: Keys to
Understanding and Treating the Common Diseases" (130).

In recent years, it has become clear that the above-described model rep-
resents an oversimplification of a more nuanced reality. Indeed, many
variants linked to Mendelian disorders have incomplete penetrance
and variable expressivity (Figure 1.20) (234–237). Furthermore, the
cumulative effect of common variants with small effect size, captured
through polygenic risk score (PGS), have been shown to modulate
disease risk or severity on top of the risk attributed to rare variants
(238–240). This realization can in part be attributed to a shift from
studying rare pathogenic variants solely in clinical cohorts, that by
definition are ascertained for the studied phenotype, to assessing their
prevalence and effect in population cohorts, where these variants
were found in individuals that lacked the associated phenotype (241).

My dissertation embraces this perspective by leveraging population
cohorts to study the phenotypic expression of CNVs which have histor-
ically been studied in clinical settings. Throughout the next chapters,
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I demonstrate that rare CNVs have a highly variable expressivity and
associate with common disease risk.

Table 1.8: Disorders caused by SVs.
Examples of phenotypes linked to SVs affecting a single or two adjacent genes, alphabetically ordered by phenotype category. Genes are
linked to their OMIM page. The type of involved SV is indicated. For repeats, an approximate threshold for pathogenicity is provided.
*indicates that the SVs represents a polymorphism, often associated with altered susceptibility. hom. = homozygous.

Category Phenotype Gene Causal SV Ref
Metabolic Pseudoxanthoma elasticum ABCC6 Deletions (184, 185)

Isolated growth hormone deficiency type 1A GH1 Hom. deletions (242)
Familial hypercholesterolemia LDLR Deletions (243)
Coronary heart disease susceptibility LPA Repeats (< 22)* (244)
Rotor syndrome SLCO1B1, SLCO1B3 Hom. deletions (245)

Neurvous system Alzheimer’s disease APP Duplications (246, 247)
Duchenne muscular dystrophy DMD Frameshift CNVs (248)
Friedreich’s ataxia FXN Hom. repeats (> 200) (249)
Huntington’s disease HTT Repeats (> 40) (250)
Spinal muscular atrophy SMN1 Hom. deletions (251)
Spinal muscular atrophy attenuation SMN2 Duplications* (252)

Hematologic Iron deficiency anemia susceptibility BOLA2 Low gene copy number* (40)
Hemophilia A F8 Inversions, deletions (253, 254)
Alpha-thalassemia HBA1, HBA2 Hom. deletions (255)
Rhesus negative blood group RHD Deletions* (256)

Immune Systemic lupus erythematosus susceptibility C4 Low gene copy number* (257)
HIV/AIDS susceptibility CCL3L1 Low gene copy number* (258)

Table 1.9: Diagnostic yield of genetic
testing for unexplained DD/ID and/or
congenital anomalies.
Diagnostic yield for different genetic test-
ing approaches for unexplained DD/ID
and/or congenital anomalies (259). *In-
clude CMA, candidate single-gene test-
ing, or large gene panel testing.

Diagnostic yield
Standard testing* 21%
WES 34%
WGS 43%

Although the examples in Table 1.8 illustrate how CNVs are involved
in a broad range of disorders, there is one clinical area where SVs have
been shown to represent a major risk factor, i.e., neurodevelopmental
disorders (NDD) characterized by developmental delay and intellectual
disability (DD/ID) and high prevalence of psychiatric conditions, such
as ASD. The number of genes associated with NDD is extensive (> 1,500)
(260) and the contribution of SVs to these disorders is such that in 2010,
the American College of Medical Genetics recommended CMA-based
CNV screening as the first-tier diagnostic approach for unexplained cases
of DD/ID, ASD, and/or multiple congenital anomalies (261, 262). Since
2021, a new consensus was reached, suggesting the usage of genome-
wide sequencing-based technologies as a first- or second-tier test, based
on the higher diagnostic yield of these technologies (Table 1.9) (259).
SVs affecting NDD genes can lead to isolated DD/ID or ASD, in which
case the carrier will not suffer from any other comorbidities, or lead
to syndromic forms of the disease. Syndromes are defined as clinical
diagnoses requiring the presence of multiple clinical features to co-occur
in an affected individual. While for some genetic etiologies the set of
features is relatively consistent, other etiologies will present variability in
the number and severity of comorbidities present in a given individual.

Since the advent of modern cytogenetics, large CNVs have been asso-
ciated with syndromic forms of NDD (263), which are at the origin
of genomic disorders. Framed by LCRs, these CNVs recurrently ap-
pear de novo through NAHR despite negative selection promoting their
elimination from the population (264). By spanning multiple kilobase
pairs and affecting up to several dozen genes, these CNVs have a strong
pathogenic potential and represent important susceptibility loci for a

https://www.omim.org/entry/603234?search=abcc6&highlight=abcc6
https://www.omim.org/entry/139250?search=gh1&highlight=gh1
https://www.omim.org/entry/606945?search=ldlr&highlight=ldlr
https://www.omim.org/entry/152200?search=lpa&highlight=lpa
https://www.omim.org/entry/604843?search=slco1b1&highlight=slco1b1
https://www.omim.org/entry/605495?search=slco1b3&highlight=slco1b3
https://www.omim.org/entry/104760?search=app&highlight=app
https://www.omim.org/entry/300377?search=dmd&highlight=dmd
https://www.omim.org/entry/606829?search=fxn&highlight=fxn
https://www.omim.org/entry/613004
https://www.omim.org/entry/600354?search=smn1&highlight=smn1
https://www.omim.org/entry/601627?search=smn2&highlight=smn2
https://www.omim.org/entry/613182?search=bola2&highlight=bola2
https://www.omim.org/entry/300841?search=f8&highlight=f8
https://www.omim.org/entry/141800?search=hba&highlight=hba
https://www.omim.org/entry/141850?search=hba2&highlight=hba2
https://www.omim.org/entry/111680?search=rhd&highlight=rhd
https://www.omim.org/entry/120810?search=c4&highlight=c4
https://www.omim.org/entry/601395?search=CCL3L1&highlight=ccl3l1
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wide range of conditions. Unlike the previously described examples that
link a single gene to a single phenotype, these CNVs link multiple genes
to multiple phenotypes. To date, close to 100 genomic disorders have been
described and an expert-curated set of 66 microdeletion and microdu-
plication syndromes involved in developmental disorders is cataloged
in the Database of Chromosomal Imbalance and Phenotype in Humans
Using Ensembl Resources (DECIPHER) (265). In Table 1.10, I present
a selection of well-described CNVs linked to genomic disorders, focus-
ing on those with variable expressivity that are discussed in later chapters.

Table 1.10: Selection of 10 genetic regions linked to genomic disorders.
The genomic coordinates (GRCh37/hg19), size, and number of genes in the locus are provided. In case the phenotype is unambiguously
linked to a single gene, the latter is indicated. The name of the recurrent deletion and reciprocal duplication are indicated and the link to
the GeneReviews is provided, when available. A selection of hallmark clinical features is provided, although it should be noted that most
of these CNVs have highly heterogenous clinical presentation and carriers might not present with all listed features. ASD = autism
spectrum disorder; CAKUT = congenital anomalies of kidney and urinary tract; CMTA1 = Charcot-Marie-Tooth disease, type 1A; DD/ID
= developmental delay and intellectual disability; DGS/VCFS = DiGeorge/Velocardiofacial syndrome; HNPP = Hereditary neuropathy
with liability to pressure plasy; RCAD = renal cyst and diabetes; TAR = thrombocytopenia-absent radius

Locus (GRCh37) Length Genes CNV Hallmark clinical features

1q21.1
(chr1:145.4-145.7)

360 kb 15
(RBM8A)

1q21.1 deletion
(TAR syndrome)

Hypomegakaryocytic thrombocytopenia and bilat-
eral radial aplasia.

1q21.1 duplication /

15q11-q13
(chr15:23.6-28.4)

4.8 Mb 14
(UBE3A)

Maternal 15q11-q13 deletion
(Angelman syndrome)

DD/ID, happy demeanor, seizures, sleep problems,
microcephaly, gait ataxia, facial dysmorphism.

Paternal 15q11-q13 deletion
(Prader-Willi syndrome)

DD/ID, stereotypical behavior, short stature, scol-
iosis, obesity, hypotonia, hypogonadism, facial dys-
morphism.

15q13.3
(chr16:30.9-32.4)

1.5 Mb 7 15q13.3 BP4-5 deletion DD/ID, psychiatric disorders, seizures, facial dys-
morphism.

15q13.3 BP4-5 duplication DD/ID, psychiatric disorders.
16p13.11

(chr16:15.0-16.5)
1.5 Mb 16 16p13.11 deletion DD/ID, seizures, microcephaly, facial dysmor-

phism.
16p13.11 duplication DD/ID, psychiatric disorders, seizures, facial dys-

morphism.
16p12.1

(chr16:21.9-22.4)
520 kb 8 16p12.1 deletion DD/ID, psychiatric disorders, seizures, short

stature, cardiac defects, facial dysmorphism.
16p12.1 duplication /

16p11.2
(chr16:28.6-29.2)

220 kb 9 16p11.2 BP2-3 deletion DD/ID, ASD, macrocephaly, obesity.
16p11.2 BP2-3 duplication DD/ID, ASD, microcephaly, underweight.

16p11.2
(chr16:29.6-30.2)

600 kb 27 16p11.2 BP4-5 deletion DD/ID, ASD, seizures, short stature, vertebral
anomalies, macrocephaly, obesity, CAKUT.

16p11.2 BP4-5 duplication DD/ID, psychiatric disorders, seizures, micro-
cephaly, underweight.

17p12
(chr17:14.1-15.6)

1.4 Mb 9
(PMP22)

17p12 deletion (HNPP) Hereditary neuropathy with liability to pressure
palsy.

17p12 duplication (CMTA1) Charcot-Marie-Tooth disease, type 1A.
17q12

(chr17:34.8-36.2)
1.4 Mb 15

(HNF1B)
17q12 deletion (RCAD) DD/ID, CAKUT and tubulointerstitial disease,

maturity-onset diabetes of the young, facial dys-
morphisms, hyperparathyroidism.

17q12 duplication DD/ID, seizures.

22q11.2
(chr22:18.9-21.5)

2.5 Mb 46
22q11.2 LCR A-D deletion
(DGS/VCFS)

DD/ID, psychiatric disorders, cardiac defects, cleft
palate, immune deficiency, facial dysmorphism.

22q11.2 LCR A-D duplication DD/ID, hypotonia.

https://www.deciphergenomics.org/disorders/syndromes/list
https://www.ncbi.nlm.nih.gov/books/NBK23758/
https://www.ncbi.nlm.nih.gov/books/NBK1144/
https://www.ncbi.nlm.nih.gov/books/NBK1330/
https://www.ncbi.nlm.nih.gov/books/NBK50780/
https://www.ncbi.nlm.nih.gov/books/NBK274565/
https://www.ncbi.nlm.nih.gov/books/NBK11167/
https://www.ncbi.nlm.nih.gov/books/NBK1392/
https://www.ncbi.nlm.nih.gov/books/NBK1358/
https://www.ncbi.nlm.nih.gov/books/NBK401562/
https://www.ncbi.nlm.nih.gov/books/NBK1523/
https://www.ncbi.nlm.nih.gov/books/NBK3823


42 1 Introduction

Importantly, many of these loci are associated with incomplete pene-
trance and variable expressivity (Figure 1.20), further complicating the
understanding of underlying molecular mechanisms and the identifica-
tion of genes that drive phenotypic associations. Golzio and Katsanis
propose models to describe the genotype-phenotype relation at these
loci (266). The single gene model stipulates that there is a single primary
driver whose altered dosage is necessary and sufficient to produce the
phenotype (Figure 1.21B). There are only few examples of recurrent CNVs
encompassing multiple genes where this model seems to hold. One
of them is located on chromosome 17p12 and represents the primary
etiology for Charcot–Marie–Tooth Type 1A (duplication) and hereditary
neuropathy with liability to pressure palsies (deletion). The CNV in-
creases disease risk through altered dosage of the dosage-sensitive gene
PMP22 (267, 268), as corroborated by small PMP22 LoF mutations and
animal models (269–271). A more prevalent model seems to be the one
of cis-epistasis. In its simplest form, a main driver gene is modulated
through epistatic (i.e., non-additive) contribution of other genes within
the locus (Figure 1.21C). This model can be validated experimentally in
animal models with double gene knockdowns. For instance, manipu-
lation of the expression of the 16p11.2 BP4-5 gene KCTD13 in zebrafish
recapitulates the brain size phenotype observed in human CNV carriers
(266), but was subject to epistatic interactions from other genes in the
region (266, 272). Yet, in mouse models, Kctd13 knockout only leads to neu-
roanatomical changes upon additional knockout of epistatic interactors
(273). A recent study showed that over a dozen of 16p11.2 BP4-5 syntenic
mouse orthologs contribute to neuroanatomical phenotypes (274), under-
scoring the oligogenic architecture (i.e., influenced by multiple genes) of
the trait. As such, the cis-epistasis model can be further extended to a
complex model with multiple driver genes, whose effects are modulated
by additive and epistatic contributions of modifier genes (Figure 1.21D).
Additional complexity results from accounting for the pleiotropic effect
of the CNV, as different phenotypes might be regulated by distinct sets
of genes (Figure 1.21E). For instance, TBX6 has been associated with the
musculoskeletal and genitourinary phenotypes of 16p11.2 BP4-5 deletion
carriers (275–278), yet at least four other genes in the locus have been
involved in modulating these phenotypes (see Chapter 6). Complex inter-
action models imply that while small-scale mutations affecting individual
genes can inform about the individual contribution of genes to specific
phenotypes, they cannot fully phenocopy the impact of CNVs. While
the above-described models focus on the CNV locus itself, there is now
abundant evidence that the phenotypic expression of CNVs linked to
genomic disorder is also influenced by interactions with genes outside
of the locus (273, 279–284). This was initially stipulated by the "two-hit"
model that explains the phenotypic heterogeneity observed in carriers of
recurrent CNVs by the presence of additional rare variants that determine
the severity of the expressed phenotype (285–288) (Figure 1.21F). More
recently, evidence has emerged that the entire genetic background on
which a CNV occurs contributes to phenotypic heterogeneity (Figure
1.21G). Indeed, an individual’s PGS can both exacerbate or decrease
phenotypic expression (289–291), even though it should be noted that
the power of these studies remains limited.

Challenges linked to CNV-GWASs
As described extensively in the introductions of the following chapters,
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Figure 1.21: Models for CNV-phenotype
relationship.
Schematic representation of increasingly
complex models that explain the relation
between CNVs and associated pheno-
types. Contribution of non-genetic fac-
tors (e.g., lifestyle, sex, socio-economic
status) is not considered here. (A) Simple
model where a CNV affects a single gene,
often leading to a single phenotype (e.g.,
Table 1.8). The genotype of the present
copies of the CNV region contribute to
the final phenotypic expression. (B-E)
CNVs that affect multiple genes often
associate with multiple traits (i.e., are
pleiotropic, e.g., Table 1.10). These phe-
notypes result from the altered dosage
of one or multiple driver genes subject to
cis-epistatic effect from other modulator
genes within the region. (F-G) Pheno-
typic expression is influenced by other
rare variants through a "two-hit" model
(F), as well as by the polygenic contribu-
tion of many small-effect size variants
genome-wide (G).

at the start of my PhD, only few studies had thoroughly assessed the
role of CNVs in complex traits and common diseases (292–295). The
genetic basis of complex traits is typically studied through a GWAS
framework (1.3) in population cohorts (1.2). The main aim of my thesis
was to develop a CNV-GWAS framework to comprehensively assess the
role of CNVs in the general population and gain deeper insights into the
CNV architecture of complex traits. I implemented this framework in
the UKBB, which at the start of my PhD had genotype microarray data
available for ∼500,000 samples. Yet, compared to SNP-GWAS, additional
methodological considerations were needed (205). Indeed, array-based
CNV detection suffers from high false positive and negative rates, re-
quiring additional steps to deal with uncertainty in CNV call, including
stringent quality control steps. Confidence in CNV calls increases with
the number of probes that cover the CNV. A correlate of this is that the
CNVs used in our association studies tend to be large and confined to
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genomic regions with high probe density. In either case, these CNVs are
under strong selective pressure – especially in population cohorts – and
are thus rare. This reduces statistical power and emphasizes the need for
large sample sizes. Another consideration is that CNVs span multiple
base pairs. Grouping CNVs is complicated by true biological variability
in breakpoints and the low breakpoint resolution of microarray-based
CNV calls, making it important to adequately define the testing unit to
avoid further power loss. The choice of the testing unit is also an im-
portant consideration to allow replication and/or meta-analysis of CNV
calls originating from a cohort genotyped with another array. Finally, is
crucial to redefine an appropriate multiple-testing strategy that accounts
for the unique characteristics of microarray-based CNV calls. Because
CNV-GWASs are not yet standard practice, there is no consensus about
how to handle these issues.

Throughout my PhD, I hope to have contributed to addressing some of
these challenges and helped define good practices for the implementation
of CNV-GWASs. This in turn revealed new biological insights regarding
the pleiotropy and variable expressivity of CNVs linked with genomic dis-
orders, with important consequences in terms of personalized medicine.
The research I conducted also opened the discussion about new avenues
to further deepen our understanding of the mechanisms through which
CNVs exert their phenotypic consequences, as I will detail in the last two
chapters.



Developing a framework for
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Once you come up with a premise, you have to work out how it all happened. It’s
a bit like coming up with a spectacular roof design first. Before you can get it up
there, you need to build a solid foundation and supporting structure.

– Linwood Barclay

This chapter describes "The individual and global impact of copy-number
variants on complex human traits" (208), which was published in the
American Journal of Human Genetics and forms the foundation of my
dissertation. Here, I present an extended version of the study that
incorporates supplemental material.

The study was the most read paper of the American Journal of Human Genet-
ics in 2022 and was selected as a remarkable output by the Swiss Institute
of Bioinformatics. I furthermore presented this work at international
conferences, including the American Society of Human Genetics, the
European Society of Human Genetics, and the Swiss Society of Medical
Genetics annual meetings, where it received several distinctions.

Finally, I collaborated with the GWAS Catalog to release the first copy-
number variant genome-wide association study (CNV-GWAS) summary
statistics available through the platform, paving the way for increased
awareness around the role of CNVs in shaping complex traits in the
general population.
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2.1 Aims

This study extends on previous work in the group carried out by Aurélien
Macé, who called CNVs from genotype microarray data for ∼120,000
UKBB participants and performed association studies between the latter
and four anthropometric traits: body mass index, weight, height, and
waist-to-hip ratio (295). To provide a more comprehensive view of the
role and medical relevance of CNVs in the general population, the current
study had the following goals:

1. Generate CNV calls for ∼500,000 individuals and describe the CNV
landscape of the UK Biobank. At the time, this represented one of
the largest sets of CNV calls, providing the necessary statistical
power to study the impact of rare CNVs in the general population.

2. Develop a statistically robust pipeline to establish associations
between genome-wide CNVs and quantitative traits through dif-
ferent dosage mechanisms of action: a mirror model assessing the
additive consequence of each additional copy and duplication- and
deletion-only models that assess the individual contribution of
duplications and deletions to the phenotype, respectively.

https://www.sib.swiss/news/discover-the-sib-remarkable-outputs-2022
https://www.sib.swiss/news/discover-the-sib-remarkable-outputs-2022
https://news.unil.ch/display/1646051842510
https://www.sib.swiss/news/how-genomic-deletions-and-duplications-affect-our-health
https://pages.rts.ch/la-1ere/programmes/cqfd/12876510-comment-les-genes-influencent-votre-vie-04-03-2022.html?mediaShare=1
https://learning.ashg.org/webinar/502319
https://dx.doi.org/10.17632/z54dc3b6jz.1
https://www.ebi.ac.uk/gwas/publications/35240056
https://github.com/cauwerx/CNV_GWAS_continuous_traits
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3. Apply the developed pipeline to 57 medically relevant quantitative
traits. The large number and diversity of assessed phenotypes put
forward general patterns describing the CNV genetic architecture
of complex traits and allow in-depth follow-up analyses of specific
associations.

4. Assess the global impact of CNVs on quality of life and lifespan.

2.2 Key Findings

Describing the landscape of large – and thus often deleterious – CNVs
detectable by microarrays in the UK Biobank, we found that 39% of
participants carried at least one high confidence CNV and that these
affected over 80% of the human genome. These higher-than-anticipated
numbers indicate that CNVs represent a major source of genetic variation
within the general population and that biobanks can be used to study
the role of this mutational class outside of the clinical setting in which
they have typically been described.

We developed a CNV-GWAS framework that allowed us to overcome
two of the major hurdles related to CNV association studies: i) deal with
variability in CNV breakpoints across individuals and ii) distinguish
between distinct CNV dosage mechanisms of action. We identified
131 associations. These involve 47 of the 57 tested phenotypes and 28
unique genomic regions, most of which had previously been linked to
genomic disorders and accordingly were found to exhibit high levels of
pleiotropy.

By dissecting over twenty associations, we provided insights into the
biology and epidemiology of these examples and established bridges
between rare and common diseases. Indeed, 38% of our CNV-GWAS
signals mapped to regions in which common genetic variation had
previously been linked to a similar phenotype. Conversely, we identified
CNVs that led to subclinical manifestations reminiscent of the phenotypes
characterizing the Mendelian disorders linked to these loci. Together, this
speaks for the presence of convergent genetic mechanisms, strengthening
our confidence in the biomedical relevance of our findings. It also brings
forward a complex and nuanced model of variable expressivity and
incomplete penetrance that links a given genetic region to a spectrum of
phenotypic alterations with variable clinical severity.

Finally, we investigated the global impact of CNVs on human health by
aggregating CNV calls into a CNV burden. This revealed the widespread
negative consequences of a high CNV load on over half of the assessed
phenotypes. These deleterious consequences extended to an individual’s
socio-economic status and proxied lifespan, emphasizing how CNVs
impact the overall quality of life of carriers.

2.3 Author Contributions

This study was conceived by Zoltán Kutalik, Alexandre Reymond, and
myself. I performed the CNV calling in the UKBB, with guidance from
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Eleonora Porcu and Maarja Jõeloo (previously Lepamets). I carried
out the bulk of the analyses, including the CNV-GWAS and burden
analyses in the UKBB, as well as the follow-ups on specific examples.
Statistical analyses were supervised by Zoltán Kutalik. Zoltán Kutalik
and I coordinated the generation of supportive evidence:

▶ The Estonian Biobank Research Team (Tõnu Esko, Andres Metspalu,
Lili Milani, Reedik Mägi, Mari Nelis) coordinated genotyping
and sequencing data acquisition in the EstBB and Maarja Jõeloo
performed the CNV calling, comparative analyses, and replication
study under the supervision of Reedik Mägi.

▶ Marie Sadler carried out the Mendelian randomization analyses
under Zoltán Kutalik and Eleonora Porcu’s supervision.

▶ David Baud and Milos̆ Stojanov collected and provided access to
the CHUV maternity cohort data. Data were analyzed by Marion
Patxot.

Results were interpreted by Zoltán Kutalik, Alexandre Reymond, and
myself. I designed all the figures and drafted the manuscript, with critical
revisions made by Zoltán Kutalik and Alexandre Reymond.

2.4 The individual and global impact of
copy-number variants on complex human
traits

Chiara Auwerx 1,2,3,4, Maarja Lepamets 5,6, Marie C. Sadler 3,4, Marion
Patxot 2, Milos̆ Stojanov 7, David Baud 7, Reedik Mägi 6, Estonian Biobank
Research Team 6, Eleonora Porcu 1,3,4, Alexandre Reymond 1,*, and Zoltán
Kutalik 2,3,4*.

1 Center for Integrative Genomics, Uni-
versity of Lausanne, Lausanne 1015,
Switzerland; 2 Department of Compu-
tational Biology, University of Lausanne,
Lausanne 1015, Switzerland; 3 Swiss In-
stitute of Bioinformatics, Lausanne 1015,
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Abstract
The impact of copy-number variations (CNVs) on complex human traits
remains understudied. We called CNVs in 331,522 UK Biobank partici-
pants and performed genome-wide association studies (GWASs) between
the copy number of CNV-proxy probes and 57 continuous traits, revealing
131 signals spanning 47 phenotypes. Our analysis recapitulated well-
known associations (e.g., 1q21 and height), revealed the pleiotropy of
recurrent CNVs (e.g., 26 and 16 traits for 16p11.2 BP4-BP5 and 22q11.21,
respectively), and suggested gene functionalities (e.g., MARF1 in female
reproduction). Forty-eight CNV signals (38%) overlapped with single-
nucleotide polymorphism (SNP)-GWAS signals for the same trait. For
instance, deletion of PDZK1, which encodes a urate transporter scaffold
protein, decreased serum urate levels, while deletion of RHD, which en-
codes the Rhesus blood group D antigen, associated with hematological
traits. Other signals overlapped Mendelian disorder regions, suggesting
variable expressivity and broad impact of these loci, as illustrated by
signals mapping to Rotor syndrome (SLCO1B1/3), renal cysts and diabetes
syndrome (HNF1B), or Charcot-Marie-Tooth (PMP22) loci. Total CNV
burden negatively impacted 35 traits, leading to increased adiposity,
liver/kidney damage, and decreased intelligence and physical capacity.
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Thirty traits remained burden-associated after correcting for CNV-GWAS
signals, pointing to a polygenic CNV architecture. The burden negatively
correlated with socio-economic indicators, parental lifespan, and age
(survivorship proxy), suggesting a contribution to decreased longevity.
Together, our results showcase how studying CNVs can expand biological
insights, emphasizing the critical role of this mutational class in shaping
human traits and arguing in favor of a continuum between Mendelian
and complex diseases.

Figure 2.2: Graphical abstract of Auwerx
et al., 2022.
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Introduction
With the advent of genome-wide association studies (GWASs), the poly-
genic architecture of complex human traits has become apparent (81, 171,
296). Still, single-nucleotide polymorphisms (SNPs) do not explain the
totality of observed phenotypic variability – a phenomenon referred to
as missing heritability – and one proposed explanation is the contribution
of additional types of genetic variants, such as copy-number variants
(CNVs) (108).

Characterized by the deletion or duplication of DNA fragments ≥ 50
bases (36), CNVs represent a highly diverse mutational class that, due
to their possibly large size, constitute potent phenotypic modifiers that
act through e.g., gene dosage sensitivity, truncation or fusion of genes,
unmasking of recessive alleles, or disruption of cis-regulatory elements
(297). Hence, CNVs have been acknowledged to play an important role
in human diseases and were identified as the genetic etiology of 65
rare and debilitating genomic syndromes by DECIPHER (265). However,
early GWASs failed to establish clear links between CNVs and complex
traits and diseases (298, 299). Several factors, specific to genome-wide
copy-number association studies (CNV-GWASs), contributed to these
negative results, such as the low frequency and variable breakpoints
of CNVs in the population, as well as uncertainty and low resolution
of CNV calls originating from genotyping microarrays (205). In recent
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years, methodological development, as well as the creation of large
biobanks, has allowed bypassing of some of these hurdles. Focusing
on a curated set of CNVs, a series of studies characterized the impact
of well-established pathogenic CNVs on cognitive performance (300),
physical measurements (294, 301), common medical conditions (293, 302),
and blood biomarkers (303). Alternatively, unbiased genome-wide (GW)
studies have been conducted (292, 295, 304–306), involving loci not cov-
ered by targeted approaches and adding to the growing body of evidence
implicating CNVs in complex traits. Notably, a recent study made use of
the UK Biobank (UKBB) (61) to assess the impact of CNVs on over 3,000
traits, providing the research community with a large population-based
CNV-to-phenotype resource (292). Using an independent CNV calling
and association pipeline and focusing on a set of 57 medically relevant
continuous traits, we here confirm previously established associations,
uncover biological insight through in-depth analysis of particular CNV-
trait pairs, and expose a nuanced role of CNVs along the rare versus
common disease spectrum, suggesting that the deleterious impact of
CNVs contributes to decreased longevity in the general population.

Materials and methods
Study material

Software versions:
▶ CNV calling: PennCNV v1.0.5 (203).
▶ CNV QC: (206).
▶ PLINK v1.9 and PLINK v2.0.26 (88).
▶ Gene annotation: ANNOVAR (307).
▶ Meta-analysis: GWAMA v2.2.2 (308).
▶ Statistical analyses: R v3.6.1.
▶ Graphs: R v4.0.3.

Cohort description
The UK Biobank (UKBB) is a volunteer-based cohort of ∼500,000 indi-
viduals (54% females) from the general UK population (61). Individuals
were aged 40-69 years at recruitment and underwent microarray-based
genotyping and extensive phenotyping, which is constantly extended
and includes physical measurements, blood biomarker analyses, socio-
demographic and health-related questionnaires, as well as linkage to
medical health records. Participants signed a broad informed consent
form and data was accessed through the application number 16389.

The Estonian Biobank (EstBB) is a population-based cohort encom-
passing ∼20% of Estonia’s adult population (∼200’000 individuals; 66%
females) (62). Individuals underwent microarray-based genotyping at the
Core Genotyping Lab of the Institute of Genomics, University of Tartu,
and a subset of ∼2’500 samples underwent whole-genome sequencing
(WGS). General data, including body measurements, were collected at
recruitment. Project-based questionnaires were sent later and filled on
a voluntary basis. Health records are updated through linkage with
the national Health Insurance Fond and other relevant databases, pro-
viding sporadic access to blood biomarker measurements and medical
diagnoses. All participants signed a broad informed consent form and
analyses were carried out under ethical approval 1.1-12/624 from the
Estonian Committee on Bioethics and Human Research and data release
N05 from the EstBB.

The Lausanne University Hospital (CHUV) maternity cohort was de-
signed as a serological surveillance study of maternal toxoplasmosis
infections and approval from the Ethics Committee of Vaud (CER-VD)
was obtained for data reusage under the project ID 2019-00280 to in-
vestigate maternal and fetal outcomes. Rhesus (Rh) blood groups were
serologically determined for 5,164 women. Reticulocyte count, platelet
count, glycated hemoglobin (HbA1c) levels, intrapartum reports, and
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International Classification of Diseases, 10th Revision (ICD-10) codes
were sporadically collected between 2009-2014.

The CNV landscape of the UK Biobank

Genotype data
Data acquisition and quality control (QC) have been described (61).
Briefly, UKBB participants were genotyped on two similar arrays (95%
probe overlap): 438,427 samples (95 batches) were genotyped with the
Applied Biosystems UK Biobank Axiom Array (825,927 probes) and
49,950 samples (11 batches) were genotyped with the Applied Biosystems
UK BiLEVE Axiom Array by Affymetrix (807,411 probes). All results in this
study are based on the human genome reference build GRCh37/hg19.

Sample selection
Related, gender mismatched, high missingness, non-white British ances-
try, and retracted samples were excluded (used.in.pca.calculation
= 0 and in.white.British.ancestry.subset = 0 in Sample-QC v2
file). To protect the analysis from somatic chromosomal aberrations, we
excluded individuals with self-reported (#20001, codes: 1047, 1048, 1050,
1051, 1052, 1053, 1055, 1056, 1056; UKBB update 03/2020) and/or hospital
diagnosed (#41270; International Classification of Diseases, 10th Revision
[ICD-10] codes mapping to cancer of lymphatic and hematopoietic tissue’s
exclusion range in the Phecode Map 1.2 [beta], accessed 09/12/2020
(309); UKBB update 08/2019) blood malignancy. CNV outliers were later
removed (see CNV calling and quality control). All reported results are for
331,522 unrelated white British UKBB participants (54% females).

CNV calling and quality control
Autosomal and pseudoautosomal CNV calling was performed in parallel
for the 106 genotyping batches using PennCNV. Individual intensity
files were generated from the B allele frequency (BAF) and Log R Ratio
(LRR) files available on the UKBB portal. Missing values (−1) were set to
NA. Batch-specific population frequency of the B allele (PFB) files were
generated. Probes with missing PFB were removed in a batch-specific way.
The hidden Markov Model file for Affymetrix genome-wide 6.0 array
was downloaded as part of the PennCNV-Affy package and used without
training. The GC model file was generated following instructions of cal_-
gc_snp.pl, using gc5Base downloaded from the UCSC Genome Browser
(03/2020). Above-described files were used to call CNVs with confidence
score using detect_cnv.pl with genomic wave adjustment. Adjacent
CNVs (gap ≤ 20% of merged CNV length) were merged with clean_-

cnv.pl. Chromosome X CNVs were called separately with the PennCNV
inbuilt arguments −chrx and −sexfile when running detect_cnv.pl.
Copy-neutral losses of heterozygosity resulting from male chromosome
X hemizygosity were excluded, and adjacent CNVs were merged.

CNVs originating from samples genotyped on plates with a mean CNV
count per sample > 100 or from samples with > 200 CNVs or a single
CNV > 10 Mb were excluded, as these might be indicative of batch effects,
genotyping errors, or extreme chromosomal abnormalities. Hurdles
linked to CNV analysis include high false positive rates and variability
in breakpoints. To mitigate these issues, a post-PennCNV processing
pipeline was used to attribute a quality score (QS) to each CNV and
transform calls to the probe level (206, 295). QSs range from -1 to 1 and
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1:
CNV frequency:

𝑞𝐶𝑁𝑉 =
100·𝑁𝑢𝑚𝐶𝑁𝑉

𝑁𝑢𝑚𝐶𝑁𝑉+𝑁𝑢𝑚𝑛𝑜𝑛−𝐶𝑁𝑉

Duplication frequency:

𝑞𝐷𝑈𝑃 =
100·𝑁𝑢𝑚𝐷𝑈𝑃

𝑁𝑢𝑚𝐶𝑁𝑉+𝑁𝑢𝑚𝑛𝑜𝑛−𝐶𝑁𝑉

Deletion frequency:

𝑞𝐷𝐸𝐿 =
100·𝑁𝑢𝑚𝐷𝐸𝐿

𝑁𝑢𝑚𝐶𝑁𝑉+𝑁𝑢𝑚𝑛𝑜𝑛−𝐶𝑁𝑉

reflect the probability of a CNV to be a true positive (−1 = likely deletion;
1 = likely duplication; ∼ 0 = low confidence CNVs). Briefly, PennCNV
filter_cnv.pl was run separately on autosomal/pseudoautosomal and
chromosome X CNVs (with −chrx), resulting in two sample-level QC
files. These were combined by adding the number of chromosome X
CNVs to the autosomal/pseudoautosomal sample-level QC file. A single
file containing all called CNVs, as well as associated CNV- and sample-
level QC metadata, was generated and used to attribute a QS to each
called CNV. Next, linear PennCNV coordinates were transformed into
per-chromosome 𝑝𝑟𝑜𝑏𝑒 × 𝑠𝑎𝑚𝑝𝑙𝑒 matrices, with entries reflecting the
QS attributed to the CNV mapping to these probes. Copy-neutral probes
are indicated by 0 and individuals with no CNVs were added as all-0
columns.

Converting CNV calls into PLINK format
QS matrices were converted to PLINK binary file sets. Probes with ≥ 1
high-confidence CNV, stringently defined by |QS| ≥ 0.5, were retained
and encoded into three file sets to accommodate analyses according to
a mirror (PLINKCNV), duplication-only (PLINKDUP), or deletion-only
(PLINKDEL) association model (−−make−bed PLINK v1.9; Table 2.1).

Mirror Duplication-only Deletion-only

PLINK file set PLINKCNV PLINKDUP PLINKDEL

Deletion (QS < -0.5) AA 00 TT
Copy-neutral (-0.5 ≤ QS ≤ 0.5) AT AT AT
Duplication (QS > 0.5) TT TT 00

Table 2.1: PLINK encoding of CNVs.
Encoding of high-confidence CNVs from
quality score (QS) matrices into three
PLINK file sets.

CNV frequency calculation
Genotype counting was performed for the 740,434 probes stored in
PLINKCNV (−−freqxPLINK v1.9). 41,670 array-specific probes with geno-
type count missingness > 5% were excluded and each probe’s CNV, dupli-
cation, and deletion frequencies were calculated (%)1, with𝑁𝑢𝑚𝑛𝑜𝑛−𝐶𝑁𝑉 ,
𝑁𝑢𝑚𝐷𝑈𝑃 , and𝑁𝑢𝑚𝐷𝐸𝐿, the number of individuals carrying 2, > 2, and <
2 copies of that probe, respectively, and𝑁𝑢𝑚𝐶𝑁𝑉 = 𝑁𝑢𝑚𝐷𝑈𝑃+𝑁𝑢𝑚𝐷𝐸𝐿.

CNV association studies in the UK Biobank

CNV probe selection and number of effective tests
Association studies were restricted to probes with a CNV, duplication, or
deletion frequency ≥ 0.005% for the mirror, duplication-only, or deletion-
only models, respectively. To group probes at the core of CNV regions
while retaining variability at breakpoints, we pruned probes at r2 >
0.9999 in PLINKCNV, PLINKDUP, and PLINKDEL (−−indep−pairwise
500 250 0.9999 PLINK v2.0). As retained CNV-proxy probes remain
highly correlated – much more so than SNPs would be due to classical
linkage disequilibrium patterns – the number of effective tests, 𝑁𝑒 𝑓 𝑓 , was
determined (85, 295). Per-chromosome 𝑝𝑟𝑜𝑏𝑒×𝑠𝑎𝑚𝑝𝑙𝑒 genotype matrices
𝐺 were generated, with genotypes taking values of −1 (deletion), 0 (copy-
neutral), and 1 (duplication). Chromosome-wise 𝑁𝑒 𝑓 𝑓 were defined as
the number of eigenvalues required to explain 99.5% of the variance in
𝐺 and were summed up, resulting in a GW 𝑁𝑒 𝑓 𝑓 . 𝑁𝑒 𝑓 𝑓 was estimated
at 11,804, setting the GW threshold for significance at p ≤ 0.05/11,804
= 4.2 × 10-6. Accounting solely for duplications or deletions resulted in
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lower 𝑁𝑒 𝑓 𝑓 estimates but the same conservative threshold was used for
all models.

Phenotype selection
Fifty-seven continuous traits were selected based on data availability
and presumed high heritability. Fifty-four were defined as the mean of
measured instances. Three were composite traits: Grip strength, as the
mean of hand grip strength left (#46) and right (#47); waist-to-hip ratio
(WHR), as the ratio between waist (#48) and hip circumference (#49); WHR
adjusted for body mass index (WHRadjBMI), by correcting WHR for BMI.
Two were male-specific (relative age of first facial hair (#2375); hair/balding
pattern (#2395)) and three were female-specific (age when periods started
(menarche) (#2714); age at menopause (last menstrual period) (#3581); birth
weight of first child (#2744)). Entries “do not know”, “only had twins”,
“prefer not to answer” were set as missing. Traits were inverse normal
transformed prior correction for sex (except for sex-specific traits), age
(#21003), age2, genotyping batch, and principal components (PCs) 1-40.
Normal phenotypic ranges were retrieved and converted from Symed
MediCalc.

Genome-wide copy-number association studies
Associations between the copy number (CN) of selected probes and
normalized covariate-corrected traits were performed (−−glm omit-ref

no-x-sex hide-covar allow-covars PLINK v2.0). To avoid interfer-
ence between the two-letter CNV encoding (Table 2.1) and the assumption
of male chromosome X hemizygosity, we (falsely) labeled all individuals
as female. For sex-specific traits, samples from the opposite sex were
excluded. Three association models were applied: the mirror model
(PLINKCNV) assessed the additive effect of each additional copy of a
probe, the duplication-only model (PLINKDUP) assessed the impact of a
duplication while disregarding deletions, and the deletion-only model
(PLINKDEL) assessed the impact of a deletion while disregarding duplica-
tions. Given CNV encoding (Table 2.1), effects were homogenized to "T"
by multiplying 𝛽 by −1 when A1 was "A". GW-significant associations (p
≤ 4.2 × 10-6) were retained. Stepwise conditional analysis was performed
on CNV-GWAS results to determine the number of independent signals
per trait. For traits with ≥ 1 GW-significant signal, CNV information was
extracted for the lead probe, with genotypes taking values of −1 (dele-
tion), 0 (neutral), and 1 (duplication) for the mirror model, and setting
deletions or duplications to missing when considering the duplication-
only or deletion-only models, respectively. Lead CNV probe effect was
regressed out of the phenotype and association studies were conducted
anew. These steps were repeated until no GW-associated probes were
identified.

CNV region definition, merging, and annotation
CNV region (CNVR) boundaries were defined by the most distant
probe within ± 3 Mb and r2 ≥ 0.5 of each independent lead probe
(−−show−tags −−tag−kb 3000 −−tag−r2 0.5 PLINK v1.9). Signals
from the different models were merged when involving i) the same trait,
ii) overlapping CNVRs, and iii) directional concordance according to a
mirror model. CNVR boundaries were defined as the maximal CNVR and
characteristics of the most significant model were retained. CNVRs were
annotated with annotate_variation.pl, with hg19 RefSeq gene names
(−−geneanno; 08/06/2020) and NHGRI-EBI GWAS Catalog (77) asso-

http://www.scymed.com/en/smnxfd/smnxfdad.htm
http://www.scymed.com/en/smnxfd/smnxfdad.htm
https://www.ebi.ac.uk/gwas/
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ciations (−−regionanno; 27/10/2021) via ANNOVAR. GWAS Catalog
trait synonyms considered are listed in Table S2.1. For each trait, focus-
ing on autosomes, we performed a two-sided binomial test to compare
GWAS Catalog SNP-GWAS signal density (accessed 27/10/2021) within
CNVRs as compared to the entire genome. The number of SNP-GWAS
signals falling within trait-associated CNVRs represents successes, the
total length of trait-associated CNVRs [bp] represents trials, and total
number of SNP-GWAS signals divided by the autosomal genome length
(2,881,033,286 bp) represent the hypothesized signal density.

Replication in the Estonian Biobank

Comparative analysis of CNV quality
About 7,750 EstBB participants were genotyped with Illumina Infinium
OmniExpress-24 genotyping array. Samples with genotype call rate <
98%, Hardy-Weinberg equilibrium test p-value < 1 × 10-4, or mismatched
sex based on chromosome X heterozygosity were excluded. Intensity files
(LRR and BAF) were created with Illumina GenomeStudio v2.0.4. A PFB
file was generated from all samples. Only autosomal probes were carried
over to the CNV detection step (709,358 probes), which was performed
with PennCNV, analogously to what has been described for the UKBB.
Samples with > 200 CNVs or a total length of CNV calls > 10 Mb were
excluded. CNVs were attributed a QS, as previously described for the
UKBB, and CNVs with |QS| ≥ 0.5 were retained. To harmonize data
with WGS-based CNV calls, duplications < 2 kb and deletions < 1 kb
were excluded.

WGS data (30x coverage) was available for ∼2,500 EstBB samples. WGS-
based autosomal CNVs were called in 5 batches using the Genome
STRiP pipeline (39). Eleven samples with a number of calls exceeding
the median plus three absolute median deviations were removed. The
union of the discovered sites was genotyped with the Genome STRiP
SVGenotyper module in all batches separately and merged. Duplicate
calls were removed using standard Genome STRiP duplicate removal
settings (overlap > 50% and duplicate score > 0). Low-quality CNVs
and CNVs with call rate < 90% were excluded. Duplications < 2 kb and
deletions < 1 kb were excluded. To harmonize data with microarray-based
CNV calls, CNVs > 10 Mb were excluded and adjacent CNVs were merged
(gap ≤ 20% of merged CNV length).

Quality-controlled Illumina Infinium OmniExpress-24 microarray geno-
typing and WGS data were available for 966 overlapping and unrelated
samples. We constructed a cross-sample PennCNV-CNV profile for each
of the 709,358 genotyped probes, taking values of −1 (deletion), 0 (copy-
neutral), and 1 (duplication). Similar profiles were constructed based on
STRiP-CNV calls and Pearson’s coefficient of correlation and number
of CNV carriers according to both methods were calculated for each
genomic location. For probes with ≥ 1 PennCNV call but no STRiP call,
all correlated probes (r ≥ 0.5, according to PennCNV profiles) within ±
250 kb were retrieved and maximal PennCNV-WGS correlation among
these probes was retained. Analyses were repeated on a subset of 5,566
probes overlapping UKBB-trait-associated CNVRs.

Phenotype data
Analyzed traits were queried in the EstBB: height, weight, and BMI
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2: Direction agreement: 𝑝𝑛𝑒𝑤 =
𝑝𝑜𝑙𝑑

2 ;

else: 𝑝𝑛𝑒𝑤 = 1 − 𝑝𝑜𝑙𝑑
2

3:
Duplication-only:
𝐶𝑁𝑉 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞𝑖 ,𝐷𝑈𝑃)

Deletion-only:
𝐶𝑁𝑉 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞𝑖 ,𝐷𝐸𝐿)

Mirror:
given 𝑧 ∼ 𝑈(0, 1)

𝐶𝑁𝑉 =


−1, 𝑧 ≤ 𝑞𝑖 ,𝐷𝐸𝐿

0, 𝑞𝑖 ,𝐷𝐸𝐿 < 𝑧 < 𝑞𝑖 ,𝐷𝑈𝑃
1, 𝑧 ≥ 1 − 𝑞𝑖 ,𝐷𝑈𝑃

were collected at enrollment; age at menarche and menopause were
collected by project-based questionnaires; 41 traits were retrieved from
parsed notes in health registries; 11 did not have any corresponding term.
Because most phenotypic measurements originate from health registries,
they were gathered at different time points and by different practitioners
and were only available for a limited subset of participants. In case of
repeated measurement, the most recent one was retained. Traits with
sample size ≥ 2,000 were selected and inverse normal transformed prior
correction for sex (except for sex-specific traits), age, age2, genotyping
batch, and PCs 1-20.

CNV calling and copy-number association studies
Twelve batches containing 202,282 EstBB participants were genotyped
with Illumina GSAv1.0, GSAv2.0, GSAv2.0_ESTChip, and GSAv3.0_-
ESTChip2. Samples with genotype call rate < 98%, Hardy-Weinberg
equilibrium test p-value < 1 × 10-4, or mismatched sex based on chromo-
some X heterozygosity were excluded and one of each duplicated sample
was retained. Genotypes were re-clustered by manual realignment of
cluster location. Intensity files (LRR and BAF) were created with Illumina
GenomeStudio v2.0.4. A PFB file was generated from 1,000 randomly se-
lected samples from batch 1. Only autosomal probes overlapping all GSA
versions (excluding custom ESTChip probes) were carried over to the
CNV detection step (671,035 probes; 242,091 probes overlap with UKBB).
Autosomal CNVs were called for 193,844 individuals. Samples originating
from two batches with outlier genotyping intensity parameters, as well
as genotyping plates with > 3 samples with either > 200 called CNVs or
a total length of CNV calls > 10 Mb were excluded. Individual samples
meeting these criteria were removed. Among related pairs (KING kinship
coefficient > 0.0884), the sample with the most available phenotypes
was retained. CNV calls were attributed a QS and encoded into three
PLINK binary file sets, following the procedure described for the UKBB.
CNV, duplication, and deletion frequencies among the 89,516 unrelated
samples remaining after QC were calculated for 671,035 probes and
association studies were run as previously described for the UKBB. Using
the most significant association model for the 131 merged UKBB signals,
we selected the most significantly associated EstBB probe within the
boundaries of the UKBB-defined CNVR. EstBB p-values were adjusted
to account for directional concordance with UKBB effects2. Sufficient ge-
nomic variability and phenotypic data were available to assess replication
of 61 out of 131 signals, setting the replication threshold for significance
at p ≤ 0.05/61 = 8.2 × 10-4. Simulations were conducted to estimate
the power of our replication study. We defined 𝛽𝑖 , 𝑗 as the standardized
effect of probe 𝑖 on trait 𝑗 observed in the UKBB; 𝑞𝑖 ,𝐷𝑈𝑃 and 𝑞𝑖 ,𝐷𝐸𝐿 the
duplication and deletion frequencies of probe 𝑖 in the EstBB, respectively,
and 𝑁𝑗 the sample size for trait 𝑗 in the EstBB. Considering duplication-
only, deletion-only, and mirror signals, CNVs were simulated for 𝑁𝑗

samples3. Normally distributed error terms 𝜖 were simulated according
to 𝜖 ∼ N(0, 𝜎2) for 𝑁𝑗 samples. For mirror signals, the noise variance 𝜎2

was defined as 𝜎2 = 𝜎2
𝑗
− 𝑣𝑎𝑟(𝐶𝑁𝑉) · 𝛽2

𝑖 , 𝑗
, with 𝜎2

𝑗
the observed standard-

ized variance for trait 𝑗 in the EstBB equaling 1. For duplication-only and
deletion-only signals, 𝜎2 was defined as 𝜎2 = 𝜎2

𝑗
− 𝑞𝑖 ,𝐷𝑈𝑃(1− 𝑞𝑖 ,𝐷𝑈𝑃) ·𝛽2

𝑖 , 𝑗

and 𝜎2 = 𝜎2
𝑗
− 𝑞𝑖 ,𝐷𝐸𝐿(1 − 𝑞𝑖 ,𝐷𝐸𝐿) · 𝛽2

𝑖 , 𝑗
, respectively. Phenotypes 𝑌 were

simulated for 𝑁𝑗 samples as 𝑌 = 𝐶𝑁𝑉 · 𝛽𝑖 , 𝑗 + 𝜖. When simulated data
contained ≥ 1 CNV carrier, the p-value for the estimated effect size from
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4: Diseases:

▶ GGT-altering diseases: heart failure
(I50), malignant neoplasm of liver and
intra-hepatic bile ducts (C22), gallblad-
der (C23), other unspecified parts of bil-
iary tract (C24), and diseases of the liver
(K70-K77) and the gallbladder, biliary
tract, or pancreas (K80-K87).

▶ Rotor syndrome (MIM: 237450): clas-
sified with Dubin-Johnson syndrome
(MIM: 237500) under other disorders
of bilirubin metabolism (E80.6).

▶ Charcot-Marie-Tooth type 1A (MIM:
118220): classified as hereditary motor
or sensory neuropathy (G60.0), a
diagnosis encompassing all forms
of Charcot-Marie-Tooth and related
neuropathies.

5: Socio-economic and lifestyle:

▶ Townsend deprivation index: #189.
▶ Household income: #738.
▶ Educational attainment: #845.
▶ Age at recruitment: #21022.
▶ Parental age at death: Mother’s

(#3526) and father’s (#1807) age at death
meta-analyzed as parental lifespan.

▶ Leukocyte telomere length: #22191.

the linear regression 𝑌 ∼ 𝐶𝑁𝑉 was computed and retained. Otherwise,
the p-value was set as missing. For each signal, 10,000 simulations were
conducted, and power was defined as the fraction of non-missing p-
values ≤ 8.2 × 10-4. Expected number of replications was estimated as
the average power across assessed signals multiplied by the number of
assessed signals.

Extended phenotypic assessment
Disease diagnosis
To assess patients’ disease status, ICD-10 diagnoses were used (#41270)4.
Self-reported high alcohol consumption (#1558 as daily or almost daily) and
𝛾-glutamyl transferase GGT-increasing drug usage (#20003 as 2038459704
(carbamazepine), 1140865426 (cimetidine), 1140909708 (furosemide),
1140869848 (methotrexate), 1140910706 (phenobarbital), 2038460076 (pheny-
toin)) (310) were further evaluated as potential lifestyle confounders of
the 22q11.23-GGT association.

Socio-economic status and life history traits
Six socio-economic and life history traits were additionally considered
in the burden analysis5. Entries matching “do not know” or “prefer not
to answer” were set as missing and if available, average over measured
instances were used. Traits were inverse normal transformed prior correc-
tion for sex, age (#21003), age2, genotyping batch, and PCs 1–40, except
for age at recruitment, which was not corrected for age and age2.

RHD and hematological traits
Transcriptome-wide Mendelian randomization
Using univariable transcriptome-wide Mendelian randomization (TWMR)
(173), the causal effect of differential RHD and RSRP1 expression on reticu-
locyte count, platelet count, and HbA1c was estimated based on indepen-
dent (r2 < 0.01) genetic variants. Expression quantitative trait loci (eQTLs)
were obtained from the eQTLGen consortium and included cis-eQTLs
(false discovery rate < 0.05, two-cohort filter) for ∼16,900 transcripts (154).
GWAS effect sizes originate from the Neale UKBB summary statistics.
Exposure and outcome datasets were harmonized, standardized effect
size estimates were obtained by dividing z-scores by the square root of the
sample size, and palindromic variants and variants with allele frequency
difference > 5% between the two datasets were removed. Robustness
of estimates was ascertained by excluding rs55794721, which had an
extreme effect on both exposures and outcomes.

Association between Rhesus blood group and hematological traits
Impact of Rh- blood group on platelet count, reticulocyte count, and
HbA1c was assessed in the CHUV maternity cohort through multivariate
linear regression that incorporates the covariates: age at measurement,
gestational week at measurement, whether the woman was pregnant
at measurement (57.5% for reticulocyte count, 35.6% for platelet count,
23.4% for HbA1c), and whether the women had a child prior to the
measurement (78.9% for reticulocyte count, 72.7% for platelet count,
96.7% for HbA1c). For women with multiple measurements, one was
randomly selected, giving preference to measurements taken outside of
pregnancy and excluding measurements taken during a pregnancy that
resulted in stillbirth or multiple births. For measurements taken during
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pregnancy, gestational week at measurement was calculated from date
and gestational age at delivery. When gestational age at delivery was
missing (52.9%), mean gestational age at delivery of the cohort (39.13
weeks) was used. For measurements outside of pregnancy, gestational
week at measurement was coded as 0. When age at measurement was
missing (12.1% for reticulocyte count, 19.1% for platelet count, 22.2%
for HbA1c), data was imputed with multivariate imputation by chain
equations including covariates. Ten complete imputed sets were analyzed
and estimates were combined with pool()(R package MICE v3.13.0 (311)).
One-sided p-value were calculated as 𝑝𝑛𝑒𝑤 =

𝑝𝑜𝑙𝑑
2 in case of directional

agreement with the effect observed in the UKBB.

CNV burden analysis in the UK Biobank

CNV burden calculation
An individual’s CNV burden was defined as the number of Mb or genes
affected by high-confidence autosomal CNVs (|QS| ≥ 0.5). For the latter,
we retained CNVs overlapping exons, splice sites, non-coding RNA,
3’UTR, and 5’UTR (CNV region definition and annotation) to assess
number of disrupted genes. Duplication and deletion burdens were
calculated similarly, and correlation between the six metrics was assessed
with Pearson’s coefficient of correlation. We used a two-sided unpaired
Wilcoxon rank-sum test to assess differences in CNV burden between
males and females.

CNV burden analysis
Linear regressions were performed between burden metrics and the
same 57 normalized, covariate-corrected traits investigated by GWAS.
For sex-specific traits, samples from the opposite sex were excluded.
We set the significance threshold at p ≤ 0.05/63 = 7.9 × 10-4 to account
for six additional life history traits. Linear regressions were computed
between non-normalized, covariate-corrected mother’s and father’s age at
death and the burden to get effects on the years/[Mb or gene] scale. We
meta-analyzed results with GWAMA to assess the impact on parental
lifespan.

Burden analysis correction for modifier CNVRs
To assess the impact of the CNV burden on a trait, we collected CNVRs
associating with that trait under the mirror model into a 𝑠𝑎𝑚𝑝𝑙𝑒×𝐶𝑁𝑉𝑅
matrix 𝐺. 𝐺 Takes a value of −1 or 1 if the sample carries a CNVR-
overlapping (≥ 1 bp) deletion or duplication, respectively, and 0 otherwise.
G was regressed out of the trait and burdens were adjusted by subtracting
the number of Mb or genes affected by CNVR-overlapping CNVs before
performing associations anew. For the duplication and deletion burdens,
CNVRs found through the duplication-only and deletion-only models,
respectively, were considered and CNVR-overlapping deletions and
duplications, respectively, were set to 0 in 𝐺.

Fraction of inherited CNVs
Rate of CNV inheritance was estimated by examining the fraction of
shared CNVs among siblings pairs defined by kinship coefficient 0.2–0.3
and fraction of SNPs with identity by state at 0 ≥ 0.0012 (61). We retained
16,179 pairs with one individual among samples selected for the main
CNV-GWASs. Shared CNVs were defined as high-confidence duplica-
tions (QS ≥ 0.5) or deletions (QS ≤ -0.5) on the same chromosome with
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≥ 25 kb overlap. For each pair, we calculated the fraction of CNVs the
individual in the main analysis shared with their sibling (number of
shared CNVs/total number of CNVs in that individual) and averaged
the results over all pairs to obtain the mean fraction of shared CNVs. As a
control, the analysis was repeated by pairing the 16,179 individuals from
the main analysis with random individuals sampled without replacement
from the main pool of individuals.

Results
The CNV landscape of the UK Biobank
We used PennCNV (203) to call autosomal, pseudoautosomal, and chro-
mosome X CNVs in 332,935 unrelated white British UKBB participants
with no reported blood malignancy. Calls were processed by a pipeline
that excluded 1,413 CNV outlier samples and attributed a probabilistic
QS to each CNV (206). Out of 1,329,290 identified CNVs, 176,870 high-
confidence CNVs with |QS| ≥ 0.5 were retained for follow-up analyses
(Figure 2.3A). As the fraction of homozygous CNVs (CN = 0 or 4) was
negligible (1.1%; Figure 2.3B), we define deletions and duplications as
having a CN smaller or larger than two, respectively, for the remainder
of this study. Duplication length varied between 366 bp and the upper
boundary, set at 10 Mb (17–3,968 probes), with a median of 297 kb (133
probes), and deletion length between 217 bp and 10 Mb (8–4,017 probes),
with a median of 137 kb (60 probes) (Figure 2.3C-D). Overall, 129,263
(39%) participants carried at least one high-confidence CNV and 34,804
(10%) carried more than one (Figure 2.3E). In samples with ≥ 1 CNV, the
total length of affected bases ranged between 217 bp and 14.2 Mb, with
a median of 292 kb (Figure 2.3F). Analyzing the global CNV burden
of the cohort, 70% was caused by duplications, which were both more
numerous (54%) and 213 kb longer, on average, than deletions (Figure
2.3B–D). No differences in CNV burden, measured as the number of
Mb or genes affected by CNVs, was detected across sexes (two-sided,
unpaired Wilcoxon rank-sum test: pMb = 0.793; pgenes = 0.748). This
contrasts with the excess of deleterious CNVs reported in females with
neuro-psychiatric/developmental disorders (312–315), suggesting that
this observation is trait dependent.

To bypass issues related to inter-individual variability in recurrent CNV
breakpoints, we transformed CNV calls to the probe level for frequency
calculation (295). A large fraction of the genome was subjected to CNVs
as 662,247 probes (82%) were found in a CN-altered state in at least
one participant, even if 81% of these had a CNV frequency ≤ 0.005% (n
≤ 16). The fraction of never-deleted probes (43%) was 1.73 higher than
the fraction of never-duplicated probes (26%), and with some notable
exceptions, deletion frequencies tended to be lower than duplication
frequencies (Figure 2.4). For most loci with high CNV frequency, dupli-
cation and deletion frequencies did not mirror each other (Figure 2.4)).
Overall, these results are in line with the common paradigm that CNVs
are individually rare but collectively common (34, 35, 292).
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Figure 2.3: Distribution of high confidence CNVs in UKBB.
(A) Density plot of QS for the 1,329,290 called CNVs. High confidence duplications (QS ≥ 0.5) and deletions (QS ≤ -0.5), indicated per the
red dashed lines, were retained for downstream analyses. (B) Distribution of the CN of high confidence CNVs. Deletions (CN = 0 or 1) are
in orange, duplications (CN = 3 or 4) are in green. Number of CNVs in each category is indicated on top of the bars. Distribution of high
confidence duplications (green) and deletions (orange) length in base pairs (C) and number of probes (D) on a logarithmic scale. Dashed
lines show the median duplication (green), CNV (purple), and deletion (orange) length. (E) Distribution of high confidence CNV counts
per individual. (F) Distribution of the total amount of bases affected by high confidence CNVs per individual on a logarithmic scale; red
and black dashed lines show the median and mean number of bases affected by CNVs among individuals with ≥ 1 CNV, respectively.
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Figure 2.4: CNV frequency landscape in the UK Biobank.
Miami plot of high-confidence probe-level duplication (A) and deletion (B) frequencies (%) in the UKBB. Consecutive probes with
identical duplication and deletion frequencies were clustered so that each dot represents one probe group. Loci with duplication
frequency ≥ 0.3% or deletion frequency ≥ 0.2% are labeled according to the affected cytogenic bands.

The pleiotropic impact of recurrent CNVs
To assess the phenotypic impact of the UKBB CNV landscape, we selected
57 medically relevant phenotypes – including anthropometric traits,
cardio-pulmonary assessments, hematological measurements, blood
biomarkers, neuronal functions, and sex-specific attributes – with pre-
sumed high heritability (Table S2.1; Figure 2.5). GWASs were performed
between the CN of pruned (r2 > 0.9999) CNV-proxy probes with a CNV,
duplication, and deletion frequency ≥ 0.005% and aforementioned traits
according to a mirror (28,257 probes; Figure 2.6A), duplication-only
(14,070 probes; Figure 2.6B), and deletion-only (9,936 probes; Figure
2.6C) association model, respectively. As the number of statistical tests
is much lower than for classical SNP-GWASs and retained probes re-
main highly correlated due to the recurrent nature and large size of
assessed CNVs, we calculated the number of effective (i.e., independent)
tests, setting the GW threshold for significance at p ≤ 0.05/11,804 =

4.2 × 10-6. Stepwise conditional analysis narrowed signals down to 86,
50, and 68 GW-significant associations for the mirror, duplication-only,
and deletion-only models, respectively, of which 45, 22, and 32 reached
the conventional SNP-GWAS threshold of p ≤ 5 × 10-8. These signals
were combined into 131 independent associations spanning 47 pheno-
types (Figure 2.6D; Table S2.2; 62 signals across 32 phenotypes at p
≤ 5 × 10-8). Following previous works (292, 295, 306), we omitted to
account for the number of assessed traits, but even with a stringent
experiment-wide threshold for significance (p ≤ 0.05/11,804 × 57 = 7.4
× 10-8), 68 out of 131 (52%) CNV-GWAS signals remained significantly
associated. All summary statistics are made available on the GWAS
Catalog (GCST90027274–GCST90027444).

Among signals identified through the mirror model, 63 (73%) repli-
cated with either type-specific model, often reflecting the most common
CNV type (Figure 2.6D, top). Five (6%) signals replicated with both
type-specific models, providing examples of true mirror effects (i.e., op-
posite impact of duplications and deletions), such as the association
between height and the CN of a Xp22.33 pseudoautosomal CNVR
(chrX:285,850–1,720,422; 𝛽𝑚𝑖𝑟𝑟𝑜𝑟 = 2.33 cm; p = 7.2 × 10-36; Figure 2.6E)
encompassing the short-stature homeobox gene SHOX (MIM: 312865).

https://www.ebi.ac.uk/gwas/publications/35240056
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Figure 2.5: UKBB trait correlation.
Pearson correlation across the 57 continuous traits assessed by CNV-GWAS.

This association aligns with the short stature observed in individuals
suffering from Turner syndrome (i.e., females with partial or complete
loss of one chromosome X) and SHOX deficiency disorders (Leri-Weill
dyschondrosteosis [MIM: 127300]; Langer mesomelic dysplasia [MIM:
249700]; idiopathic short stature [X-linked] [MIM: 300582]) (316, 317).
Less established is the impact of increased CN of SHOX and/or its
regulatory regions (318), which we found to be associated with tall
stature. CN and deletion of overlapping CNVRs further associated with
WHR adjusted for BMI (chrX:514,930–618,611; 𝛽𝑚𝑖𝑟𝑟𝑜𝑟 = 0.12 SD; p = 2.3
× 10-6) and hand grip strength (chrX:762,346–2,219,659; 𝛽𝐷𝐸𝐿 = -4.73
kg; p = 3.7 × 10-7), respectively. While skeletal muscle hypertrophy has
been reported in patients with Leri-Weill dyschondrosteosis (319), we
hypothesize that the reduced grip strength in deletion carriers might
result from the Madelung deformity characterizing the disorder, which
is known to cause wrist pain and decreased grip strength (320), and/or
the correlation between grip strength and height (Figure 2.5). Unlike
mirror effects, partially overlapping signals between decreased forced
vital capacity or grip strength and the 22q11.21 low copy repeat (LCR)
A-B (chr22:19,024,651–20,311,646; deletion-only) and 22q11.21 LCR A-D
(chr22:19,024,651–21,407,523; mirror and duplication-only) hinted at U-
shaped effects (i.e., deletion and duplication shift the phenotype in the
same direction) (MIM: 188400 and 192430), demonstrating the existence
of different mechanisms of gene dosage (Figure 2.6D).
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Figure 2.6: CNV-GWAS roadmap of the UK Biobank.
CNV-GWAS association models with PLINK encoding: the mirror model assumes equal-sized but opposite-direction effect of deletion
and duplication and estimates the impact of each additional copy (A); the duplication-only model disregards deletion carriers and
estimates the effect of duplications (B); the deletion-only model disregards duplication carriers and estimates the effect of deletions (C).
(D) Independent genome-wide significant associations between CNV regions (x-axis; as cytogenic bands) and traits (y-axis). Color tiles
represent the model(s) through which the association was detected (true mirror: mirror, duplication-only, and deletion-only) and signs
show directionality, so that the duplication (greens), deletion (oranges), or copy number (purples) of a CNV region associated with
a phenotypic increase (+) or decrease (−). 16p11.2 (BP2-BP3 and BP4-BP5) and 22q11.21 (LCR B at chr22:20,400,000) recurrent CNVs
are assessed separately. For each CNVR, average duplication and deletion frequencies (%) of the lead probe (according to the most
significant model) are depicted at the top. Deletion frequency of 1p36.11 was truncated from 3.76%. (E) Boxplot of height in individuals
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Most signals involved large recurrent CNVRs (mean = 901 kb; median
= 612 kb) and we confirm multiple well-established associations, such
as the negative impact of the 1q21.1–1q21.2 deletion (MIM: 612474) on
height (321–323) (chr1:146,478,785–147,832,715; 𝛽𝐷𝐸𝐿 = -6.67 cm; p = 2.5



64 2 Quantitative traits

× 10-21), the negative correlation between BMI and the CN of 16p11.2
BP4-BP5 (MIM: 611913 and 614671) (chr16:29,596,230–30,208,637; 𝛽𝐷𝐸𝐿 =
6.11 kg/m2; p = 3.6 × 10-29) (324–326) and 16p11.2 BP2-BP3 (MIM: 613444)
(chr16:28,818,541–29,043,450; 𝛽𝐷𝐸𝐿 = 4.25 kg/m2; p = 5.3 × 10-8) (279, 325,
327), or the more recently reported positive association between 16p11.2
BP4-BP5’s CN and age at menarche (chr16:29,596,230–30,208,637; 𝛽𝑚𝑖𝑟𝑟𝑜𝑟
= 1.16 years; p = 1.2 × 10-10) (328). In addition, our results revealed the
broad pleiotropic impact of these loci: 26, 16, and 12 traits associated with
the 16p11.2 BP4-BP5, 22q11.21, or 16p11.2 BP2-BP3 regions, respectively.
Some of these previously poorly described associations might help shed
light on the molecular mechanisms linking involved loci to phenotypes,
as exemplified by the association between the 16p11.2 BP4-BP5 deletion
(chr16:29,596,230–30,208,637) and reduced levels of insulin-like growth
factor 1 (IGF-1; 𝛽𝐷𝐸𝐿 = -3.26 nmol/L; p = 2.9 × 10-7). In children, diseases
characterized by low levels of IGF-1 (e.g., IGF-1 deficiency [MIM: 608747],
Laron syndrome [MIM: 262500], or growth hormone [GH] deficiencies
[MIM: 262400, 612781, 173100, 307200, 618157, and 615925]) typically
result in short stature (proxied by height), while symptoms of adult GH
deficiency include increased adipose mass (proxied by BMI, body fat
mass, weight, and WHR), decreased muscle mass and strength (proxied
by grip strength), altered lipid profile (proxied by triglycerides), and
insulin resistance (proxied by HbA1c) (329), all of which are affected
in a directionally concordant fashion by the 16p11.2 BP4-BP5 deletion.
Conversely, some regions only associated with a single trait, e.g., the CN
of a 3q29 region (chr3:195,725,157–196,035,229) associated with increased
mean corpuscular hemoglobin (𝛽𝑚𝑖𝑟𝑟𝑜𝑟 = 1.92 pg; p = 1.1 × 10-9), whose
levels indirectly reflect iron load in erythrocytes (330). The CNVR harbors
the transferrin receptor gene, TFRC (MIM: 190010), which is involved in
cellular iron uptake and was shown to associate with mean corpuscular
hemoglobin through SNP-GWAS (331). Together, these results emphasize
the potent role of CNVs as phenotypic modifiers.

Replication in the Estonian Biobank

We next assessed our ability to detect CNVs and sought to replicate
identified signals in an independent cohort, the EstBB (62). Taking advan-
tage of 966 unrelated samples with both microarray-based (PennCNV)
and WGS-based (STRiP) CNV calls, we calculated the correlation be-
tween the CNV profiles obtained with these two methods for 709,358
quality-controlled, autosomal probes (Figure 2.7A). Due to small sample
size, most probes (630,819 probes; 89%) were monomorphic. Among the
20,963 probes detected in a CNV state in at least one sample by both
methods, 71% (14,976 probes; 2.1% of all probes) showed high (r ≥ 0.75)
agreement in calling profiles. We detected 39,847 (5.6%) apparent false
positives (i.e., probes only detected in a CNV state by PennCNV). Forty
percent of these were in linkage disequilibrium (± 250 kb and r ≥ 0.5)
with probes showing high microarray-WGS concordance (Figure 2.7B),
suggesting that they are true positives mislabeled as false positives due
to fragmentation of STRiP CNV calls. We also observed 17,717 (2.5%)
false negatives (i.e., probes only detected in a CNV state by STRiP). Size
distribution – both in number of base pairs (Figure 2.7C) and probes
(Figure 2.7D) – of consecutive stretches of false negative probes was
smaller than for the other assessed categories, confirming the poor ability
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Figure 2.7: Comparative analysis of mi-
croarray vs WGS CNV call quality.
(A) Concordance between PennCNV (mi-
croarray) and STRiP (whole-genome se-
quencing) CNV calls for 709,358 quality-
controlled, autosomal probes from the
OmniExpress-24 genotyping array in Es-
tBB. Probes with high (𝜌 ≥ 0.75) and
low (𝜌 < 0.75) correlation between Pen-
nCNV and STRiP CNV profiles are in
dark and light blue, respectively; false
negatives (i.e. probes only detected in
a CNV state by STRiP) are in red; false
positives (i.e. probes only detected in
a CNV state by PennCNV) are in gold;
monomorphic probes are in gray. (B)
Distribution of the maximal PennCNV-
STRiP correlation among probes in link-
age disequilibrium (± 250 kb and r ≥
0.5) with false positive probes from (A).
Size distribution in base pairs (C) and
probes (D) of consecutive stretches of
probes mapping to non-monomorphic
categories in (A). (E) EstBB concordance
between PennCNV and STRiP CNV calls
at 5,566 probes overlapping UK Biobank
trait-associated CNV regions; identical
color scheme to (A). (F) Distribution of
the maximal PennCNV-STRiP correla-
tion among probes in linkage disequilib-
rium (± 250 kb and r ≥ 0.5) with false
positive probes from (E).

to detect small CNVs with microarray data (205). If false negatives hinder
discovery, they do not affect the validity of detected associations. We next
repeated the analysis on 5,566 probes overlapping UKBB trait-associated
CNVRs (Figure 2.7E) and observed i) an increased fraction of highly
correlated probes (1,431 probes; 71% vs 85%), ii) an increased fraction
of apparently mislabeled false positives in linkage disequilibrium with
highly correlated probes (1,061 probes; 40% vs 92%; Figure 2.7F), and iii) a
decreased proportion of false negatives among non-monomorphic probes
(215 probes; 23% vs 7%), indicating good sensitivity and specificity to
detect CNVs at trait-associated genomic loci.

To replicate association signals, microarray-based CNV data were avail-
able for 89,516 unrelated individuals. Phenotypic measurements originat-
ing from national health registries were only available for a limited subset
of participants, ranging from ∼60,000 for anthropometric measurements,
to < 1,000 for specialized biomarkers (Table S2.1). Restricting ourselves to
autosomal signals with sample size ≥ 2,000 and ≥ 1 CNV carrier, data
were available for 61 (47%) CNVR-trait pairs (Table S2.2; Figure 2.8A). Six
signals replicated with Bonferroni correction for multiple testing (p ≤
0.05/61 = 8.2 × 10-4; Figure 2.8B) and we observed 7.2-times more nomi-
nally significant signals than expected by chance (22 signals; two-sided
binomial test: p = 7.8 × 10-14; Figure 2.9A). Effect size estimates followed
closely the ones detected in the UKBB (Figure 2.8). Given the low sample
sizes, we conducted simulations to assess the power of the replication
study. Assuming effect sizes matching those observed in the UKBB, the
average replication power was estimated at 5.5% (𝛼 = 0.05/61; Figure
2.9B). This corresponds to an expected number of replicated signals of
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3.4, slightly below the six observed, and argues in favor of the robustness
of the original UKBB CNV-GWAS findings.

Cytogenic Band
(CNV region)

Trait Effect
UK Biobank Estonian Biobank

β p Del – Neutral –Dup β p Del – Neutral –Dup

3 1q21.1-1q21.2
(1:146’478’785-147’832’715)

height cm/CN 4.3 7.8x10-22 93 – 330’619 – 125 4.6 3.3x10-5 11 – 67’844 – 78 

8

16p11.2 BP4-BP5
(16:29’596’230-30’208’637)

BMI kg/m2/del 6.1 3.6x10-29 75 – 330’321 – 101 7.0 3.4x10-7 12 – 67’877 – 21 

9 WHR unit/del 0.1 1.5x10-27 75 – 330’750 – 101 0.1 7.6x10-6 9 – 59’381 – 16 

10 height cm/del -8.2 3.3x10-27 76 – 330’660 – 101 -9.0 2.5x10-6 12 – 67’900 – 21 

11 weight kg/del 11.1 5.0x10-12 75 – 330’431 – 101 15.2 5.2x10-4 12 – 67’891 – 21 

15 17p12
(17:14’098’277-15’468’444)

Cr µmol/L/dup -13.8 6.5x10-18 196 – 316’488 – 102 -94.1 5.2x10-4 4 – 16’247 – 5 

A

B

Figure 2.8: Replication of CNV-GWAS signals in EstBB.
(A) Estonian (EstBB; y-axis) vs UK (UKBB; x-axis) Biobank standardized effect sizes. The identity line is in red; size reflects power at
𝛼 = 0.05/61; non-significant signals are in gray; nominally significant signals with 95% confidence intervals are colored according to
replication models; multiple-testing correction surviving signals (p ≤ 8.2 × 10-4) are circled in black and listed in (B) with the first
column’s color corresponding to the association model and numbers matching labels in (A). (B) Effect sizes (𝛽; unit in the effect column)
and p-values (p) for the UKBB and EstBB GWAS, along with the number of individuals with available phenotypic data carrying a deletion,
no CNV, or a duplication overlapping the CNVR. Labels: (1) Platelet count - 1p36.11; (2) HbA1c—1q21.1 - 1q21.2; (3) Height—1q21.1 -
1q21.2; (4) Age at menarche - 1q21.1; (5) Platelet count - 16p11.2 BP2-BP3; (6) Weight - 16p11.2 BP2-BP3; (7) Age at menarche - 16p11.2
BP4-BP5; (8) BMI - 16p11.2 BP4-BP5; (9) WHR - 16p11.2 BP4-BP5; (10) Height - 16p11.2 BP4-BP5; (11) Weight - 16p11.2 BP4-BP5; (12) ALT -
16p11.2 BP4-BP5; (13) Age at menopause - 16p13.11; (14) Age at menarche - 16p13.11; (15) Creatinine - 17p12; (16) Creatinine - 17q12; (17)
CRP - 17q12; (18) Platelet count - 22q11.21 LCR A-D; (19) BMI - 22q11.21 LCR A-D; (20) Weight - 22q11.21 LCR A-D; (21) Eosinophil count -
22q11.21 LCR B-D; (22) GGT - 22q11.23.

Figure 2.9: Replication power in EstBB.
(A) Expected vs observed negative loga-
rithm of p-values for the 61 EstBB repli-
cated CNV-trait pairs colored by signifi-
cance and replication model. Shade rep-
resents the 95% confidence interval. (B)
Distribution of replication power – as-
suming similar effect sizes to the ones
observed in the UKBB – for signals in (B).
Mean power is 5.5%, so that the number
of multiple testing correction surviving
signals is 5.5% × 61 = 3.4.
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Figure 2.10: Genome-wide vs CNVR
SNP-GWAS signal distribution.
Number of SNP-GWAS signals per 10
Mb autosomal genome (bottom x-axis)
for 56 assessed traits (y-axis). Top x-axis
indicates the negative logarithm of the
p-value (as a dot) for the binomial test as-
sessing if SNP-GWAS signal distribution
within CNVRs is higher than in the rest
of the genome. Non-significant traits are
in gray (empty dot); significant traits (p
≤ 0.05/56; above the black dashed line)
are in red (full dots). Inset shows the neg-
ative logarithm of binomial test p-values
against the total length of trait-associated
CNVRs in Mb on a logarithmic scale for
each trait. Significant traits are in red and
non-significant ones are in gray.

CNVs as modifiers of complex traits

To assess whether CNV-GWAS signals mapped to regions previously
identified by SNP-GWASs for the same trait, we annotated CNVRs
with associations reported by the GWAS Catalog (77). From the 126
autosomal CNV associations considered, 48 (38%) harbored a SNP signal
for the same trait (Table S2.2). A similar fraction (31%) of CNV-GWAS
signals with 4.2 × 10-6 ≥ p ≥ 5 × 10-8 is supported by SNP-GWAS
signal, backing the reliability of intermediate-significant associations. We
further tested whether SNP-GWAS signal distribution was denser within
trait-associated CNVRs, as compared to the rest of the genome. While
this was the case for nine traits (two-sided binomial test: p = 0.05/56 =

8.9 × 10-4; Table S2.3), enrichment did not seem to depend on the type
of trait, total number of SNP-GWAS signals (Figure 2.10), or length of
trait-associated CNVRs (Figure 2.10, insert). Nevertheless, colocalization
of SNP and CNV signals reinforces confidence that involved loci play a
role in shaping associated traits, as illustrated with four examples. The
first example relates to a 1.7 Mb 2q13 CNV (chr2:111,398,266–113,115,598).
Deletion of the region associated with decreased IGF-1 (𝛽𝐷𝐸𝐿 = -5.67
nmol/L; p = 6.3 × 10-10), an important regulator of glucose and insulin
metabolism (332), and duplication associated with increased HbA1c
(𝛽𝐷𝑈𝑃 = 3.47 mmol/mol; p = 1.4 × 10-7). The interval encompassed
an IGF-1-associated intronic ACOXL SNP (305) upstream of BCL2L11
(MIM: 603827) and two HbA1c-associated SNPs (305, 333) downstream
of BCL2L11. These SNP signals were reported in 2021, indicating that
with increased statistical power, signal colocalization will increase. Both
traits have not been thoroughly assessed in carriers of the recurrent
reciprocal 2q13 CNV, who present with neurodevelopmental/psychiatric
disorders, dysmorphisms, congenital heart disorder, hypotonia, seizures,
micro-/macrocephaly, and microphallus at variable penetrance and
expressivity (334–338); the two latter features are reminiscent of growth
defects potentially mediated by dysregulation of the GH/IGF-1/insulin
axis. Multiple genes overlapping the CNVR play a role in cell cycle
(BUB1 [MIM: 602452], ANAPC1 [MIM: 608473]), cell survival (MERTK
[MIM: 604705]), and apoptosis regulation (BCL2L11), which is negatively
regulated by IGF-1 (339)). Our data support the variable penetrance and
expressivity of this CNV – not listed as a DECIPHER CNV syndrome –
and prompts follow-up studies to confirm and refine understanding of
the genetic mechanisms linking the locus to the associated phenotypes.
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p = 0.919

0

200

400

600

small deletion
CN = 1
(n = 42)

large deletion
CN = 1
(n = 60)

  copy neutral
CN = 2

(n = 316,166)

duplication
CN = 3

(n = 274)

se
ru

m
 u

ra
te

 [u
m

ol
/L

]

1q21.1 (chr1: 145,383,239−145,765,206)

Figure 2.11: Urate & 1q21.1 CNVs.
Boxplots of serum urate levels in indi-
viduals with a 1q21.1 overlapping small
(start ≥ 145.6 Mb) or large (start < 145.6
Mb) deletion, copy-neutrality, or dupli-
cation. Copy number (CN) and sam-
ple size (n) are reported; dots show
the mean; outliers are not shown; light
green backgrounds show normal clinical
range: 89–476 mmol/L. Two-sided t-test
p-value compares urate levels of small
and large 1q21.1 deletion carriers.

The second example links the 382 kb 1q21.1 deletion (MIM: 274000) to
decreased serum urate levels (chr1:145,383,239–145,765,206; 𝛽𝐷𝐸𝐿 = -48.32
mmol/L; p= 5.8× 10-13; Figure 2.11). The rearranged interval encompasses
15 genes (Figure 2.13), including PDZK1 (MIM: 603831), which encodes a
urate transporter scaffold protein (340) and was associated with serum
urate levels by SNP-GWAS (341–344). Recently, in vitro experiments
elucidated the mechanism through which the urate-increasing "T" allele
of rs1967017 leads to increased PDZK1 expression (345), while the PDZK1
protein-truncating variant rs191362962 was found to associate with
decreased serum urate (305), both suggesting that decreased PDZK1
expression – an expected outcome of PDZK1 deletion – decreases serum
urate levels. Dividing deletion carriers into groups harboring a full (start
< 145.6 Mb) or a partial (start ≥ 145.6 Mb) deletion revealed that the small
deletion, encompassing PDZK1 and three other genes (Figure 2.13), was
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sufficient to alter urate levels (two-sided t-test: p = 0.92; Figure 2.11).
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Figure 2.12: GGT & 22q11.23 CNVs.
Boxplots of 𝛾-glutamyltransferase (GGT)
levels in individuals with a 22q11.23 over-
lapping deletion, copy-neutrality, or du-
plication. Copy number (CN) and sam-
ple size (n) are reported; dots show the
mean; outliers are not shown; light green
backgrounds show normal clinical range:
4–6 U/L.

The third example involves a 1.3 Mb long 22q11.23 duplication and
increased GGT (chr22:23,688,345–24,990,213; 𝛽𝐷𝑈𝑃 = 37.2 U/L; p =

9.3 × 10-32; Figure 2.12) (MIM: 612365). The region harbors several
independent GGT SNP-GWAS signals (305, 346–351) and five genes
involved in glutathione metabolism (KEGG pathway hsa00480), including
GGT1 (MIM: 612346) and GGT5 (MIM: 137168) (Figure 2.14A), suggesting
that an additional copy of these genes associates with increased levels
of the encoded protein. As multiple factors can elevate GGT levels
(310), we used binomial tests to verify that the 180 duplication carriers
were not enriched for GGT-altering drug usage (p = 0.55), high alcohol
consumption (p= 0.85), heart failure (p= 0.23), or cancer (p= 1) and other
diseases (p = 0.64) of the liver, gallbladder, and bile ducts, as compared to
control individuals. Visualization of GGT levels in individuals with two or
three copies of the CNVR showed that the 22q11.23 duplication increased
serum GGT independently of and additively to other GGT-increasing
factors (Figure 2.14B-F).

Finally, we focused on the most frequent CNV in our cohort (frequency =

3.76%; Figure 2.4), the 50 kb 1p36.11 deletion (chr1:25,599,041–25,648,747),
which encompasses RHD (Rhesus [Rh] blood group D antigen [MIM:
111680]) and RSRP1 and associated with increased reticulocyte count
(𝛽𝐷𝐸𝐿 = 2.7 × 109 cells/L; p = 7.8 × 10-14), decreased platelet count
(𝛽𝐷𝐸𝐿 = -3.7 × 109 cells/L; p = 1.4 × 10-12), and decreased HbA1c (𝛽𝐷𝐸𝐿
= -0.3 mmol/mol; p = 9.3 × 10-8; Figure 2.15A). Overlap with SNP-
GWAS signals for various hematological traits (352, 353) combined with
subsequent replication of the reticulocyte count association based on
WES-based CNV calls (209) prompted the investigation of the expression
of these genes in whole blood. Tissue-specific transcriptomic data from
the GTEx project v8 (151) revealed that RHD, a protein whose pres-
ence/absence on erythrocyte cell membranes is critical in determining an
individual’s Rh blood group (256), was almost exclusively expressed in
whole blood (Figure 2.15B), whereas RSRP1 was ubiquitously expressed,
with lower expression in whole blood (Figure 2.15C). Selecting RHD’s
(ENST00000328664) and RSRP1’s (ENST00000243189; Figure 2.15D) most
highly expressed isoforms in whole blood, we mapped exons to the
association plot, showing that RSRP1’s isoform does not overlap the
CNVR, in contrast to RHD’s, which is fully encompassed by it (Figure
2.15A). We next used transcriptome-wide Mendelian randomization (173)
(TWMR; Table S2.4) to establish a directionally concordant causal link
between RHD expression and reticulocyte count (𝛼𝑇𝑊𝑀𝑅 = -0.013, p =

1.6 × 10-4; Figure 2.16A), platelet count (𝛼𝑇𝑊𝑀𝑅 = 0.031, p = 2.3 × 10-9;
Figure 2.16B), and HbA1c levels (𝛼𝑇𝑊𝑀𝑅 = 0.017, p = 3.5 × 10-7; Figure
2.16C). RSRP1 TWMR resulted in directionally concordant and signifi-
cant effects, but the gene had suboptimal number of instruments (three)
for robust causal inference (Figure 2.16D-F). Furthermore, both genes’
signals were driven by a strong upstream expression quantitative locus
(rs55794721; Figure 2.16A-F). Strengthening the causal role of RHD’s CN,
lack or strongly reduced expression of all Rh antigens, a rare condition
named Rh deficiency or Rhnull syndrome [MIM: 617970 and 268150],
is associated with increased erythrocyte osmotic fragility, resulting in
hemolytic anemia (354). Hemolytic anemia is characterized by increased
reticulocyte count (355) and can falsely lower HbA1c levels because of
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decreased erythrocyte lifespan (356), putting forward the hypothesis
that heterozygous deletion of RHD leads to subclinical phenotypes akin
to hemolytic anemia. To gauge the generalizability of these results, we
looked for similar trends in individuals with Rh- blood type, which can
be caused by various polymorphisms (256). Because Rhesus groups were
unavailable for the UKBB, we turned to a maternity cohort from the
Lausanne University Hospital. Despite low samples sizes, concordant
trends of increased reticulocyte count (𝛽𝑅ℎ− = 1.07 ◦/oo; pone-sided =

0.134; n = 741) and decreased platelet count (𝛽𝑅ℎ− = -2.8 × 10-9 cells/L;
pone-sided = 0.126; n = 5,034) and HbA1c levels (𝛽𝑅ℎ− = -0.22%; pone-sided
= 0.050; n = 418) were observed in Rh- women (Table S2.5). Of note,
reticulocyte and platelet counts have been reported to increase and de-
crease, respectively, along pregnancy (357), and despite correcting for
pregnancy status and gestational weeks, interaction between Rh- blood
group and pregnancy cannot be excluded. Impact of Rh blood type on
hematological traits awaits validation but these examples illustrate how
studying CNVs at SNP-GWAS loci can pinpoint causal genes and shared
genetic mechanisms.

Chromosome 1 [Mb] 

PDZK1>

CNVR

Deletion lead signal

Urate SNP-GWAS lead signals

Duplications: 287 (~0.09%)

Deletions: 112 (~0.03%)

Figure 2.13: 1q21.1 deletion and decreased serum urate levels.
Mapping of CNVs overlapping the 1q21.1 (chr1:145,383,239-145,765,206) deletion region associated with decreased serum urate levels.
Number and frequency of duplications and deletions are at the top left; left plot shows all overlapping CNVs; right plot focuses on the
central CNV region represented by red dashed lines. Duplications are in green, deletions in orange; black line indicates the lead signal
for serum urate (deletion-only); purple lines indicate serum urate-associated SNPs (305, 341, 342, 345) (reg. = regulatory variant; PTV =
protein-truncating variant). DECIPHER recurrent CNV and overlapping protein-coding genes are in black, except for PDZK1 in red.
Brown boxes separate large (start < 145.6 Mb) vs small (start ≥ 145.6 Mb) deletion carriers.
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Chromosome 22 [Mb] 
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Figure 2.14: 22q11.23 duplication and increased serum 𝛾-glutamyl transferase levels.
(A) Mapping of CNVs overlapping the 22q11.23 (chr22:23,688,345-24,990,213) duplication associated with increased 𝛾-glutamyl
transferase (GGT) levels. Number and frequency of duplications and deletions are at the top left; left plot shows all overlapping CNVs;
right plot focuses on the central CNV region represented by red dashed lines. Duplications are in green, deletions in orange; black line
indicates the lead signal for GGT (duplication-only); purple lines indicate GGT-associated SNPs (346–348). DECIPHER recurrent CNV
(truncated) and overlapping protein-coding genes are in black, except for genes involved in glutathione metabolism in red. Density plots
showing the distribution of GGT levels in copy-neutral (CN = 2) and 22q11.23 overlapping duplication carriers (CN = 3) with or without
various risk factors (RF) for increased GGT: (B) GGT-increasing drugs, (C) high alcohol consumption, (D) heart failure, and (E) cancer or
(F) other diseases of the liver, gallbladder, or bile ducts. Sample size (n) is indicated. Plots were truncated to 400 U/L (max.: 1167 U/L).
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Figure 2.15: RHD deletions modulate hematological traits.
(A) Association plot for the 1p36.11 deletion (chr1:25,599,041–25,648,747). Red dashed lines delimit the deletion-only CNVR; left
y-axis shows the negative logarithm of association p-value for reticulocyte count (blue), platelet count (purple), and glycated
hemoglobin (HbA1c; red); right y-axis shows deletion frequency (%) (orange); encompassed genes are schematically represented
at the bottom; retained exons for the most strongly expressed isoform in whole blood are shown for RHD (ENST00000328664)
and RSRP1 (ENST00000243189), and shaded color represents the full gene sequence; star indicates the RHD and RSRP1
expression quantitative locus rs55794721. GTEx gene expression in 33 tissues for RHD (B) and RSRP1 (C). Brain, cervix,
esophagus, and skin are not shown for visibility. Whole blood is shown with a red label. (D) Isoform expression for RSRP1 in
54 tissues, with whole blood circled in red. Red arrow points at the isoform with the highest expression in whole blood, ENST00000243189.
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Figure 2.16: 1p36.11 TWMR.
SNP-exposure (x-axis) vs SNP-outcome
(y-axis) plots for transcriptome-wide
Mendelian randomization (TWMR) anal-
yses estimating the causal effect of RHD
on (A) reticulocyte count, (B) platelet
count, and (C) glycated hemoglobin
(HbA1c), and of RSRP1 on (D) reticu-
locyte count, (E) platelet count, and (F)
HbA1c. Gray horizontal and vertical lines
represent standard errors of the SNP-
exposure and SNP-outcome estimates, re-
spectively. Causal effect estimates (𝛽) and
associated p-values are reported. The out-
lier SNP rs55794721 is in green. Causal
effects estimated without rs55794721 are
in green.
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CNVs at Mendelian disorder loci
Despite the lower-than-average disease burden of UKBB participants
(59), several associations comprised loci involved in Mendelian disorders.
The heterozygous 395 kb 12p12.2-p12.1 deletion, which associated with a
non-pathological increase in total bilirubin (chr12: 21,008,080–21,403,457;
𝛽𝐷𝐸𝐿 = 3.1 mmol/L, p= 2.2× 10-13; Figure 2.17A) and harbors SNP-GWAS
signals for bilirubin levels (305, 358–362), overlaps the Rotor syndrome
locus (MIM: 237450), an extremely rare disorder whose main clinical
manifestation is hyperbilirubinemia. Rotor syndrome (245) is caused by
the homozygous disruption of SLCO1B1 (MIM: 604843) and SLCO1B3
(MIM: 605495) (Figure 2.17B), which encode for the hepatic transporters
OATP1B1 and OATP1B3, respectively, involved in the uptake of various
drugs and metabolic compounds, including bilirubin (363). Concordantly,
UKBB participants diagnosed with Rotor syndrome or the related and
more common Dubin-Johnson syndrome (MIM: 237500) presented above-
normal levels of total bilirubin (Figure 2.17A). Interestingly, individuals
carrying a partial deletion that only affects SLCO1B1 (start ≥ 21.1 Mb;
Figure 2.17B) exhibited significantly milder increase in total bilirubin
(two-sided t-test: p = 3.1 × 10-4; Figure 2.17A), illustrating how mutations
pathogenic in a digenic recessive framework can contribute to subtle
changes in disease-associated phenotypes when present in an isolated
heterozygous state.

Figure 2.17: 12p12.2-p12.1 deletion and
increased total bilirubin levels.
(A) Boxplots of total bilirubin levels
in copy-neutral individuals, and small
(start ≥ 21.1 Mb) or large (start < 21.1 Mb)
12p12.2-p12.1 deletion carriers, and Ro-
tor or Dubin-Johnson syndrome-affected
individuals (ICD-10 E80.6); dots show
the mean; outliers are not shown; light
green backgrounds show normal clinical
range: 5–17 mmol/L. p-value of a two-
sided t-test comparing total bilirubin lev-
els of small and large deletion carriers
is shown. (B) Mapping of CNVs over-
lapping the 12p12.2-12p12.1 CNVR (top)
with zoom on the black box (bottom).
Duplications are in green, and deletions
are in orange. Red dashed lines repre-
sent the trait-associated CNVR; black
line indicates the lead signal for total
bilirubin (deletion-only); purple lines in-
dicate serum bilirubin-associated SNPs
(358–361); overlapping protein-coding
genes are in black, except for Rotor
syndrome-associated genes – SLCO1B1
and SLCO1B3 – in red. Brown boxes sep-
arate large from small deletion carriers.

Johnson et al., 2009Sanna et al., 2009 #1 Bielinski et al., 2011Kang et al., 2010

SLCO1B3> SLCO1B7> SLCO1B1>

SLCO1B3−SLCO1B7>

large deletion

small deletion

20.9 21 21.1 21.2 21.3 21.4 21.5

two−sided t−test
p = 0.0003

0

10

20

30

40

copy−neutral
CN = 2

(n = 315'491)

small deletion
CN = 1
(n = 60)

large deletion
CN = 1
(n = 92)

Rotor or Dubin−
Johnson syndomes

(n = 19)

to
ta

l b
ili

ru
bi

n 
[u

m
ol

/L
]

12p12.2−12p12.1 (chr12:21,008,080−21,403,457)

21 21.2 21.4 21.6 21.8 22 22.2 22.4

Chromosome 12 [Mb]

Sanna et al., 2009 #2
Kang et al., 2010

A B



2.4 The individual and global impact of copy-number variants on complex human traits 73

A second example links the 1.5 Mb long 17q12 duplication (MIM: 614526)
(chr17:34,797,651–36,249,489) and increased levels of kidney damage
biomarkers, including cystatin C (𝛽𝐷𝑈𝑃 = 0.15 mg/L, p = 4.2 × 10-17;
Figure 2.18A), serum creatinine (SCr; 𝛽𝐷𝑈𝑃 = 13.0 mmol/L, p = 2.7 ×
10-16; Figure 2.18B), and serum urea (𝛽𝐷𝑈𝑃 = 0.93 mmol/L, p = 9.1 × 10-10;
Figure 2.18C), as well as the inflammation biomarker C-reactive protein
(CRP; 𝛽𝑚𝑖𝑟𝑟𝑜𝑟 = 2.3 mg/L, p = 1.1 × 10-6; Figure 2.18D). Deletion of this
interval (Figure 2.18E), as well as point mutations in overlapping HNF1B
(MIM: 189907), cause the highly pathogenic and penetrant autosomal
dominant renal cysts and diabetes syndrome (RCAD [MIM: 137920 and
614527]). RCAD is characterized by heterogeneous structural and/or
functional renal defects, neurodevelopmental/psychiatric disorders, and
maturity-onset diabetes of the young (364). Because of the small number
of deletion carriers (n = 6, regardless of phenotypic data availability), the
deletion’s effect was not assessed by CNV-GWASs, but elevated levels
of cystatin C (Figure 2.18A), SCr (Figure 2.18B), and urea (Figure 2.18C)
in these individuals align with RCAD’s clinical description. Conversely,
penetrance of the reciprocal duplication remains debated and only 20%
of diagnosed patients report renal abnormalities (365). In line with a
lower pathogenicity, we detected 16 times more duplication than deletion
carriers. Still, these individuals showed strong alterations in kidney
biomarkers, suggesting tight gene dosage control on HNF1B.

Third, we zoomed in on the 1.4 Mb long 17p12 duplication (Figure
2.19A) known as the main etiology of Charcot-Marie-Tooth type 1A (MIM:
118220), a peripheral demyelinating neuropathy characterized by progres-
sive muscle wasting (366). Correspondingly, duplication carriers showed
decreased hand grip strength (chr17:14,098,277–15,457,056; 𝛽𝐷𝑈𝑃 = -9.8
kg, p= 4.1× 10-39; Figure 2.19B) and lower SCr (chr17:14,098,277–15,468,444;
𝛽𝐷𝑈𝑃 = -13.8 mmol/L, p = 6.5 × 10-18; Figure 2.19C; EstBB: 𝛽𝐷𝑈𝑃 = -
94.1 mmol/L, p = 5.2 × 10-4; Figure 2.8), indicating decreased muscle
mass (367). We next assessed the proportion of duplication carriers diag-
nosed with Charcot-Marie-Tooth or related hereditary motor and sensory
neuropathies and detected 48 and 38 diagnoses among the 331,206
copy-neutral individuals and 107 duplication carriers, respectively. While
there is a clear enrichment for neuropathy diagnoses among duplication
carriers (Fisher’s exact test: odds ratio = 3,668, p < 2.2 × 10-16), only
36% of duplication carriers were clinically identified. To test whether
these individuals presented with more extreme clinical manifestations,
we compared grip strength and SCr levels in duplication carriers with
or without a neuropathy diagnosis. The former group exhibited lower
grip strength (one-sided t-test: p = 0.005; Figure 2.19B) but no difference
was detected in SCr levels (one-sided t-test: p = 0.384; Figure 2.19C).
Importantly, there was no age difference between diagnosed (mean =

55.5 years) and undiagnosed (mean = 56.2 years) duplication carriers
(two-sided t-test: p = 0.650), indicating that results do not reflect biases re-
garding age of disease onset. These examples show that well-established
pathogenic CNVs can modulate disease-associated phenotypes in the
general population without necessarily causing clinically diagnosable
disorders, supporting a model of variable expressivity (234–236, 368).
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Figure 2.18: 17q12 CNVs and renal phenotypes.
Boxplots representing levels of (A) cystatin C, (B) serum creatinine (SCr), (C) serum urea, and (D) C-reactive protein (CRP) in individuals
with a 17q12 overlapping deletion, copy-neutrality, or duplication. Copy number (CN) and sample size (n) are reported; dots show the
mean; outliers are not shown; green bands show normal clinical range for (A) cystatin C: 0.6–1.2 mg/L; (B) SCr: 44.2-132.6 µmol/L;
(C) serum urea: 3.6-7.1 mg/L, and (D) CRP: 0.07-8.2 mg/L. (E) Association plot for the 17q12 CNVR. Red dashed lines delimit the
duplication-only associated CNVR; left y-axis shows the negative logarithm of association p-value for CRP (blue), SCr (purple), cystatin
C (red), and serum urea (turquoise); right y-axis shows CNV frequency (%), with duplication frequency in green and deletion frequency
in orange; overlapping DECIPHER recurrent CNV and genes are in black, except for the putative causal gene, HNF1B, in red.
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Figure 2.19: 17p12 duplication and muscle phenotypes.
(A) Association plot for the 17p12 overlapping CNVR. Red dashed lines delimit the duplication-only associated CNVR; left y-axis
represents the negative logarithm of association p-values for hand grip strength (blue), serum creatinine (SCr; purple), and height
(red); right y-axis represents CNV frequency (%), with duplication frequency in green and deletion frequency in orange; overlapping
DECIPHER recurrent CNV and genes are in black, except for the putative causal gene, PMP22, in red. Boxplots representing (B) grip
strength and (C) SCr levels of individuals with a 17p12 overlapping deletion, copy-neutrality, or duplication, the two latter being split
according to the presence (w/) or absence (w/o) of a hereditary motor or sensory neuropathy diagnosis (ICD-10 G60.0; red stripes).
Copy number (CN) and sample size (n) are reported; dots show the mean; outliers are not shown; green bands show normal SCr clinical
range: 44.2-132.6 µmol/L.

CNV-GWAS signals suggest gene functionalities
CNV-GWAS signals can corroborate or generate hypotheses regarding
the function of encompassed genes, as shown by the association between
the CN of a 1.2 Mb 16p13.11 interval and female reproductive traits.
Specifically, duplication of the region correlated with decreased age at
menarche (chr16:15,120,501–16,308,285; 𝛽𝐷𝑈𝑃 = -0.6 years, p = 2.0 × 10-10)
and menopause (chr16:15,151,451–16,308,285; 𝛽𝐷𝑈𝑃 = -1.8 years, p = 1.7
× 10-6), whereas its deletion correlated with increased age at menarche
(chr16:15,120,501–16,308,285; 𝛽𝐷𝐸𝐿 = 1.1 years, p = 3.6 × 10-7), suggesting a
shift in reproductive timing associated with the region’s CN (Figure 2.20A-
B) that aligns with a low, albeit positive, genetic correlation between the
two traits (from Neale UKBB genetic correlations). Duplication effect on
age at menarche (𝛽𝐷𝑈𝑃 = -0.6 years, p = 1.8 × 10-2) and menopause (𝛽𝐷𝑈𝑃
= -2.6 years, p = 4.5 × 10-2) were confirmed with nominal significance
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in the EstBB (Figure 2.8A) and a SNP-GWAS signal for age at menarche
(rs153793) colocalized with the CNVR (369) (Figure 2.20C).

Literature supports the role of MARF1 (MIM: 614593) in this association.
First, MARF1 (observed/expected ratio [o/e] = 0.05 [0.03–0.12]; proba-
bility of loss-of-function intolerance [pLI] = 1) and MYH11 (o/e = 0.22
[0.16–0.30]; pLI = 0.77; [MIM: 160745]) are the only encompassed genes
under evolutionary constraint (upper bound of o/e <0.35) according
to gnomAD v2.1.1 (29) (Figure 2.20C; Table S2.6). Second, MARF1 was
shown to play an essential role in murine oogenesis by fostering success-
ful completion of meiosis and cytoplasmic maturation and protecting
germline genomic integrity (372). The gene’s function is supported by
studies in fly (373) and goat (374), as well as two human case reports of
females with MARF1 mutations and reproduction phenotypes (375, 376).

C

Chromosome 16 [Mb]

<MARF1

CNVR

Lead CNV-GWAS signals

Menarche SNP-GWAS lead signal

♀ Duplications: 349 (~0.20%)

♀ Deletions: 198 (~0.11%)
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Figure 2.20: MARF1 as a putative gene involved in human female reproduction.
Boxplots of age at (A) menarche and (B) menopause in individuals with a 16p13.11 overlapping deletion, copy-neutrality, or duplication.
Copy number (CN) and sample size (n) are reported; dots show the mean; notches represent median ± 1.58 · IQR

√
𝑛; outliers are not

shown; light red backgrounds indicate pathogenic values corresponding to (A) primary amenorrhea (age at menarche > 16 years) (370)
and (B) premature ovarian insufficiency (age at menopause < 40 years) (371), respectively. (C) Mapping of CNVs overlapping the 16p13.11
CNVR (left) with zoom on the black box (right). Number and frequency of duplications (green) and deletions (orange) in females are at
the top left. Red dashed lines represent the trait-associated CNVR; black lines indicate the lead signal for age at menarche (mirror) and
menopause (duplication-only); purple line indicates age at menarche-associated SNP (369); overlapping recurrent DECIPHER CNV is
shown in black and protein-coding genes are colored according to the upper bound of the confidence interval for the observed/expected
(o/e) mutation ratio (LOEUF score) from gnomAD.
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The female-specific role of MARF1 (372–377) aligns with the absence of
association with our proxies for male sexual maturation (i.e., age at first
facial hair and balding). Although further investigations are warranted
to characterize the function of MARF1 in human female reproduction
and assess the contribution of nearby genes and regulatory elements,
it illustrates how CNV-GWASs can be leveraged to generate plausible
hypotheses regarding gene functionalities.

The deleterious impact of a high CNV burden
Moving beyond single CNVs, the impact of an individual’s total CNV
burden on complex traits was estimated. Each participant’s autosomal
CNV, duplication, and deletion burden was calculated in number of
affected Mb or genes. Both Mb and gene burden metrics correlated well
(𝜌: 0.71–0.74) and while we observed high correlations (𝜌: 0.40–0.92)
between the CNV and duplication/deletion burdens, the two latter
were uncorrelated (Figure 2.21A). From the 57 traits analyzed by CNV-
GWASs, 35 (61%) significantly associated with at least one burden metric
(p ≤ 0.05/63 = 7.9 × 10-4), showcasing negative health consequences
such as increased levels of adiposity, liver/kidney damage biomarkers,
leukocytes, glycemic values, or anxiety and decreased global physical
capacity or intelligence (Figure 2.21B; Table S2.7). Harmful phenotypic
consequences were often best captured by the number of deleted genes,
in line with a higher sensitivity to decreased (i.e., haploinsufficiency)
rather than increased (i.e., triplosensitivity) gene dosage (229).

We then corrected each individual’s phenotype and burden for the
presence of trait-associated CNVs and performed the burden analysis
anew to ensure that signals were not solely driven by significantly trait-
associated CNVs (Figure 2.21C; Table S2.7). Whereas the association
was lost for albumin, balding, body fat mass, GGT, triglycerides, and
weight, indicating a mono- or oligogenic CNV architecture, 30 traits
remained associated. Among these, birth weight, total cholesterol, low-
density lipoprotein (LDL) cholesterol, and apolipoprotein B (ApoB) were
significantly associated with the burden (Figure 2.21D) but lacked CNVR
associations (Figure 2.6D). This indicates that, as established for SNPs
(81, 171, 296), the CNV architecture underlying most complex traits is
polygenic, suggesting the presence of additional associations that we
currently lack the power to detect.

The CNV burden extended its impact to global aspects of an individual’s
life, as illustrated by the negative correlation with several socio-economic
factors, including decreased educational attainment (EA; 𝛽𝑏𝑢𝑟𝑑𝑒𝑛 = -0.07
years/Mb, p = 4.4 × 10-11) and income (𝛽𝑏𝑢𝑟𝑑𝑒𝑛 = -1,593 £/year/Mb, p
= 2.9 × 10-60), and increased Townsend deprivation index (𝛽𝑏𝑢𝑟𝑑𝑒𝑛 =

0.04 SD/Mb, p = 3.6 × 10-7) (Figure 2.21E; Table S2.8). While we did
not observe any effect of the CNV burden on age- and sex-corrected
telomere length, the trait specifically associated with the BRCA1 cancer
locus (378) (MIM: 113705) (chr17:41,197,733–41,258,551, 𝛽𝐷𝑈𝑃 = 0.45 SD, p
= 1.9 × 10-8), paralleling findings that long telomere-associated SNPs also
associate with increased cancer risk (379). Because of the low number
of deceased UKBB participants, we used proxies to assess the impact
of the CNV burden on lifespan; we observed a negative association
between an individual’s CNV burden and both parental lifespan (𝛽𝑏𝑢𝑟𝑑𝑒𝑛
= -0.21 years/Mb, p = 1.4 × 10-5) and age (survivorship proxy; 𝛽𝑏𝑢𝑟𝑑𝑒𝑛
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Figure 2.21: The negative impact of the CNV burden on complex traits.
(A) Pearson correlation across six burden metrics. (B) Significant associations (p ≤ 0.05/63 = 7.9 × 10-4) between the CNV burden,
expressed as the number of Mb or genes affected by CNVs (x-axis), and traits assessed through CNV-GWASs (y-axis). Color represents
the type of burden found to increase (+) or decrease (−) the considered phenotype. (C) Schematic representation of the correction for
modifier CNVs. Top: individuals carrying a CNV overlapping a CNV-GWAS region were identified (i.e., modifier CNV carrier; yellow).
Bottom: Phenotype and burden were corrected (green arrows) and a new linear regression was fitted. (D) Significant associations after
correction for modifier CNVs. Phenotype label color indicates whether the number of associated metrics between the CNV burden and
the trait was fully lost (red), decreased (gray), identical (black), or increased (blue) after the correction. Green stars mark highly polygenic
traits associating with the CNV burden without having any significant CNV-GWAS signals. (E) Significant associations between the
CNV burden and life history traits (y-axis). (D and E) follow the legend in (B).

= -0.18 years/Mb, p = 1.1 × 10-7), suggesting that the deleterious impact
of CNVs contributes to decreased longevity (Figure 2.21E; Table S2.8).
Given this, we questioned whether the CNV burden was transmitted at a
Mendelian rate. Taking advantage of the presence of a UKBB sibling for
16,179 individuals assessed in our previous analyses, we calculated that
the average fraction of shared CNVs among siblings was 27%. Whereas
substantially higher than for random pairs (0.7%), it only represents
54% of the expected fraction of shared additive genetic variance among
siblings (50%) (380). Together, these results describe the broadly delete-
rious impact of CNVs on a wide range of complex traits in the general
population and suggest that most traits are influenced by a polygenic
CNV architecture.

Discussion

By coupling CNV calls to the phenotypic data available in the UKBB, we
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generated a roadmap of clinically relevant CNV-trait associations that
allowed us to gain deeper insights into specific biological pathways and
put forward general patterns describing the role of CNVs in shaping
complex human traits in the general population.

Our UKBB CNV landscape matched previous reports (292), and while
some of the 131 CNV-GWAS signals overlapped known associations (292,
294, 295, 305) our analyses shed light on others that have not been studied
extensively. The combined use of three association models revealed
general patterns through which CNVs modulate phenotypes, and while
geared toward the discovery of mirror effects, we also witnessed U-
shape effects, illustrating different mechanisms through which altered
dosage influences phenotypes. We further provide evidence for a broad
and nuanced role of CNVs in shaping complex traits, as both common
(frequency ≥ 1%) and rare (frequency < 1%) CNVs mapping to regions
involved by SNP-GWAS contribute to phenotypic variability in the
general population, and rare CNVs have larger effects sizes than common
ones. Other signals mapped to regions involved in Mendelian disorders.
Studying pathogenic CNVs in the general population, as opposed to
clinical cohorts selected based on phenotypic criteria or family history,
makes it possible to re-assess their frequency, penetrance, expressivity,
pleiotropy, and inheritance pattern. Matching the increasing awareness
around variable penetrance and expressivity (234–236, 289, 368, 381), we
show that pathogenic dominant CNVs can impact disease-associated
traits without causing clinically diagnosable disorders, whereas recessive
CNVs can impact disease-related biomarkers at the heterozygous state.
Together, these results provide a more complex and nuanced – but also
broader – understanding of the phenotypic impact of CNVs at odds with
the classical dichotomy between common complex diseases and rare
Mendelian disorders.

Confirming the deleterious influence of a high CNV load on anthropo-
metric traits (295, 382, 383) and EA (300, 384, 385) in a nonclinical cohort,
we extended this observation to over 30 global health biomarkers. We
show how the CNV burden – limited to large and rare CNVs detectable
by microarrays – shapes intermediate molecular phenotypes that predate
or are consequences of disease processes in a population-based cohort,
consistent with its known contribution to a wide range of disorders
(386–390). Our data further show that the CNV load negatively impacts
socio-economic factors and longevity proxies. The lower CNV burden
observed in individuals with advanced age matches the depletion of life-
shortening alleles in older UKBB participants (391), suggesting improved
health/decreased mortality in individuals with a low CNV load. Parental
lifespan negatively correlated with the CNV burden. While lower than
expected, a substantial fraction of CNVs (27%) was shared among siblings
and thus inherited from either parent. As inclusion of haplotype sharing
information in CNV calling mainly increases the detection of small (< 10
kb) but not that of large CNVs (306), we hypothesize that large events
recurrently appear de novo on multiple backgrounds and are rapidly
eliminated from the population through transmission bias or from the
cohort through ascertainment bias (i.e., increased participation of health-
ier siblings) because of their deleteriousness. Our analysis of CNV call
quality in the EstBB suggests marginal contribution of false CNV calls
but confounders – such as CNV length, which affects both detection
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capacity and pathogenicity – prevent the assessment of these factors sep-
arately. Nevertheless, the lower-than-expected CNV inheritance allows
speculating that an even stronger association with lifespan would be
obtained providing access to parental CNV genotypes. If further studies
are required to confirm the life-shortening effect of a high CNV load, our
data clearly illustrate the deleterious impact of CNVs on an individual’s
global health.

Both CNV-GWASs and burden analyses results improve our understand-
ing of the CNV architecture underlying studied traits. Many CNV-GWAS
loci involve rare but recurrent CNVRs. Due to the difficulty of gathering
large cohorts of carriers, complete phenotypic characterization of these
loci is still missing and limited to easily assessed anthropometric traits or
severely debilitating neurodevelopmental and psychiatric disorders. Our
results provide a map of the pleiotropic consequences of these CNVRs
on over 50 medically relevant traits. Some traits are not typically assessed
or reported in patient cohorts and targeted study of their distribution
among cases might refine diagnostic criteria and help clinicians iden-
tify and follow-up on patients with mild and/or atypical presentation.
Mechanistically, most assessed CNVRs are large, potentially harboring
several causal genes. One of the next challenges will be to narrow down
causal region(s) in pleiotropic multi-genic CNVRs to untangle primary
from secondary associated traits, as some, such as obesity, are known
to causally alter multiple biomarkers (392–394). The substantial overlap
between CNV- and SNP-GWAS signals speaks for the presence of shared
genetic mechanisms, so that both mutational classes can be exploited
synergistically to pinpoint causal genes and elucidate their biological
function. In parallel, we observed a high degree of CNV-polygenicity, as
30 out of 35 traits remained associated with the CNV burden after cor-
rection for modifier CNVRs. For six traits, CNV-GWAS signals captured
the bulk of phenotypic variability caused by CNVs, while ApoB, birth
weight, LDL cholesterol, and total cholesterol were solely associated with
the CNV burden. This indicates a polygenic CNV architecture that might
arise from rare high-impact CNVs that were not assessed by CNV-GWASs
(frequency < 0.005%) and/or more frequent CNVs with mild effects;
indeed, most high-frequency CNVRs do not overlap CNV-GWAS signals
(Figure 2.4 and Figure 2.6D). Among these, decreased birth weight, which
is associated with a high CNV load, has been linked to increased risk for
metabolic syndrome, obesity, and various other diseases in adulthood
(395, 396), opening the question as to whether some of the deleterious
effects of the CNV burden are rooted in early development. Strikingly,
the three other traits are plasma lipids with few CNV-GWAS signals.
Speaking for their high polygenicity, a GWAS on 35 blood biomarkers in
the UKBB found an average of 87 vs 478 associations per trait for non-lipid
compared to lipid traits (305). Collectively, these results illustrate a more
complex than expected contribution of CNVs in shaping the genetic
architecture of complex human traits.

It is important to keep in mind limitations of the current study. First,
CNVs were called based on microarray data with PennCNV. In addition
to the high false positive rates associated with array-based CNV calls,
this renders the study blind to variants in regions not covered by the
array, limits resolution—both in length and exact breakpoint location—
and hinders the detection of high copy-number states (CN ≥ 4) and
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deviations thereof. To mitigate these issues, we stringently filtered CNVs
and transformed calls to the probe level (206, 295), which at risk of missing
true associations guarantees the identification of trustworthy CNV-trait
pairs. Few cohorts have sufficiently large genetic and phenotypic coverage
to replicate UKBB findings at adequate power, so that we relied on
literature evidence to gauge the validity of our results, highlighting the
need for large-sized biobanks for studying (rare) CNVs. Future release
of large sequencing datasets combined to progress in CNV detection
tools could resolve these issues and lead to novel discoveries (209, 306,
397, 398). Second, despite substantial evidence of CNV- and SNP-GWAS
signal colocalization, we did not perform robust enrichment analyses,
as the non-random genomic distribution and complex nature of CNVs
renders simulating the null scenario beyond the scope of this paper.
Signal colocalization is likely to be underestimated, as manual literature
searches revealed overlaps missed by our annotation pipeline (e.g.,
16p13.11 age at menarche signal (369)) and we obtained a 7% increase
in signal colocalization by using GWAS Catalog annotation 6 months
apart (31% 04/2021 vs 38% 10/2021). Third, our study is limited to
individuals of white British ancestry. As CNV frequencies vary across
populations (36, 399–401), assessing diverse ancestral groups is likely to
unravel new associations, even though smaller sample sizes represent
a limiting factor. Finally, UKBB suffers from healthy cohort bias (59).
Focusing on the impact of CNVs in healthy populations, we used this bias
to our advantage through the inclusion of CNV carriers with subclinical
phenotypes, providing lower bounds for effect size estimates (235, 236,
402). However, this means that the cohort is depleted for severely affected
cases and extremely rare (frequency < 0.005%) but pathogenic CNVs were
not tested for associations. Extending the analysis to low frequency/high
impact CNVRs would allow for better distinguishing of mechanisms of
action – with the remaining caveat that effects will be underestimated
due to selection bias – and will be the focus of future work.

In conclusion, our study provides a map of high-confidence CNV-trait
associations. While we explored some of the reported signals, collective
efforts will be required to validate and interpret these discoveries and
we hope that this resource will be useful for researchers and clinicians
aiming at improving the characterization of recurrent CNVs. Our study
revealed the nuanced role of CNVs along the rare versus common disease
spectrum, their shared mechanisms with SNPs, as well as a widespread
polygenic CNV architecture, consolidating the growing body of evidence
implicating CNVs in the shaping of complex human traits.
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Abstract 

Background Copy-number variations (CNVs) have been associated with rare and debilitating genomic disorders 
(GDs) but their impact on health later in life in the general population remains poorly described.

Methods Assessing four modes of CNV action, we performed genome-wide association scans (GWASs) 
between the copy-number of CNV-proxy probes and 60 curated ICD-10 based clinical diagnoses in 331,522 unrelated 
white British UK Biobank (UKBB) participants with replication in the Estonian Biobank.

Results We identified 73 signals involving 40 diseases, all of which indicating that CNVs increased disease risk 
and caused earlier onset. We estimated that 16% of these associations are indirect, acting by increasing body mass 
index (BMI). Signals mapped to 45 unique, non-overlapping regions, nine of which being linked to known GDs. Num-
ber and identity of genes affected by CNVs modulated their pathogenicity, with many associations being supported 
by colocalization with both common and rare single-nucleotide variant association signals. Dissection of associa-
tion signals provided insights into the epidemiology of known gene-disease pairs (e.g., deletions in BRCA1 and LDLR 
increased risk for ovarian cancer and ischemic heart disease, respectively), clarified dosage mechanisms of action (e.g., 
both increased and decreased dosage of 17q12 impacted renal health), and identified putative causal genes (e.g., 
ABCC6 for kidney stones). Characterization of the pleiotropic pathological consequences of recurrent CNVs at 15q13, 
16p13.11, 16p12.2, and 22q11.2 in adulthood indicated variable expressivity of these regions and the involvement 
of multiple genes. Finally, we show that while the total burden of rare CNVs—and especially deletions—strongly 
associated with disease risk, it only accounted for ~ 0.02% of the UKBB disease burden. These associations are mainly 
driven by CNVs at known GD CNV regions, whose pleiotropic effect on common diseases was broader than antici-
pated by our CNV-GWAS.
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Figure 3.1: Cover of Auwerx et al., 2024.

This chapter describes "Rare copy-number variants as modulators of com-
mon disease susceptibility" (82), which was published in Genome Medicine
and represents a major extension to the previous chapter both in terms
of methodological development and description of new biological in-
sights. The version presented in the dissertation integrates supplemental
content.

I presented this study at multiple international conferences, including
the Swiss Society of Medical Genetics, the European Society of Human
Genetics, and the American Society of Human Genetics, where the
abstract was selected as a semifinalist for the 2023 predoctoral award for
excellence in human genetics research.

As for the previous study, all CNV-GWAS summary statistics were made
available through the GWAS Catalog.

Outreach:

➞ Unil press release (French)
➞ SIB press release

Data & code availability:

➞ CNV-GWAS summary statistics
➞ GitHub

3.1 Aims

After having demonstrated the crucial role of CNVs in modulating
complex quantitative traits within the general population (208), we wanted
to probe the clinical relevance of these findings by determining whether
CNVs also modulate susceptibility to common diseases. To achieve this,
the study’s goal included:

1. Extend the CNV-GWAS pipeline to accommodate binary traits by
switching from linear to logistic regression. To address statistical
challenges linked to the low prevalence of both CNVs and disease
diagnoses in UKBB, we developed a series of pre-processing steps
and validation strategies aiming at improving computational time
and increasing the robustness of our results.

2. Incorporate a fourth, U-shape, association model that assesses
the impact of any deviation in copy-number against the copy-
neutral state, based on the intuition that some genetic regions are
dosage-sensitive.

3. Develop a time-to-event framework that determines whether CNVs
are associated with age of disease onset.

4. Apply the newly developed framework to 60 common disease
diagnoses defined through manual curation. Diseases cover a wide
range of physiological systems, including disorders for which the
contribution of CNVs remains unknown.

5. Estimate the contribution of CNVs to the total disease burden
in UKBB and determine the genomic location and copy-number
alteration that most strongly contribute to it.

https://news.unil.ch/display/1702986543151
https://www.sib.swiss/news/genomic-deletions-and-duplications-shape-rare-as-well-as-common-disease-risk
https://www.ebi.ac.uk/gwas/publications/38185688
https://github.com/cauwerx/CNV_GWAS_common_diseases
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3.2 Key Findings

Our study revealed 73 associations involving 41 traits and 45 unique
genomic regions. Thanks to our multiple validation strategies, we could
classify these associations in confidence tiers that reflect the amount of
supporting data gathered. All of our associations were replicated through
time-to-event analysis, showing that CNVs lead to an earlier age of diag-
nosis. Some regions, such as 17q12, followed a U-shape association model
with both duplications and deletions having deleterious consequences,
suggesting tight dosage control.

Unlike the previous study, only nine of the uncovered regions had
previously been linked to genomic disorders. Some of the associations
involve single-gene CNVs, e.g., BRCA1 or LDLR, which are associated
with highly penetrant forms of common diseases, i.e., ovarian cancer
and ischemic heart disease, respectively. While these associations are
well-established, they nevertheless represent the first description of CNVs
in these genes within UKBB. We use these examples to showcase how the
rich phenotypic data available for UKBB participants can be leveraged
to gain new insights into the epidemiology and comorbidities of these
gene-disease pairs.

Regions linked to genomic disorder exhibited complex pleiotropy, whose
extent is likely to be currently underestimated. We describe multiple
novel associations and confirm the variable expressivity of these loci by
linking them to the same physiological systems previously implicated by
studies in clinical cohorts. We also illustrate how pleiotropic association
signals can be dissected to gain insights into the pathological mechanisms
of recurrent CNVs, allowing the identification of putative causal genes
or suggesting an oligogenic contribution to the phenotype. These results
are of key clinical relevance as a better understanding of the spectrum of
adult comorbidities linked to each genomic disorder can translate into
preventive measures.

Finally, our CNV burden analysis revealed that CNVs increased the risk
of 20 individual diseases, despite only contributing to ∼0.02% of the
UKBB disease burden – with slightly higher contribution to psychiatric
disorders. Disease risk was primarily driven by deletions affecting re-
gions linked to known genomic disorders. Overall, this emphasizes the
role of rare CNVs as modulators of common disease susceptibility and
aligns with the paradigm that the latter are of marginal importance at
the population level but are highly relevant in terms of personalized
medicine, as they strongly impact the disease risk of carriers.

3.3 Author Contributions

This study was conceived by Zoltán Kutalik, Alexandre Reymond, and
myself. I carried out the bulk of the analyses, under the supervision of
Zoltán Kutalik. Co-authors have contributed in the following ways:

▶ The Estonian Biobank Research Team (Tõnu Esko, Andres Metspalu,
Lili Milani, Reedik Mägi, Mari Nelis) coordinated genotyping and
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sequencing data acquisition in the EstBB and Maarja Jõeloo did the
replication study under the supervision of Reedik Mägi.

▶ Marie Sadler provided SNP-GWAS data for locus zoom plots.
▶ Nicolò Tesio validated and refined definitions of cases and controls.
▶ Sven Ojavee provided guidance for time-to-event analysis.
▶ Charlie Clark proofed the binary association pipeline.

Results were interpreted by Zoltán Kutalik, Alexandre Reymond, and
myself. I designed all the figures and drafted the manuscript, with critical
revisions made by Zoltán Kutalik and Alexandre Reymond.

3.4 Rare copy-number variants as modulators of
common disease susceptibility

Chiara Auwerx 1,2,3,4,*, Maarja Jõeloo 5,6, Marie C. Sadler 3,4, Nicolò Tesio
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Abstract
Copy-number variations (CNVs) have been associated with rare and
debilitating genomic disorders (GDs) but their impact on health later in
life in the general population remains poorly described. Assessing four
modes of CNV action, we performed genome-wide association scans
(GWASs) between the copy-number of CNV-proxy probes and 60 curated
ICD-10-based clinical diagnoses in 331,522 unrelated white British UK
Biobank (UKBB) participants with replication in the Estonian Biobank.
We identified 73 signals involving 40 diseases, all of which indicated that
CNVs increased disease risk and caused earlier onset. We estimated that
16% of these associations are indirect, acting by increasing body mass
index (BMI). Signals mapped to 45 unique, non-overlapping regions,
nine of which being linked to known GDs. Number and identity of genes
affected by CNVs modulated their pathogenicity, with many associations
being supported by colocalization with both common and rare single-
nucleotide variant association signals. Dissection of association signals
provided insights into the epidemiology of known gene-disease pairs
(e.g., deletions in BRCA1 and LDLR increased risk for ovarian cancer and
ischemic heart disease, respectively), clarified dosage mechanisms of
action (e.g., both increased and decreased dosage of 17q12 impacted renal
health), and identified putative causal genes (e.g., ABCC6 for kidney
stones). Characterization of the pleiotropic pathological consequences
of recurrent CNVs at 15q13, 16p13.11, 16p12.2, and 22q11.2 in adulthood
indicated variable expressivity of these regions and the involvement
of multiple genes. Finally, we show that while the total burden of rare
CNVs – and especially deletions – strongly associated with disease risk,
it only accounted for ∼0.02% of the UKBB disease burden. These associ-
ations are mainly driven by CNVs at known GD CNV regions, whose
pleiotropic effect on common diseases was broader than anticipated by
our CNV-GWAS. Our results shed light on the prominent role of rare
CNVs in determining common disease susceptibility within the general
population and provide actionable insights for anticipating later-onset



86 3 Common diseases

comorbidities in carriers of recurrent CNVs.

Introduction
Copy-number variants (CNVs) refer to duplicated or deleted DNA frag-
ments (≥ 50 bp) and represent an important source of inter-individual
genetic variation (36, 324). As a highly diverse mutational class, CNVs
can alter the copy-number of dosage-sensitive genes, induce gain- or
loss-of-function (LoF) through gene fusion or truncation, unmask re-
cessive alleles, or disrupt regulatory sequences, thereby representing
potent phenotypic modifiers (227, 403). As such, their role in human
disease has mainly been studied in clinically ascertained cohorts, often
presenting with congenital anomalies and/or severe neurological (e.g.,
developmental delay and intellectual disability or epilepsy) or psychi-
atric (e.g., autism or schizophrenia) symptoms (335, 386, 387, 389). Today,
close to 100 genomic disorders (GDs), i.e., diseases caused by genomic
rearrangements, have been described (229, 265). Despite their deleterious-
ness, some of these CNVs are flanked by repeats and recurrently appear,
remaining at a low but stable frequency in the population (180).

The emergence of large biobanks coupling genotype to phenotype data
has fostered the study of CNVs in the general population. Whole genome
sequencing represents the best approach to characterize the full human
CNV landscape (34–36) but current long- and short-read sequencing
association studies have a limited sample size (10, 397, 398). Alternatively,
larger sample sizes are available for exome sequencing data, offering the
possibility to assess the phenotypic consequence of small CNVs (209–
211), while microarray-based CNV calls are better-suited for the study of
large CNVs and have been successfully used in association studies (208,
229, 292–295, 300, 302, 304–306, 404). Performing a CNV genome-wide
association study (GWAS) on 57 medically relevant continuous traits in
the UK Biobank (UKBB) (61), we previously identified 131 independent
associations, including allelic series wherein carriers of CNVs at loci
previously associated with rare Mendelian disorders exhibited subtle
changes in disease-associated phenotypes but lacked the corresponding
clinical diagnosis (208). Paralleling findings for point mutations (234–
237), this supports a model of variable expressivity, where CNVs can
cause a wide spectrum of phenotypic alterations ranging from severe,
early-onset diseases to mild subclinical symptoms, opening the question
as to whether these loci are also associated with common diseases.

While continuous traits can be objectively measured in any individual,
population cohorts, such as UKBB, have lower numbers of diseased
individuals compared to the population as a whole (59), leading to a
case-control imbalance that reduces power compared to a balanced cohort
of the same size. Moreover, defining cases relies on the dichotomization
of complex underlying pathophysiological processes (138). Beyond the
inherent loss of power associated with the usage of binary variables (405),
cases might be missed because an individual did not consult a physician,
was misdiagnosed due to atypical clinical presentation, or is in a pro-
dromal disease phase. Studies investigating CNV-disease associations
in the general population have either focused on only a few diseases
(277, 304, 406–410) or well-established recurrent CNVs (40, 293, 411–413).
Alternatively, high-throughput studies have assessed a broad range of
continuous and binary traits simultaneously (209, 292, 306) without any
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precautions to accommodate the aforementioned challenges. To date, the
largest disease CNV-GWAS meta-analyzed ∼1,000,000 individuals (229).
While boosting power through increased sample size, it comes at the cost
of extensive data harmonization, resulting in the exclusion of smaller
CNVs (≤ 100 kb) and usage of broader disease categories (e.g., immune
abnormality). Moreover, as this study includes several clinical cohorts,
phenotypes are biased towards neuropsychiatric disorders (24 out of 54
phenotypes) for which the role of CNVs is well-established (335, 386, 387,
389).

Using tailored CNV-GWAS models mimicking four mechanisms of CNV
action and time-to-event analysis, we investigate the relationship be-
tween CNVs and 60 carefully defined common diseases affecting a broad
range of physiological systems in 331,522 unrelated white British UKBB
participants. Extensively validating our results, we report associations
according to confidence tiers and take advantage of rich individual-level
phenotypic data to demonstrate the contribution of CNVs to the common
disease burden in the general population.

Materials and methods
Study material

Software versions:
▶ CNV calling: PennCNV v1.0.5 (203).
▶ CNV QC: (206).
▶ PLINK v1.9 and PLINK v2.0.26 (88).
▶ Gene mapping: ANNOVAR (307).
▶ UCSC Browser LiftOver (414)
▶ Statistical analyses: R v3.6.1.
▶ Graphs: R v4.1.3.

Discovery cohort: UK Biobank
The UK Biobank (UKBB) is composed of ∼500,000 volunteers (54%
females) from the general UK population for which microarray-based
genotyping and extensive phenotyping data – including hospital-based
International Classification of Diseases, 10th Revision (ICD-10) codes (up
to September 2021) and self-reported conditions – are available (61). UKBB
data were accessed through application 16389. UKBB has approval from
the North West Multi-centre Research Ethics Committee as a Research
Tissue Bank and all participants signed a broad informed consent form.

Replication cohort: Estonian Biobank
The Estonian Biobank (EstBB) is a population-based cohort of ∼208,000
Estonian individuals (65% females; data freeze 2022v01 [12/04/2022])
for which microarray-based genotyping data and ICD-10 codes from
cross-linking with national and hospital databases (up to end 2021) are
available (62). The activities of the EstBB are regulated by the Human
Genes Research Act, which was adopted in 2000 specifically for the opera-
tions of the EstBB. Individual-level data analysis in the EstBB was carried
out under ethical approval 1.1–12/624 from the Estonian Committee
on Bioethics and Human Research (Estonian Ministry of Social Affairs),
using data according to release application 3–10/GI/34668 [20/12/2022]
from the EstBB. All participants signed a broad informed consent form.

CNV association studies in the UK Biobank

Microarray-based CNV calling
All results in this study are based on the human genome reference build
GRCh37/hg19. UKBB genotype microarray data were acquired from two
arrays with 95% probe overlap (Applied Biosystems UK Biobank Axiom
Array: 438,427 samples; Applied Biosystems UK BiLEVE Axiom Array
by Affymetrix: 49,950 samples) (61) and used to call CNVs as previously
described (208). Briefly, CNVs were called using standard PennCNV
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settings. Chromosome X CNVs were called using dedicated PennCNV
modalities. To avoid interference between the two-letter CNV encoding
(Table 3.1) and the male chromosome X hemizygosity assumption of
PLINK, all individuals were (falsely) labeled as female when performing
genetic analyses in PLINK. CNV outlier samples based on genotyping
plate or extreme CNV profile were excluded (Table 3.2). Remaining
CNVs were attributed a probabilistic quality score (QS) that reflects
the likelihood that the CNV call is a true positive. The QS ranges from
−1 (likely deletion) to 1 (likely duplication), with intermediate values
around 0 reflecting less confident CNV calls (206). High-confidence
CNVs, stringently defined by |QS| > 0.5, were retained and encoded in
chromosome-wide 𝑝𝑟𝑜𝑏𝑒 × 𝑠𝑎𝑚𝑝𝑙𝑒 matrices with entries of 1, −1, or 0
indicating probes overlapping a high-confidence duplication, deletion,
or no/low-quality CNV, respectively. CNV matrices were encoded into
three PLINK binary file sets (−−make−bed PLINK v1.9; Table 3.1). To
reduce file size and facilitate parallelized computation, files are split at
the chromosome level (i.e., for each PLINK encoding there are 24 files:
22 autosomes, pseudoautosomal regions, chromosome X). PLINK file
sets were used to fit four association models mimicking different modes
of CNV action: mirror, U-shape, duplication-only, or deletion-only (Table
3.1).

Table 3.1: Numerical and PLINK encoding of CNVs.
Encoding of high-confidence CNVs into numerical 𝑝𝑟𝑜𝑏𝑒 × 𝑠𝑎𝑚𝑝𝑙𝑒 quality score (QS) matrices (Num.) and three PLINK file sets (PLINK),
mimicking encoding of single-nucleotide variants. *The U-shape model is assessed with the hetonly modifier of PLINK’s glm function,
allowing to compare the effect of deletion and duplications against copy-neutral individuals.

Mirror U-shape Duplication-only Deletion-only
PLINK file set PLINKCNV PLINKCNV* PLINKDUP PLINKDEL

Encoding Num. PLINK Num. PLINK Num. PLINK Num. PLINK
Deletion (QS < -0.5) -1 AA 1 AA NA 00 1 TT
Copy-neutral (-0.5 ≤ QS ≤ 0.5) 0 AT 0 AT 0 AT 0 AT
Duplication (QS > 0.5) 1 TT 1 TT 1 TT NA 00

Case–control definition and age of disease onset calculation
A pool of 331,522 unrelated white British UKBB participants (54% fe-
males) was considered after excluding related individuals (≤ 3rd degree),
individuals with high genotype missingness (≥ 0.02), individuals that
are not of white British ancestry (self-reported + genetically confirmed),
CNV outlier samples based on genotyping plate or extreme CNV profile,
and individuals reporting blood malignancies (Table 3.2).

Cases and controls were defined for 60 ICD-10-based clinical diagnoses
using diagnosis − ICD10 (#41270), cancer code, self-reported (#20001), and
non-cancer illness code, self-reported (#20002) to build exclusion and inclu-
sion lists. For each disease, starting with the selected subset of 331,522
individuals previously described, we identified cases as individuals
having received a specific, restricted set of ICD-10 codes matching our
disease definition (i.e., inclusion list). We then defined our controls as
individuals lacking both ICD-10 codes matching the case definition and
self-reported or ICD-10 diagnoses of a broad set of conditions related
to the assessed disorder (i.e., exclusion list). For instance, breast cancer
controls should not have other cancers or radio-/chemotherapy, while
schizophrenia controls should not have mood or personality disorders.
For second-level ICD-10 codes, all subcodes are considered, otherwise
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Table 3.2: Summary of sample filtering procedure.
Ordered list of filters applied to select individuals for the CNV-GWAS analysis. Description of criteria and rationale are provided for each
step, along with the number of excluded individuals (Nexc.) and the number of individuals remaining after applying each filter (rem.).

STEP Filter Description Nexc. Nrem.

START 488,377
1 Relatedness Samples were excluded if "0" in used.in.pca.calculation (i.e.,

not used for principal component analysis (PCA) calculation) in
the sample QC file (v2) described in UKBB resource 531. PCA
was calculated based on unrelated individuals (KING software
(415) −−related −−degree 3), with missing rate on autosomes
≤ 0.02, and no mismatch between inferred and self-reported
sex (61). Focusing on unrelated individuals prevents p-value
deflation due to correlated residual noise.

81,158 407,219

2 Ancestry Only sample with in.white.British.ancestry.subset as "1"
(i.e., self-identify as “white British” and cluster with that group
based on single nucleotide polymorphism (SNP) PCA analysis
(61)) in the sample QC file (v2) described in UKBB resource 531
were retained. This allows to obtain a sample with homogenous
genetic ancestry.

69,674 337,545

3 Retracted Samples that were redacted or retracted their participation at the
time the project was initiated (August 2020) were excluded.

80 337,465

4 Genotype
plate outlier

Samples that were genotyped on a genotyping plate with a mean
CNV count per sample > 100 were excluded as this might indicate
systematic error during the genotyping and lead to the inclusion
of artifactual CNV calls.

569 336,869

5 Extreme CNV
profiles

Individuals with an extreme CNV profile, i.e., > 200 CNVs/sam-
ple or a single CNV > 10 Mb were excluded. The former could
either indicate poor quality genotyping, the presence of a large
CNV that was called as many small CNVs, or extreme events such
as chromothripsis. Extremely large CNV can reflect aneuploidies
or other extreme chromosomal aberrations. As we expect these
events to be rare, with potentially massive phenotypic conse-
quences, we decided to exclude these individuals.

924 335,972

6 Blood cancer Individuals with a known blood malignancy (i.e., UKBB field
#20001: 10047, 1048, 1050, 1051, 1052, 1053, 1055, 1056, 1056; #41270:
ICD-10 codes mapping to Phecode exclusion range of cancer of
lymphatic and hematopoietic tissue (309)) were excluded as these
individuals might harbor somatic CNVs, which are not within
the scope of this study.

4,450 331,522

END 331,522

only the specified ones. Finally, the disease burden was calculated as
the number of diagnoses (out of the 60 assessed ones) an individual
has received. For male- (prostate cancer) and female- (menstruation
disorders, endometriosis, breast cancer, ovarian cancer) specific diseases,
downstream analyses were conducted excluding individuals from the
opposite sex.

Based on the date at first in-patient diagnosis – ICD10 (#41280) and the
individual’s month (#52) and year (#34) of birth (day assumed on average
to be the 15th), age at diagnosis was calculated by subtracting the earliest
diagnosis date for codes on the inclusion list from the birth date and
converting it to years by dividing by 365.25 to account for leap years.

Covariate and probe selection
Relevant covariates and probes were selected to fit tailored main CNV-
GWASs and reduce computation time.

For each disease, a logistic regression was fitted to explain disease
probability as a function of age (#21003), sex, genotyping array, and
the 40 first principal components (PCs) from the SNP genotyping data.
Nominally significantly associated covariates (p ≤ 0.05) were retained
for the main GWAS. Number of retained covariates ranged between
two (sarcoidosis and multiple sclerosis) and 24 (hypertension, arthrosis,
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Figure 3.2: Covariate selection and probe filtering in the UK Biobank.
(A) Left: Dark gray tiles indicate covariates (x-axis) retained for the corresponding disease and/or disease burden (y-axis) (p ≤ 0.05). PC
= principal component. Right: Number of retained covariates per disease. (B) The logarithm of number of selected covariates (y-axis)
against the logarithm of the number of cases (x-axis) for each of the 60 assessed diseases. Linear regression equation with 95% confidence
intervals is shown. (C) Number of probes retained (x-axis) for the mirror and U-shape (left), duplication-only (middle), and deletion-only
(right) models for each of the 60 investigated diseases and the disease burden (y-axis). (D) The logarithm of number of selected probes
(y-axis) against the logarithm of the number of cases (x-axis) for each of the 60 assessed diseases, split by association model. Linear
regression equations with 95% confidence intervals are shown.

1:
CNV frequency:

𝑞𝐶𝑁𝑉 =
𝑁𝑢𝑚𝐶𝑁𝑉

𝑁𝑢𝑚𝐶𝑁𝑉+𝑁𝑢𝑚𝑛𝑜𝑛−𝐶𝑁𝑉

Duplication frequency:

𝑞𝐷𝑈𝑃 =
𝑁𝑢𝑚𝐷𝑈𝑃

𝑁𝑢𝑚𝐶𝑁𝑉+𝑁𝑢𝑚𝑛𝑜𝑛−𝐶𝑁𝑉

Deletion frequency:

𝑞𝐷𝐸𝐿 =
𝑁𝑢𝑚𝐷𝐸𝐿

𝑁𝑢𝑚𝐶𝑁𝑉+𝑁𝑢𝑚𝑛𝑜𝑛−𝐶𝑁𝑉

and disease burden) (Figure 3.2A) and correlated with case number of
the disease, aligned with the expected gain in power for more frequent
diseases (Figure 3.2B). Covariates used for the main CNV-GWAS are
listed in Table S3.2.

Probe-level CNV frequency was calculated as previously described (208).
Briefly, for the 740,434 probes stored in PLINKCNV, we counted the
number of times a genotyped probe was found in a deleted (𝑁𝐷𝐸𝐿),
copy-neutral (𝑁𝑛𝑜𝑛−𝐶𝑁𝑉 ), and duplicated (𝑁𝐷𝑈𝑃) state among a subset
of 331,522 selected individuals (−−freqx PLINK v1.9). We excluded
41,670 array-specific probes with genotype count missingness > 5%. For
the remaining probes, we calculated the probe-level CNV, duplication,
and deletion frequencies1 , with 𝑁𝐶𝑁𝑉 = 𝑁𝐷𝑈𝑃+ 𝑁𝐷𝐸𝐿. Probes with a
CNV frequency < 0.01% were excluded. The 70,631 remaining probes
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were pruned at r2 > 0.9999 in PLINKCNV (−−indep−pairwise 500 250

0.9999 PLINK v2.0), based on their CNV genotype, resulting in 18,725
probes. Pruning at such a high threshold will retain only a single probe
at the core of a CNVR, where due to the recurrent nature of CNVs the
correlation is extremely high. However, it will retain multiple probes
around the CNV breakpoints (BPs), where we expect variability due to
true biological variation or uncertainty of the CNV calling algorithm.

For each disease, 2-by-3 genotypic Fisher tests assessed dependence be-
tween disease status and probe copy-number (rows: control vs case;
columns: deletion vs copy-neutral vs duplication; −−model fisher

PLINK v1.9; TEST column GENO). For each phenotype, quantile-quantile
(QQ) plots of the Fisher’s test p-value were generated. For the disease
burden, p-values from linear regression were used instead. The genomic
inflation factor, 𝜆, was calculated as the median of the chi-squared test
statistics derived from the Fisher test p-values divided by the expected
median of the chi-squared distribution. Overall, there was no sign of
strong p-value inflation (Figure 3.3A). 𝜆 values above 1.1 indicate ge-
nomic inflation, which can be caused by population structure, linkage
disequilibrium, or polygenicity (80) and was observed only for six highly
polygenic traits, with a maximum value of 1.33 for the disease burden. On
the other hand, 42 traits exhibited 𝜆 values below 0.9. Deflated p-values
can be caused by extremely rare variants. To verify this hypothesis, 𝜆
values were calculated anew, excluding probes with the 5-80% lowest
CNV frequency (in incremental steps of 5%), to determine the impact
of CNV frequency on genomic deflation (Figure 3.3B). We observed
a trend of increasing 𝜆 values when excluding low-frequency probes,
indicating that the deflation is caused by probes with low CNV frequency.
Importantly, low 𝜆 values do not increase false positive rates. 𝜆 values
are available in Table S3.3, along with minimal CNV frequency after
probe exclusion.

Finally, probes with pFisher ≤ 0.001 and a minimum of two disease
cases among CNV, duplication, or deletion carriers were retained for
assessment through the mirror/U-shaped, duplication-only, or deletion-
only model, respectively. The number of probes retained across all models
ranged from 0 (sarcoidosis, hyperthyroidism, pituitary dysregulation,
rheumatoid arthritis, polycystic kidney disease, and kidney cancer) to
342 (disease burden) (Figure 3.2C) and correlated with case number,
aligned with the expected gain in power for more frequent diseases
(Figure 3.2D). Number of probes retained according to different models
for the main CNV-GWAS is listed in Table S3.2. The rationale behind this
pre-selection is to reduce computation time, as it is highly unlikely that a
genotypic test with p > 0.001 would yield a genome-wide significant (p
≤ 7.5 × 10-6) logistic regression p-value.
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Figure 3.3: Genomic inflation factor of probe genotypic Fisher tests.
(A) QQ plots depicting the expected (y-axis) against observed (x-axis) negative logarithm of the genotypic Fisher test’s p-values assessing
the association strength between the copy-number status of 18,725 probes that passed the CNV frequency filter of ≥ 0.01% and pruning
at r2 > 0.9999 and the 60 diseases and disease burden. Data points are expected to follow the dark gray line (95% confidence interval as
gray shaded area). Phenotypes are ordered by decreasing genomic inflation factor (𝜆), whose value is indicated in the top left corner. (B)
Boxplots of 𝜆 values across all 61 phenotypes (y-axis) obtained when excluding an increasing percentage (0-80%) of probes with the
lowest CNV frequency (x-axis). The red line indicates 𝜆 = 1 (i.e., no inflation).
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2: 𝑂𝑅𝑇 = 1
𝑂𝑅𝐴

, with

95%𝐶𝐼𝑇 = 𝑒
𝑙𝑜𝑔(𝑂𝑅𝑇 ) ± 1.96·𝑆𝐸𝑙𝑜𝑔(𝑂𝑅𝐴)

Genome-wide significance threshold
Due to the recurrent nature of CNVs, the copy-number statuses of the
18,725 probes retained after frequency filter and pruning remain highly
correlated and are thus not independent. Accounting for these 18,725
probes would result in an overly strict multiple-testing correction. Using
an established protocol (85, 208, 295), we estimated the chromosome-level
number of effective tests and summed them up, resulting in an estimate
of 𝑁𝑒 𝑓 𝑓 = 6,633, setting the genome-wide (GW) threshold for significance
at p ≤ 0.05/6,633 = 7.5 × 10-6. This threshold is of the same order of
magnitude as what others have estimated for disease CNV-GWASs (229).
We also assessed the number of associations surviving an experiment-
wide threshold for significance that further accounts for the 60 assessed
diseases (plus the disease burden), defined as p ≤ 0.05/(6,633 × 61) = 1.2
× 10-7. Enrichment for tier 1 and 2 associations (see Statistical confidence
tiers) among experiment-wide, as opposed to genome-wide, significant
signals were assessed with a two-sided Fisher test.

Main CNV-GWAS model
Association between disease risk and copy-number of CNV-proxy probes
was assessed through logistic regression with Firth fallback (−−glm
firth−fallback omit−ref no−x−sex hide−covar −−ci 0.95

−−covar−variance−standardize PLINK v2.0), using disease- and
model-specific probes and covariates. Four association models were
assessed: the mirror model assessed the additive effect of each additional
copy (PLINKCNV file set); the U-shape model assessed a consistent effect
of any deviation from the copy-neutral state (PLINKCNV file set, using
the hetonly option in −−glm PLINK v2.0); the duplication-only model
(PLINKDUP file set) assessed the impact of a duplication while disregard-
ing deletions; the deletion-only model (PLINKDEL file set) assessed the
impact of a deletion while disregarding duplications.

Given the encoding of CNVs in PLINK (Table 3.1), we want to obtain
the effect of carrying an additional “T” for the mirror (i.e., effect of each
additional copy), duplication-only (i.e., effect of the duplication), and
the deletion-only (i.e., effect of the deletion) models. PLINK selects the
effect allele (“A1”) as the minor allele, so that depending on the deletion
and duplication frequencies, it will report the effect of “A” or “T”. In
the former case, odds ratios (OR) and their 95% confidence interval (CI)
were harmonized to “T”2. Because we use the hetonly modifier for the
U-shape model, PLINK systematically reports the effect of being “AT”,
i.e., copy-neutral. To instead obtain the effect of having a CNV, the same
transformation as described above was applied to all probes. For the
disease burden, which was assessed through linear regression, 𝛽𝑇 = −𝛽𝐴
was applied when PLINK reported the effect of “A”. Similarly, the CI was
multiplied by −1 and inverted, i.e., the lower bound becomes the upper
bound and vice-versa.

Because of the high correlation between the copy-number state of tested
probes, it is important to determine the number of independent CNV-
disease associations identified. Genome-wide significant associations
(p ≤ 7.5 × 10-6) were pruned at r2 > 0.8 (−−indep−pairwise 3000 500

0.8 PLINK v2.0). As PLINK preferentially keeps probes with higher
non-major allele frequencies, we inputted a scaled negative logarithm of
association p-value as frequency (−−read−freq PLINK v2.0) to instead
prioritize probes with the strongest association p-value. For the U-
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shape model, pruning was performed using custom code by extracting
probes from PLINKCNV and re-coding them to match U-shape numerical
encoding. Number of independent signals per disease was determined
by stepwise conditional analysis. Briefly, for each disease and association
model, the CNV genotype of the lead probe (i.e., probe with the most
significant association p-value at each iteration; encoding numerically as
Table 3.1) was included along selected covariates in the logistic regression
model and association studies were conducted anew. This process was
repeated iteratively, always including the next lead probe as an additional
covariate, until no probes passed the genome-wide significant threshold.
Characteristics of the most significant model (i.e., best model) are reported.
The main model indicates which CNV type mainly drives the association,
i.e., when associations were found through multiple models, priority was
given to either the duplication-only or deletion-only models, otherwise
to the model yielding the lowest p-value.

Due to the quantitative nature of the disease burden, the CNV-GWAS for
that phenotype was based on linear regressions correcting for selected co-
variates (−−covar−variance−standardize −−glm firth−fallback
omit−ref no−x−sex hide−covar −−ci 0.95PLINK v2.0). Post-GWAS
processing was performed as previously described (208).

CNV region definition and annotation
CNV region (CNVR) boundaries were defined by the most distant probes
within± 3 Mb and r2 ≥ 0.5 of each independent lead probe (−−show−tags
−−tag−kb 3000 −−tag−r2 0.5 PLINK v1.9; U-shape model: custom
code). When multiple disease-CNV associations mapped to overlapping
(≥ 1 bp) genomic coordinates, the CNVRs were merged, resulting in 45
unique, non-overlapping, disease-associated CNVRs, whose boundaries
are defined as the maximal CNVR. Manual inspection ensured sub-
stantial overlap between merged CNVRs. CNVRs were annotated with
hg19 HGNC and ENSEMBL gene names using annotate_variation.pl

from ANNOVAR (−−geneanno). Number of genes mapping to a CNVR
was calculated and set to zero for CNVRs with REGION not equaling
exonic.

Statistical confidence tiers
Following primary assessment through logistic regression, three sta-
tistical approaches were implemented to gauge the robustness of the
lead probe’s association signal. First, we assessed post hoc the p-value
of the 2-by-3 genotypic Fisher tests. Second, we transformed the binary
disease status into a continuous variable by computing the response
residuals of the logistic regression of disease status on disease-relevant
covariates. This allowed to use linear regressions to estimate the effect of
the CNV status, encoded according to all significantly associated models
in the primary analysis, on disease risk. The model generating the lowest
p-value for the CNV encoding is reported. Third, time-to-event analysis
was used to assess whether CNVs influence the age of disease onset
using Cox proportional hazards (CoxPH) models, the latter requiring an
estimate for the age at last healthy measurement. For cases, the latter was
defined as the age at disease diagnosis. For controls, age at last healthy
measurement was defined by subtracting birth date from cutoff date
(30/09/2021) and the resulting period was converted into years. CoxPH
models were fitted including disease-relevant covariates and numerically
encoded CNV genotype for either of the four association models as
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predictors, using the coxph() function from the R survival package
(416). The model with the lowest CNV genotype p-value is reported.
CNV-disease associations were classified in confidence tiers depending
on whether they were confirmed by three (tier 1), two (tier 2), or one (tier
3) of the above-described approaches at the arbitrary validation signifi-
cance threshold of p ≤ 1 × 10-4. Above-described validation strategies are
not suitable for disease burden associations. As quantitative variables do
not suffer from the same caveats as binary traits, we classified all disease
burden associations as tier 1.

Literature-based supporting evidence
Using three literature-based approaches, we examined whether disease-
associated CNVRs had previously been linked to relevant phenotypes.
First, we investigated the colocalization of autosomal CNVRs with SNP-
GWAS signals. GRCh38/hg38 lifted CNVR coordinates were inputted
in the GWAS Catalog and associations (p ≤ 1 × 10-7) relevant to the
investigated disease (i.e., disease itself, synonyms, continuous proxies,
or major risk factors) were identified through manual curation. Second,
we overlapped OMIM morbid genes (i.e., linked to an OMIM disorder;
morbidmap.txt) with disease-associated CNVRs. Through manual cu-
ration, we flagged OMIM genes associated with Mendelian disorders
sharing clinical features with the common disease associated through
CNV-GWAS. Third, we examined if implicated CNVRs overlapped re-
gions at which CNVs were found to modulate continuous traits (208) or
disease risk (293, 306).

Replication in the Estonian Biobank

Disease cases and disease burden were defined using the same inclusion
and exclusion criteria as for the UKBB, with the notable exceptions of
excluding "Z12" (routine preventive screens for cancer) and "D22-23"
(benign skin lesions) subcodes from the exclusion list of cancer traits as
due to differences in recording practices, these were much more frequent
in the EstBB than in the UKBB, strongly reducing the number of controls.
Furthermore, as there are no self-reported diagnoses available in the
EstBB, the latter could not be used as an exclusion criterion for disease
definition in the EstBB.

Autosomal CNVs were called from Illumina Global Screening Array
genotype data for 193,844 individuals that survived general quality
control and had i) matching genotype-phenotype identifiers, ii) matching
inferred vs reported sex, iii) SNP-call rate ≥ 98%, iv) were of European
ancestry (i.e., Europe (East), Europe (South West), Europe (North West),
Finland, and Italy assignments from the bigsnpr R package function
snp_ancestry_summary() (417)), and v) were included in the EstBB
SNP imputation pipeline. CNV outlier samples based on genotyping
plate or extreme CNV profile, as well as individuals reporting blood
malignancies, were excluded, using the same criteria as for the UKBB.
High confidence CNV calls (i.e., |QS| > 0.5) of the 156,254 remaining
individuals were encoded into three PLINK binary file sets, following
the procedure described for the UKBB (Table 3.1).

Related individuals were pruned (−−make−king−table −−geno 0.05

−−king−table−filter 0.0884 −−maf 0.01 PLINK v2.0; kinship co-
efficient > 0.0884 corresponding to < 3rd degree relatedness), prioritizing
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3: Direction agreement: 𝑝𝑛𝑒𝑤 =
𝑝𝑜𝑙𝑑

2 ;

else: 𝑝𝑛𝑒𝑤 = 1 − 𝑝𝑜𝑙𝑑
2

individuals whose disease status was least often missing, leaving 90,211
unrelated samples for the replication study. Disease-relevant covariates
were selected among sex, year of birth, genotyping batch (1-11), and
PC1-20. For each of the unique 68 autosomal CNVR-disease association
signals identified in the UKBB, we identified EstBB probes that were
overlapping the CNVR’s genomic coordinates. Probes with an EstBB CNV,
duplication, or deletion frequency ≥ 0.01%, were retained, depending
on whether the mirror/U-shape, duplication-only, or deletion-only was
the best UKBB model, respectively, and 11 signals were excluded due
to null/low CNV frequency for all probes in the CNVR. Association
studies were performed on the remaining probes using disease-specific
covariates and the best UKBB model, following the previously described
procedure. Probes for which the regression failed to converge were dis-
carded, leading to the exclusion of 8 signals for which all regressions
failed. Summary statistics of the EstBB probe with the closest genomic
location to the lead UKBB probe were retrieved for the remaining 49
signals, setting the replication threshold for significance at p ≤ 0.05/49 =
1.0 × 10-3. P-values were adjusted to account for directional concordance
with UKBB effects by rewarding and penalizing the 35 directionally
concordant and 14 non-concordant signals, respectively3. One-sided bino-
mial tests (binom.test()) were used to assess enrichment of observed vs
expected significant replications at various thresholds (𝛼 = 0.1 to 0.005 by
steps of 0.005), with the R function arguments: x the number of observed
signals at 𝛼, n the number of testable signals (i.e., 49), and p the expected
probability of signals meeting 𝛼 (i.e., 𝛼).

BMI confounding analysis
We sought to assess whether some of our associations might be driven
by the CNVR’s effect on body mass index (BMI). Average BMI (#21001)
over available instances was used. For an association to be tested for pos-
sible confounding, we required that i) BMI significantly associated with
disease risk (p ≤ 0.05/61 = 8.2 × 10-4) in a model including all disease-
specific covariates and ii) the CNV genotype of the lead probe encoded
numerically according to the best model to significantly associate with
BMI (p ≤ 0.05/73 = 6.8 × 10-4) previously inverse normal transformed
and corrected for age, age2, sex, genotyping batch, and PC1-40. Twenty-
five association signals matched these criteria and for them, we fitted
a logistic regression (or linear regression for the disease burden) with
disease status as outcome and lead probe encoded numerically according
to the best model, disease-specific covariates, and BMI as predictors.
Significant differences in CNV effect sizes upon BMI adjustment were
assessed by a two-sided t-test and deemed significant at p ≤ 0.05/25 =
0.002. Associations likely driven by BMI were defined as those for which
the CNV effect p-value dropped below the GW significance threshold
upon adjustment for BMI.

CNV region constraint analysis
Evolutionary constraint of genes overlapping disease-associated CNVRs,
i.e., “disease genes,” was assessed by comparing their probability of
LoF intolerance (pLI), loss of function observed/expected upper bound
fraction (LOEUF), probability of haploinsufficiency (pHaplo), and prob-
ability of triplosensitivity (pTriplo) scores to the ones of “background
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4: Inclusion list:

▶ C50: malignant neoplasm of breast.
▶ C53: malignant neoplasm of cervix

uteri.
▶ C54: malignant neoplasm of corpus

uteri.
▶ C55: malignant neoplasm of uterus,

part unspecified.
▶ C56: malignant neoplasm of ovary.
▶ C57: malignant neoplasm of other

unspecified female genital organs.

genes” with a two-sided Wilcoxon rank-sum test. Background genes were
identified by annotating ranges of one or multiple consecutive probes
with CNV frequency ≥ 0.01% with ANNOVAR (hg19 HGNC gene names)
and excluding disease genes. For pLI and LOEUF, all disease genes
were considered together. For pHaplo and pTriplo, two disease gene
groups were considered: genes overlapping CNVRs with at least one
association through the duplication-only model and genes overlapping
CNVRs with at least one association through the deletion-only model. As
many CNVRs associated through both models, the analysis was repeated
considering genes overlapping CNVRs with at least one association
through the duplication-only and none through the deletion-only model
and vice versa.

Extended phenotypic assessment
17q12 deletion
For time-to-event analysis, the same chronic kidney disease (CKD) defi-
nition as in the main analysis was used. Low-quality CNVs (|QS| ≤ 0.5)
were excluded from analyses. Time-to-event analysis was performed as
previously described, modeling both 17q12 deletions and duplications
in the same CoxPH model adjusted for sex, age, age2, array, and PC1-40.
Estimated glomerular filtration rate (eGFR) was calculated based on the
CKD-EPI equation using #30700 (creatinine [𝜇mol/L]), accounting for
age, sex, and ancestry (418).

BRCA1 deletion
Medical history of female BRCA1 deletion carriers is based on #41270
(diagnosis – ICD10) and age at diagnosis was calculated as previously
described. Relevant and prevalent diagnoses were manually selected for
display. For the hereditary breast and ovarian cancer (HBOC) prevalence
and time-to-event analysis, we included the following ICD-10 diagnoses
on the inclusion list4, and used the same exclusion list as for ovarian
cancer. Duplications and low-quality CNVs (|QS| ≤ 0.5), as well as male
individuals, were excluded from the analyses. Difference in prevalence
was assessed with a two-sided Fisher test. Time-to-event analysis was
performed as previously described to estimate the effect of the BRCA1
deletion, using age, age2, array, and PC1-40 as covariates.

LDLR deletion
Medical history of low-density lipoprotein (LDL) receptor (LDLR) dele-
tion carriers is based on #41270 (diagnosis – ICD10) and age at diagnosis
was calculated as previously described. Drug usage data originates from
#20003 (treatment/medication code) (Table 3.3) and a minimum of three
individuals was required for a code/drug to be displayed in figures.

For prevalence and time-to-event analysis, only E78.0 (pure hypercholes-
terolemia) was considered on the inclusion list; the same exclusion list
as for lipidemia was used. Duplications and low-quality CNVs (|QS| ≤
0.5) were excluded from analyses. Difference in prevalence was assessed
with a two-sided Fisher test. Time-to-event analysis was performed as
previously described to estimate the effect of the LDLR deletion, using
sex, age, age2, array, and PC1-40 as covariates.

LDL cholesterol measurements were available for seven LDLR deletion
carriers in #42040 (GP clinical event records). LDL levels of earliest mea-
surement on record (primary care) were compared to LDL levels from
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Table 3.3: Hypolipidemic agents and
antihypertensive/antianginal drugs.
List of considered hypolipidemic agents
and antihypertensive/antianginal drugs
from #20003, generated based on
drug.com (accessed: 29/09/2022). UK
Biobank encoding is provided in the last
column. * = sachet powder.

Category Description UKBB code

statins

atorvastatin 1141146234
lipitor (10mg tablet) 1141146138

fluvastatin 1140888594
lescol (20mg capsule) 1140864592

pravastatin 1140888648
rosuvastatin 1141192410

crestor (10mg tablet) 1141192414
simvastatin 1140861958

zocor (10mg tablet) 1140881748
zocor heart-pro (10mg tablet) 1141200040

eptastatin 1140910632
velastatin 1140910654

cholesterol
absorption inhibitors

ezetimibe 1141192736
ezetrol (10mg tablet) 1141192740

fibrates

fenofibrate 1140861954
gemfibrozil 1140861856

gemfibrozil product 1141157262
lopid 300 (capsule) 1140861858

clofibrate 1140861944
bezafibrate product 1141157260

bezafibrate 1140861924
bezalip (200mg tablet) 1140861926

bezalip-mono (400mg m/r tablet) 1140861928

bile acid
sequestrants

cholestyramine+aspartame (4g*) 1140861942
cholestyramine 1140865576

cholestyramine product 1141157416
questran (4g*) 1140861936

colestipol 1140888590
colestid (5g/sachet granules) 1140861848

cardioselective
beta-blocker

atenolol 1140866738
bisoprolol 1140879760

cardicor (1.25mg tablet) 1141171152

ACE inhibitor
ramipril 1140860806

perindopril 1140888560
lisinopril 1140860696

5: SE depicted in graph is calculated as:

𝑞 = 𝑐
𝑛 , with 𝑆𝐸(𝑞) =

√
𝑞(1−𝑞)
𝑛

where 𝑐 and 𝑛 represent the number of
cases and total number of individuals in
a group.

standardized blood biochemistry measurement (#30780) taken at assess-
ment (#53) using a one-sided paired t-test. P12 was excluded as blood
biochemistry LDL levels preluded the first primary care measurement.
Based on #42039 (GP prescription records), P5 and P13 were identified as
being prescribed statins by their general practitioner despite no record of
statin usage in #20003.

Subgrouping of CNV carriers
When analyzing complex CNVRs, CNV carriers were split into subgroups
based on visual inspection of breakpoints and segmental duplications
overlapping the region. Following criteria were used to define groups
(Table 3.4). CNVs not matching any of the groups are referred to as
“atypical" CNVs.

Comparisons between groups of CNV carriers and copy-neutral individ-
uals always exclude low-quality CNV carriers (|QS| ≤ 0.5) altogether.
Differences in prevalence 𝑞5 were assessed with a two-sided Fisher test.
For continuous traits, comparisons were based on two-sided t-tests.

https://www.drugs.com/
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Table 3.4: CNV carrier subgrouping.
Selection criteria for different CNV carrier subgroups considered for analyzed CNV regions. Minimum and maximum start and end
positions reflect the range in which the CNV breakpoints are to be for a given CNV to be assigned to a subgroup. “-” indicates an open
end. *For 16p13.11 cat5 CNVs, coordinates correspond to the coordinates of ABCC6. All positions are in GRCh37/hg19.

CNVR group chr min. start [bp] max. start [bp] min. end [bp] max. end [bp]

16p13.11

cat1 16 - 15,000,000 16,250,000 16,750,000
cat 2 16 15,000,000 15,200,000 16,250,000 16,750,000
cat 3 16 15,200,000 15,800,000 16,250,000 16,750,000
cat 4 16 - 15,800,000 17,500,000 -
cat 5* 16 16,242,785 - - 16,317,379

15q13 BP4-5 15 30,250,000 31,250,000 32,300,000 33,100,000
D-CHRNA7-BP5 15 31,700,000 32,300,000 32,300,000 33,100,000

22q11.2

LCR A-D 22 18,500,000 19,200,000 21,250,000 21,900,000
LCR A-B 22 18,500,000 19,200,000 20,150,000 20,600,000
LCR B-D 22 20,000,000 20,850,000 21,250,000 21,900,000
LCR C-D 22 21,000,000 21,150,000 21,250,000 21,900,000

CNV burden analyses

CNV burden association studies
In the UKBB, individual-level CNV, duplication, and deletion burden
were calculated as the number of Mb or genes affected by high-confidence
(|QS|> 0.5) autosomal CNVs, duplications, and deletions, respectively,
yielding six CNV burden metrics, as previously described (208). Variance
explained by these six CNV burden metrics was estimated by fitting
logistic or linear regressions predicting disease outcome or disease bur-
den as a function of the CNV burden metric (without any covariates)
and assessing the McFadden pseudo-R2 or the adjusted R2 of the re-
gression, respectively. Association between the six CNV burden metrics
and the 60 diseases (logistic regression) or the disease burden (linear
regression) were assessed including disease-relevant covariates in the
model. Accounting for the 61 evaluated traits, significance was defined
at p ≤ 0.05/61 = 8.2 × 10-4.

CNV burden association studies corrected for CNV-GWAS signals
For each disease, CNVs, duplications, and deletions overlapping (≥ 1
bp) a CNVR significantly associated with the disease of interest through
CNV-GWAS were omitted from the CNV, duplication, and deletion
burden calculations if the CNVR had been found to associate with the
disease through the mirror/U-shape, duplication-only, or deletion-only
model, respectively. Association studies were repeated as previously
described using corrected burden values.

Partitioned CNV burden association studies
To determine which part of the genome was driving the associations
between disease risk and the CNV burden, we defined five genomic
partitions:

1. CNVR partition: 40 autosomal disease-associated CNVRs iden-
tified in this study. All CNVRs were considered for the CNV,
duplication, and deletion burden, except for CNVRs yielding as-
sociations uniquely through the duplication-only or deletion-only
models, which were considered only for the duplication and dele-
tion burdens.
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2. GD partition: 92 GDs curated by Crawford et al. (293). Duplication
syndromes were considered for the duplication burden, deletion
syndromes for the deletion burden, and all genomic disorders were
considered for the CNV burden.

3. R1 partition: Intersect between the CNVR and GD partitions,
encompassing nine disease-associated CNVRs and 20 GDs caused
by 10 reciprocal CNVs.

4. R2 partition: 72 GDs not included in the R1 partition.
5. R3 partition: 31 autosomal CNVRs not included in the R1 partition.

For every individual, we identified and summed up the subset of CNVs,
duplications, and deletions (measured in number of genes or number
of Mb) that overlaps these partitions (i.e., subset burden). Overlaps were
defined either as i) any overlap (≥ 1 bp) with the regions defined by the
partition, or more stringently, ii) by reciprocal 50% bp overlap (i.e., the
CNV covers > 50% of the partition’s region and the partition’s region
covers > 50% of the CNV). The subset burden was subtracted from the
total burden (i.e., corrected burden). Association studies were repeated as
previously described using subset and corrected burden metrics.

Results
The spectrum of common diseases in the UK Biobank

Sixty disorders spanning 12 ICD-10 chapters were selected to cover a wide
range of physiological systems, favoring conditions with sufficiently large
sample size and a likely genetic basis (Figure 3.4; Figure 3.6; Table S3.1).
We used a three-step approach to designate cases and controls in the
UKBB (Figure 3.4A; top): Starting from 331,522 unrelated white British
individuals, we defined cases based on a narrow list of hospital-based
diagnoses (i.e., ICD-10 codes) and excluded self-reported cases, as well as
self-reported and hospital diagnoses of related conditions from controls.
Except for systemic lupus erythematosus (N = 422) and polycystic kidney
disease (N = 454), all diseases had over 500 cases. Nineteen diseases
had a case count > 10,000, with arthrosis (N = 62,175) and essential
hypertension (N = 97,860) being the most frequent. Seven diseases had
a median age of onset ≤ 60 years, predominantly female reproductive
disorders, autoimmune conditions, and psychiatric diseases. Conversely,
the nine diseases with a median age of onset ≥ 70 years were mainly
degenerative disorders of the brain, eye, and kidney, overall aligning
with epidemiological knowledge of the respective diseases (Figure 3.4B).

Copy-number variant genome-wide association study

To assess whether disease susceptibility is modulated by CNVs, we per-
formed CNV-GWASs, i.e., test if the copy-number of CNV-proxy probes
influences the probability of developing a disease or an individual’s
disease burden (Figure 3.4A; middle). Briefly, microarray-called CNVs
for 331,522 unrelated white British individuals were transformed to the
probe level after quality control (208). To further reduce the number and
complexity of implemented logistic regressions, pre-processing steps
selected relevant covariates and probes for each disease and model com-
bination, thereby lowering computation time (Tables S3.2-3). As CNVs
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Figure 3.4: Study overview.
(A) Schematic representation of the analysis workflow. Diseases: For each of the 60 investigated diseases, 331,552 unrelated white
British individuals were divided into three subsets: controls (encoded as 1; step 1), cases with the disease (encoded as 2; step 2), and a
subset of individuals who were excluded because they had conditions similar but not identical to the disease (encoded as NA; step 3).
Primary association study: Disease-specific relevant covariates were selected. Probes were prefiltered based on CNV frequency, Fisher
test association p-value, and presence of ≥ 2 diseased carriers. Disease- and model-specific covariates and probes were used to generate
tailored genome-wide CNV association scans (CNV-GWASs) based on Firth fallback logistic regression according to a mirror, U-shape,
duplication-only (i.e., considering only duplications), and deletion-only (i.e., considering only deletions) models. Independent lead
signals were identified through stepwise conditional analysis and CNV regions were defined based on probe correlation and merged
across models. Validation: Statistical validation methods (i.e., Fisher test, residuals regression, and Cox proportional hazards model
(CoxPH)) were used to rank associations in confidence tiers. Literature validation approaches leverage data from independent studies to
corroborate that genetic perturbation (single-nucleotide polymorphisms (SNP), rare variants from the OMIM database, or CNVs) in the
region are linked to the disease. Independent replication in the Estonian Biobank. (B) Age of onset for the 60 assessed diseases, grouped
based on ICD-10 chapters and colored according to case count. Data are represented as boxplots; outliers are not shown.

can act through different gene dosage mechanisms, four association mod-
els were assessed: mirror and U-shape models consider deletions and
duplications simultaneously, assuming that they impact disease risk in
opposite or identical directions, respectively, while the CNV type-specific
duplication- and deletion-only models assess independently the effect
of duplications and deletions, respectively. All summary statistics are
publicly available (GCST90297568-GCST90297771).

Stepwise conditional analysis narrowed GW significant associations (p
≤ 7.5 × 10-6) to 40, 41, 21, and 38 independent signals for the mirror,
U-shape, duplication-only, and deletion-only models, respectively. These
were combined into 70 risk-increasing (i.e., no disease-protecting CNV)
disease associations and three disease burden associations that map
to 45 unique, non-overlapping, disease-associated CNVRs (Figure 3.5;
Table 3.5; Table S3.4), among which nine (20%) could be unambiguously
linked to a known GD. Forty-five associations (45 out of 73 = 62%) were
supported at GW significance by multiple models, the lowest p-value
(i.e., best model) being obtained through the mirror, deletion-only, U-
shape, and duplication-only models for 24, 23, 21, and 5 of the signals,
respectively. No association was detected at GW significance by both

https://www.ebi.ac.uk/gwas/publications/38185688
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Figure 3.5: CNV-disease association map.
(A) Duplication and deletion frequencies (y-axis; break: //) of the lead probe for each unique and non-overlapping disease-associated
CNVR, labeled with the corresponding cytogenic band (x-axis; 16p11.2 is split to distinguish BP2-3 and BP4-5 CNVRs; non-overlapping
CNVRs on the same cytogenic band are numbered). If signals mapping to the same CNVR have different lead probes, the maximal
frequency was plotted. B Associations between CNVRs (x-axis) and diseases (y-axis) identified through CNV-GWAS. Color indicates the
main association model. Size and transparency reflect the statistical confidence tier. Black contours indicate overlap with an OMIM gene
causing a disease with shared phenotypic features. Black crosses indicate overlap with SNP-GWAS signal for a related trait. Gray, shaded
vertical lines indicate CNVRs with continuous trait associations (208). N provides count for various features.

the duplication-only and deletion-only models, so that each signal was
attributed a main model that indicates whether the association is pri-
marily driven by duplications or deletions (Figure 3.5). The main model
should be interpreted with caution as both deletions and duplications
might influence disease risk but only one CNV type-specific model might
reach GW significance, due for instance to higher frequency of one CNV
type. This is particularly relevant as 73% of the 45 disease-associated
CNVRs have a higher duplication than deletion frequency (Figure 3.5A).
Hence, 20 out of 21 (95%) signals mainly driven by duplications were also
identified by the mirror/U-shape model(s), and contribution of deletions
cannot be excluded.

Validation of identified CNV-GWAS signals
Across the 45 disease-associated CNVRs, CNV frequencies were low,
ranging between 0.01% (our frequency cutoff) and 0.36%, with 87%
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Figure 3.6: Case-control distribution in
the UK and Estonian Biobanks.
UKBB (left) and EstBB (right) percent
stacked bar chart (x-axis) of cases (red),
controls (dark gray), and excluded (gray)
individuals, for each of the 60 assessed
diseases (y-axis; left) categorized accord-
ing to their ICD-10 chapter (y-axis; right).
Case count is indicated in white.

(39 out of 45) of CNVRs having a frequency ≤ 0.1% (Figure 3.5A).
Consequently, associations rely on a low number of diseased CNV
carriers and require validation (Figure 3.4A; bottom; Figure 3.5B; Table
S3.4). We used three statistical approaches to assess the robustness of
CNV-disease associations: i) Fisher test, ii) residual regression, and iii)
time-to-event analysis through CoxPH modeling. We replicated 28 (40%),
23 (33%), and 70 out of 70 (100%) of the associations with the respective
methods at the arbitrary validation threshold of p ≤ 1 × 10-4. This allowed
to stratify associations in confidence tiers, with 17 signals replicating with
all methods (tier 1), 20 with two (tier 2), and 36 only through time-to-event
analysis (tier 3). Importantly, time-to-event analysis showed that CNVs
always contributed to an earlier age of disease onset (Table S3.4), in line
with the paradigm that diseases with a strong genetic etiology have earlier
onset (130). Finally, when accounting for the number of assessed traits
by using a stringent experiment-wide threshold for significance (p ≤ 1.2
× 10-7), 32 out of 73 (44%) CNV-GWAS signals remained significantly
associated. These signals were enriched for tier 1 and 2 associations
(pFisher = 0.05).

In parallel, we gathered literature evidence linking genetic variation
at CNVRs with relevant phenotypes (Table S3.4). Forty-eight signals
(48 out of 73 = 64%) mapped to a CNVR harboring a least one OMIM
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Table 3.5: Forty-five disease-associated CNV regions.
Cytogenic band and genomic coordinates (GRCh37/hg19) of the 45 unique, non-overlapping, disease-associated CNVRs depicted on the
x-axis of Figure 3.5. For each CNVR, length in kb is given (“Size”). GD indicates whether the CNVR matches any of the 92 genomic
disorders (GD) compiled by Crawford et al. (293): "Y" = yes; *Partial overlap with the 22q11.2 distal CNVR (chr22:21,920,000–23,650,000).
Disease associations mapping to that CNVR are listed, with bold font indicating that the association is likely mediated by increased body
mass index (BMI). All the models through which the association was detected at genome-wide significance are indicated in superscript:
"U" = U-shape; "+" = duplication-only; "-" = deletion-only ; "M" = mirror models.

Cytogenic band Chr CNVR start CNVR end Size [kb] GD Disease associations
1p36.21 1 12,854,105 13,038,285 184 pulmonary emboly U,+,M

1q21.1-1q21.2 1 146,478,785 147,832,715 1,354 Y chronic obstructive pulmonary disease U,+, emphy-
sema +,M, iron deficiency anemia U,+

2p12 2 78,376,475 78,680,202 304 Disorders of bilirubin metabolism U,-,M

3p26.3 3 2,141,411 2,465,091 324 asthma +,M

3p12.2 3 80,344,634 83,400,564 3,056 disorders of mineral metabolism -,M

3q29 3 196,953,177 197,331,898 379 Y Alzheimer’s disease U

4q28.3 4 136,510,759 136,952,267 442 cornea diseases U,-,M

4q35.1-4q35.2 4 186,687,554 187,182,384 495 cornea diseases U

5p14.3 5 20,254,182 20,924,403 670 systemic lupus erythematosus U

6p25.1 6 4,235,784 4,658,277 422 endometriosis -,M

6q26 6 162,705,164 162,873,489 168 sleep disorders -,M

7p22.1-7p21.3 7 7,260,027 7,504,011 244 aplastic anemia U

7p21.2 7 15,074,783 15,249,515 175 bipolar disorder -,M

7q31.2-7q31.31 7 117,399,981 119,333,169 1,933 chronic obstructive pulmonary disease U,+,M

7q36.3 7 158,530,132 158,953,160 423 ovarian cancer U,+,M

8p22 8 17,599,136 17,719,930 121 cardiac valve disorders U

10p14 10 6,677,540 6,833,390 156 epilepsy U

10q26.3 10 135,217,002 135,237,176 20 sleep apnea -

11p15.4 11 5,322,902 5,417,034 94 Parkinson’s disease U,-,M

12q24.33 12 131,611,538 131,825,359 214 psoriasis +,M

15q13.2-15q13.3 15 30,912,719 32,516,949 1,604 Y AKI +, anemia U,+, asthma -,M, hemorrhagic stroke
U

15q26.3 15 101,319,208 101,613,151 294 vitamin B12 anemia U,+,M

16p13.13-16p13.12 16 12,516,765 12,659,427 143 sleep apnea U

16p13.11 16 15,120,501 16,353,166 1,233 Y epilepsy -, hypertension U, kidney stones -

16p12.2 16 21,946,523 22,440,319 494 Y AKI +, anemia U,+, asthma -,M, hemorrhagic stroke
U

16p11.2 BP2-BP3 16 28,775,159 29,043,450 268 Y anemia -, cholelithiasis -,M

16p11.2 BP4-BP5 16 29,596,230 30,208,637 612 Y AKI U,-,M, anemia U,-, asthma -, bipolar disorder
U,+,M, chronic obstructive pulmonary disease U,-,M,
CKD U,-, disease burden U,-,M, epilepsy -, hyper-
tension -, lipidemias and lipoprotein disorders
-, pneumonia U,-,M, recurrent depressive disorder
U,+,M, schizophrenia U,+,M, sleep apnea -,M, type I
diabetes -, vitamin B12 anemia U

16q23.3 16 82,954,230 83,133,760 180 emphysema -

17p13.3 17 631,380 738,187 107 epilepsy -,M

17p13.2 17 4,378,105 4,498,641 121 pulmonary emboly -

17q12 17 34,755,219 36,249,489 1,494 Y CKD U,+,M

17q21.31 17 41,197,733 41,276,111 78 ovarian cancer -,M

18p11.32 18 685,968 1,266,259 580 kidney stones U,+

19p13.3 19 6,873,527 6,881,286 8 systemic lupus erythematosus U,+,M

19p13.2 19 11,210,904 11,218,188 7 ischemic heart disease -

20p12.1 20 14,523,969 14,652,973 129 gout U

22q11.21 22 19,024,651 21,463,545 2,439 Y aneurysm -, headaches +,M, ischemic heart disease
U,+,M

22q11.21-22q11.22 22 21,797,101 22,661,627 865 * disorders of mineral metabolism -,M

22q11.23 22 23,627,256 23,658,006 31 * disorders of bilirubin metabolism -,M

22q12.1 22 25,929,538 25,994,013 64 glaucoma U,-

Xp22.33 X 1,746,850 2,046,202 299 sleep apnea M

Xp22.33 X 2,128,228 2,361,712 233 disease burden U,+,M

Xp22.33 X 2,814,160 2,945,477 131 celiac disease U

Xp22.11 X 22,946,631 23,087,940 141 ovarian cancer U,-,M

Xq28 X 152,703,776 152,887,811 184 ovarian cancer U,+,M
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morbid gene and in 15 cases, the gene was linked to a Mendelian disorder
sharing phenotypic features with the associated common disease. For
instance, the association between 4q35 CNVs and corneal conditions
(chr4:186,687,554–187,182,384; ORU-shape = 18.2; 95%-CI [5.2; 63.1]; p =
5.0 × 10-6) mapped to CYP4V2 (MIM: 608614), a gene associated with
autosomal recessive Bietti crystalline corneoretinal dystrophy (MIM:
210370), a disorder that impairs vision and progresses to blindness
by age 50–60 years (419). We next assessed whether SNPs overlap-
ping disease-associated CNVRs were reported to associate with the
implicated disease or a biomarker thereof in the GWAS Catalog. This
was the case for 28 (28 out of 66 = 42%) autosomal signals, a simi-
lar proportion (38%) than for continuous trait CNV-GWASs (208). For
instance, distal 22q11.2 CNVs increased risk for disorders of mineral
metabolism (chr22:21,797,101–22,661,627; ORmirror = 0.02; 95%-CI [0.006;
0.083]; p = 9.9 × 10-9) and overlapped heel bone mineral density SNP-
GWASs signals, while 3q29 CNVs increased Alzheimer’s disease risk
(chr3:196,953,177–197,331,898; ORU-shape = 11.8; 95%-CI [4.0; 34.7]; p =
6.6 × 10-6) and overlapped with SNP-GWAS signal for PHF-tau levels,
and suggestive signals (p < 5 × 10-6) for frontotemporal dementia and
cognitive decline in Alzheimer’s disease. Finally, 37 signals (37 out of 73
= 51%) mapped to nine CNVRs previously found to be associated with
complex traits (208), among which eight correspond to known GDs.

We also set out to replicate association signals in 90,211 unrelated EstBB
individuals (62), using similar case definitions as in the UKBB analyses
(Figure 3.6). A total of 49 out of 73 associations could be evaluated, among
which three were strictly replicated (p ≤ 0.05 out of 49 = 1.0 × 10-3) and
four additional ones reached nominal significance (p ≤ 0.05) (Table S3.4).
Compared to what would be expected by chance, this corresponds to a
2.9-fold (pbinomial = 0.011) and 16.3-fold (pbinomial = 1.1 × 10-4) enrichment
for replication at p ≤ 0.05 and p ≤ 5 × 10-3, respectively (Figure 3.7A).
We have previously shown that the smaller sample size of the EstBB
strongly limits replication power (208). Hence, despite only 7 out of 49
(14%) associations being nominally replicated, the strong enrichment for
significant results supports the validity of the primary UKBB association
signals. Replicated associations harbor SNP-GWAS signals for related
phenotypes (5 out of 7), relevant morbid OMIM genes (2 out of 7), or
map to CNVRs previously associated with similar diseases (5 out of 6)
or biomarkers (4 out of 7) (Figure 3.7B). Among them is the association
between 15q13 duplications and increased risk for acute kidney injury
(AKI; chr15:30,946,160–31,881,106 | UKBB: ORDUP = 4.6; 95%-CI [2.5; 8.4];
p = 7.1 × 10-7 | EstBB: p = 2.7 × 10-4). Homozygous LoF mutations in
FAN1 (MIM: 613534), one of the five genes mapping to this CNVR, have
been linked to karyomegalic interstitial nephritis (MIM: 614817) (420),
opening the possibility that both increased and decreased dosage of this
region have negative consequences on renal health. Importantly, inte-
grating evidence provided by statistical, literature-based, or independent
replication helps prioritize the most promising associations for follow-up
studies and pinpoint plausible candidate genes.
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Figure 3.7: Replication of CNV-disease associations in the Estonian Biobank.
(A) Enrichment for signal replication (y-axis; 95% confidence interval as gray ribbon) at different levels of significance (x-axis) in EstBB.
Color and size indicate the p-value of the enrichment (one-sided binomial test) and the number of observed associations, respectively.
Dashed red line indicates one-fold enrichment, i.e., the number of observed associations matches the number of expected ones. (B)
Associations replicated at nominal significance in the EstBB, color-stratified according to whether they meet the Bonferroni replication
(p ≤ 1.0 × 10-3; green) or nominal (p ≤ 0.05; light green) significance threshold. Disease (CKD = chronic kidney disease; AKI = acute
kidney injury; HTN = hypertension; PD = Parkinson’s disease), cytogenic band and coordinates, best model (M = mirror; U = U-shape;
DUP = duplication-only; DEL = deletion-only), odds ratio (OR), p-value (P), and statistical confidence tier are given for the UK Biobank
(UKBB) discovery analysis. OR, one-sided p-values, and number of cases among CNV carriers are provided for the EstBB replication.
Overlap with SNP-GWAS signals for a related trait (✓ = yes; ✗ = no) or a relevant OMIM gene (RCAD = renal cyst and diabetes;
KIN = karyomegalic interstitial nephritis) is indicated. Previous association with diseases (293) (duplication (DUP) or deletion (DEL)
was associated with indicated disease; no association (✗); some CNVRs were not tested) and continuous traits (208) (disease-relevant
biomarkers are specified; other traits (*); no association(✗)) are listed.

CNV-disease associations driven by BMI

Large recurrent CNVs have been linked to altered body weight (208,
292, 294, 295), which itself represents a risk factor for a broad range of
common diseases. We identified 25 CNV-disease associations for which
both disease risk and CNV status associated with BMI, indicating that
the latter might confound these associations. While including BMI as
an additional covariate did not result in significantly different CNV
effects, 12 out of 25 associations did not meet the strict GW significance
threshold anymore (Table 3.5; Figure 3.8; Table S3.5), so that 16% of the
73 associations uncovered by our CNV-GWAS are likely driven by the
CNV’s propensity for increasing adiposity in its carriers. In line with
expectations, associations showing the strongest confounding include
cardiometabolic diseases such as lipidemia, or sleep apnea, while pul-
monary, renal, and psychiatric diseases, along with the disease burden
were less affected. Importantly, only one CNVR lost all its associations
upon BMI adjustment, i.e., the SH2B1-overlapping distal 16p11.2 BP2-3
deletion, which is known to cause severe, early-onset obesity (325, 412).
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Figure 3.8: BMI adjustment for possibly
confounded CNV-disease associations.
Negative logarithm of CNV-disease as-
sociation p-value with (y-axis) and with-
out (x-axis) adjustment for body mass
index (BMI) for the 25 CNV-GWAS sig-
nals potentially confounded by the latter.
The horizontal and vertical dashed lines
represent the genome-wide significance
threshold at p ≤ 7.5 × 10-6; the diagonal
dashed line represents the identity line.
Associations are colored by ICD-10 chap-
ter, with the number of associations that
fail to reach genome-wide significance
upon adjustment for BMI indicated in
parenthesis.

Global characterization of disease-associated CNV regions

We sought to identify global characteristics that distinguish disease-
associated CNVRs (Table S3.6). Number of protein-coding genes em-
bedded in the 45 disease-associated CNVRs ranged from 0 to over 30
and generally correlated with the number of encompassed probes (𝜌 =
0.50; p = 4.2 × 10-4; Figure 3.9A). Exceptions include single-gene CNVRs
overlapping well-known pathogenic genes captured thanks to high probe
coverage, such as BRCA1 or LDLR. Seven CNVRs (16%) associated with
multiple diseases, all of which mapped to known GD regions. One CNVR
that stood out is the 600 kb 16p11.2 BP4-5 region (Figure 3.5B; Table 3.5).
Originally identified as a major risk factor for autism, schizophrenia,
developmental delay and intellectual disability, macro-/microcephaly,
epilepsy, and obesity/underweight (326, 421–426), we previously found
the region to associate with 26 continuous complex traits (208). Here, we
show that 16p11.2 BP4-5 deletions increase the risk of 12 diseases across
multiple organ systems as well as the disease burden (+ 3 diseases/dele-
tion; p = 1.2 × 10-26), five of which, alongside the disease burden, remain
significant upon adjustment for BMI (Table 3.5; Table S3.5). On the other
hand, the region’s duplication drove increased risk for psychiatric condi-
tions (i.e., bipolar disorder, schizophrenia, and depression), in line with
previous findings (425).

Next, we assessed whether disease genes were under stronger evolution-
ary constraint than genes affected by CNVs at the same frequency but
not associated with any disease (i.e., “background genes”). Compared
to background genes, the 231 disease genes had more constrained pLI
(pWilcoxon = 1.3 × 10-4; Figure 3.9B) and LOEUF (pWilcoxon = 1.9 × 10-7;
Figure 3.9C) scores, suggesting stronger intolerance to LoF mutations.
Splitting CNVRs depending on whether they have at least one association
through either the duplication-only or deletion-only model, we evaluated
whether embedded disease genes were more susceptible to haploinsuf-
ficiency (Figure 3.9D) or triplosensitivity (Figure 3.9E). No significant
difference in pHaplo scores were observed but genes overlapping regions
whose duplication (pWilcoxon = 9.0 × 10-19) and deletion (pWilcoxon = 1.0 ×
10-23) have been linked to diseases were more likely to be triplosensitive
than background genes. Similar trends were observed considering genes
overlapping CNVRs involved uniquely through the duplication-only
and deletion-only models and not the other CNV type-specific model
(Figure 3.9F-G). Overall, our results indicate that a CNVR’s pathogenicity
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is influenced both by the number and characteristics of affected genes,
even though our study did not explore whether part of the observed
phenotypic consequences is driven by disruption of regulatory regions
(227).

Figure 3.9: Constraint analysis of
disease-associated CNV regions.
(A) Number of probes (y-axis) vs num-
ber of affected genes (x-axis) for disease-
associated CNVRs. Color reflects the
number of associations, with full circles
indicating previous association with con-
tinuous traits (208). CNVRs affecting ≥
6 genes or single-gene CNVRs affect-
ing > 200 probes are labeled with cy-
togenic bands. Evolutionary constraint
of CNVR-encompassed genes (i.e., “dis-
ease genes”): Distribution of (B) pLI
and (C) LOEUF scores for disease vs
background genes (i.e., genes overlap-
ping regions with a CNV frequency ≥
0.01% but no disease association). Distri-
bution of (D) pHaplo and (E) pTriplo
scores for genes overlapping CNVRs
significantly associated with a disease
through the duplication-only or deletion-
only models vs background genes. Dis-
tribution of probability of (F) pHaplo
and (G) pTriplo scores for genes over-
lapping CNVRs uniquely associated to
a disease through the duplication-only
or deletion-only model vs background
genes. Number of genes (N) and the me-
dian score (vertical line) are indicated for
each group. P-values compare groups
vs background gene medians (two-sided
Wilcoxon test). Direction of the strongest
evolutionary constraint is indicated in
red with a star.

New insights in known disease genes

Two out of 12 female BRCA1 deletion carriers were diagnosed with
ovarian cancer (chr17:41,197,733-41,276,111; ORDEL = 284.3; 95%-CI [24.6;
3290.8]; p = 6.1 × 10-6; Figure 3.10A). BRCA1 (MIM: 113705) is a tumor
suppressor gene whose LoF represents a major genetic risk factor for the
development of HBOC (MIM: 604370) (378). Exploring the clinical records
of the 12 deletion carriers, we found five diagnoses of breast cancer (a
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trait assessed by CNV-GWAS but that did not yield a GW-significant
association), one of endometrial cancer, and one of Fallopian tube cancer,
so that eight carriers (67%) had received a HBOC diagnosis (Figure 3.10B).
Not only was prevalence of HBOC higher among BRCA1 deletion carriers
(ORFisher = 31.0; p = 1.1 × 10-6), but disease onset was earlier (HR = 17.0; p
= 1.3 × 10-15; Figure 3.10C). Among the four carriers with no HBOC, two
had received cancer prophylactic surgery, de facto reducing the penetrance
of the deletion. Surgeries were likely carried out based on family history
of HBOC, which was reported for 6 carriers (50%), suggesting that these
deletions are inherited. We did not observe higher prevalence of other
cancer types (Figure 3.10B).

Figure 3.10: New insights into BRCA1 and LDLR deletions.
(A) Genomic coordinates of the 12 females (P1-12; y-axis) carrying a BRCA1 deletion (CNVR delimited by vertical dashed lines), colored
according to ovarian cancer diagnosis. (B) Left: Cancer and related family/personal diagnoses received by individuals in (A). Color
indicates age of diagnosis. Right: Counts per ICD-10 code. (C) Kaplan-Meier curve depicting the percentage, with 95% confidence
interval, of females free of female-specific cancers over time among copy-neutral and BRCA1 deletion carriers. Hazard ratio (HR) and
p-value for the BRCA1 deletion are given (CoxPH model). (D) Genomic coordinates of the 14 individuals (P1-14; y-axis) carrying an
LDLR deletion (CNVR delimited by vertical dashed lines), colored according to ischemic heart disease (IHD) diagnosis. Sex of the
individuals is indicated (M = male; F = female). (E) Left: Medical conditions and family/personal diagnoses and medication received by
≥ 3 LDLR deletion carriers in (D). Color indicates age of diagnosis. Right: Counts per ICD-10 code. (F) Kaplan-Meier curve depicting
the percentage, with 95% confidence interval, of individuals free of pure hypercholesterolemia (E78.0) among copy-neutral and LDLR
deletion carriers. HR and p-value for the LDLR deletion are given (CoxPH model).

High abundance of Alu repeats make the LDLR gene (MIM: 606945)
susceptible to CNVs (244). We found that deletion of exon 2-6 increased
risk for ischemic heart disease (chr19:11,210,904-11,218,188; ORDEL = 31.2;
95%-CI [7.1; 137.8]; p = 5.6 × 10-6) in a BMI-independent fashion. The
condition was present in 8 of 14 deletion carriers (Figure 3.10D). Heterozy-
gous - and less frequently homozygous – mutations in LDLR represent
the main genetic etiology for familial hypercholesterolemia (243), which
is characterized by elevated LDL cholesterol and predisposition for ad-
verse cardiovascular outcomes (427). Previously identified in clinical
studies of familial hypercholesterolemia (428), the CNVR implicated
by our analysis specifically encompasses the ligand-binding domain of
LDLR (243). Confirming widespread prevalence and family history (43%)
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of cardiovascular diseases (Figure 3.10E), medical records of deletion
carriers further revealed higher prevalence (ORFisher = 11.6; p = 7.9 ×
10-5) and earlier onset (HR = 5.8; p = 1.4 × 10-7; Figure 3.10F) of pure
hypercholesterolemia (E78.0), a code included in our lipidemia defini-
tion but that did not yield a signal picked-up by the CNV-GWAS. As
we previously did not find the CNVR to associate with standardized
blood biochemistry LDL levels (208), we hypothesized that the latter
were lowered by hypolipidemic agents (Table 3.3). Ten (71%) deletion
carriers were on statins and six (43%) were additionally using choles-
terol absorption inhibitors, while the remaining four did not receive a
dyslipidemia or ischemic heart disease diagnosis and harbored smaller
deletions (i.e., P12-14; Figure 3.10D-E). We concluded that drugs likely
masked genetically determined LDL levels, as shown by higher LDL
levels in the first primary care measurement on record, measured prior
to the standardized LDL measurement (pt-test = 0.03; Figure 3.11). Despite
this, the recommended target of ≤ 1.8 mmol/L for high-risk individuals
(429) was never met. By recovering known gene-disease pairs typically
studied in clinical cohorts, we showcase how the rich phenotypic data
from biobanks can generate insights into the mechanisms, epidemiology,
and comorbidities of these diseases, implicating CNVs as important
genetic risk factors.

Figure 3.11: Statins mask genetic effect
of LDLR deletion.
LDL-cholesterol levels (y-axis) from pri-
mary care data (first available measure-
ment) and blood biochemistry (average
over instances) for six deletion carriers
(Figure 3.10D) with antecedent primary
care LDL-cholesterol measurement, col-
ored according to IHD diagnosis. Paired
one-sided t-test p-value. Gray horizontal
line represents the median blood bio-
chemistry LDL value in non-carriers.
Light and darker green backgrounds
represent recommended target values
for low (≤ 3 mmol/L) and high (≤ 1.8
mmol/L) risk individuals, respectively.

CNV-biomarker associations tag pathophysiological pro-
cesses
Integration of biomarker and disease CNV-GWAS signals can identify
high-confidence, clinically relevant associations. Heterozygous LoF of
HNF1B (MIM: 189907) and 17q12 deletions cause renal cyst and diabetes
(RCAD) (MIM: 137920), a severe disorder characterized by renal abnor-
malities and maturity-onset diabetes of the young (430, 431). While we
previously showed that renal biomarkers were increased in duplication
carriers (208), here, we demonstrate that both 17q12 deletions and du-
plications increase CKD risk (chr17:34,755,219–36,249,489; ORU-shape =
6.5; 95%-CI [3.4; 12.1]; p = 5.9 × 10-9; Figure 3.12A), with a prevalence of
33.3% (pt-test = 0.026) and 16.9% (pt-test = 6.8 × 10-5) among deletion and
duplication carriers, respectively, versus 4.4% in copy-neutral individuals
(Figure 3.12B). Results replicated in the EstBB (p = 8.6 × 10-4; Figure 3.7B)
and are supported by 20% of CNV carriers showing signs of kidney
disease based on eGFR (< 60 ml/min/1.73m2), compared to 2.2% in
copy-neutral individuals (Figure 3.12C). Importantly, both 17q12 deletion
and duplication lower age of CKD onset (HR ≥ 4.6; p ≤ 1.3 × 10-7; Figure
3.12D), providing strong evidence of the deleterious consequences on
kidney health of altered dosage of 17q12. These results align with two
recent clinical studies that found that 17q12 deletions were observed in
∼2% of individuals with congenital kidney anomalies (277) and that the
17q12 CNV was the most common GD etiology within a cohort of 6,679
CKD cases, in which nine deletion and seven duplication carriers were
identified (409).
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Figure 3.12: Increased and decreased dosage of 17q12 impairs kidney function.
(A) 17q12 association landscape. Top: Negative logarithm of association p-values of CNVs (dark gray; CNVR delimited by vertical
dashed lines) and single-nucleotide polymorphisms (SNPs) with chronic kidney disease (CKD; orange) (432) and SNPs with estimated
glomerular filtration rate (eGFR; red) (433). Lead SNPs are labeled. Red horizontal dashed lines represent the genome-wide threshold for
significance for CNV-GWAS (p ≤ 7.5 × 10-6) and SNP-GWAS (p ≤ 5 × 10-8). Middle: Genomic coordinates of genes and DECIPHER GD,
with HNF1B, the putative causal gene in red. Segmental duplications are represented as a gray gradient proportional to the degree
of similarity. Bottom: Genomic coordinates of duplications (blue) and deletions (red) of UKBB participants overlapping the region.
(B) CKD prevalence (± standard error) according to 17q12 copy-number (CN). P-values compare deletion (CN = 1) and duplication
(CN = 3) carriers to copy-neutral (CN = 2) individuals (two-sided Fisher test). Number of cases and samples sizes are indicated (N =
cases/sample size). (C) Boxplots of eGFR levels according to 17q12 CN; outliers are not shown. P-value comparisons as in (B) (two-sided
t-test). Gray horizontal line represents median eGFR in non-carriers. Light and darker green backgrounds represent mildly decreased
(60–90 ml/min/1.73m2) and normal (≥ 90 ml/min/1.73 m2) kidney function, respectively. (D) Kaplan–Meier curve depicting the
percentage, with 95% confidence interval, of individuals free of CKD over time among copy-neutral and 17q12 deletion and duplication
carriers. Hazard ratio (HR) and p-value for deletion and duplication are given (CoxPH model).

In another similar example, the blood pressure-increasing 16p12.2 dele-
tion (chr16:21,946,523-22,440,319) (208, 294) increased risk for hyperten-
sion (ORDEL = 2.7; 95%-CI [1.9; 3.8]; p = 1.3 × 10-8) and cardiac conduction
disorders (ORDEL = 3.3; 95%-CI [2.2; 4.9]; p = 1.1 × 10-8), suggesting a
role in cardiovascular health (Figure 3.13A-D). Primarily associated with
developmental delay and intellectual disability (434, 435) – proxied by
decreased fluid intelligence (pt-test = 8.7 × 10-5) and income (pt-test = 1.4 ×
10-12) in the UKBB (Figure 3.13E-F) – cardiac malformations are reported
in ∼38% of clinically ascertained cases (436). Among 193 UKBB deletion
carriers, two (1%) had congenital insufficiency of the aortic valve (Q23.1),
corresponding to a higher but not significantly different prevalence of
cardiovascular malformations (Q20-28) than in copy-neutral individuals
(ORFisher = 2.1; p = 0.251). The deletion also associated with increased
risk for pneumonia (ORDEL = 3.0; 95%-CI [1.9; 4.6]; p = 5.4 × 10-7) and de-
creased forced vital capacity (208) (Figure 3.13G-H) and peak expiratory
flow (294).
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Figure 3.13: Cardiopulmonary pheno-
types in 16p12.2 deletion carriers.
Boxplots of (A) systolic (UKBB field
#4080) and (B) diastolic (#4079) blood
pressure according to 16p12.2 copy-
number (CN). Green background rep-
resents optimal blood pressure (systolic:
90-120 mmHg; diastolic: 60-80 mmHg).
Bar plots of (C) essential hypertension
and (D) cardiac conduction (CC) disor-
ders prevalence according to 16p12.2 CN.
Boxplots of (E) fluid intelligence score
(#20016; maximum = 13 points), (F) aver-
age yearly total household income before
taxes (#738: ≤ £18k to £18k; £18k-30.9 to
£24.5k; £31k-51.9 to £41.5k; £52k-100k to
£76k;≥ £100k to £100k), and (G) forced vi-
tal capacity (#3062) according to 16p12.2
CN, shown as boxplots. (H) Pneumo-
nia prevalence according to 16p12.2 CN.
For boxplots, outliers are not shown; p-
values compare deletion and duplication
carriers to copy-neutral individuals (two-
sided t-test); gray horizontal line repre-
sents median among copy-neutral indi-
viduals; N indicates sample sizes. For
bar plots, error bars represent ± the stan-
dard error; p-values compare prevalence
among deletion and duplication carriers
to the one in copy-neutral individuals
(two-sided Fisher test); N indicates case
count over sample size.

Dissecting complex pleiotropic CNV regions

While some CNV signals converge onto the same underlying physi-
ological processes, others tie apparently unrelated traits to the same
genetic region, suggesting genuine pleiotropy. 16p13.11 harbors multiple,
partially overlapping recurrent groups of CNVs that allow fine-mapping
of signals to different subregions of the CNVR (Figure 3.14). Through
different association models, the CNVR was linked to uncorrelated traits
including epilepsy, kidney stones, hypertension, alkaline phosphatase
(ALP), forced vital capacity, and age at menopause and menarche. We pre-
viously proposed MARF1 as a candidate gene for the female reproductive
phenotypes (208) and will focus here on the remaining traits.

The 654 duplications and 355 deletions overlapping the maximal CNVR
(chr16:15,070,916–16,353,166) were grouped into 5 categories (cat1-5) based
on their breakpoints (Figure 3.14A). Matching previous findings (410), risk
for epilepsy was increased in deletion carriers (chr16:15,122,801–16,353,166;
ORDEL = 6.2; 95%-CI [2.8; 13.4]; p = 4.4 × 10-6; Figure 3.14B), with a preva-
lence of 8.2% among cat1-4 deletion carriers compared to less than 1.5%
among copy-neutral and duplication carriers (Figure 3.14C). Previously
associated with epilepsy in clinical cohorts (389, 440, 441), the region
harbors NDE1 (MIM: 609449), a gene associated with autosomal recessive
lissencephaly (MIM: 614019) and microhydranencephaly (MIM: 605013)
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Figure 3.14: Dissection of complex pleiotropic patterns of recurrent CNVs at 16p13.11.
(A) 16p13.11 genetic landscape. Coordinates of UKBB duplications (shades of blue; top) and deletions (shades of red; bottom) overlapping
the maximal CNVR (delimited by vertical dashed lines) associated with epilepsy, kidney stones, hypertension, and alkaline phosphatase
(ALP). CNVs are divided and colored according to five categories (cat1-5) to reflect recurrent breakpoints, with atypical CNVs in gray
(Table 3.4). Breakpoints reflect segmental duplications, represented with a gray gradient proportional to the degree of similarity. Middle:
genomic coordinates of genes and DECIPHER GD. Inset: Overlap between ABCC6’s exonic structure and cat5 deletions. Negative
logarithm of association p-values of CNVs (dark gray; model in parenthesis; CNVR delimited by vertical dashed lines) with (B) epilepsy,
(D) kidney stones, (F) hypertension, and (H) ALP and SNPs with (B) epilepsy (437), (D) kidney stones (438), calcium and phosphate levels
(y-axis; break: //); (F) hypertension and systolic blood pressure (439), and (H) ALP. Lead SNPs are labeled. Red horizontal dashed lines
represent genome-wide thresholds for significance for CNV-GWAS (p ≤ 7.5 × 10-6) and SNP-GWAS (p ≤ 5 × 10-8). Prevalence (± standard
error) of (C) epilepsy, (E) kidney stones, and (G) hypertension according to 16p13.11 copy-number (CN) and CNV categories from (A).
P-values compare carriers of specific deletions (CN = 1) and duplications (CN = 3) to copy-neutral (CN = 2) individuals (two-sided
Fisher test). Number of cases and sample sizes are indicated (N = cases/sample size). (I) ALP levels according to 16p13.11 CN and CNV
category, are shown as boxplots; outliers are not shown. P-values compare carriers of specific deletions (CN = 1) and duplications (CN =
3) to copy-neutral (CN = 2) individuals (two-sided t-test). Gray horizontal line represents median ALP value in non-carriers.

and whose mutation has been linked to epilepsy (442, 443). Deletions also
increased risk for kidney stones (chr16:15,120,501–16,353,166; ORDEL =
5.9; 95%-CI [2.9; 11.9]; p = 7.3 × 10-7), with the CNV-GWAS signal peaking
close to a missense variant (rs41278174 G > A; frequencyA: 2.6%) in exon
23 of ABCC6 (MIM: 603234) associating with calcium and phosphate
levels through SNP-GWASs (Figure 3.14D). These signals coincide with
the recurrent cat5 deletion that covers 29 probes spanning exons 23–29
of ABCC6 (Figure 3.14A; inset). Kidney stones prevalence reaches 4.3%
among cat5 deletion carriers, in-between estimates for larger cat1-4 dele-
tion carriers (9.2%) and copy-neutral individuals (2.3%) (Figure 3.14E). A
wide range of variants affecting ABCC6 have been identified and linked to
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the calcification disorder pseudoxanthoma elasticum through recessive
(MIM: 264800) – and more rarely dominant (MIM: 177850) – inheritance
(444–447), with the Alu-mediated cat5 deletion representing one of the
most frequent variants (184, 185). ABCC6 is expressed in the kidney
and recent estimates from clinical cohorts suggested that kidney stones
are an unrecognized (i.e., not used to establish clinical diagnosis) but
prevalent (11–40%) feature of pseudoxanthoma elasticum (448–450). Our
data support kidney stones as a clinical outcome of ABCC6 disruption
with partial gene deletions having lower penetrance than larger 16p13.11
deletions. Unlike epilepsy and kidney stones, both deletion (38.8%)
and duplication (43.3%) carriers are at increased risk for hypertension
(chr16:15,127,986–16,308,285; ORU-shape = 1.5; 95%-CI [1.3; 1.8]; p = 5.5 ×
10-6; Figure 3.14F), compared to copy-neutral individuals (35.3%) (Fig-
ure 3.14G). The CNVR overlaps a SNP-GWAS signal for systolic blood
pressure mapping to MYH11 (MIM: 160745) (Figure 3.14F). Expressed in
arteries, MYH11 encodes for smooth muscle myosin heavy chains and
has been linked to dominant familial thoracic aortic aneurysm (MIM:
132900), for which hypertension represents a leading risk factor. Interme-
diate prevalence (37.4%) of hypertension among cat5 deletion carriers
implicates ABCC6, suggesting that multiple genes might contribute to
hypertension risk at 16p13.11. Consistent with this model, ABCC6 plays a
role in vascular calcification as the causal gene for generalized arterial
calcification of infancy (MIM: 614473) (451, 452), typically diagnosed by
hypertension in newborns. Interestingly, the previously described mirror
association with ALP (chr16:15,070,916–16,276,964; 𝛽𝑚𝑖𝑟𝑟𝑜𝑟 = 6.6 U/L; p =
3.5 × 10-7; UKBB field #30610) peaks at the distal end of the CNVR (208),
nearby a suggestive SNP-GWAS signal for ALP levels (Figure 3.14H).
Splitting ALP levels by CNV category revealed that this mirroring effect is
driven by individuals with cat2 deletions (mean = 76.4 U/L; pt-test = 9.7 ×
10-3) and duplications (mean = 92.9 U/L; pt-test = 8.2 × 10-5), as other CNV
carriers had ALP levels indistinguishable from those of copy-neutral
individuals (mean = 83.6 U/L) (Figure 3.14I). Hence, we propose the
distal region of the CNVR to harbor the critical region regulating ALP
levels, even though no obvious candidate gene could be identified in the
literature.

The proximal 22q11.2 region, previously linked to DiGeorge (MIM:
188400) and velocardiofacial (MIM: 192430) syndromes, harbors four
low-copy repeats (LCR A-D) (453). Building on evidence of complex
association patterns within this CNVR (411), we report novel associations
between CNVs spanning LCR A-D and ischemic heart disease (IHD;
chr22:19,024,651-21,463,545; ORU-shape = 2.1; 95%-CI [1.6; 2.8]; p = 1.5
× 10-7), LCR B-D and aneurysm (chr22:20,708,685-21,460,008; ORDEL =
41.8; 95%-CI [10.0; 175.1]; p = 3.2 × 10-7), and LCR A-C and headaches
(chr22:19,024,651-21,110,240; ORmirror = 3.7; 95%-CI [2.1; 6.5]; p = 4.8× 10-6)
(Figure 3.15A). Based on three LCR B-D deletion carriers with aneurysm,
this corresponds to a 22-times higher prevalence than in copy-neutral
individuals (Figure 3.15B). Association with IHD is better powered, with
a prevalence of 12%, 21%, 16%, and 20% among copy-neutral individuals
and carriers of LCR C-D, B-D, and A-D CNVs, respectively (Figure
3.15C). Unlike the association with aneurysm, association with IHD was
lost upon adjustment for BMI. This suggests that IHD risk is driven by
increased adiposity which scales with the amount of affected genetic
content, supporting the presence of multiple driver genes. Collectively,
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our data indicate that altered 22q11.2 dosage can result in a spectrum
of cardiovascular afflictions, ranging from well-described congenital
malformation (453, 454) to adult-onset aneurysm or IHD.

Another region exhibiting complex pleiotropic patterns is 15q13. Dele-
tions spanning BP4-5 (MIM: 612001) – and to a lesser extent duplications
– have been associated with neuropsychiatric and developmental con-
ditions (455, 456), with the nicotinic acetylcholine receptor ion channel
CHRNA7 being proposed as the driver gene based on the presence of sim-
ilar phenotypes in individuals with a smaller deletion (D-CHRNA7-BP5)
only affecting CHRNA7 (457) (Figure 3.16A). BP4-5 duplication carriers
– but not the ∼10-times more numerous D-CHRNA7-BP5 duplication
carriers – showed higher prevalence of AKI (EstBB-replicated: Figure
3.7B and Figure 3.16B), hemorrhagic stroke (chr15:30,912,719–31,982,408;

Figure 3.15: Dissection of complex pleiotropic patterns of recurrent CNVs at 22q11.2.
(A) 22q11.2 genetic landscape. Top: Coordinates of duplications (shades of blue; top) and deletions (shades of red; bottom) overlapping
the maximal CNVR (delimited by vertical dashed lines) associated with ischemic heart disease (IHD), headaches, and aneurysm. CNVs
are divided and colored according to four groups to reflect breakpoints at low-copy repeats (LCRs) spanning the region: A-D, A-B, B-D,
C-D, with atypical CNVs in gray (Table 3.4). LCRs are composed of segmental duplications, represented as a gray gradient proportional
to the degree of similarity. Genomic coordinates of genes and DECIPHER GD are displayed. Bottom: Negative logarithm of association
p-values of CNVs (best model in parenthesis) with IHD, headaches, and aneurysm. Disease-specific CNVRs are shown with colored
vertical dashed lines. Red horizontal dashed line represents the genome-wide threshold for significance for CNV-GWAS (p ≤ 7.5 ×
10-6). (B) Prevalence of aneurysm according to 22q11.2 copy-number (CN) and CNV group (A). P-values compare deletion (CN = 1) and
duplication (CN = 3) carriers from various groups (other = A-D, A-B, C-D; all = A-D, A-B, B-D, C-D) to copy-neutral (CN = 2) individuals
(two-sided Fisher test). (C) Prevalence of IHD according to CNV groups (A). P-values compare IHD prevalence among individuals
carrying a CNV (duplication or deletion) spanning LCR C-D, B-D, or A-D to copy-neutral (CN = 2) individuals (two-sided Fisher test).
Error bars represent ± standard error; number of cases and sample sizes are indicated (N = cases/sample size).
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Figure 3.16: Dissection of complex pleiotropic patterns of recurrent CNVs at 15q13.
(A) 15q13 genetic landscape. Top: Coordinates of duplications (shades of blue; top) and deletions (shades of red; bottom) overlapping the
maximal CNVR (delimited by vertical dashed lines) associated with acute kidney injury (AKI), asthma, forced vital capacity, hemorrhagic
strokes, heart rate, anemia, mean corpuscular hemoglobin, and red blood cell count. CNVs are divided and colored according to whether
they span breakpoint (BP) 4 to 5 or D-CHRNA7 to BP5, with atypical CNVs in gray (Table 3.4). Breakpoints reflect segmental duplications,
represented as a gray gradient proportional to the degree of similarity. Genomic coordinates of genes and DECIPHER GD are displayed.
Bottom: Negative logarithm of association p-values of CNVs (best model in parenthesis) with renal, pulmonary, cardiovascular, and
hematological traits. Traits-specific CNVRs are shown with vertical dashed lines. Red horizontal dashed line represents the genome-wide
threshold for significance for CNV-GWAS (p ≤ 7.5 × 10-6). Prevalence (± standard error) of (B) AKI, (C) hemorrhagic stroke, (D) anemia,
and (E) asthma according to 15q13 copy-number (CN) and groups from (A). P-values compare BP4-5 and D-CHRNA7-BP5 deletion (CN
= 1) and duplication (CN = 3) carriers to copy-neutral (CN = 2) individuals (two-sided Fisher test). Number of cases and sample sizes are
indicated (N = cases/sample size).

ORU-shape = 7.5; 95%-CI [3.2; 17.9]; p = 4.3 × 10-6; Figure 3.16C; note that
this association is possibly confounded by BMI; Table 3.5; Table S3.5), and
anemia (chr15:30,912,719–31,094,479; ORDUP = 4.9; 95%-CI [2.5; 9.7]; p =
3.2× 10-6; Figure 3.16D), reminiscent of associations with pulse rate, mean
corpuscular hemoglobin, and red blood cell count (208, 294). Replicating
an association with asthma (293) (chr15:30,912,719–32,516,949; ORDEL =
0.17; 95%-CI [0.08; 0.35]; p = 1.2 × 10-6) which parallels the previously
reported decreased forced vital capacity (208) and peak expiratory flow
(294), this was the only association at the locus driven by deletions, with
prevalence being increased in only BP4-5 (46.2%; pt-test = 1.8 × 10-5) but
not D-CHRNA7-BP5 deletion carriers (16.7%; pt-test = 0.538), compared to
copy-neutral individuals (12.1%) (Figure 3.16E). Hence, non-neurological
disorders appear to specifically involve dosage of the genes within BP4-
D-CHRNA7 and not CHRNA7.
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CNV burden at known genomic disorder CNVRs increases
overall disease risk
By aggregating CNVs into a burden, we capture the effect of ultra-rare
CNVs (frequency ≤ 0.01%), as well as those whose effect is not strong
enough to reach GW significance under current settings, increasing our
power to detect the global pathogenic impact of CNVs on human health.
Individual-level autosomal CNV (duplication + deletion), duplication,
and deletion burdens were calculated as the number of Mb or genes
affected by the considered type of CNV. The predictive value of these six
CNV burden metrics on the same 60 diseases (and the disease burden)
previously assessed through CNV-GWAS was estimated (Figure 3.17A;
middle). Disease burden strongly associated with a high CNV load (𝛽𝐷𝐸𝐿
= + 0.03 disease per deleted gene; p = 3.7× 10-27) and risk for 20 individual
disorders was increased by at least one type of CNV burden (p ≤ 0.05/61
= 8.2 × 10-4; Figure 3.17B; total burden; Table S3.7). Overall, the deletion
burden tended to yield more significant associations than the duplication
burden and strongest effect sizes were observed for psychiatric disorders,
such as bipolar disorder (ORMb-DEL = 1.4; p = 6.9 × 10-4), schizophrenia
(ORMb-DEL = 1.4; p = 4.1× 10-5), or epilepsy (ORMb-CNV = 1.1; p = 8.3× 10-5),
in agreement with CNVs representing important risk factors for these
complex and polygenic disorders. Still, we note that the CNV burden
only accounts for ∼0.02% of the variability in disease burden, with up to
0.1% of schizophrenia and bipolar disorder cases being explained by the
CNV burden (Table S3.8).

To ensure that we do not merely capture the effect of individual CNV-
disease associations previously isolated by CNV-GWAS, we corrected
CNV burdens for CNV-GWAS signals. Specifically, we excluded from
the burden calculation CNVs overlapping disease-associated CNVRs
in a disease- and burden-type-specific fashion. We then estimated the
predictive value of corrected burdens on disease risk (Figure 3.17A; left).
Overall association strength dropped but signal was lost only for type 1
diabetes and chronic obstructive pulmonary disease (Figure 3.17B; GWAS-
corrected; Table S3.7). However, if we exclude CNVs overlapping the 40
autosomal unique disease-associated CNVRs systematically, i.e. not in a
disease- and burden-type-specific fashion, the bulk of association signals
disappears (Figure 3.17B; CNVR-corrected; Table S3.7), indicating that the
genomic partition uncovered by our CNV-GWAS increases disease risk
beyond the 73 CNV-disease pairs reaching genome-wide significance.

To further explore this hypothesis, we calculated subset CNV burdens
(Figure 3.17A; right) overlapping three different genomic partitions (Fig-
ure 3.17C) composed of i) nine disease-associated CNVRs that map
to known GDs (R1), ii) regions of known GDs that did not yield any
association in our CNV-GWAS (R2), iii) and disease-associated CNVRs
uncovered by our CNV-GWAS that were not linked to a known GD (R3).
Risk for 25 diseases, as well as the disease burden, were significantly
increased by the R1 CNV burden subset and included associations with
eight diseases that were not picked up by the total burden association
(Figure 3.17B; R1 burden; Table S3.7). We observed a substantial contri-
bution of the R2 burden subset to the risk of diseases such as epilepsy,
hypertension, cardiac conduction disorders, AKI, CKD, and hypothy-
roidism, even though the pleiotropy of this partition was more moderate



118 3 Common diseases

Figure 3.17: CNV burden at known genomic disorder CNVRs increases overall disease risk.
(A) Burden calculation. Middle: Total CNV (duplication + deletion), duplication, or deletion burdens are calculated by summing up
the length (in affected Mb or genes) of all CNVs, duplications, or deletions in an individual, respectively. Burden values are used as a
predictor for disease risk. Left: Corrected burdens are calculated by summing up the length of all CNVs, duplications, or deletions that
do not overlap with regions listed in a given genomic partition. Right: Subset burdens are calculated by summing up the length of all
CNVs, duplications, or deletions that overlap with regions listed in a given genomic partition. Both corrected and subset burden values
are used to re-estimate the contribution of the CNV burden to disease risk (red curve). (B) Contribution of the total burden, CNV-GWAS
signal- and CNVR-corrected burdens, and the R1, R2, and R3 subset burdens measured in number of affected Mb (x-axis; left) or genes
(x-axis; right) to disease risk (y-axis). Only the effect of the most significantly associated of the CNV (purple), duplication (blue), or
deletion (red) burdens, providing p ≤ 0.05/61 = 8.2 × 10-4, is shown. Color indicates whether the CNV, duplication, or deletion burden
was most significantly associated, with size and transparency being proportional to the effect size (𝛽) and p-value, respectively. Gray
horizontal bands mark traits with no CNV-GWAS signal. (C) Schematic representation of the R1, R2, and R3 partitions used to define the
subset burdens in (B).

than the one of the R1 burden subset (Figure 3.17B; R2 burden; Table S3.7).
Few associations were observed for the R3 CNV burden (Figure 3.17B;
R3 burden; Table S3.7). Supporting these results, the CNVR (R1 + R3
partitions) and GD (R1 + R2 partitions) burden subsets strongly associ-
ated with 28 and 23 phenotypes, respectively (Figure 3.18; Table S3.7). A
gradual loss of the number of associations was found when correcting
the total CNV burden for the R3, R2, R1, GD, and CNVR partitions, with
similar trends observed when requiring a more stringent overlap between
CNVs and defined regions (Figure 3.18; Table S3.7). Overall, our results
indicate that known GD CNVRs are the major drivers of the CNV bur-
den’s pathogenicity and hint at their currently underestimated pleiotropy.
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Figure 3.18: Phenotype associations with genome-wide and partition total, corrected, and subset CNV burdens.
(A) Schematic representation of two ways to define overlap between a CNV and a CNV region (CNVR) in a given genomic partition. Left:
Any overlap of ≥ 1 bp is sufficient to consider that the CNV overlaps the region. Right: a reciprocal 50% base pair overlap is required
(stripes) to consider that the CNV overlaps the region, so that the CNV covers > 50% of the region defined by the partition and the
region defined by the partition covers > 50% of the CNV. CNVs with blunted arrows extend over a range longer than the depicted
CNVR. CNVs considered as overlapping are depicted in green and those that are not in red. Contribution of the total CNV burden, the
GWAS-corrected burden, as well as the total CNV burden corrected for the five considered genomic partitions (i.e., R1, R2, R3, CNVR,
GD) and the subset burden of the same five genomic partitions in number of affected Mb (x-axis; left) or genes (x-axis; right) to disease
risk (y-axis) using (B) any or (C) a stringent approach to define overlap, as depicted in (A). Only the most significantly associated of
the CNV (purple), duplication (blue), or deletion (red) burdens, providing p ≤ 0.05/61 = 8.2 × 10-4, is shown. Color indicates whether
the CNV (duplication + deletion), duplication, or deletion burden was most significantly associated, with size and transparency being
proportional to the effect size (𝛽) and p-value, respectively. Gray horizontal bands mark traits with no CNV-GWAS signal.

Discussion
Using an adapted GWAS framework, we provide a detailed investigation
of the contribution of rare CNVs to the genetic architecture of 60 common
diseases and showcase how the rich phenotypic data of the UKBB can
be leveraged to gain new biological insights, highlighting the role of
CNVs as modulators of common disease susceptibility in the general
population.
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Various strategies have been used to study CNV-disease associations
in the UKBB. Focusing on diseases related to the ones assessed in the
current study, we replicate 10 out of the 24 detected associations (at
false discovery rate ≤ 0.1) with 54 likely pathogenic CNVs (293) and all
four associations (at p ≤ 1 × 10-9) in a recent CNV-GWAS investigating
757 diseases (306). Despite data originating from the same cohort, we
often obtained p-values orders of magnitude smaller (e.g., 16p11.2 BP4-
5 deletion and AKI: p = 5.6 × 10-20; p = 6.0 × 10-5 (293); p = 3.3 ×
10-15 (306)). The increased power of our study might be explained by
accruing case count from updated hospital records, careful case-control
definition and statistical handling of the binary outcomes, probe-level
association analysis, and usage of different association models to mimic
various dosage mechanisms. We consequently identified previously
unreported CNV-disease associations whose relevance was asserted
by follow-up analyses. Only one signal – 17q12 CNVs increasing CKD
risk – was backed by all approaches, emphasizing the importance of
considering diverse lines of corroborative evidence, such as overlap
with relevant SNP-GWAS signals and OMIM genes that indicate shared
genetic mechanisms or both disease and disease-relevant biomarker
associations mapping to the same CNVR. For instance, four (1q21.1–1q21.2,
15q13, 16p12.2, 16p11.2 BP4-5) out of six CNVRs decreasing forced vital
capacity (208) were found to increase risk for pulmonary diseases, with
the association between 15q13 and asthma replicating in the EstBB
(p = 6.2 × 10-3) and 16p11.2 BP4-5 CNVs carriers being found to be
enriched for "abnormal findings examination of lungs" in the Vanderbilt
University Medical Center electronic health record database (413). This
demonstrates that biomarkers are efficient proxies underlying (CNV-
driven) pathological processes, often increasing the statistical power to
detect associations due to their continuous nature. While we regressed
covariates out of disease status to render the outcome quantitative, more
sophisticated approaches have recently been developed for SNP-based
GWASs that transform binary outcomes into continuous liability scores
while borrowing information from age of disease onset, sex, and familial
history (139). Future exploration is warranted to assess the benefit of
this approach in the context of CNV-GWASs. By coupling a CNV-GWAS
framework that accounts for challenges linked to disease CNV association
studies in population cohorts to extensive validation, we generated a list
of 73 CNV-disease pairs with various levels of supporting evidence that
can inform follow-up studies.

Disease-associated CNVRs harbored genes under stronger evolutionary
constraint than those lacking associations and their length correlated with
their propensity for pleiotropy, indicating that as previously observed
(229), both the number and the nature of genes affected by CNVs influence
their pathogenicity. Consequently, large, multi-gene, recurrent CNVs
exhibited the strongest pleiotropy. A longstanding question relates to the
identification of causal genes whose altered dosage drives the phenotypic
alterations observed in carriers. Models with various levels of complexity
have been proposed, ranging from a single driver gene to multiple
driver genes modulated by epistatic interactions with other genes in
the CNVR (458). By analyzing disease prevalence in subsets of CNV
carriers, association signals could be fine-mapped to narrower regions,
pinpointing candidate drivers—such as ABCC6 for kidney stones. In
other cases, our data suggests that multiple subregions of the CNVR
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contribute to increased risk for a given disease, as observed for 22q11.2
and ischemic heart disease or 16p13.11 and hypertension. Interestingly, the
putative driver for phenotypes originally associated with a CNVR might
not be driving our newly identified associations, as shown for the 15q13
CNVR, whose non-neurological phenotypes do not appear to be linked
to altered dosage of CHRNA7. Beyond characterizing the pleiotropic
pathological consequences of recurrent CNVRs, we demonstrate that
dissection of CNV-GWAS signals can fine-map associations and provide
mechanistic insights into their phenotypic expression.

We show that rare CNVs, such as the ones assessed in our study, only
contribute marginally (0.02%) to the global disease burden in the general
population. Still, from a personalized medicine perspective, these vari-
ants are highly relevant. Indeed, all detected CNV-disease associations
pointed at CNVs increasing disease risk and leading to an earlier age of
onset. Incorporating age of onset information has been shown to improve
power to detect associations (139), and more importantly, represents
proof of clinical relevance. Many signals mapped to regions whose ge-
netic perturbation has been reported to be pathogenic in an autosomal
dominant fashion. These include associations between well-described,
clinically relevant gene-disease pairs – such as BRCA1 and LDLR deletions
increasing the risk for early-onset ovarian cancer and ischemic heart
disease, respectively – but for which the role of CNVs in a large popula-
tion cohort had not been previously investigated. CNVs in these genes
have high penetrance but are extremely rare in the UKBB. Follow-up
analyses based on the medical records, family history, medication use,
and biomarkers could recapitulate additional clinical associations and
establish that these deletions were most likely inherited. By recovering
known gene-disease pairs typically studied in clinical cohorts, we show-
case how the rich phenotypic data from biobanks can generate insights
into the mechanisms, epidemiology, and comorbidities of these diseases,
implicating CNVs as important genetic risk factors. We also highlight
several examples where deviations by one copy number are linked to
common diseases which share clinical features with rare Mendelian
conditions caused by homozygous perturbations of the same genetic
region. For instance, risk for kidney stones is gradually increased in
carriers of partial vs full ABBC6 deletions. Another intriguing example is
the association between a relatively common CNV (frequency = 0.22%)
affecting exon 2 and intron 2–3 of PRKN (MIM: 602544) – a gene causing
juvenile autosomal recessive Parkinson’s disease (MIM: 600116) – and
sleep disorders such as insomnia and hypersomnia. As sleep disturbances
are among the earliest symptoms of Parkinson’s disease (459), follow-up
studies should determine whether these individuals are more prone to
develop Parkinson’s disease. Overall, this argues against a dichotomic
view on dominant vs recessive modes of inheritance and analogously to
allelic series (234–237), suggests that Mendelian and common diseases
represent different ends of the phenotypic spectrum caused by genetic
variation at a given locus. We further show that nine CNVRs previously
linked to pediatric GDs also increased risk for a broad spectrum of adult-
onset common diseases. These associations were probably overlooked
as the medical consequences in adulthood of these etiologies are often
poorly characterized owing to ascertainment bias and difficulty to gather
large cohorts. Importantly, 12 out of 24 associations mapping to a GD
linked to altered BMI remained significant when accounting for the
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latter. This indicates that while part of the increased disease risk among
individuals with GDs represents a mere comorbidity of obesity, other
BMI-independent mechanisms further contribute to the high disease
burden observed in these individuals. In the future, it will be important
to assess the role of other possible confounders, such as clinical biomark-
ers or socio-economic status, as such knowledge can guide preventive
strategies and improve understanding of disease mechanisms. While
awaiting validation in clinical cohorts of CNV carriers, we hope that
these findings will improve clinical characterization of GDs, thereby
facilitating diagnosis and allowing physicians to anticipate later-onset
comorbidities. For instance, we found carriers of 16p13.11 deletions af-
fecting ABCC6, the causal gene for pseudoxanthoma elasticum, to be at
increased risk for kidney stones, paralleling reports from clinical cohorts
showing that kidney stones represent an unrecognized feature of the
disease (448–450). Awareness of this disease feature can mitigate kidney
stone risk through adapted diet and sufficient water intake. Together,
our results advocate for a complex model of variable CNV expressivity
and penetrance that can result in a broad range of phenotypes along
the rare-to-common disease spectrum and represent fertile ground for
in-depth, phenome-wide studies aiming at better characterizing specific
CNV regions (411, 412).

Corroborating the deleterious impact of rare CNVs on an individual’s
health parameters, socio-economic status, and lifespan (208, 237, 295,
300, 306, 382–385), we here speculate that the CNV burden acts on the
latter by increasing risk for a broad range of common diseases beyond
their known role in neuropsychiatric disorders (335, 386, 387, 389). While
both duplications and deletions contributed to increased disease risk, the
deletion burden’s impact was much stronger – especially for metabolic,
psychiatric, pulmonary, and musculoskeletal diseases – in line with the
commonly accepted view that deletions tend to be more deleterious.
While only a marginal fraction of the CNV burden’s contribution to
disease risk was captured by CNV-GWAS signals, burden associations
were mainly driven by known GDs. Only psychiatric disorders and the
disease burden retained a significant association with the CNV burden
when accounting for GDs, highlighting the polygenic CNV architecture
of these traits. Illustrating the added value of the burden analysis, nine
diseases showed a burden association despite lacking any CNV-GWAS
signal. In some cases, such as for hypothyroidism, the burden signal
originated from GDs that did not yield any significant CNV-GWAS
associations, possibly because the involved regions did not pass the ≥
0.01% CNV frequency filter. In other cases, such as for osteoporosis, the
signal appeared to emanate from the CNVRs pick-up by the CNV-GWAS,
indicating that we were likely underpowered to detect associations with
any specific region. Overall, a total of 49 (82%) of the assessed diseases
associated with CNVs either through CNV-GWAS or burden analysis,
emphasizing the important role of this mutational class. While our burden
analysis revealed that these associations mainly stem from known GDs, it
also highlights that the latter are even more pleiotropic than what appears
from our CNV-GWAS, implying that increased power will broaden the
spectrum of common diseases associated with rare GDs.

A major limitation of our study is the reliance on microarray CNV calls,
which allows us to assess only a fraction of the CNV landscape, i.e.,
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mostly large CNVs or in regions with high probe coverage. Furthermore,
as different population cohorts are genotyped with different arrays,
partial probe overlap hinders replication power in external biobanks,
as well as the ability to meta-analyze summary statistics. We speculate
that small and/or multiallelic CNVs that can only be uncovered by
sequencing will have a genetic architecture closer to the one of SNPs
and indels, with higher frequencies and more subtle effect sizes. These
effects, however, are more likely tagged by common variants, limiting
novel discoveries. Furthermore, by detecting more events, sequencing-
based studies require adapted and more stringent significance thresholds.
Still, having improved breakpoint resolution, such CNV calls are also
likely to enhance fine-mapping strategies. Microarray CNV calls also
exhibit high false positive rates (205). By using stringent CNV selection
criteria, we decrease the latter at the cost of decreasing power to detect
true associations. This aspect is particularly relevant given that the
type of CNVs we assess are rare and that the UKBB is not enriched for
disease cases (59), resulting in low-powered GWASs. While we adopt
strategies to counter the lack of power, our results are likely subject
to Winner’s curse, only capturing a fraction of the strongest, possibly
overestimated effects. This phenomenon might be compensated by UKBB
CNV carriers being at the milder end of the clinical spectrum, leading to
effect underestimation. An interesting question will be to compare effect
sizes from population-based studies to those emerging from clinical
cohorts. In the future, longitudinal follow-up of UKBB participants
will increase the number of cases – especially for late-onset diseases
such as Alzheimer’s or Parkinson’s diseases – allowing better-powered
CNV-GWASs. Larger and more diverse biobanks linking genotype to
phenotype data (8, 460, 461) should both validate reported associations
and identify new ones.

In conclusion, our study provides an in-depth analysis of the role of
rare CNVs in modulating susceptibility to 60 common diseases in the
general population, broadening our view on how this class of mutations
impacts human health. Besides describing clinically relevant and action-
able associations, we illustrate how complex pleiotropic patterns can be
dissected to gain new insights into the pathological mechanisms of large
recurrent CNVs, providing a framework that can be applied to an even
larger spectrum of diseases.
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Remember, there are always two sides to every story. Understanding is a three
edged sword. Your side, their side, and the truth in the middle. Get all the facts
before you jump to conclusions.

– J. Michael Straczynski
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The impact of 22q11.2 copy-number variants
on human traits in the general population
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Tabea Schoeler,2,7 Mariana Moysés-Oliveira,6 Anelisa G. Dantas,1 Maria Isabel Melaragno,1
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Summary

While extensively studied in clinical cohorts, the phenotypic consequences of 22q11.2 copy-number variants (CNVs) in the general

population remain understudied. To address this gap, we performed a phenome-wide association scan in 405,324 unrelated UK Biobank

(UKBB) participants by using CNV calls from genotyping array. Wemapped 236 Human Phenotype Ontology terms linked to any of the

90 genes encompassed by the region to 170 UKBB traits and assessed the association between these traits and the copy-number state of

504 genotyping array probes in the region. We found significant associations for eight continuous and nine binary traits associated un-

der different models (duplication-only, deletion-only, U-shape, and mirror models). The causal effect of the expression level of 22q11.2

genes on associated traits was assessed through transcriptome-wide Mendelian randomization (TWMR), revealing that increased expres-

sion of ARVCF increased BMI. Similarly, increased DGCR6 expression causally reduced mean platelet volume, in line with the corre-

sponding CNV effect. Furthermore, cross-trait multivariable Mendelian randomization (MVMR) suggested a predominant role of

genuine (horizontal) pleiotropy in the CNV region. Our findings show that within the general population, 22q11.2 CNVs are associated

with traits previously linked to genes in the region, and duplications and deletions act upon traits in different fashions. We also showed

that gain or loss of distinct segments within 22q11.2 may impact a trait under different association models. Our results have provided

new insights to help further the understanding of the complex 22q11.2 region.

Introduction

The 22q11.2 region is a structurally complex region of the

genome because of the presence of segmental duplications

or low-copy repeats (LCRs), named LCRA to LCRH, which

predispose the region to genomic rearrangements, result-

ing in deletions or duplications of different segments. Spe-

cifically, deletions within the �3 Mb segment from LCRA

to LCRD represent the main cause of the 22q11.2 deletion

syndrome (22q11.2DS [MIM: 188400]), the most frequent

microdeletion syndrome in humans, with an estimated

incidence between 1:3,000 and 1:6,000 live births.1

Studies in clinical cohorts have investigated the pheno-

typic consequences of the 22q11.2 deletion, which include

cardiac defects; facial and palate alterations; immunodefi-

ciencies; endocrine, genitourinary, and gastrointestinal al-

terations;1,2 developmental delay, cognitive deficits; and

psychiatric disorders, such as schizophrenia.1 In contrast,

the phenotypic consequences of the region’s duplication

(MIM: 608363) remain more elusive. Most of what is

known is based on studies of a few individuals or families,

but the findings indicate pleiotropy and variable conse-

quences, similar to the deletion. Some features, such as

heart defects, velopharyngeal insufficiency, and neurode-

velopmental and psychiatric disorders, are shared with

the 22q11.2DS.3,4 Other 22q11.2 duplication carriers

exhibit very mild or unnoticeable phenotypes,5 suggesting

variable expressivity and/or reduced penetrance. While

many phenotypes are shared between duplication and

deletion carriers, some may be gene dosage sensitive. The

22q11.2 deletion is a strong risk factor for schizophrenia;

however, the reciprocal duplication seems to be less com-

mon and has been suggested as protective for this pheno-

type.6 In addition, differential impact of duplications and

deletions in psychosis-related traits7 and brain structure8

has been described.

Finally, rare single-nucleotide variants (SNVs) in genes

encompassed by the region have been linked to various

disorders, such as Bernard-Soulier syndrome (MIM:

231200), caused by SNVs in GP1BB (MIM: 138720),9 or

CEDNIK (MIM: 609528) syndrome, caused by SNVs in

SNAP29 (MIM: 604202).10 Overall, the multitude of vari-

ants and phenotypes that have been linked to the

22q11.2 LCRA to LCRD region highlights its clinical

relevance.

Because of their highly deleterious impact, 22q11.2 var-

iants are often investigated in clinical settings. Studied co-

horts are thus heavily biased toward individuals with se-

vere phenotypic manifestation, leading to an incomplete

and biased understanding of these variants’ role in the hu-

man population. This is particularly relevant considering

recent studies that have shown variable expressivity and
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Figure 4.1: Cover of Zamariolli et al.,
2023.

This chapter describes an extended version of "The impact of 22q11.2
copy-number variants on human traits in the general population" (411), which
was published in the American Journal of Human Genetics. This work, led
by Malú Zamariolli, was the first study to make use of the methodology
developed in the two previous chapters to perform a detailed investigation
of a single genomic disorder-associated locus, the 22q11.2 CNV region.

Malú visited our group for about a year, at the time when we were still
developing the extension of the CNV-GWAS pipeline to binary traits.
Given her interest and expertise in the 22q11.2 deletion syndrome, this
project represented the perfect opportunity to apply and test some of the
features that we were developing, before deploying them for genome-
wide studies. Besides the many new insights in the genetics and biology
of 22q11.2 itself, this study represents a testing ground for statistical
approaches that can be used to gain deeper mechanistic insights into the
relation between recurrent CNVs and phenotypes.

4.1 Aims

Deletions – and to a lesser extent duplications – of the 22q11.2 low-copy
repeat (LCR) A-D region are among the most common etiologies of
genomic disorders, whose phenotypic consequences have primarily been
described in clinical cohorts. Increased awareness around the variable
expressivity of pathogenic variants indicates that focusing solely on
clinical cases might bias our understanding towards the more severe end
of the phenotypic spectrum. As such, the study’s aims were to:

1. Assess whether phenotypes previously linked to CNVs and SNVs
mapping to the 22q11.2 region are altered in 22q11.2 CNV carriers
from the UKBB general population.

2. Use four probe-level association models and causal inference strate-
gies to gain mechanistic insights into the specific genes whose
dosage is linked to particular phenotypic alterations in 22q11.2
CNV carriers.

Data & code availability:

➞ Disease summary statistics
➞ Quantitative trait summary statis-

tics
➞ GitHub

4.2 Key Findings

A total of 631 Human Phenotype Ontology (HPO) terms were linked to
24 protein-coding genes within the 22q11.2 CNV region. These could be

https://www.cell.com/cms/10.1016/j.ajhg.2023.01.005/attachment/5fd5f8ed-ba63-4267-ac27-ffb42a21dee7/mmc3.xlsx
https://www.cell.com/cms/10.1016/j.ajhg.2023.01.005/attachment/729b0189-1260-49d6-9564-f931d73b113b/mmc4.xlsx
https://www.cell.com/cms/10.1016/j.ajhg.2023.01.005/attachment/729b0189-1260-49d6-9564-f931d73b113b/mmc4.xlsx
https://github.com/malu-zamariolli/22q11.2_CNV_association_scan.git
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mapped to 152 binary and 18 quantitative UKBB traits, among which, 9
(6%) and 8 (44%) were significantly associated with CNVs in the 22q11.2
region through at least one association model. Further analyses indicated
that the majority of these associations reflect genuine direct pleiotropy,
as opposed to indirect secondary consequences of the CNV’s effect on
one of the associated traits.

The U-shape model yielded the most associations (seven best associations;
e.g., fluid intelligence or hearing loss), followed by the mirror model
(six best associations; e.g., platelet count and volume). Intriguingly,
we identified two independent associations with height: a U-shape
association involving the LCR A-B region and a deletion-only effect of the
LCR C-D region. Besides suggesting that multiple genes in the 22q11.2
regions are important in determining height, it showcases the importance
of considering multiple dosage mechanisms.

Seventeen genes in the regions could be genetically instrumented to
assess the causal impact of changes in their expression on analyzed
traits through transcriptome-wide Mendelian randomization (TWMR).
This identified two putative causal genes: increased ARVCF expression
increased BMI, in line with the BMI-increasing effect of the duplication,
while increased DGCR6 decreased mean platelet volume, aligning with
the increased mean platelet volume detected in deletion carriers. Relaxing
our approach to nominally significant effects, we further detected overall
directional concordance between TWMR and CNV association effects.

By showing that traits linked to 22q11.2 genes are affected in UKBB 22q11.2
CNV carriers, our study stresses the benefits of leveraging population
cohorts to study rare CNV syndromes and supports a model of variable
expressivity and incomplete penetrance for 22q11.2 CNVs. Furthermore,
by leveraging tools typically used to study common variants, we show
how we can gain mechanistic insights into these complex regions.

4.3 Author Contributions

I contributed to the design of this study, together with Malú Zamariolli,
Mariana Moysés-Oliveira, Anelisa Dantas, Maria Isabel Melaragno, and
Zoltán Kutalik. I further contributed by sharing the UKBB CNV calls,
providing guidance for the CNV association analysis, and helping with
data interpretation and manuscript revision.

The bulk of the analyses, as well as the drafting of the manuscript and
designing of figures, was done by Malú Zamariolli, under the supervision
of Zoltán Kutalik. The following co-authors contributed:

▶ Marie Sadler performed the TWMR analyses.
▶ Adriaan van der Graaf carried out the multivariable MR analyses.
▶ Kaido Lepik designed the web scraping approach used to map

HPO terms to UKBB traits.
▶ Tabea Schoeler contributed to the statistical interpretation of po-

tential biases in the study.



4.4 The impact of 22q11.2 copy-number variants on human traits in the general population 129

4.4 The impact of 22q11.2 copy-number variants
on human traits in the general population

Malú Zamariolli 1,2, Chiara Auwerx 2,3,4,5, Marie C. Sadler 2,3,4, Adriaan
van der Graaf 2, Kaido Lepik 2, Tabea Schoeler 2,6, Mariana Moysés-
Oliveira 7, Anelisa G. Dantas 1, Maria Isabel Melaragno 1, Zoltán Kutalik
2,3,4,*.

1 Genetics Division, Universidade Fed-
eral de São Paulo, São Paulo, Brazil; 2

Department of Computational Biology,
University of Lausanne, 1015 Lausanne,
Switzerland; 3 Swiss Institute of Bioin-
formatics, 1015 Lausanne, Switzerland; 4

University Center for Primary Care and
Public Health, 1010 Lausanne, Switzer-
land; 5 Center for Integrative Genomics,
University of Lausanne, 1015 Lausanne,
Switzerland; 6 Department of Clini-
cal, Educational and Health Psychol-
ogy, University College London, London,
UK; 7 Sleep Institute, São Paulo, Brazil;
*Correspondence.

Abstract
While extensively studied in clinical cohorts, the phenotypic conse-
quences of 22q11.2 copy-number variants (CNVs) in the general pop-
ulation remain understudied. To address this gap, we performed a
phenome-wide association scan in 405,324 unrelated UK Biobank (UKBB)
participants by using CNV calls from genotyping array. We mapped
236 Human Phenotype Ontology terms linked to any of the 90 genes
encompassed by the region to 170 UKBB traits and assessed the associa-
tion between these traits and the copy-number state of 504 genotyping
array probes in the region. We found significant associations for eight
continuous and nine binary traits associated under different models
(duplication-only, deletion-only, U-shape, and mirror models). The causal
effect of the expression level of 22q11.2 genes on associated traits was as-
sessed through transcriptome-wide Mendelian randomization (TWMR),
revealing that increased expression of ARVCF increased BMI. Similarly,
increased DGCR6 expression causally reduced mean platelet volume, in
line with the corresponding CNV effect. Furthermore, cross-trait multi-
variable Mendelian randomization (MVMR) suggested a predominant
role of genuine (horizontal) pleiotropy in the CNV region. Our findings
show that within the general population, 22q11.2 CNVs are associated
with traits previously linked to genes in the region, and duplications and
deletions act upon traits in different fashions. We also showed that the
gain or loss of distinct segments within 22q11.2 may impact a trait under
different association models. Our results have provided new insights to
help further the understanding of the complex 22q11.2 region.

Introduction
The 22q11.2 region is a structurally complex region of the genome be-
cause of the presence of segmental duplications or low-copy repeats
(LCRs), named LCR A-H, which predispose the region to genomic rear-
rangements, resulting in deletions or duplications of different segments.
Specifically, deletions within the ∼3 Mb segment from LCR A-D represent
the main cause of the 22q11.2 deletion syndrome (22q11.2 DS [MIM:
188400]), the most frequent microdeletion syndrome in humans, with an
estimated incidence between 1 in 3,000-6,000 live births (453).

Studies in clinical cohorts have investigated the phenotypic consequences
of the 22q11.2 deletion, which include cardiac defects; facial and palate
alterations; immunodeficiencies; endocrine, genitourinary and gastroin-
testinal alterations; developmental delay, cognitive deficits; and psy-
chiatric disorders, such as schizophrenia (453, 462). In contrast, the
phenotypic consequences of the region’s duplication (MIM: 608363)
remain more elusive. Most of what is known is based on studies of a
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few individuals or families, but the findings indicate pleiotropy and
variable consequences, similar to the deletion. Some features, such as
heart defects, velopharyngeal insufficiency, and neurodevelopmental and
psychiatric disorders, are shared with the 22q11.2 DS (463, 464). Other
22q11.2 duplication carriers exhibit very mild or unnoticeable pheno-
types (465), suggesting variable expressivity and/or reduced penetrance.
While many phenotypes are shared between duplication and deletion
carriers, some may be gene dosage sensitive. The 22q11.2 deletion is a
strong risk factor for schizophrenia; however, the reciprocal duplication
seems to be less common and has been suggested as protective for this
phenotype (466). In addition, the differential impact of duplications and
deletions in psychosis-related traits (467) and brain structure (468) has
been described.

Finally, rare single-nucleotide variants (SNVs) in genes encompassed by
the region have been linked to various disorders, such as Bernard-Soulier
syndrome (MIM: 231200), caused by SNVs in GP1BB (MIM: 138720) (469),
or CEDNIK syndrome (MIM: 609528), caused by SNVs in SNAP29 (MIM:
604202) (470). Overall, the multitude of variants and phenotypes that
have been linked to the 22q11.2 LCR A-D region highlights its clinical
relevance.

Because of their highly deleterious impact, 22q11.2 variants are often
investigated in clinical settings. Studied cohorts are thus heavily biased
toward individuals with severe phenotypic manifestation, leading to an
incomplete and biased understanding of these variants’ role in the human
population. This is particularly relevant considering recent studies that
have shown variable expressivity and incomplete penetrance of SNVs
(235, 241) and CNVs (208) that were previously believed to be highly
pathogenic, including at the 22q11.2 LCR A-D locus (291). To address this
gap, we performed a phenome-wide analysis in the UK Biobank (UKBB)
(61), a populational cohort of ∼500,000 individuals, to identify associations
of 22q11.2 CNVs with traits previously implicated by their genetic content.

Materials and methods
Study material

Software versions:
▶ CNV calling: PennCNV v1.0.5 (203).
▶ CNV QC: (206).
▶ PLINK v1.9 and PLINK v2.0.26 (88).
▶ Statistical analyses: R v3.6.1.
▶ Graphs: R v4.2.0.

Cohort description
Analyses were performed in the UK Biobank (UKBB), a volunteer-based
cohort from the general UK adult population (61). Gender mismatched,
related, and retracted samples (09/08/2021), as well as CNV outliers (see
CNV calling) were excluded, resulting in a total of 405,324 participants
(54% females) used for the analyses. Individuals were aged 40 to 69 years
at recruitment. All participants signed a broad informed consent form
and data were accessed through the UKBB application 16389.

22q11.2 region definition
We defined the 22q11.2 region as chr22:18,630,000–21,910,000 based on
the human genome reference build GRCh37/hg19 to encompass LCR
A-D. The 90 NCBI RefSeq genes contained in the region were downloaded
from the UCSC Table Browser.

Trait selection
Phenotypes linked to the 22q11.2 region’s genetic content were identi-
fied with the Human Phenotype Ontology (HPO) mapping (471), an
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ontology-based system that uses information from different medical
sources, including OMIM and Orphanet. Genes and their most specific
associated HPO term (i.e., not all ancestors) were downloaded from the
HPO database (accessed 22/10/2021). Overall, 24 out of 90 genes in the
22q11.2 region, all protein-coding, were associated with at least one HPO
term, yielding 631 associated HPO terms.

Mapping of HPO terms to UK Biobank phenotypes

Binary traits
To map HPO terms to binary UKBB traits, we used two complementary
approaches. First, we used the online tool EMBL-EBI Ontology Xref
Service (OxO) to map HPO terms to International Classification of
Diseases, 10th Revision (ICD-10) codes, followed by manual curation and
grouping of ICD-10 codes into broader phenotypes when appropriate
according to the Phecode map (309). We mapped the remaining HPO
terms to Phecode definitions by using manual curation (472). Mapping
was manually curated and only phenotypes with ≥ 500 cases were
retained. In addition, individuals with a related ICD-10 code or self-
reported disease to the one studied were excluded from controls in a
phenotype-specific fashion (Table S4.1). Overall, 218 HPO terms were
mapped to 152 UKBB binary traits (Table S4.2). The number of individuals
by phenotype is reported in Table S4.3.

Continuous traits
We developed an in-house web-scraping approach to map HPO terms
to UKBB continuous traits. We used a list of 1,769 continuous UKBB
measures as input on the HPO database to obtain the web page’s results
for each query. Results were filtered for HPO terms of interest, i.e., 631
terms linked to 22q11.2 genes. With this approach, 18 UKBB continuous
traits were obtained from 18 HPO terms (Table S4.4). The number of
individuals by trait is reported in Table S4.5.

22q11.2 CNV association scan

CNV calling
CNVs were called with PennCNV v.1.0.5 and underwent quality control
as previously described (208). Briefly, a quality score (QS) reflecting the
probability for the CNV to be a true positive was assigned to each call and
used for filtering (|QS| ≥ 0.5) (206). We excluded CNVs from samples
genotyped on plates with a mean CNV count per sample > 100 or from
samples with > 200 CNVs or a single CNV > 10 Mb to minimize batch
effects, genotyping errors, or extreme chromosomal abnormalities. CNV
calls were transformed into 𝑝𝑟𝑜𝑏𝑒 × 𝑠𝑎𝑚𝑝𝑙𝑒 matrices with copy-number
state for each probe (deletion = −1; copy-neutral = 0; duplication = 1).

PLINK encoding and association models
We converted probe-level matrices to PLINK binary file sets, where copy-
number states were encoded to accommodate analysis according to four
different association models: duplication-only, deletion-only, mirror, and
U-shape models (82). The duplication-only model assessed the impact of
duplications disregarding deletions; the deletion-only model assessed the
impact of deletions disregarding duplications; the mirror model assessed
the additive effect of each additional copy of a probe (i.e., duplications

https://www.ebi.ac.uk/spot/oxo/
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1: 𝑁𝑒 𝑓 𝑓 = 𝑁𝑝𝑟𝑜𝑏𝑒𝑠 · (𝑁𝑐𝑜𝑛𝑡 + 𝑁𝑏𝑖𝑛)

and deletions have opposing effects); the U-shape model assumes that
duplications and deletions have the same effect direction (208).

CNV probe selection and number of effective tests
Probes with high genotype missingness (> 5%) were excluded, resulting
in 864 CNV-proxy probes spanning chr22:18,630,000–21,910,000. We
retained 504 CNV-proxy probes that are highly correlated (r2 ≥ 0.999)
to at least ten other probes, allowing us to reduce the multiple testing
burden while ensuring that selected probes adequately capture the CNV
landscape of the region.

The number of effective probes (i.e., number of probes required to capture
99.5% of the variance in the 𝑝𝑟𝑜𝑏𝑒 × 𝑠𝑎𝑚𝑝𝑙𝑒 matrices) was calculated
(85) based on the 504 CNV-proxy probes (𝑁𝑝𝑟𝑜𝑏𝑒𝑠 = 6). We used the same
approach to account for correlation among 18 continuous (𝑁𝑐𝑜𝑛𝑡 = 16)
and 152 binary traits (𝑁𝑏𝑖𝑛 = 113). This resulted in 774 effective tests1,
setting the threshold for significance at p ≤ 0.05/774 = 6.5 × 10-5.

Continuous traits
The 18 selected continuous traits were inverse normal transformed and
corrected for covariates: age, age2, sex, genotyping batch, and principal
components (PCs) 1–40. Associations between the copy number (CN) of
selected probes and normalized covariate-corrected traits were performed
in PLINK v.2.0 according to all four association models with linear
regression, as previously described (208). Significant associations (p ≤
6.5 × 10-5) were retained.

Binary traits
For each trait, covariates among age, age2, sex, genotyping batch, and
PCs 1–40 that were significantly associated with the trait (p ≤ 0.05) were
selected with logistic regression in R. Associations between the CN of
selected probes and 152 binary selected traits were performed in PLINK
v.2.0 according to all four association models with logistic regression and
correcting for trait-specific selected covariates. Significant associations (p
≤ 6.5 × 10-5) were retained.

Stepwise conditional analysis
The number of independent signals per trait and association model
was determined by stepwise conditional analysis (208), i.e., the CNV
status of the lead probe was regressed out from the trait and association
scan was conducted again until no more significantly associated probes
remained.

Sensitivity analysis
Due to the low frequency of CNVs within the 22q11.2 region, alternative
tests were performed to ensure the confidence of significant associa-
tions. For significant associations with continuous traits, we performed a
Wilcoxon rank-sum test as a sensitivity analysis to assess agreement with
linear regression. Significant associations with binary traits were retained
only when confirmed by at least one of two approaches: i) Fisher’s exact
test (p ≤ 0.005) for the duplication-only, deletion-only, and U-shape
models and Cochran-Armitage test (p ≤ 0.0005) for the mirror model; ii)
linear regression (p ≤ 0.005) of the inverse-normal-quantile-transformed
trait residuals obtained from the logistic regression model of the binary
outcome on the selected covariates.
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Enrichment analysis

For each gene, two groups of traits were defined: traits linked to the
focal gene implicated by HPO versus other traits related to other genes
in the 22q11.2 region but not to the focal gene. Association p-values for
each probe within the gene (± 10 kb) and each association model were
compared between traits in the two groups with a one-sided Wilcoxon
rank-sum test (i.e., Ha: unrelated traits have higher association p-values
with the focal gene than related ones). We calculated the number of
effective tests for each gene and used this to define gene-specific signif-
icance thresholds. Genes were considered significant when the probe
with the smallest p-value reached that threshold. We only performed
the comparison for genes with at least four continuous traits and ten
binary traits in each group to avoid selecting genes associated with
very few traits that would not have sufficient statistical power to test for
enrichment. We performed a binominal enrichment to establish whether
the number of genes significant in the Wilcoxon rank-sum test was higher
than expected by chance with pbinom() in R.

Transcriptome-wide Mendelian randomization

Transcriptome-wide Mendelian randomization (TWMR) was conducted
as previously described (173) to identify changes in transcript levels of
genes in the 22q11.2 region that causally modulate traits found to be
associated with 22q11.2 CNVs by our association scan and, if this was
the case, in which direction (i.e., whether increased gene expression
associates with increased or decreased phenotype value). Briefly, the
exposure (i.e., transcript level) and outcome (i.e., trait) are instrumented
with independent genetic variants (instrumental variables [IVs]; r2 <
0.01). Given their genetic effect sizes on these two quantities, a causal
effect of the exposure on the outcome can be estimated with two-sample
Mendelian randomization (MR). Genetic effect sizes on transcript levels
originate from whole blood expression quantitative trait loci (eQTLs)
provided by the eQTLGen consortium (cis-eQTLs at false discovery
rate < 0.05, two-cohort filter) (154). Effect sizes on the traits stem from
genome-wide association study (GWAS) summary statistics conducted
on the UK Biobank (Neale’s lab; Pan-UKBB; Table S4.6). Prior to the
analysis, eQTL and GWAS data were harmonized and palindromic SNPs
were removed, as well as SNPs with an allele frequency difference > 0.05
between datasets. For increased robustness of the estimated causal effects,
≥ 5 (independent) IVs were required. MR estimates were considered
significant when p ≤ 0.05/17 = 0.003 to account for the testing of 17
transcripts with ≥ 5 IVs and only significant genes overlapped by the
CNV-association signal were reported.

TWMR results were used for validation of the mirror model associations.
It is expected that TWMR and mirror model effects are directionally
concordant, i.e., increase/decrease in copy number has the same direction
of effect on a trait as an increase/decrease in gene expression. For this
purpose, nominally significant (p < 0.05) TWMR effects were retained
and their direction was compared to the direction of the probe with the
smallest nominally significant p-value (p < 0.05) in the mirror association
model for the corresponding gene (± 10 kb) and trait.
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Multivariable Mendelian randomization

We performed multivariable Mendelian randomization (MVMR) to
assess the causal relationship between significantly associated traits
and compute a phenotype network. IVs were obtained from the Neale
lab and Pan-UKBB GWAS summary statistics for all eight significant
continuous traits and nine significant binary traits (Table S4.6). Data
were harmonized with genetic variants in the UK10K reference dataset
and variants with minor allele frequency (MAF) ≤ 0.01 were filtered out.
Genetic variants were clumped at r2 = 0.001 with UK10K as a reference
panel in PLINK v.1.9. MR analysis was performed in two steps. First,
potentially causal effects were identified with a univariable inverse-
variance weighted (IVW) MR for all exposure-outcome combinations
(i.e., pairs of associated traits). Second, all exposures with nominally
significant IVW causal effect estimates for a given outcome were included
in an MVMR analysis as exposures. To reduce bias due to potential
reverse causation, we performed Steiger filtering in all MR analyses (p <
5 × 10-3).

MVMR established the causal relationships among assessed traits by
using genetic variants as IVs. To infer whether the pleiotropic effect of
CNVs is vertical (indirect) or horizontal (genuine), we estimated what
would be the expected CNV effect on the outcome trait (𝛽expected outcome) if
that outcome is a downstream result of the exposure trait as suggested by
the MVMR analysis (vertical pleiotropy). 𝛽expected outcome was determined
as 𝛽exposure × 𝛽IVW, where 𝛽exposure is the effect size of the best probe in
the mirror model for each exposure (i.e., observed CNV-exposure trait
association) and 𝛽IVW is the causal estimate for each exposure-outcome
pair obtained from IVW MR. We then compared 𝛽expected outcome with
the observed CNV effect on the outcome trait (𝛽observed outcome) obtained
from the mirror association model.

Results
22q11.2 CNVs in the UKBB

After CNV calling and quality control in 405,324 unrelated individuals
of the UKBB, we identified 1,127 individuals with a duplication and 694
individuals with a deletion overlapping the 22q11.2 LCR A-D region
(Figure 4.2A). CNVs varied in size: duplication length ranged between 71
kb and 8.8 Mb (i.e., breakpoints extending beyond the defined region)
with a median of 132 kb, while deletion length ranged between 80 kb
and 2.8 Mb also with a median of 132 kb.

To assess whether individuals with these CNVs (mean number of diag-
noses = 8.6) had a higher disease burden than individuals who are copy
neutral within this region (mean number of diagnoses = 8), we compared
the reported number of ICD-10 codes and identified no statistical dif-
ference (two-sided Wilcoxon rank-sum test: pDEL = 0.44; pDUP = 0.053)
(Figure 4.2B).

CNVs were classified according to their localization as defined by LCR
A-D. Between LCRs A-B, duplications were identified at a frequency of
0.01% and deletions at 0.002%; CNVs from LCR A-D had a frequency
of 0.06% and 0.001% for duplications and deletions, respectively; from
LCR B-D, duplications had a frequency of 0.002% and no deletions were
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identified; between LCRs C and D, duplications were identified at a
frequency of 0.04% while deletions were identified at 0.008%. CNVs that
did not fall into these categories were considered atypical and had a
frequency of 0.16% for both duplications and deletions (Figure 4.2A).

To account for all CNVs and bypass issues related to breakpoint vari-
ability, CNV calls were converted into 𝑝𝑟𝑜𝑏𝑒 × 𝑠𝑎𝑚𝑝𝑙𝑒 matrices for the
CNV association scan. Probe-level CNV frequency after excluding LCR
A probes (mean duplication frequency: 0.07%; mean deletion frequency:
0.004%) ranged between 0.004% and 0.1% and 0.001% and 0.01% for
duplications and deletions, respectively (Figure 4.2C).
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Figure 4.2: 22q11.2 CNVs landscape.
(A) Each UKBB CNV carrier is displayed
through a segment that spans the ge-
nomic coordinates of the CNV. Dupli-
cations are represented in the top part
of the graph, while deletions are at the
bottom. Shades of blue and red represent
different duplication and deletion cate-
gories, respectively, according to their
localization in reference to the LCR A-D.
The number of duplications and dele-
tions for each category is displayed in
the boxes. (B) Boxplot representing the
number of ICD-10 codes reported in indi-
viduals grouped according to their copy-
number state in the 22q11.2 region; dots
show the mean; outliers are not shown.
N indicates the sample size for each cat-
egory. (C) Probe-level duplication (top,
blue) and deletion (bottom, red) frequen-
cies (%) for 864 probes plotted against
the 22q11.2 genomic region. Frequency
was calculated as the number of dupli-
cations or deletions divided by the total
number of individuals assessed for the
probe.

Associated traits

CNV association scan revealed significant links for eight continuous
(Figure 4.3A; Table 4.1A) and nine binary traits (Figure 4.3B; Table
4.1B), which were associated under different association models. Seven
associations (two continuous and five binary traits) were associated most
significantly under the U-shape model, six (four continuous and two
binary traits) did so under the mirror model, three (two continuous
and one binary trait) associated most significantly under the deletion-
only model, and two (one continuous and one binary trait) under the
duplication-only model, highlighting the importance of testing models
mimicking different dosage mechanisms.

Among the identified continuous traits, body mass index (BMI) was
found associated under the U-shape model (𝛽 = 1.56 kg/m2, p = 4.9× 10-10)
throughout LCR A-D (Figure 4.4A), indicating that both duplications
and deletions increase BMI level (Figure 4.4B). TWMR analysis showed
that increased expression of ARVCF (MIM: 602269) increases BMI (𝛽 =
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0.05, p = 10-4), concordantly with the positive association found by the
mirror CNV association scan (Figure 4.4C).

Mean platelet volume was found associated under the mirror model
(𝛽 = -0.58 fL, p = 1.3 × 10-18), and the strongest association occurred
in the LCR A-B region (Figure 4.5A). The signal replicated in both the
duplication-only (𝛽 = -0.54 fL, p = 1.16 × 10-15) and deletion-only (𝛽 =
1.66 fL, p = 1.13 × 10-6) models, providing further evidence of a true
mirror effect, despite the deletion effect’s being slightly stronger than the
duplication one (Figure 4.5B). In line with this effect, TWMR revealed
that increased DGCR6 (MIM: 601279) expression causally reduces mean
platelet volume (𝛽 = -0.03, p = 0.001) (Figure 4.5C). It is worth noting
that this trait is negatively correlated with platelet count (also significant
under the mirror model, 𝛽 = 19.86 109 cells/L, p = 2.5 × 10-8). As expected,
MVMR showed bidirectional causality between both traits, highlighting
the challenges of interpreting their association separately.
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Figure 4.4: 22q11.2 CNVs and body
mass index.
(A) Top: the negative logarithm of the
association p-value for the U-shape CNV-
body mass index (BMI) association scan
(y-axis) is plotted against the 22q11.2 ge-
nomic region (x-axis). Each point repre-
sents a CNV-proxy probe and the lead
signal (chr22:20,765,989) is shown in
black. The red dashed line indicates sig-
nificance threshold (p < 6.5 × 10-5). Bot-
tom: low-copy repeat (LCR) A–D region
as well as the 90 genes contained in the
region. The 24 genes linked to traits ac-
cording to HPO are labeled and genes
linked to BMI through HPO are labeled
in black. ARVCF expression was found to
causally influence BMI through TWMR
and is shown in green. (B) Boxplots rep-
resenting BMI in individuals grouped ac-
cording to their copy-number state of the
lead signal probe; dots show the mean;
outliers are not shown. N indicates the
sample size for each category. (C) Rep-
resentation of the TWMR analysis show-
ing SNPs as instrumental variables (IVs),
ARVCF gene expression as exposure, and
its causal effect size (𝛽 = 0.05) on BMI.

USP18>

DGCR6>

PRODH<

DGCR2<

ESS2<

SLC25A1<

CLTCL1<

HIRA<

UFD1<

CDC45>

GP1BB>

TBX1>

TXNRD2<

COMT>

TANGO2>

DGCR8>

RTN4R<

SCARF2<

PI4KA<

SERPIND1>

SNAP29>

CRKL>

LZTR1>

ARVCF<

LCR−A LCR−B LCR−C LCR−D

chr22:20,765,989

0

2

4

6

8

10

18.5 19.5 20.5 21.5

Chromosome 22q11.2 [Mb]

−l
og

10
(P

) Model
U−shape

A

C

15

20

25

30

35

40

deletion
(N = 18)

copy−neutral
(N = 403,332)

duplication
(N = 333)

B
M

I [
kg

/m
2 ]

chr22:20,765,989B

Figure 4.5: 22q11.2 CNVs and mean
platelet volume.
(A) Top: the negative logarithm of the
mirror association p-value for the CNV-
mean platelet volume (MPV) association
(y-axis) is plotted against the 22q11.2 ge-
nomic region (x-axis). Each point repre-
sents a CNV-proxy probe and the lead
signal (chr22:19,639,383) is shown in
black. The red dashed line indicates sig-
nificance threshold (p < 6.5 × 10-5). Bot-
tom: low-copy repeat (LCR) A–D region
as well as the 90 genes contained in the
region. The 24 genes linked to traits ac-
cording to HPO are labeled and genes
linked to mean platelet volume through
HPO are labeled in black. DGCR6 ex-
pression was found to causally influence
mean platelet volume through TWMR
and is shown in orange. (B) Boxplots
representing mean platelet volume in
individuals grouped according to their
copy-number state for the lead signal
probe; dots show the mean; outliers are
not shown. N indicates the sample size
for each category. (C) Representation of
the TWMR analysis showing SNPs as in-
strumental variables (IVs), DGCR6 gene
and its causal effect size (𝛽 = -0.03) on
MPV.
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Unlike other phenotypes, height was associated under different models
in distinct regions. The U-shape model appeared as the most significant
model in the region spanning LCR A-B (𝛽 = -2.09 cm, p = 1.1 × 10-7), while
the deletion-only model was the only significant one at the distal portion
between LCR C-D (𝛽 = -4.86 cm, p = 5.5 × 10-6) (Figure 4.6A). Given
this unexpected pattern, we stratified CNVs according to LCR categories
(Figure 4.2A) to inspect their impact on height. Within LCR A-B and LCR
A-D (Figure 4.6B-C), both duplications and deletions were associated
with a height decrease in concordance with the U-shape model. However,
duplications and deletions within LCR C-D had opposing effects on
height, in line with a mirror model, which was confirmed by linear
regression (𝛽 = 0.17 cm, p = 0.0003) (Figure 4.6D).

Given the low number of deletion carriers affected by binary outcomes
(0–3 carriers) (Table S4.7), associations found under the U-shape or mirror
models often reflect the effect of duplications (i.e., the most common
CNV type) in these phenotypes. One example is gastroesophageal reflux
disease (MIM: 109350), which was found to be associated under the
duplication-only model (OR = 2.72, p = 2.53 × 10-8) and had a stronger
association occurring in the LCR A-B region (Figure 4.7A), indicating an
increased prevalence of gastroesophageal reflux disease among duplica-
tion carriers (Figure 4.7B).
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Figure 4.6: 22q11.2 CNVs and height.
(A) Top: the negative logarithm of the association p-value for the CNV-height association according to a deletion-only (red), duplication-
only (blue), mirror (orange), and U-shape (green) is plotted against the 22q11.2 genomic region (x-axis). The red dashed line indicates
significance threshold (p < 6.5 × 10-5). Bottom: low-copy repeat (LCR) A–D region as well as the 90 genes contained in the region. The 24
genes linked to traits according to HPO are labeled and genes linked to height through HPO are labeled in black. Boxplots representing
height in individuals with (B) LCR A-B, (C) LCR A-D, and (D) LCR C-D CNVs grouped according to their copy-number state; dots show
the mean; outliers are not shown. N indicates the sample size for each category.
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Figure 4.7: 22q11.2 CNVs and gastroesophageal reflux disease.
(A) Top: the negative logarithm of the duplication-only association p-value for the CNV-gastroesophageal reflux disease (GERD)
association (y-axis) is plotted against the 22q11.2 genomic region (x-axis). Each point represents a CNV-proxy probe and the lead signal
(chr22:19,998,655). The red dashed line indicates significance threshold (p < 6.5 × 10-5). Bottom: low-copy repeat (LCR) A–D region
as well as the 90 genes contained in the region. The 24 genes linked to traits according to HPO are labeled and genes linked to mean
platelet volume through HPO are labeled in black. (B) Bar plot representing prevalence (cases/total) of GERD grouped according to
copy-number state for the lead signal probe. 95% confidence interval is depicted and for deletion is truncated at zero.

Enrichment analysis

For continuous traits, six out of eight assessed genes were found to
have significantly greater association p-values for the group of unrelated
traits compared to the group of linked traits for all association models.
Binomial enrichment analysis indicated that CNV probes in genes linked
to a given HPO term are 15 times more likely (p < 6 × 10-9) to show
stronger association with the corresponding UKBB continuous trait. For
the binary traits, however, only two out of 19 assessed genes were signifi-
cant in the mirror model, which does not indicate an enrichment (p = 0.07).

Concordance in the direction of the effect between associa-
tion scan and TWMR

Besides showing that differential expression of two 22q11.2 genes (ARVCF
and DGCR6) causally affects two associated traits (BMI and mean platelet
volume), TWMR results were also used to reinforce reliability of CNV
associations. We evaluated concordance in the direction of effect sizes
from nominally significant (p < 0.05) results of the mirror CNV asso-
ciation scan and nominally significant (p < 0.05) TWMR results (Table
S4.8). As expected, we observed a significant agreement in effect size
directions between both when fitting a linear regression line (𝛽 = 1.6, p =
0.01; Figure 4.8).
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β = 1.6
p−value: 0.01
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Figure 4.8: Concordance between
TWMR and CNV effect sizes.
Scatterplot depicting mirror CNV associ-
ation scan (y-axis) versus transcriptome-
wide Mendelian randomization (TWMR;
x-axis) effect sizes. Vertical and horizon-
tal bars represent the 95% confidence
intervals. The (zero-intercept) regression
line and the corresponding slope are in
gray. For association scan effect sizes, the
probe with the smallest p-value in the
mirror model located in the TWMR gene
was selected. Trait-gene pairs with agree-
ing direction between TWMR and CNV
association scan are in green and trait-
gene pairs with opposite directions are
in pink. Labels indicate the following:
GNB1L → (1) hypotension; (4) gastroe-
sophageal reflux disease; (10) height; (11)
weight. P2RX6 → (2) cardiomegaly; (5)
weight; (15) platelet count. DGCR6 → (3)
mean platelet volume; (19) nausea and
vomiting; (20) diplopia and disorders of
binocular vision. CLDN5 → (6) mean
platelet volume; (8) height; (9) weight;
(14) platelet count. TANGO2→ (7) height.
SLC25A1 → (12) BMI; (22) hearing loss.
CLTCL1 → (13) calcium levels. ARVCF
→ (16) whole body fat mass; (17) BMI;
(18) weight; (21) cardiomegaly. DGCR2
→ (23) hypotension.

Causal links between traits and CNV pleiotropy
Cross-trait MVMR was performed for all 17 significantly associated traits.
Out of a total of 289 trait-pair combinations, we identified 48 pairs that are
causally linked to each other at nominal significance (p < 0.05) by using the
IVW MR method. MVMR was then applied to these 48 combinations and
17 trait-pairs were significant after Bonferroni correction (p < 0.05/289
= 0.0002) (Figure 4.9A). Most traits were associated in a bidirectional
manner, indicating that many (closely related) traits are mutually related
to each other, most likely because of high genetic correlation. To distin-
guish between horizontal and vertical pleiotropy, we plotted the CNV
effect on the outcome expected under vertical pleiotropy (𝛽expected outcome)
against the effect observed in the association scan (𝛽observed outcome) to
examine the concordance in effect direction (Figure 4.9B). This analysis
revealed agreement only for very closely related trait pairs (driven by
strong genetic correlation), such as platelet count - mean platelet volume,
and indicated that, in general, pleiotropic CNV associations are not due
to vertical but rather due to genuine horizontal pleiotropy.

Discussion
Most of our knowledge regarding the impact of CNVs in the 22q11.2
region in the general population stems from genome-wide studies (208,
292–294, 300, 302). Here, we focused on this region specifically and
developed a tailored set of analyses with more lenient, yet appropriate,
significance threshold and in-depth follow-up analyses that allowed us to
detect plausible associations missed by genome-wide studies (i.e., hearing
loss, cardiomegaly, diplopia, and disorders of binocular vision). Our
findings show that 22q11.2 CNV carriers in the general population that
are likely on the milder end of the phenotypic spectrum are associated
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Figure 4.9: Concordance between CNV expected and observed effect on outcome trait.
(A) Causal links identified in the MVMR analysis. Colored clusters of traits are grouped based on phenotypic correlation (r > |0.45|).
(B) Scatterplot depicting estimated CNV expected (y-axis) versus observed effect on outcome (x-axis) for each trait pair. Trait pairs
from the same cluster in (A) are in green, while those from different clusters are in pink. The vertical and horizontal bars represent
the 95% confidence intervals. Labels indicate exposure-outcome pairs: (1) platelet count-mean platelet volume; (2) BMI-height; (3)
weight-height; (4) platelet count-calcium levels; (5) height-weight; (6) fat mass-platelet count; (7) weight-platelet count; (8) BMI-weight;
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with traits previously implicated by genes in the region, shedding light
on the variable expressivity and penetrance of CNVs impacting this
complex genomic region.

Assessed traits linked to 22q11.2 genes have been previously identified
in different contexts including the 22q11.2 deletion and duplication
syndromes, clinical conditions caused by variants in a single gene, and
complex conditions associated with the locus (Figure 4.10). Therefore,
using the HPO database to select investigated traits allowed us to leverage
information from different genetic variants in a clinical context (471) to
identify associations in the general population. For instance, we show that
CNVs can impact traits previously known to be associated with individual
genes in the region, such as cardiomegaly (LZTR1 [MIM: 600574, 616564])
and other venous embolism and thrombosis (SERPIND1 [MIM: 142360,
612356]), that were both associated under the duplication model in the
distal region between LCR C-D, which harbors these genes.
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Figure 4.10: HPO terms linked to
22q11.2.
Barplot showing the number of HPO
terms used in this study linked to con-
ditions caused by 22q11.2 CNVs (green),
genetic variants affecting a single gene in
the region (pink) or linked to the 22q11.2
locus (orange).

Our enrichment analysis showed that for continuous – but not binary –
traits, leveraging the HPO database for trait selection was an effective
approach. This observation may stem from the fact that continuous
traits are better powered and more accurate than binary traits, which
may ignore underlying continuous phenomena. In addition, because
association p-values for binary traits are closer to the multiple testing
threshold, we expect weaker enrichment p-values.

Our results validated several known associations and shed light on traits
that have not yet been extensively studied in the context of 22q11.2 CNVs.
For instance, gastroesophageal reflux disease is not a vastly explored
clinical feature in 22q11.2 deletion or duplication syndromes. While
LCR A-D duplications have been previously associated with this trait
in the UKBB cohort (293), replication of the association in our study
emphasizes its relevance in 22q11.2 CNV carriers. Another relevant
association identified in our study is with adult BMI. Obesity (MIM:
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601665) (BMI > 30) has been previously described in adults with 22q11.2
DS (473). Even though this phenotype is not well described in clinical
studies characterizing the 22q11.2 duplication syndrome, an increase in
BMI has been associated with duplications in other studies assessing
the UKBB (208, 294). We further showed a causal effect of differential
expression of ARVCF – a gene whose product is part of the catenin family
and is involved in protein-protein interactions at adherent junctions – on
BMI. Recently, a rare ARVCF missense variant of unknown significance
has been identified in an individual with early-onset severe obesity (474),
suggesting that ARVCF may play a role in the etiology of obesity.

Besides validating the link between CNVs in the 22q11.2 region and
platelet count (208), we revealed a new association with mean platelet
volume, which exhibits a true mirror effect, reinforcing the role of this
genomic region in phenotypes such as thrombocytopenia. Thrombo-
cytopenia (MIM: 313900) is a well-known clinical hallmark in 22q11.2
DS (453) but is not yet recognized as a clinical feature of the 22q11.2
duplication syndrome. GP1BB represents a top candidate to explain the
observed platelet phenotypes as bi-allelic loss of function variants in the
gene are responsible for Bernard-Soulier syndrome, a platelet disorder,
and inclusion of GP1BB in the deleted region has been implicated in
reduction of platelet count levels in 22q11.2 DS-affected individuals (475).
Because of the lack of sufficient IVs, GP1BB could not be assessed by
TWMR analysis, which instead revealed a causal effect of DGCR6 differ-
ential expression on mean platelet volume. While DGCR6’s function is
not yet clearly defined, it has been implicated in regulating other genes
in the 22q11.2 region (476), suggesting that multiple genes in the region
influence platelet phenotypes.

Usage of four different association models allowed for the identification
of deletion-specific effects (e.g., calcium level) as well as traits in which
duplications and deletions act in the same or opposite directions. By
performing association scans at the probe level, we also showed that gain
or loss of distinct segments within 22q11.2 may impact a trait following
different association models, as was seen for height. Short stature has
been identified for the 22q11.2 DS (453) but variable height measures have
been described for the 22q11.1 duplication syndrome (464, 477, 478). In
concordance with our study, both duplications and deletions (LCR A-D)
have been previously associated with a decrease in height in the UKBB
cohort (294). However, our study shows a mirror behavior involving
the LCR C-D region. The impact of CNVs in the LCR C-D region is
often overlooked or considered in combination with LCR A-B. However,
the unexpectedly distinct impact of CNVs in this region on height, as
well as certain traits that were only significant in this region (such as
weight, cardiomegaly, other venous embolism and thrombosis, or dental
caries), reveals the value of a more refined study of CNVs overlapping
this complex region. It is important to note that gene dosage might not be
the only mechanism underlying the CNVs’ clinical impact, and gain/loss
of different segments within 22q11.2 region could have distinct impacts
over regulatory contacts, with diverse positional effect outcomes (479),
adding complexity to the functional interpretation of the association
models here described.

A drawback of studying pathogenic CNVs in a general population such as
the UKBB is that the number of affected participants is low, as carriers of
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22q11.2 CNVs with larger phenotypic impact are less likely to participate,
a phenomenon often described as the healthy volunteer selection bias
(59). As such, frequencies of the 22q11.2 deletions and duplications have
not been precisely estimated outside of clinical cohorts. This task is
complicated by the low frequency of 22q11.2 CNVs, which means that
very large sample sizes are required to obtain precise estimates. For
instance, a population-based French-Canadian cohort (N = 6,813) did not
identify any 22q11.2 deletion carriers and only six duplication carriers
(480), while a slightly larger study conducted in the Norwegian MoBa
population-based cohort (N = 12,252) identified one 22q11.2 deletion
carrier and six duplication carriers, resulting in frequency estimates of
0.008% and 0.05%, respectively, considering CNVs that overlapped in
at least 50% with the region between LCR A-D (481). In the general
population, using different available datasets, frequency of deletions and
duplications encompassing the LCR A-B region have been estimated at
0.02% and 0.08%, respectively (482). Another study, in a population-based
Danish cohort (N = 76,128), estimated a frequency of 0.03% for deletions
and 0.07% for duplications considering the typical 3 Mb and 1.5 Mb
CNVs (483). In our work, the frequency of CNVs in LCR A-B and LCR
A-D is 0.07% for duplications and 0.003% for deletions. It is worth noting
that we consider smaller nested CNVs between LCR A-B that were not
appreciated in previous studies, indicating that if we applied similar
definitions to these works, our frequency estimates would be lower.
Although clinically ascertained cohorts overestimate the 22q11.2 carrier
frequency, our study, because of healthy volunteer bias, underestimates
it. However, adjusting carrier frequency estimates for such ascertainment
is very difficult because the estimated frequency is very low, and we
lack population reference data with variables relevant to the presence of
22q11.2.

While the absolute number of CNV carriers considered in our study is still
larger than the sample size of some clinical cohorts, these individuals tend
to exhibit milder phenotypes. This hampers statistical power to detect
associations, especially for binary outcomes for which trait definition
through grouping of ICD-10 codes is imperfect and arbitrary and case
number can be extremely low. We offer corroborating evidence of our
findings’ reliability by performing sensitivity analyses and examining the
concordance of CNV findings with TWMR effects. Importantly, effects
observed in our study are potentially smaller than the ones observed
in clinical cohorts (237), as they are mainly derived from CNV carriers
with sub-clinical phenotypes and thus represent lower bound estimates.
While in theory estimates from clinical cohorts might offer upper bound
estimates, their poor and unstandardized reporting makes it difficult
to establish accurate comparisons. Still, we hope that our study offers
a better understanding of the spectrum of phenotypic consequences
exerted by 22q11.2 and will improve diagnostic rates in individuals
with low expressed phenotypes, as molecular diagnostic of genomic
syndromes still often relies on recognition of characteristic signs to guide
genetic testing. The co-occurrence of a series of sub-clinical signs in
the same individual should increase the support for a diagnosis of a
genomic imbalance at 22q11.2. In addition to diagnostic improvement,
as the genotyping-first approach becomes more common in clinical
practice, the accurate description of the phenotypes associated with
22q11.2 variants can benefit the prognosis of individuals in which a
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genomic variant was already detected.

In conclusion, we found that 22q11.2 CNVs affect traits compatible with
clinical manifestations seen in the genomic disorders within the general
population. The probe-level association scan revealed that dosage of
different segments within the 22q11.2 region may impact a trait through
different mechanisms, as illustrated with height. Besides yielding further
insights into the complex 22q11.2 region, our study provides a framework
that can be adapted to study the phenotypic consequences of other
clinically relevant genomic regions.
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This chapter describes "Chromosomal deletions on 16p11.2 encompassing
SH2B1 are associated with accelerated metabolic disease" (412), which was pub-
lished in Cell Reports Medicine. The version presented in the dissertation
includes supplemental material.

This translational project is the fruit of a collaboration with the team of
Sadaf Farooqi at the University of Cambridge, UK. Increasingly, common
complex diseases are seen as aggregates of multiple rarer conditions
whose pathogenic mechanisms converge onto a similar outcome. Knowl-
edge about these mechanisms can guide targeted therapeutic approaches.
Expertise in the genetics of obesity of the Farooqi lab, complemented by
our experience in studying CNVs in population biobanks allowed us to
to characterize the metabolic disease of a form of obesity caused by a
rare deletion at 16p11.2 BP2-3. Results of this study will hopefully inform
clinical guidelines.

5.1 Aims

SH2B1 deficiency is linked to severe obesity and an ongoing phase III
clinical trial is testing the efficacy of the melanocortin-4 receptor (MC4R)
agonist Setmelanotide as a weight loss therapy in individuals with genetic
mutations in the leptin-melanocortin pathway genes (Figure 5.2), which
includes the adaptor protein SH2B1. Because 16p11.2 BP2-3 deletions
represent a common form of SH2B1 deficiency, our study aimed to
assess whether these individuals are good candidates to benefit from
this therapy. Specifically, we aimed to:

1. Characterize the spectrum of metabolic alterations and disease
trajectories in adult 16p11.2 BP2-3 deletion carriers in the UKBB,
compared to the general population and BMI-matched controls.

2. Evaluate the individual contribution of the nine genes encompassed
in the 16p11.2 BP2-3 region to metabolic phenotypes through
various statistical approaches.

3. Compare findings to previously reported phenotypes linked to
SH2B1 deficiency in clinical patient cohorts and mouse models.

5.2 Key Findings

We identified 59 unrelated 16p11.2 BP2-3 deletion carriers in the UK
Biobank. These individuals suffered from a complex spectrum of metabolic
conditions that included severe obesity with childhood onset. Compared
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to BMI-matched controls, deletion carriers exhibited higher prevalence,
earlier-onset, and more difficult-to-treat type 2 diabetes, as well as in-
creased inflammation and kidney damage, indicating that these traits
are not a mere secondary consequence of the weight excess induced by
the deletion.

Other key features of the metabolic syndrome were not affected beyond
what is expected from the increased weight, in line with a monogenic
etiology of obesity. Specifically, and compared to BMI-matched controls,
deletion carriers were not at increased risk for cardiovascular events,
had a slightly lower diastolic blood pressure despite no difference in
hypertension risk, and had globally reduced serum lipid levels, except
for triglycerides, whose levels were not distinguishable from controls.

More unclear is the impact of the deletion on the liver. Hepatic enzymes
were increased in a BMI-dependent fashion but only levels of alkaline
phosphatase and total bilirubin remained elevated after controlling for
BMI, possibly indicating gallbladder disorders. Further investigation is
needed to clarify whether deletion carriers suffer from hepatic steatosis.

Finally, transcriptome-wide Mendelian randomization (TWMR) high-
lighted decreased expression of SH2B1 in the brain, adipose tissue, and
muscle as a potential mediator of the increased type 2 diabetes risk
observed in deletion carriers. Still, available data were insufficient to
unequivocally affirm the causal role of SH2B1 and exclude a contribution
of other genes in the deleted region, despite strong evidence of the gene’s
role in metabolic phenotypes from clinical and mouse studies.

Figure 5.2: Leptin satiety pathway.
Schematic representation of the leptin-
melanocortin pathway of which SH2B1 is
part. Briefly, in the fed state, adipocytes
secrete the hormone leptin (orange).
In the hypothalamus, leptin binds the
leptin receptor (LEPR) at the surface
of pro-opiomelanocortin (POMC) neu-
rons. SH2B1 acts as an adaptor molecule
that mediates intra-cellular signaling
in POMC neurons upon binding of
leptin to the LEPR. This results in
the release of 𝛼-melanocyte-stimulating
hormone (𝛼-MSH; blue), which binds
the melanocortin-4 receptor (MC4R) ex-
pressed on anorexigenic neurons, which
in turn will signal the organism to de-
crease energy intake by inducing satiety
and will stimulate energy expenditure.
Mutations in key genes of this pathway
will abolish the latter response, leading
to continuous energy intake and severe
obesity. Drawn based on (484).

5.3 Author Contributions

This study was originally conceptualized by Ruth Hanssen, Katherine
Lawler, and Sadaf Farooqi, who approached Alexandre Reymond with a
study plan.

Ruth Hanssen and I carried out the majority of the analyses. Specifically,
I provided the UKBB CNV calls, which were manually reviewed by
Katherine Lawler. I also performed the UKBB phenome-wide association
scan, gathered evidence from rare protein-coding variant burden tests
and common variant association studies, carried out the colocalization
analysis, and coordinated the EstBB replication executed by Maarja
Jõeloo and the Mendelian randomization analyses executed by Marie
Sadler. Ruth Hanssen carried out the matched control analysis. Statistical
analyses were supervised by Katherine Lawler and Zoltán Kutalik.

Results were interpreted by Ruth Hanssen, Katherine Lawler, Sadaf
Farooqi, Alexandre Reymond, Zoltán Kutalik, and myself. Ruth Hanssen,
Katherine Lawler, Sadaf Farooqi and I designed the figures and drafted
the manuscript, with critical revisions made by Zoltán Kutalik and
Alexandre Reymond.
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Abstract
New approaches are needed to treat people whose obesity and type 2 dia-
betes (T2D) are driven by specific mechanisms. We investigate a deletion
on chromosome 16p11.2 (breakpoint 2–3 [BP2-3]) encompassing SH2B1,
a mediator of leptin and insulin signaling. Phenome-wide association
scans in the UK (N = 502,399) and Estonian (N = 208,360) biobanks show
that deletion carriers have increased body mass index (BMI; p = 1.3 ×
10-10) and increased rates of T2D. Compared with BMI-matched controls,
deletion carriers have an earlier onset of T2D, with poorer glycemic
control despite higher medication usage. Cystatin C, a biomarker of
kidney function, is significantly elevated in deletion carriers, suggesting
increased risk of renal impairment. In a Mendelian randomization study,
decreased SH2B1 expression increases T2D risk (p = 8.1 × 10-6). We
conclude that people with 16p11.2 BP2-3 deletions have early, complex
obesity and T2D and may benefit from therapies that enhance leptin and
insulin signaling.
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Introduction
Obesity and type 2 diabetes (T2D) are highly prevalent, heterogeneous
conditions associated with significant morbidity and mortality (485). The
identification of subgroups of people whose metabolic disease is driven
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by shared pathogenic mechanisms can inform approaches to treatment.
This is exemplified by monogenic forms of obesity due to penetrant rare
variants affecting the development and/or function of the hypothalamic
leptin-melanocortin pathway (486). Some of these disorders can now be
treated with licensed therapies, such as recombinant leptin for congenital
leptin deficiency or the melanocortin-4 receptor (MC4R) agonist Set-
melanotide for Leptin receptor (LEPR) (OMIM: 601007), POMC (OMIM:
176830), and PCSK1 (OMIM: 162150) deficiencies (487–489). SH2B1 (Sar-
coma homology 2 [SH2] B adaptor protein 1) (OMIM: 608937) acts as
an intracellular adaptor that supports the assembly of proteins involved
in leptin, insulin, and brain-derived neurotrophic factor (BDNF) signal-
ing (490). Sh2b1 knockout mice develop obesity, hyperglycemia, hepatic
steatosis, and lipid accumulation in skeletal muscle (491–493). In humans,
rare heterozygous loss-of-function mutations in SH2B1 have been iden-
tified in children with hyperphagia, severe obesity, hyperinsulinemia,
and maladaptive behavior (494–496). However, the trajectory of their
metabolic disease in adulthood remains unclear.

Chromosome 16p11.2 contains five clusters of segmental duplications that
increase the risk of recurrent copy-number changes at this locus through
non-allelic homologous recombination (497) (Figure 5.4). Copy-number
variants (CNVs; duplications or deletions) with breakpoints (BPs) at
these clusters have been reported in clinical (325, 327, 498, 499) and
population-based cohorts (208, 292, 293, 295). Rearrangement of the
600-kb proximal region (BP4–5) encompassing 33 genes (chr16:29.6–30.2
Mb; GRCh37) (OMIM: 611913) represents the most common deletion
at the locus and has been associated with developmental delay, autism
spectrum disorder (ASD), obesity, macrocephaly, and younger age at
menarche (208, 292, 293, 295, 421, 422, 426, 500). A smaller, 220-kb distal
deletion (BP2-3; chr16:28.82–29.04 Mb; GRCh37) has been associated
with early-onset obesity, macrocephaly, ASD, and schizophrenia (279,
325, 327, 501), and increased rate of obesity and T2D in population-based
cohorts (208, 292, 293, 295). The latter interval encompasses SH2B1 and
eight other protein-coding genes (Figure 5.4).

In this study, we characterized the clinical spectrum associated with
the 16p11.2 BP2-3 deletion in adults from two population-based cohorts,

Figure 5.4: SH2B1 encompassing 16p11.2 BP 2–3 deletions.
UCSC Genome Browser view of the 16p11.2 region (GRCh37/hg19). Upper track: exonic structure of genes in black (protein-coding) or
gray (non-protein-coding). Middle track: segmental duplications forming the five breakpoint regions giving rise to recurrent copy-number
variants (CNVs) at the 16p11.2 locus are colored according to the degree of similarity (light gray [90%] to orange [> 99%]). Lower track:
minimally deleted or duplicated region encompassed by the most common CNVs in the region. Recurrent CNVs are named after the BP
regions that frame them (approximate size). Exact breakpoints occur at variable locations within the breakpoint region so that exact
genomic coordinates and CNV length may differ between individuals. The 16p11.2 BP2-3 region, which represents the minimal and most
common SH2B1 encompassing deleted region, is highlighted in red.
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1: Matching criteria:

▶ BMI (#21001): ± 2.5 kg/m2.
▶ Age (#21003): ± 3.5 years.
▶ Sex (#31): identical.
▶ Ethnicity (#21000): identical.

the UK Biobank (UKBB) and Estonian Biobank (EstBB). Individuals
recruited to population-based cohorts are typically older and healthier
than individuals in clinically ascertained cohorts, allowing us to test
hypotheses about the development, severity, and treatment of diseases
and their complications.

Materials and methods
Study material

Software versions:
▶ CNV calling: PennCNV v1.0.5 (203).
▶ CNV QC: (206).
▶ UCSC Browser LiftOver (414).
▶ TWMR: smrivw v1.1 (175).
▶ Statistical analyses: R v3.6.1 & v4.1.1.
▶ Graphs: R v4.1.3.

UK Biobank
The UK Biobank (UKBB) is a voluntary-based cohort of 502,399 individu-
als (54% females) from the general UK population that were recruited at
age 40–69 years (61). Participants signed a broad informed consent form
for the usage of their data. This research was conducted using the UK
Biobank resource under application numbers 16389 and 53821.

Phenome-wide association scan
Primary phenome-wide association scan (PheWAS) was carried out on
a set of 404,977 individuals of mixed ancestry retained after filtering
out i) related samples (≤ 3rd degree, preference given to 16p11.2 BP
2-3 deletion carriers), ii) CNV outliers (i.e., individuals genotyped on
plates with an average CNV count/plate > 100 and individuals with >
200 CNVs or a single CNV > 10 Mb) (208), and iii) individuals with a
duplication or non-manually validated deletion encompassed within
chr16:28.6–29.2Mb. Among these, 59 unrelated (≤ 1st degree) 16p11.2
BP2-3 deletion carriers were retained (Figure 5.5). For all participants,
self-reported gender and chromosomal sex were concordant. Participant
characteristics are summarized in Table 5.1. Sensitivity analyses were
carried out on a restricted set of 335,656 individuals of white British an-
cestry (in.white.British.ancestry.subset = 1 in ukb_sqc_v2.txt)
which comprised 52 deletion carriers.

Matched cohort study
We aimed to identify 50 body mass index (BMI)-matched UKBB partic-
ipants for each of the 59 deletion carriers (Figure 5.5). Matched partic-
ipants1 were drawn randomly without replacement after excluding i)
related UKBB participants (≤ 3rd degree) and ii) individuals with 16p11.2
BP2-3 deletion. We could not identify 50 matched participants for one
deletion carrier of Bangladeshi ethnicity, who was therefore excluded.
The final matched cohort analysis was performed on 58 deletion carriers
and 2,900 matched control individuals. Participant characteristics are
summarized in Table 5.1.

Table 5.1: Characteristics of study participants.
Sample size, sex ratio (counts and percentage), and mean (± standard error [SE]) BMI and age for individuals studied in the PheWAS
and matched cohort analysis. Deletion carriers are compared against non-carriers in the whole UKBB cohort (PheWAS) or BMI-matched
controls (matched cohort analysis). Differences between the two groups were assessed through a chi-squared test (sex ratio) or Wilcoxon
test (BMI and age) with the respective p-value displayed.

PheWAS Matched cohort analysis
Deletion carriers UKBB P Deletion carriers Matched controls P

Sample size 59 404,918 - 58 2,900 -
Sex, male: female
(%)

32:27
(54:46)

186,415:218,503
(46:54)

0.257
31:27
(53:47)

1,550:1,350
(53:47)

1

BMI [kg/m2] 31.67 ± 0.72 27.40 ± 0.01 1.3 × 10-9 31.66 ± 0.74 31.65 ± 0.10 0.991
Age [years] 54.54 ± 0.97 56.47 ± 0.01 0.046 54.71 ± 0.97 54.39 ± 1.35 0.752
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Figure 5.5: Study design.
Flow diagram (according to Consol-
idated Standards of Reporting Trials
[CONSORT] principles) illustrating the
detection of 16p11.2 BP2-3 deletion car-
riers in UKBB and the exclusion and
inclusion criteria used to define the set
of control individuals included in both
the phenome-wide association scan (Phe-
WAS) and matched cohort analysis. N
represents the sample size of the whole
UKBB, and n represents the subsets of
individuals considered at various steps
in the analysis. BMI = body mass index;
deg. rel. = degree relatives.

Estonian Biobank
The Estonian Biobank (EstBB) is a population-based cohort encompass-
ing ∼20% of Estonia’s adult population, with 208,360 individuals (65%
females) in the data freeze 2022v01 (12/04/2022) (62). The activities
of the EstBB are regulated by the Human Genes Research Act, which
was adopted in 2000 specifically for the operations of the EstBB. Indi-
vidual level data analysis in the EstBB was carried out under ethical
approval 1.1–12/624 from the Estonian Committee on Bioethics and Hu-
man Research (Estonian Ministry of Social Affairs), using data according
to release application 6–7/GI/2018 [2023/01/18] from the EstBB. All
participants signed an informed consent form. Replication of association
signals was carried out in a subset of 90,211 unrelated individuals of
European ancestry after genotype/CNV quality control and pruning of
related individuals (KING kinship coefficient > 0.0884) and preferen-
tially including i) deletion carriers and ii) individuals with phenotypic
measurements. Among these, 19 deletion carriers were retained.

Detection of 16p11.2 BP2-3 deletion

UK Biobank
Samples in the UKBB have been genotyped with either the Applied
Biosystems UK Biobank Axiom Array or the Applied Biosystems UK
BiLEVE Axiom Array by Affymetrix, which share 95% probe overlap (61).
We used two orthogonal approaches to identify high-confidence 16p11.2
BP2-3 deletion carriers: fully automated CNV-calling with quality scoring
pipeline and manual review of the genotyping fluorescence signal across
the 16p11.2 BP1-5 region. Data was acquired in GRCh37/hg19 and unless
specified otherwise, genomic coordinates follow this reference build.

We performed fully automated deletion detection and quality scoring,
as previously described for genome-wide CNV detection in UKBB (208)
to detect CNVs fully contained in chr16:28.6–29.2 Mb. This pipeline is
based on PennCNV (203) calls and offers the advantage of estimating
breakpoints and assigning a probabilistic confidence quality score to
each called deletion (206). To avoid using an arbitrary quality score
cutoff to select deletion carriers, we manually reviewed fluorescent signal
intensities (log R ratio, LRR) and B-allele frequency (BAF) in the 16p11.2
BP1-5 region (chr16:27-31 Mb) for the 272 deletion carriers identified
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through our automated pipeline, ensuring that each of them had a
median probe-level LRR < -0.2 in 4 adjacent 16p11.2 BP2-3 regions covered
by 20 probes (chr16:28,835,900-28,881,001; chr16:28,883,241-28,914,162;
chr16:28,914,458-28,9668,35; chr16:28,970,852-29,001,460). We identified
60 unambiguous 16p11.2 BP2-3 deletion carriers (i.e., with no evidence of
other CNV in the BP1-5 region). We established that 51 (85%) of these
60 individuals had a quality score ≤ -0.5 (i.e., stringent cutoff used for
genome-wide studies) and all samples harboring a deletion with a quality
score ≤ -0.5 were retained by manual review. This indicates that while
an automated approach represents a good alternative when manual
review is not feasible, the latter allows to boost power by retaining a few
additional deletion carriers. The 60 identified deletion carriers included
one pair of first-degree relatives (i.e., likely inherited deletion) of which
the parent was excluded so that a total of 59 unrelated deletion carriers
were taken forward for analyses (Figure 5.6; Table S5.1). Individuals
having a duplication or low confidence deletion (i.e., not validated by
manual review) were excluded from the PheWAS (Figure 5.5).

Estonian Biobank
Illumina Global Screening Array genotype data was available for 193,844
individuals included in the single nucleotide polymorphism (SNP) im-
putation pipeline with matching genotype-phenotype identifiers and
inferred versus reported sex, as well as a SNP-call rate ≥ 98%. Autoso-
mal CNVs were called and quality-controlled as previously described,
including exclusion of CNV outliers (208). Breakpoints of CNVs fully
encompassed in chr16:28.8–29.1 Mb were visually inspected and retained
if the distal coordinate of the deleted region encompassed or truncated
SH2B1 (chr16:28,857,921-28,885,526) and the proximal coordinate fully
encompassed LAT (chr16:28,996,147-29,002,104). This resulted in 19 dele-
tion carriers (63% females), among which 3 individuals had a fragmented
deletion call.

Prevalence estimation of the 16p11.2 deletion

Prevalence of the 16p11.2 BP2-3 deletion in clinical and population co-
horts was estimated based on literature review and data generated in this
study (UKBB and EstBB estimates; Table S5.2). Prevalence in percentage
was defined as the number of deletion carriers divided by the number
of assessed individuals. To obtain estimates from the clinically ascer-
tained DECIPHER database (accessed 27/05/2022) (265), we searched
for CNVs affecting SH2B1, filtered for "Loss" to obtain deletions and
retrieved 150 SH2B1-containing deletions. Deletions were further catego-
rized according breakpoints by assigning the reported start and end of
the deleted region to the closest segmental duplication obtained from
UCSC segmental duplication track (accessed 06/07/2022; downloaded
table: genomicSuperDups for chr16:21,000,000–34,800,000 (GRCh38), to
match DECIPHER coordinates in GRCh38) (502, 503). Prevalence of the
16p11.2 BP2-3 deletion was calculated as a proportion of the total number
of patients reported in DECIPHER (N ≈ 45,700).

Phenome-wide association scan

Phenotype definition
Hundred and twelve traits, with an emphasis on metabolically relevant
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2: Physical measurements:

▶ Adiposity (n = 11).
▶ Height (n = 2).
▶ Childhood/puberty (n = 7).
▶ Cardiovascular (n = 2).
▶ Cognitive/behavioral (n = 3).
▶ Physical activity (n = 5).
▶ Sleep-related (n = 3).

3: Biomarkers:

▶ Blood biochemistry (n = 26).
▶ Urine assay (n = 2).
▶ NMR (n = 30).

4: Binary traits:

▶ ICD-10 codes (n = 13).
▶ Mental health conditions* (n = 4).
▶ Medication usage* (n = 4).

* = self-reported.

phenotypes, were selected for association study with the 16p11.2 BP2-3
deletion carrier status. For all traits, entries encoded as "do not know"
or "prefer not to answer" were set as missing. Exact definitions of these
traits and summary statistics are provided in Tables S5.3-6.

Thirty-three physical measurements2 were treated as continuous vari-
ables (ordinal traits were re-coded as increasing continuous traits).
Among these, four represent custom traits derived from existing data
fields: systolic/diastolic blood pressures were inferred by completing
automated reading (#4080/#4079) with manual readings (#93/#94) when
the former was missing and waist-to-hip ratio (WHR) and WHR adjusted
for BMI (WHRadjBMI) were calculated by dividing waist circumference
(#48) by hip circumference (#49) and regressing out the effect of BMI
and its interaction with sex for WHRadjBMI. We further assessed 58
biomarkers3. We included both raw and normalized (by total fatty acids;
#23442) nuclear magnetic resonance (NMR) values for six fatty acid
measurements. Continuous traits were inverse normal transformed be-
fore regressing out the effect of sex, age, age2, genotyping batch, and
principal components (PCs) 1–40. For blood measurements, we further
corrected for fasting time (#74), as well as fasting time squared if the latter
parameter was significantly (p ≤ 0.01) impacting the trait when modeling
𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 ∼ 𝑓 𝑎𝑠𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + 𝑓 𝑎𝑠𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒2.

Twenty-one binary traits were evaluated4. For International Classification
of Diseases, 10th Revision (ICD-10)-based diagnoses, age at diagnosis
was computed by subtracting matching date at first in-patient diagnosis
– ICD10 (#41280) from the birth date, calculated from the individual’s
month (#52) and year (#34) of birth (birthday assumed on average to be the
15th). Results were converted in years by dividing by 365.25 to account
for leap years.

Association study
Association between the 16p11.2 BP2-3 deletion carrier status (1 = deletion
carrier; 0 = copy neutral; NA = duplication or non-manually validated
deletion) and normalized, covariate-corrected continuous traits (i.e.,
physical and blood measurements) were assessed through linear re-
gression (lm()). For binary traits, logistic regressions (glm(family =

binomial(link = "logit"))) were used to model the effect of deletion
carrier status on disease/phenotype risk. As no correction for covariates
was performed on binary traits, sex, age, age2, genotyping batch, and
PC1-40 were included in the model. Model details are displayed in Tables
S5.3-6.

Time-to-event analysis
To assess whether 16p11.2 BP2-3 deletion carrier status also influenced the
age of onset of ICD-10-based diseases we used Cox proportional hazards
models implemented in the survival R package (416). For this purpose,
we used the earliest documented disease onset for cases and the date of
the last reported diagnosis across all individuals (30/09/2021) minus
the birth date converted in years for controls. Sex, age, age2, genotyping
batch, and PC1-40 were included in the regression model.

Multiple testing correction
Some of the 112 assessed traits are highly correlated and thus not indepen-
dent. We accounted for this in our multiple testing strategy by calculating
the number of effective tests, i.e., the number of tests required to explain



5.4 Chromosomal deletions on 16p11.2 encompassing SH2B1 are associated with accelerated metabolic disease 155

99.5% of the variance in the phenotypic dataset (85). This number was
estimated to eighty-eight, both when considering all ancestries or only
the subset of white British individuals, setting the strict threshold for
genome-wide significance at p ≤ 0.05/88 = 4.7 × 10-4 for the PheWAS.
Nominal significance refers to p ≤ 0.05.

Replication in the Estonian Biobank

Phenotype definition
Height, weight, and BMI were collected at recruitment. Traits were inverse
normal transformed and corrected for sex, year of birth, genotyping batch
(1–11), and PCs 1–20. Disease diagnoses are available as ICD-10 codes
through cross-linking with national and hospital databases (last updated
end of 2021) and were used to replicate the association with diabetes,
defined as any of the E10-E14 codes. Exact definitions and summary
statistics are found in Tables S5.3-4.

Association study
Association between the 16p11.2 BP2-3 deletion carrier status and normal-
ized, covariate-corrected continuous traits (i.e., BMI, weight, height) and
binary outcomes (i.e., diabetes) were performed using linear and logistic
regressions, respectively, following the same procedure as described
for UKBB. Sex, year of birth, genotyping batch (1–11), and PC1-20 were
included as covariates for the association with diabetes. As all replicated
signals were concordant in direction, we reported one-sided p-values,
which were deemed significant at p ≤ 0.05/4 = 0.0125 to account for the
4 performed tests.

Matched cohort study

Phenotype definition
Selected traits showing statistically significant or suggestive results in
the PheWAS were followed up upon in our BMI-matched cohort study
using curated phenotype definitions. Exact definitions and summary
statistics are provided in Tables S5.7 and S5.8-9, respectively. Briefly,
case definitions were obtained by combining ICD-10 codes (#41270)
and information from self-reported diseases (#20002), disease-specific
medication (#20003), and physical measurements or blood biomarkers at
instance 0. Earliest documented age of onset was deduced from date at first
in-patient diagnosis – ICD10 (#41280), the age of onset of a self-reported
condition, or age when attended assessment center (#21003) for physical
measurements or blood biomarkers. Age at diagnosis was computed by
adding the age when attended assessment center (#21003) to the difference
between the date of attending assessment center (#53) and the date at
diagnosis converted in years. Traits with no specific indication in Table
S5.8 used the same definition as for the PheWAS.

Association study
Detailed methodology including covariates, statistical tests, and results
are reported for each trait in the main text or in Tables S5.8-9. For contin-
uous traits, linear models were implemented with lm() and cohens_f()

from the package effect size v0.8.2. We considered the main effect
(i.e., effect of the deletion compared to matched non-carriers as a base-
line) and interactions with relevant covariates (e.g., lipid-lowering drug,
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when assessing cholesterol levels). If continuous traits were not nor-
mally distributed, Wilcoxon rank-sum was applied (wilcox.test())
and effect sizes were estimated with rFromWilcox() (504). All post hoc
analyses were performed using Tukey’s procedure from the lsmeans

package v2.30-0 (505, 506). Nominal traits were assessed with logistic re-
gression (glm(family = binomial(link = "logit"))) or with Fisher’s
exact test (fisher.test()) for which effect sizes were estimated as odds
ratios (OR).

Time-to-event analysis
Association analyses between deletion carrier status and age at condition
onset were implemented as previously described. We used the earliest
documented age at disease onset for cases and the last documented
age without diagnoses otherwise. To determine the latter, age when
attended assessment center (#21003; instance 0 for physical measurements
or blood biomarkers) and age of last documented ICD-10 diagnosis
were considered. The age of the last documented ICD-10 diagnosis was
determined by subtracting the date of attending assessment center (#53)
from the last date of all date at first in-patient diagnosis – ICD10 (#41280),
converting the result in years by dividing trough 365.25 to account for
leap years and adding it to the age when attended assessment center (#21003).
Of the age when attended the assessment center (#21003) and the age
of the last documented ICD-10 diagnosis, the oldest age was defined as
the last documented age without diagnosis. Results were plotted with
Kaplan-Meier curves.

Multiple testing correction
Reported p-values are nominal and two-sided. Bonferroni threshold for
testing ∼40 traits is 0.05/40 = 0.00125.

Rare protein-coding variant burden tests

We used gene burden test results previously computed from 454,787
whole exome sequencing of the UKBB (327). Briefly, the study performed
burden tests between ∼18,800 genes and ∼4,000 health-related traits using
masks on variant function (i.e., predicted loss-of-function (pLoF)-only
or pLoF and predicted deleterious missense variants) and minor allele
frequency (MAF; i.e., MAF ≤ 1%, 0.01%, 0.001%, 0.0001%, or singletons).
Association data with BMI, lipids, and T2D (defined as E11 ICD-10 code)
were extracted for the nine genes in the 16p11.2 BP2-3 interval for all
different test combinations and filtered for nominal significance (p≤ 0.05).

Common variant associations at 16p11.2 BP2-3

GWAS Catalog data
To determine whether common genetic variants in the 16p11.2 BP2-
3 region had previously been found to impact traits we identified to
be associated with the region’s deletion, we used the 16p11.2 BP2-3
coordinates ± 50 kb (chr16:28,811,314-29,035,178 in GRCh38; (507)) and
retrieved all mapped associations from the GWAS Catalog (accessed
22/12/2022) (78). Coordinates of retrieved associations were converted to
GRCh37 with the UCSC LiftOver tool and involved traits were manually
annotated with one of twelve trait categories.
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Recombination rate estimation
Recombination rate was calculated by dividing the local difference in
centimorgans (cM) by the local difference in Mb, using data from the
HapMap (508) (Phase II) lifted over to GRCh37 (508).

Transcript Mendelian randomization

Transcriptome-wide Mendelian randomization (TWMR) was conducted
following previously described methodology (173, 175) to determine
whether changes in transcript levels of genes in the deleted 16p11.2 BP2-3
region causally modulate T2D risk. Exposures (i.e., transcript levels)
were instrumented with independent genetic variants (r2 < 0.01), i.e.,
expression quantitative loci (eQTLs) for the gene of interest. Briefly, for
the 6 genes with at least one eQTL (i.e., ATXN2L, TUFM, SH2B1, AP2A1,
NFATC2IP, SPNS1), the effect of selected eQTLs on exposure (i.e., gene
expression) and outcome (i.e., T2D risk) were used to estimate the causal
effect of the former on the latter by inverse-weighted variance two-sample
Mendelian randomization. Genetic effect sizes on transcript levels (p ≤ 1
× 10-6) originate from either whole blood cis-eQTLs from the eQTLGen
(154) or tissue-specific cis-eQTLs from the GTEx project (151) while those
on T2D risk stem from a T2D genome-wide association study (GWAS)
(509). Prior to the analysis, datasets were harmonized and palindromic
variants or those that had an allele frequency difference > 0.05 between
the datasets were removed. TWMR estimates were considered signif-
icant when p ≤ 0.05/9 = 5.6 × 10-3 to account for the nine genes in
the 16p11.2 BP2-3 interval. We used standardized genetic effect sizes,
therefore TWMR estimates can be interpreted as the phenotypic impact
of one standard deviation increase in expression. Since we expect the
deletion to decrease expression, negative TWMR effects (i.e., increased
expression decreases T2D risk) were considered directionally concordant
with the association study results (i.e., deletion increases T2D risk).

Colocalization analysis

Genetic colocalization analysis was performed to determine whether
genetically determined expression levels of the genes found to have a
significant causal effect on T2D through TWMR (i.e., TUFM, SH2B1,
AP2A1, SPNS1) shared a common genetic causal variant with the T2D
GWAS signal. The same eQTL (154) and GWAS (509) summary statistics
were used as in the TWMR analysis. Colocalization was performed with
coloc.abf() from the R coloc package v5.1.0.1 (167), using a ± 250 kb
window around the lead T2D GWAS signal (rs8046545; chr16:28,915,217;
GRCh37) and following standard protocol. For each tested gene, coloc
outputs the posterior probability supporting five different scenarios (167).
Evidence for shared causal genetic signal from the eQTL and GWAS data
(i.e., scenario H4) was considered when the posterior probability for that
hypothesis was PP_H4 > 0.8.

Results
Prevalence of SH2B1 encompassing 16p11.2 deletions

The UKBB is a cohort of 502,399 individuals (54% female) aged between
40 and 69 years at recruitment (61). To identify 16p11.2 BP2-3 deletion
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carriers (DELs), we used an automated CNV calling pipeline (208) that
feeds genotype microarray data to PennCNV (203) and attributes a
probabilistic quality score (206) to each of the 272 deletions and 157
duplications identified across chr16:28.6–29.2 Mb (GRCh37). To avoid
using an arbitrary quality score cutoff, fluorescent signal intensities (LRR)
and BAF were manually reviewed in candidate deletion carriers, resulting
in the detection of 60 unambiguous heterozygous deletion carriers with
no other CNV in the 16p11.2 region. Of these, 51 (85%) had a quality score
meeting the stringent cutoff (≤ -0.5) previously used in genome-wide
studies with no manual validation of CNV calls (208). After excluding one
individual from a pair of first-degree relatives, we retained 59 unrelated
deletion carriers for further analysis (Figure 5.5 and Figure 5.6A; Table
S5.1). These individuals comprised a similar proportion of males (DEL
= 54%; UKBB = 46%; p𝜒2 = 0.257) and were slightly younger (meanDEL
= 54.5 years; meanUKBB = 56.5 years; pWilcoxon = 0.046) than the whole
UKBB cohort, with 52 (88.1%) individuals of self-reported and genetically
estimated white British ancestry (Table 5.1; Figure 5.6B). In parallel and
using a similar approach, we identified 19 unrelated deletion carriers
in the EstBB, a population-based cohort coupled to the national health
system that encompasses 208,360 Estonians (65% females) aged between
18 and 103 years.

Figure 5.6: Characteristics of 16p11.2
BP2-3 deletion carriers in UK Biobank.
(A) Breakpoints of the 59 unrelated
16p11.2 BP2-3 deletion carriers included
in the phenome-wide association scan
(PheWAS) determined through an auto-
mated CNV calling pipeline. Each line
represents one individual according to
self-reported ethnic background (legend
in B). Vertical ticks indicate the location
of genotyping probes on the microarray
from which deletions were called (mid-
dle). Genomic location and orientation
of the recurrently deleted BP2-3 region
including SH2B1 in red, along with other
genes in the region in black. (B) Percent-
age of 59 unrelated deletion carriers be-
longing to each ethnic group; sample size
indicated in the legend (n).

We estimated the BP2-3 deletion frequency in UKBB as 1 in 6,868 (0.016%),
which is concordant with previous estimates in UKBB (208, 292, 293, 295)
and other population-based cohorts such as deCODE (510) (Table S5.2).
The slightly higher prevalence in the EstBB of 1 in 4,748 (0.021%) is likely
due to differences in enrollment criteria. In comparison, estimates from
clinical cohorts of children ascertained for various conditions, includ-
ing developmental delay, were about 10-fold higher (1 in 642; 0.156%)
(Table S5.2). Among considered cohorts, DECIPHER had the highest
prevalence of deletion carriers, with estimates of 1 in 435 (0.230%). This
online repository provides both genetic and phenotypic description of
∼45,700 patients with CNVs contributed by an international consortium
of > 200 academic clinical centers and ≥ 1,600 clinical geneticists and
diagnostic laboratory scientists (265). Specifically, 105 individuals carried
the distal BP2-3 deletion; 24% of the 66 individuals on whom clinical
information was available were reported to have obesity. Overall, our
estimates are in line with results from a meta-analysis of 17 clinical and
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population-based cohorts that found a 16p11.2 BP2-3 deletion prevalence
of 1 in 613 (0.163%) and 1 in 7,343 (0.014%) among individuals with or
without any of the 54 diseases investigated by the study, respectively (229).

PheWAS in 16p11.2 BP2-3 deletion carriers in UKBB
To gain insights into the clinical characteristics of 16p11.2 BP2-3 deletion
carriers, we performed a PheWAS as a primary analysis, assessing 112
complex traits and hospital-diagnosed diseases (ICD-10 codes) in 59
deletion carriers versus 404,977 unrelated UKBB non-carriers (Figure
5.7; Tables S5.3-6). Estimating that the 112 traits correspond to 88 in-
dependent tests, we identified 23 strictly significant associations (p ≤
0.05/88 = 4.7 × 10-4) with deletion carrier status and 21 further nominally
significant ones (p ≤ 0.05). As a sensitivity analysis to ensure that results
were not affected by population stratification, we repeated the PheWAS
on 52 deletion carriers versus 335,656 unrelated non-carriers of white
British ancestry. Estimates were in high agreement with those of the
whole cohort (Pearson correlation = 0.987; p < 2.2 × 10-16) supporting the
robustness of our findings (Figure 5.8; Tables S5.3-6).

Figure 5.7: Phenome-wide association scan in carriers versus non-carriers of 16p11.2 BP2-3 deletions.
Results of the PheWAS for (A) 33 physical measurements, (B) 21 binary traits, and (C) 58 blood measurements according to trait category
(y-axis). (A and C) Left panel, x-axis shows the effect of the deletion (beta) on each trait in standard deviations (SDs) with error bars
representing 95% confidence intervals (CIs). (B) Left panel, x-axis shows the odds ratio (OR) with error bars representing the 95% CI.
Upper range of the CI is truncated for some traits to facilitate visualization. Color indicates level of statistical significance: dark green (p
≤ 0.05/88 = 4.7 × 10-4), light green (p ≤ 0.05), and gray (non-significant). ICD-10-based diagnoses were assessed with a Cox proportional
hazards model and strictly (p ≤ 0.05/88 = 4.7 × 10-4) and nominally (p ≤ 0.05) significant associations between deletion carrier status
and early onset of the disease are indicated by a double or single red circle surrounding the OR, respectively. The vertical dashed line
represents a null effect size. Right panel, x-axis indicates the number of deletion carriers (DEL, maximum n = 59) in whom the trait was
measured (A and C) or the number of cases within deletion carriers (B).
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Figure 5.8: Sensitivity phenome-wide association scan in participants of white British ancestry.
Results of the PheWAS for (A) 33 physical measurements, (B) 21 binary traits, and (C) 58 blood measurements according to trait category
(y-axis). (A and C) Left panel, x-axis shows the effect of the deletion (beta) on each trait in standard deviations (SD) with error bars
representing 95% confidence intervals (CI). (B) Left panel, x-axis shows the odds ratio (OR) with error bars representing the 95% CI.
Upper range of the CI was truncated for some traits to facilitate visualization. Color indicates level of statistical significance, dark green (p
≤ 0.05/88 = 4.7 × 10-4), light green (p ≤ 0.05), and gray (non-significant). ICD-10-based diagnoses were assessed with a Cox proportional
hazards model and strictly (p ≤ 0.05/88 = 4.7 × 10-4) and nominally (p ≤ 0.05) significant associations between deletion carrier status
and early onset of the disease are indicated by a double or single red circle surrounding the OR, respectively. The vertical dashed line
represents a null effect size. Right panel, x-axis indicates the number of deletion carriers (DEL, maximum = 52) in whom the trait was
measured (A, C) or the number of cases (B).

16p11.2 BP2-3 deletions have increased adiposity

We found that 16p11.2 BP2-3 deletion carriers were significantly more
likely to have a higher BMI (𝛽 = 3.9 kg/m2; p = 1.3 × 10-10), weight (𝛽
= 10.8 kg; p = 2.0 × 10-9), whole-body fat mass (𝛽 = 7.0 kg; p = 5.9 ×
10-9), and percentage fat mass (𝛽 = 4.5%; p = 5.9 × 10-8) (Figure 5.7A).
While waist-to-hip ratio appeared increased in deletion carriers (𝛽 = 0.47
standard deviation [SD]; p = 1.4 × 10-6), the effect disappeared upon
correction for BMI (𝛽 = 0.13 SD; p = 0.109), suggesting no difference in fat
distribution. Increased adiposity appeared in childhood, with 41.4% of
deletion carriers self-reporting to be "plumper at age 10" compared with
15.5% in the whole UKBB (p = 1.2 × 10-6). Neither childhood (p = 0.359)
nor adult (p = 0.531) height was significantly associated with deletion
carrier status. These results were replicated in the EstBB, where we found
a significant increase in BMI (𝛽 = 3.7 kg/m2; p = 6.3 × 10-4) and weight
(𝛽 = 10.0 kg; p = 2.2 × 10-3) among the 19 deletion carriers but no effect
on height (Table S5.3).

16p11.2 BP2-3 deletion carriers have early-onset T2D that
is difficult to treat

Our PheWAS indicated that 16p11.2 BP2-3 deletion carriers were at
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significantly increased risk for T2D (odds ratio [OR] = 7.2; p = 1.0 × 10-11)
with considerably earlier disease onset (hazards ratio [HR] = 6.1; pCox-PH =
8.4 × 10-16) and were more likely to receive insulin treatment (OR = 8.4; p
= 6.9 × 10-6). They had nominally increased levels of glycated hemoglobin
(HbA1c; 𝛽 = 2.1 mmol/mol; p = 0.015) and random serum glucose (𝛽 =
0.4 mmol/L; p = 0.011) (Figure 5.7B-C). The increased risk of T2D among
deletion carriers was replicated in the EstBB (OR = 7.3; p = 2.5× 10-4; Table
S5.4). To test whether these results were driven by increased adiposity in
deletion carriers, we selected 50 controls (ctrl; unrelated non-carriers; i.e.,
UKBB participants without the deletion) matched for BMI, age, sex, and
self-reported ethnicity for 58 of the 59 deletion carriers (excluding one
individual with < 50 ethnicity-matched participants), amounting to a
total of 2,900 matched non-carriers (Table 5.1). Disease cases were defined
using additional curation of self-reported clinical data, medication usage,
biomarker levels, and physical measurements in addition to ICD-10 codes
(Table S5.7). Even after matching for adult BMI (Figure 5.9A), deletion
carriers more frequently reported to be "plumper at age 10" (DEL = 41%;
ctrl = 23%; p = 0.002; Figure 5.9B; Table 5.2), consistent with earlier onset
of obesity. T2D prevalence was increased 2.7-fold (DEL = 38%; ctrl =
14%; p = 0.004; Figure 5.9C; Table 5.2) irrespective of body size at age
10 (all interactions DEL × body size have p > 0.27). Deletion carriers
developed T2D at an earlier age than BMI-matched non-carriers (HR =
4.0; pCox-PH = 1.6 × 10-7; Figure 5.9D; Table 5.2). A higher proportion of
the 22 deletion carriers with T2D reported usage of antidiabetic drugs
compared with the 419 diabetic matched non-carriers (DEL = 59%; ctrl
= 36%; p = 0.033; Figure 5.9E; Table 5.2) and they were prescribed a
larger number of medications (p = 0.022; Figure 5.9E; Table 5.2). Despite
higher antidiabetic medication usage, glycemic control measured by
random serum glucose was worse in deletion carriers than in matched
non-carriers with T2D (pT2D × DEL = 0.006; post hoc analysis among cases,
meanDEL = 8.39 mmol/L; meanctrl = 6.97 mmol/L; p = 0.018; Figure 5.9F;
Table 5.2). A similar trend was observed for HbA1c levels (pT2D × DEL
= 0.002; post hoc analysis, meanDEL = 53.3 mmol/mol; meanctrl = 48.7
mmol/mol; p = 0.080; Figure 5.9G; Table 5.2).

Table 5.2: Metabolic characteristics of deletion carriers and BMI-matched controls.
Descriptive statistics reporting the prevalence or mean value (± standard error) for key metabolic phenotypes in deletion carriers and
BMI-matched controls. Statistical significance of the difference between the two group is reported as a p-value. aAmong people with
documented diabetes.

Category Trait Deletion carriers Matched controls P
Adiposity Prevalence of plumper at age 10 (%) 41.4 23.3 0.002

Glycemia

Prevalence of type 2 diabetes (%) 37.9 14.4 <2 × 10-16

Age of onset of type 2 diabetes 51.1 ± 2.4 54.8 ± 0.5 9.1 × 10-8

Prevalence of diabetes treatment (%) 59.1 35.8 0.033
Number of antidiabetic drugsa 1.69 ± 0.13 1.37 ± 0.04 0.022
Glucosea [mmol/L] 8.39 ± 1.18 6.97 ± 0.17 0.018
Glycated hemoglobin (HbA1c)a [mmol/mol] 53.3 ± 3.9 48.7 ± 0.7 0.080
Prevalence of diabetes with complications (%) 31.8 25.8 0.534

Renal function Cystatin C [mg/L] 1.077 ± 0.028 0.929 ± 0.003 6.0 × 10-14

Inflammation C-reactive protein (CRP) [mg/L] 4.84 ± 0.73 3.49 ± 0.09 0.015

Serum lipids Total cholesterol [mmol/L] 5.04 ± 0.14 5.62 ± 0.02 5.8 × 10-5

Triglycerides [mmol/L] 2.10 ± 0.17 1.97 ± 0.02 0.926

Cardiovascular system
Prevalence of hypertension (%) 60.3 66.0 0.373
Diastolic blood pressure [mmHg] 79.8 ±1.5 84.6 ± 1.9 2.8 × 10-4

Prevalence of cardiovascular diseases (%) 10.3 14.7 0.357
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Figure 5.9: 16p11.2 BP2-3 deletion carriers are at increased risk for early-onset T2D compared with BMI-matched non-carriers.
(A) BMI (kg/m2) of deletion carriers (16p11.2 BP2-3 DEL; red; n = 59) compared with UKBB whole cohort (dark gray; n = 403,280)
and BMI-matched participants (light gray; n = 2,900). (B) Proportion (%) of individuals self-reporting their comparative body size at
age 10 as plumper (blue), average (light yellow), or thinner (dark yellow); missing data (gray) among UKBB whole cohort (n = 396,450),
matched participants (n = 2,900), and deletion carriers (16p11.2 BP2-3 DEL; n = 59). (C) Prevalence (%) of T2D among deletion carriers
(16p11.2 BP2-3 DEL; n = 58) and matched participants (n = 2,900). (D) Kaplan-Meier curves illustrating the proportion of T2D-free
individuals (%) over time (years) among deletion carriers (16p11.2 BP2-3 DEL; red; n = 58) and matched participants (gray; n = 2,900).
Shaded areas represent 95% CIs. (E) Proportion (%) of individuals taking no (gray), one (yellow), or several (blue) antidiabetic drugs
among deletion carriers (16p11.2 BP2-3 DEL; n = 22) and matched participants with diabetes (n = 406). (F) Glucose (mmol/L) and (G)
glycated hemoglobin (HbA1c) (mmol/mol) levels among deletion carriers (16p11.2 BP2-3 DEL; red; glucose n = 49; HbA1c n = 55) and
matched participants (light gray; glucose n = 2,490; HbA1c n = 2,727) according to diabetic status. (H) Prevalence (%) of reported diabetic
complications among deletion carriers (16p11.2 BP2-3 DEL; n = 22) and matched participants with diabetes (n = 406). (I) Cystatin C
(mg/L) levels according to diabetic status in UKBB whole cohort (dark gray; n = 385,797), matched participants (light gray; n = 2,698),
and deletion carriers (16p11.2 BP2-3 DEL; red; n = 58). (J) C-reactive protein (CRP) (mg/L) in UKBB whole cohort (dark gray; n = 384,965),
matched participants (light gray; n = 2,691), and deletion carriers (16p11.2 BP2-3 DEL; red; n = 58). Boxplot outliers are not shown for
the whole cohort and matched participants. Data points depicted for deletion carriers (circles; triangles indicate values cropped at the
maximum of the depicted range); ns, p > 0.1; *p < 0.05; **p < 0.01, ***p < 0.001.
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16p11.2 BP2-3 deletion carriers have increased risk of renal
impairment

Although the overall occurrence of known diabetic complications (retinopa-
thy, kidney failure, polyneuropathy; Table S5.7) was comparable in 16p11.2
BP2-3 deletion carriers and matched controls (Figure 5.9H; Table 5.2),
levels of cystatin C, an early biomarker of kidney dysfunction, were
significantly elevated in deletion carriers compared with both the whole
UKBB cohort (𝛽 = 0.19 mg/L; p = 2.0 × 10-20; Figure 5.7C) and matched
non-carriers (meanDEL = 1.08 mg/L; meanctrl = 0.93 mg/L; p = 6.0 ×
10-14; Figure 5.9I; Table 5.2), indicating that deletion carriers may be at
increased risk of developing chronic kidney disease. Levels of C-reactive
protein, a marker of chronic inflammation, were also increased in dele-
tion carriers in both PheWAS (𝛽 = 2.8 mg/L; p = 5.1 × 10-7; Figure 5.7C)
and matched control analyses (meanDEL = 4.84 mg/dL; meanctrl = 3.49
mg/dL; p = 0.015; Figure 5.9J; Table 5.2).

Hepatic steatosis is a common complication of obesity and T2D. Our
PheWAS revealed increased serum levels of hepatic enzymes in deletion
carriers (Figure 5.7C;) with significantly increased levels of alkaline
phosphatase (ALP; 𝛽 = 17.9 U/L; p = 1.2 × 10-7) and nominally increased
levels of alanine (ALT; 𝛽 = 5.1 U/L; p = 3.6 × 10-3) and aspartate (AST;
𝛽 = 2.9 U/L; p = 0.034) aminotransferases. After controlling for alcohol
consumption, diabetes, and lipid-lowering drugs, only ALP (p = 1.9 ×
10-4) and total bilirubin (p = 0.049) levels were increased in deletion
carriers compared with BMI-matched non-carriers, while ALT, AST,
and gamma-glutamyl transferase (GGT) levels did not differ between
the groups. Very few ICD-10-documented cases of non-alcoholic fatty
liver disease are reported in UKBB; accordingly, no association with
deletion carrier status could be detected. Considering all liver diagnoses
(K70–77), a higher proportion of deletion carriers was affected compared
with matched non-carriers (p = 0.005). Specifically, deletion carriers had
hepatic steatosis and cirrhosis diagnoses (mean age of onset = 64 years),
possibly representing end-stage metabolic liver disease, which is often
not accompanied by elevated liver enzymes.

To study dyslipidemia in the matched cohort setting, we considered
ICD-10-coded and self-reported dyslipidemia, as well as blood-panel-
derived cases (Table S5.7). Prevalence of dyslipidemia in deletion carriers
was not increased after accounting for BMI (Figure 5.10A). However,
the proportion of individuals with hypertriglyceridemia only or mixed
dyslipidemia was increased in deletion carriers (DEL = 17%; ctrl = 9%, p =
0.029; Figure 5.10A), findings that may be explained by their suboptimal
glycemic control. We observed that triglyceride levels were comparable
between deletion carriers and matched non-carriers (Figure 5.10B; Table
5.2), while low-density lipoprotein (LDL)-cholesterol, total cholesterol,
and apolipoproteins A and B levels were significantly decreased in
deletion carriers compared with the whole UKBB cohort (Figure 5.7C)
and matched non-carriers (all p < 0.003;Figure 5.10C). High-density
lipoprotein (HDL)-cholesterol levels followed the same trend and were
decreased compared with both the UKBB cohort (𝛽 = -1.13 mmol/L; p
= 9.2 × 10-10; Figure 5.7C) and matched non-carriers (meanDEL = 1.17
mmol/L; meanctrl = 1.32 mmol/L; p = 4.8 × 10-9; Figure 5.10D). There was
no increase in the use of cholesterol-lowering drugs in deletion carriers
in the PheWAS or matched cohort analysis (Figure 5.7B).
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Figure 5.10: Cardiovascular risk factors in 16p11.2 BP2-3 deletion carriers compared with BMI-matched non-carriers.
(A) Proportion (%) of individuals with hypertriglyceridemia only (dark yellow), mixed or unspecified dyslipidemia (light yellow),
hypercholesterolemia only (blue), or no dyslipidemia (gray) among deletion carriers (16p11.2 BP2-3 DEL; n = 58) and BMI-matched
participants (n = 2,900). Star indicates significance for the comparison of hypertriglyceridemia and mixed/unspecified dyslipidemia
between 16p11.2 BP2-3 DEL and matched participants. (B) Serum triglycerides (mmol/L) in UKBB whole cohort (dark gray; n = 385,495),
matched participants (light gray; n = 2,695), and deletion carriers (16p11.2 BP2-3 DEL; red; n = 57). (C) LDL-cholesterol levels (mmol/L)
in UKBB whole cohort (dark gray; n = 385,079), matched participants (light gray; n = 2,692), and deletion carriers (16p11.2 BP2-3 DEL;
red; n = 57). (D) HDL-cholesterol (mmol/L) in UKBB whole cohort (dark gray; n = 353,195), matched participants (light gray; n = 2,496),
deletion carriers (16p11.2 BP2-3 DEL; red; n = 49). (E) Diastolic blood pressure (BP) (mmHg) levels in UKBB whole cohort (dark gray; n =
404,478), matched participants (light gray), and deletion carriers (16p11.2 BP2-3 DEL; red; n = 58). Boxplot outliers are not shown for the
whole cohort and matched participants. Data points depicted for deletion carriers (circles). *p < 0.05; ***p < 0.001.

NMR spectroscopy revealed that serum levels of linoleic acid, sphin-
gomyelins, phosphatidylcholines, and phosphoglycerines were signif-
icantly reduced in deletion carriers compared with the UKBB cohort
(Figure 5.7C; Table S5.6) despite availability of these measurements in
only 13 deletion carriers. Cross-sectional and longitudinal studies have
shown that higher levels of linoleic acid are associated with decreased
incidence of T2D (511) which aligns with deletion carriers having both
lower levels of the metabolite and increased incidence of T2D. Further-
more, these results are concordant with a previous study of patients with
obesity with T2D who were found to have lower levels of sphingomyelin,
an abundant sphingolipid involved in ceramide metabolism, compared
with people with obesity without T2D (512).

Although the prevalence and age of onset of hypertension were not sig-
nificantly different between deletion carriers and matched non-carriers,
diastolic blood pressure was lower in deletion carriers compared with
the whole UKBB cohort (𝛽 = -2.8 mmHg; p = 0.033; Figure 5.7A). This
trend was preserved in comparison to BMI-matched non-carriers, ir-
respective of the use of antihypertensive medication (meanDEL = 79.8
mmHg; meanctrl = 84.6 mmHg; p = 2.8 × 10-4; Figure 5.10E). Neither the
PheWAS (Figure 5.7B) nor the matched participant analysis (Table 5.2)
found deletion carriers to be at increased risk for cardiovascular disease.
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16p11.2 BP2-3 deletions are associated with additional
non-metabolic phenotypes
ASD and developmental delay have previously been associated with
16p11.2 BP2-3 deletions (279). However, UKBB individuals present with a
lower disease burden compared with the general UK population (59) and
ASD prevalence in UKBB is about 0.05%, compared with a recent estimate
of 1.76% across 7 million English school children (513). Accordingly, none
of the UKBB deletion carriers were diagnosed with ASD, suggesting
that carriers from the general population are at the milder end of the
phenotypic range, paralleling what has been shown for other CNVs (384,
435). Self-reported behaviors can indicate features that lie at the mild end
of the clinical spectrum. The PheWAS indicated that deletion carriers
report higher rates of loneliness (OR = 2.4; p = 0.002; Figure 5.7B), a trend
maintained in the matched cohort analysis (DEL = 34%; ctrl = 21%; p =
0.036; Figure 5.11A). We found no significant differences in prevalence of
anxiety, irritability, or depressive disorders in deletion carriers compared
with the whole UKBB cohort and matched non-carriers (Figure 5.7B), but
cognitive ability seemed to be impaired among deletion carriers, who
performed worse on both fluid intelligence (pPheWAS = 8.6 × 10-6; Figure
5.7A; pmatched control = 8.1 × 10-4; Figure 5.11B) and prospective memory
tests (pPheWAS = 0.013; Figure 5.7A; pmatched control = 0.047).

The PheWAS also revealed a nominally significant increased risk (OR =
2.3; p = 0.024) and earlier onset (HR = 2.1; p = 0.022) of anemia among
16p11.2 BP2-3 deletion carriers (Figure 5.7B). Similarly, anemia was more
prevalent in deletion carriers than in matched non-carriers (Figure 5.11C).
Hemoglobin, hematocrit, mean corpuscular hemoglobin and volume,
and reticulocyte count were all higher in deletion carriers compared with
matched non-carriers.

matched
participants

16p11.2
BP2-3 DEL

UK Biobank
whole cohort

matched
participants

16p11.2
BP2-3 DEL

*

***

not anaemic
anaemic

12% 21%

CB anaemia prevalence

matched
participants

16p11.2
BP2-3 DEL

loneliness prevalence
not reported
loneliness reported

21%
35%

*

A

Figure 5.11: 16p11.2 BP2-3 deletion carriers have cognitive impairment.
(A) Prevalence of self-reported loneliness among deletion carriers (16p11.2 BP2-3 DEL) and BMI-matched participants. (B) Fluid
intelligence score [points] on a scale from 0 to 13 in control individuals from the phenome-wide association scan (PheWAS; UK Biobank
whole cohort; dark gray), matched participants (light gray), and deletion carriers (16p11.2 BP2-3 DEL; red). Data points are depicted only
for deletion carriers (n = 16 with available fluid intelligence score). (C) Prevalence of anemia among matched participants and deletion
carriers (16p11.2 BP2-3 DEL). * = p < 0.05; *** = p < 0.001.
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Mechanism of action of 16p11.2 BP2-3 deletions

We investigated whether haploinsufficiency of the nine genes mapping to
the 16p11.2 BP2-3 interval could corroborate the increased BMI and T2D
risk observed in deletion carriers. We explored rare variant gene burden
association summary statistics for BMI and T2D performed in 454,787
whole exomes of the UKBB using different masks on variant function and
minor allele frequency (MAF) (6). Rare (MAF ≤ 0.001%) pLoF variants in
NFATC2IP were associated with increased BMI at nominal significance (𝛽
= 0.32; p = 0.012). Interestingly, while the burden of pLoF and predicted
deleterious missense variants in ATXN2L (OR = 0.76; p = 0.011) and
SPNS1 (OR = 0.89; p = 0.032) nominally decreased T2D risk, the singleton
burden in SH2B1 nominally increased it (OR = 2.5; p = 0.028) (Table S5.10).
Similarly, we investigated whether gene burden test results supported the
unusual pattern in serum lipid levels observed among deletion carriers,
characterized by a reduction in both LDL and HDL levels, compared with
BMI-matched controls. Concordantly, singleton LoF burden in SH2B1
decreased both total cholesterol (𝛽 = -0.63; p = 0.002) and LDL (𝛽 =
-0.58; p = 0.005) levels, and while rare variants (MAF ≤ 0.01%) in SH2B1
also decreased HDL levels (𝛽 = -0.19; p = 0.022), more significant HDL-
decreasing (ATP2A1, p = 0.002; LAT, p = 0.010) and -increasing (RABEP2,
p = 0.013) effects were observed for other genes (Table S5.10).

Next, we assessed whether common SNPs in the 16p11.2 BP2-3 interval
± 50 kb were associated with traits affected by the deletion. We retrieved
287 association signals (p < 9 × 10-6) from the GWAS catalog (78) (Table
S5.11), including signals related to adiposity (n = 95), cognitive function
(n = 38), anemia (n = 17), serum lipid levels (n = 5), renal function (n =
4), diabetes (n = 3), physical activity (n = 2), and hepatic function (n = 2)
(Figure 5.12A). Other signals were related to traits not assessed by our
PheWAS, e.g., related to the reward system, immunity, autoimmunity, or
brain morphology, and represent interesting leads for future investigation.
About half of the reported signals mapped to ATXN2L (n = 85) and SH2B1
(n = 66), the two genes in the region under the strongest evolutionary
constraint according to the genome aggregation database (GnomAD;
probability of LoF intolerance [pLi] = 1; LoF observed over expected upper
bound fraction [LOEUF] < 0.23) (29). Focusing on the 95 adiposity-related
signals, 30 and 20 were reported to map to SH2B1 and ATP2A1/SH2B1,
respectively. However, the low recombination rate of the region prevents
accurate fine mapping of GWAS signals (Figure 5.12A).

To gain further resolution, we used transcriptome-wide Mendelian ran-
domization (TWMR) (173), a causal inference approach that aims at
identifying statistical causal links between changes in gene expression
levels and an outcome, here T2D risk (Figure 5.12B). We could evaluate
the causal impact of expression changes on T2D risk for six out of the
nine 16p11.2 BP2-3 genes that had at least one eQTL variant in blood
(154) (Figure 5.12C; Table S5.12). Among the four genes with a significant
TWMR effect (p ≤ 0.05/9 = 5.6 × 10-3), only SH2B1 had a directionally
concordant effect (𝛼 = -0.23; p = 8.1 × 10-6) with the one observed in
our CNV association study, i.e., increased SH2B1 expression decreased
T2D risk, which is compatible with the deletion reducing the gene’s
expression and increasing T2D risk. While blood offers the largest eQTL
datasets, this tissue is unlikely to mediate metabolic phenotypes. We
repeated this analysis using smaller-sized tissue-specific eQTLs from the
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Figure 5.12: Common variant associations and transcriptome-wide Mendelian randomization effects at the 16p11.2 BP2-3 region.
(A) Single-nucleotide polymorphism (SNP)-genome-wide association study (GWAS) signals retrieved from the GWAS Catalog for the
16p11.2 BP2-3 region ± 50 kb. The x-axis represents the genomic coordinates (GRCh37/hg19). Top: Left y-axis indicates the negative
logarithm of reported association p-values, with each signal colored according to a manually assigned broader trait category. Number of
signals per category is indicated (N). Right y-axis indicates the local recombination rate in cM/Mb and is represented as a blue line. The
dashed horizontal red line indicates the commonly accepted threshold for GWAS genome-wide significance at p ≤ 5 × 10-8. Bottom:
Genomic location and orientation of the recurrently deleted region and SH2B1 in red, along with other genes in the region in black.
(B) Schematic representation of the transcriptome-wide Mendelian randomization (TWMR) approach that was applied to six 16p11.2
BP2-3 genes with at least one expression quantitative trait locus (eQTL). First, eQTLGen data (154) was used to identify independent
cis-eQTLs (yellow star) for the assessed gene (blue box). Next, the effect of these variants on the expression of the gene was retrieved
(dotted arrow labeled “eQTL”). Next, the effect of the same variants on type 2 diabetes (T2D) risk was assessed based on T2D GWAS
summary statistics (509) (dotted arrow labeled “T2D GWAS”). These quantities were used to estimate the causal impact of one standard
deviation increase in the expression of the assessed gene on T2D risk (red arrow) based on inverse-weighted variance two-sample
Mendelian randomization. (C) TWMR estimates with standard error (x-axis) representing the causal effect of changes in expression of six
16p11.2 BP2-3 genes with at least one eQTL (y-axis) on T2D risk. Estimates are colored according to the p-value, with the threshold for
significance at p ≤ 0.05/9 = 5.6 × 10-3. Labels indicate the number of eQTLs used to estimate TWMR effects.

Genotype-Tissue Expression (GTEx) project (151) available for six out of
nine genes (Table S5.13). Results were consistent across tissues, with in-
creased expression of ATP2A1, NFATC2IP, SPNS1, and TUFM increasing
T2D risk, and increased expression of SH2B1 and ATXN2L decreasing
risk for T2D, even if for the latter the effect was only found in whole blood.
These results align with results obtained from the eQTLGen dataset and
highlight SH2B1 as the best candidate gene for the increased T2D risk
observed in deletion carriers, involving brain, adipose tissue, and muscle
as plausible effector tissues. One caveat is that all but one TWMR estimate
for SH2B1 relies on a single eQTL. Seeking further evidence that changes
in SH2B1 expression affect T2D, we performed colocalization analysis
(167) between the T2D GWAS signal and expression levels of the four
genes with a significant TWMR effect but could not find any evidence
of a shared causal variant (posterior probability of signal colocalization
[PP_H4] < 0.387) (Table S5.14).
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Discussion
We show that people who are heterozygous carriers of 16p11.2 BP2-3
deletions have a higher rate of obesity, which is typically earlier in
onset and associated with an accelerated form of metabolic disease
characterized by early and more difficult-to-treat T2D. Experimental
studies in animals will be needed to test whether disruption of SH2B1
and/or other genes in this locus cause accelerated chronic liver disease,
as suggested by our findings.

These findings have direct clinical relevance as current clinical guidelines
recommend that people with severe, early-onset obesity (≤ 5 years) should
be offered genetic testing (514). While targeted gene panels or whole-
exome sequencing are the most frequently offered investigations, they
are often blind to chromosomal rearrangements unless the diagnosis
pipeline uses depth-of-coverage maps to identify deleted exons and
CNVs. The latter approach, or alternatively array CGH (comparative
genomic hybridization) or MLPA (multiplex ligation-dependent probe
amplification), should be considered to detect 16p11.2 BP2-3 deletions
in children and young adults presenting with obesity and features
of insulin resistance and/or early or difficult-to-treat T2D. Deletions
involving 16p11.2 BP2-3 may be identified by a range of physicians who
organize genetic testing to investigate developmental delay and ASD.
Diagnosed individuals must be also reviewed by endocrinologists so that
weight loss therapies, insulin sensitizers, and other glucose-lowering
agents can be started at a young age to limit the impact of poor glycemic
control and prevent the complications of accelerated metabolic disease.

To examine potential mechanisms underlying the observed associations,
we investigated the individual contribution of the nine genes in the
16p11.2 BP2-3 interval to associated phenotypes. Among these, four genes
are associated with autosomal recessive disorders: ATP2A1 with Brody
myopathy (OMIM: 601003), TUFM with combined oxidative phosphoryla-
tion deficiency 4 (OMIM: 610678), and both CD19 and LAT with common
variable immunodeficiency 3 (OMIM: 613493) and immunodeficiency
52 (OMIM: 617514), respectively. Heterozygosity of the latter was also
proposed to drive increased head circumference in deletion carriers (280).
Furthermore, experiments in mice have shown that homozygous ablation
of Atxn2l causes lethal in utero brain lamination defects (515). The Interna-
tional Mouse Phenotyping Consortium found that heterozygous deletion
of Spns1 leads to increase in both total body fat and lean body mass
(516), and a recent study demonstrated the role of the encoded protein in
lysosomal lysophospholipid efflux (517), warranting further investigation
to determine whether the gene is involved in the reduced levels of phos-
phatidylcholines, phosphoglycerides, and sphingomyelins observed in
deletion carriers. As people carrying rare dominant mutations in SH2B1
and Sh2b1 knockout mice have obesity and insulin resistance (491–493,
496), SH2B1 appears to be the most likely candidate gene for the metabolic
phenotype observed in 16p11.2 BP2-3 deletion carriers. These results are
supported by our tissue-specific TWMR analysis, which suggests the
importance of SH2B1 expression in the brain, adipose tissue, and muscle
in mediating T2D susceptibility. However, it remains unclear whether
epistatic interactions resulting from the deletion of multiple genes could
contribute to phenotypes unique to 16p11.2 BP2-3 deletion carriers.
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Our clinical description of a large cohort of adult 16p11.2 BP2-3 dele-
tion carriers indicates phenotypes that overlap with previous reports of
people with SH2B1 deficiency. For instance, leptin couples changes in
weight to changes in blood pressure so that mice and humans lacking
leptin or its receptor have low blood pressures, despite severe obesity
(518), in line with the reduced diastolic blood pressure seen in deletion
carriers compared with BMI-matched non-carriers. Furthermore, stud-
ies in mice and humans have suggested that leptin stimulates hepatic
triglyceride export via the brain-vagus nerve-liver axis (519), which may
explain the increased levels of hepatic biomarkers and lower lipid levels
seen in deletion carriers. The lack of reduction of triglyceride levels
in deletion carriers may be explained by the poorer glycemic control
seen in deletion carriers. In the brain, SH2B1 mediates BDNF signaling
(520). In humans, loss of function of BDNF and its receptor TrkB, as well
as SH2B1 deficiency, have been associated with speech and language
delay, behavioral abnormalities, and memory impairment (494, 520, 521),
features overlapping the behavioral and cognitive phenotypes seen in
deletion carriers. Finally, SH2B1 acts as a negative regulator of erythro-
poietin receptor-mediated signaling (522), which may in part explain the
increased blood count values seen in deletion carriers. These findings
require further investigation to delineate the underlying mechanisms.

Our study has several limitations. First, population-based cohorts suffer
from ascertainment bias as individuals with a high disease burden,
such as 16p.11.2 BP2-3 deletion carriers, are less likely to volunteer for
research studies. This decreases the case number of an already rare genetic
alteration, limiting the statistical power to dissect the health consequences
of the 16p11.2 BP2-3 deletion. Power is further limited as carriers present in
the cohort have milder clinical phenotypes. A second limitation is the lack
of advanced clinical measurements of insulin sensitivity, or the inability
to recall individuals based on their genotype to perform additional
investigations (e.g., hyperinsulinemic-euglycemic clamps), which would
allow a more detailed understanding of the metabolic consequences
of the deletion. Finally, our attempt at pinpointing individual genes
responsible for the phenotypic associations is limited by several factors,
including i) the lack of sufficiently variable CNV breakpoints in the region
(208), ii) the low frequency of pLoF variants in evolutionary constrained
genes in the region, iii) the low recombination rate that hinders fine-
mapping of common variant association signals, and iv) the lack of
sufficient eQTLs to robustly instrument TWMR analyses. The latter is
particularly relevant as it makes our analysis susceptible to violation of
MR assumptions. Indeed, while colocalization did not unambiguously
favor any scenario, highest support was given to H3 (PP_H3: 0.60–0.76).
This possibly indicates that different variants underlie the change in gene
expression and T2D risk, violating the second MR assumption through
linkage-disequilibrium-induced horizontal pleiotropy. However, the high
probability of H3 may only reflect that there are multiple underlying
signals for both traits, violating the assumption of the colocalization
method, hence it is inconclusive regarding the MR assumption violation.
Although there are substantial experimental data to support the role
of SH2B1 in mediating the phenotypes of obesity, T2D, and fatty liver
disease, further studies are needed to examine the potential phenotypic
contribution of other coding genes and noncoding RNAs affected by the
16p11.2 BP2-3 deletion. In the future, availability of large, longitudinal
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clinical and population cohorts with detailed phenotypic data should
mitigate these hurdles.

In conclusion, 16p11.2 BP2-3 deletion carriers have a subtype of obesity
that is characterized by early onset of metabolic complications including
T2D. People with this disorder should be considered for early interven-
tion with weight-loss therapies. The results of ongoing phase 3 clinical
trials of Setmelanotide, an MC4R agonist in genetic obesity syndromes
(ClinicalTrials.gov: NCT05093634) will provide critical information as to
whether people with pathogenic mutations in SH2B1 and with 16p11.2
BP2-3 deletions may benefit from treatment with drugs that improve
signaling through the leptin-melanocortin pathway (488). Indeed, if the
clinical trial demonstrates that 16p11.2 BP2-3 deletion carriers lose a sig-
nificant amount of weight, this will provide orthogonal evidence of the
contribution of SH2B1 to the obesity of deletion carriers, as people with
common obesity are unlikely to respond to MC4R agonism. Collectively,
these findings highlight the growing importance of mechanism-based
approaches to the treatment of patients with subtypes of severe obesity.
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E pluribus unum... or Ex uno multis?

This chapter describes a research article entitled "Disentangling mechanisms
behind the pleiotropic effects of proximal 16p11.2 CNVs", as well as a review
entitled "The pleiotropic spectrum of proximal 16p11.2 CNVs". The research
article is available as a preprint on medRxiv and both manuscripts have
been jointly submitted to the American Journal of Human Genetics, where
they are currently under review.

In the studies presented in Chapters 2 and 3, 16p11.2 BP4-5 CNVs were
by far the most pleiotropic rearrangements, totaling over 40 distinct
associations. Yet, the sheer volume of findings prevented us from duly
discussing these relations, prompting us to write a review that integrates
evidence from both clinical and population cohorts to describe the full
phenotypic spectrum associated with 16p11.2 BP4-5 rearrangements.
Writing this review, one question kept resurfacing: Is the 16p11.2 BP4-5
pleiotropy genuine or simply a reflection of secondary consequences of
the CNV’s impact on a few mediatory traits? Attempting to answer that
latter question was the starting point for the companion article presented
in this chapter.

Figure 6.1: Preprint Auwerx et al., 2024.

Data & code availability:

➞ GitHub

6.1 Aims

This work aimed to shed light on the pleiotropy of 16p11.2 BP4-5 CNVs,
unravelled in the previous chaoters. To achieve this, we:

1. Perform a homogenous re-analysis of the association between
16p11.2 BP4-5 CNVs and 117 complex traits and diseases in the
UKBB according to four dosage models.

2. Evaluate the role of adiposity, height, cognition, and socio-economic
status as mediators of the 16p11.2 BP4-5 pleiotropy.

3. Review over 950 publications in PubMed matching the search
term "16p11" and integrate literature findings to the results of our
UKBB phenome-wide association scan (PheWAS) to provide a
comprehensive overview of the clinical alterations observed in
16p11.2 BP4-5 CNV carriers, with a focus on physiological systems
for which the role of the CNV is less appreciated.

4. Provide ways forward to better understand pleiotropy and pheno-
typic heterogeneity by focusing on diversity.

6.2 Key Findings

PheWAS in the UKBB found that 46 out of 117 tested phenotypes were
associated with the 16p11.2 BP4-5 CNV status. This reaffirms the ex-

https://www.medrxiv.org/content/10.1101/2024.03.20.24304613v1
https://github.com/cauwerx/16p11.2_BP4-5_pleiotropy
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treme pleiotropy of these rearrangements, which extends far beyond
neuropsychiatric conditions and obesity. These results are compatible
with a model wherein the region’s deletion is more pathogenic than the
duplication, even though different dosage-to-phenotype relations apply
for different traits, making this conclusion phenotype-dependent.

Assessing the role of multiple potential mediators we estimated that the
CNV has a genuine, direct pleiotropic effect on numerous physiological
functions, including the musculoskeletal, adipose, hepatic, hematologic,
renal, and pulmonary/immune systems. What remains to be determined
is whether this pleiotropy is independent at the molecular level, i.e.,
which specific gene(s) is/are linked to which phenotype.

Our analysis of 16p11.2 BP4-5 CNV frequency across various study
types revealed the impact of ascertainment on prevalence estimates.
Yet, a recurring theme is the convergence of findings from clinical and
population cohorts onto similar physiological systems but with variable
degrees of severity, in line with a model of variable expressivity. This
stresses the importance of incorporating data from both sources to gain
a deeper understanding of the true phenotypic expression of 16p11.2
BP4-5 CNVs. Population cohorts are particularly well-suited to uncover
adult-onset phenotypic alterations, in often more mildly affected carriers.
We found this to be especially true for metabolic phenotypes, for which
detailed analysis of disease onset and evolution is often lacking in
clinical studies. We show that many associations with metabolic traits
represent secondary consequences of early-onset obesity, emphasizing
the importance of weight management in deletion carriers to avoid
adult-onset obesity-related comorbidities.

Through its comprehensiveness, our review highlights open questions
and areas requiring further research. We propose several approaches to
address these knowledge gaps and bring forward the idea that diver-
sity – in terms of data source, ascertainment strategy, and analytic and
experimental approaches – will be key to characterizing and understand-
ing the pleiotropy and variable expressivity of the region. This in turn
might open the door for the development of treatment and prevention
strategies.

6.3 Author Contributions

The idea of writing a review came from Alexandre Reymond and myself,
based on which I outlined a synopsis. I created the illustrations and
wrote the first draft of the review, except for the autism and experimental
approaches sections, which were written by Alexandre Reymond. Zoltán
Kutalik provided critical feedback.

The research study was conceptualized by Alexandre Reymond, Zoltán
Kutalik, and myself. I carried out all computations, except for the
Mendelian randomization analyses that were performed by Samuel
Moix, under the supervision of Zoltán Kutalik. Alexandre Reymond,
Zoltán Kutalik, and I interpreted the results. I drafted the manuscript
and generated all figures, with critical revisions made by Alexandre
Reymond and Zoltán Kutalik.



6.4 Disentangling mechanisms behind the pleiotropic effects of proximal 16p11.2 CNVs 175

1: These estimates are derived from the
review presented later in this Chapter, in
section 6.5.

6.4 Disentangling mechanisms behind the
pleiotropic effects of proximal 16p11.2 CNVs
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Abstract
Whereas 16p11.2 BP4-5 copy-number variants (CNVs) represent one of
the most pleiotropic etiologies of genomic syndromes in both clinical
and population cohorts, the mechanisms leading to such pleiotropy
remain understudied. Identifying 73 deletion and 89 duplication carriers
among unrelated white British UK Biobank participants, we performed
a phenome-wide association study between the region’s copy number
and 117 complex traits and diseases, mimicking four dosage models.
Forty-six phenotypes (39%) were affected by 16p11.2 BP4-5 CNVs, with
the deletion-only, mirror, U-shape, and duplication-only models being
the best fit for thirty, ten, four, and two phenotypes, respectively, aligning
with the stronger deleteriousness of the deletion. Upon individually
adjusting CNV effects for either body mass index (BMI), height, cog-
nitive function, or socio-economic status as potential mediators, we
found that sixteen testable deletion-driven associations (61%) – primarily
with cardiovascular and metabolic traits – were BMI-dependent, with
other mediators playing a more subtle role. Bidirectional Mendelian
randomization supported that 13 out of these 16 associations (81%) were
secondary consequences of the CNV’s impact on BMI. For the 22 traits that
remained significantly associated upon individual adjustment for media-
tors, matched-control analyses found that eleven phenotypes, including
musculoskeletal traits, liver enzymes, fluid intelligence, platelet count,
pulmonary capacity, pneumonia, and acute kidney injury, remained
associated under strict Bonferroni correction, with eight additional nom-
inally significant associations. These results paint a complex picture of
16p11.2 BP4-5’s pleiotropic pattern that involves direct effects on multiple
physiological systems and indirect comorbidities consequential to the
CNV’s impact on BMI and cognition, acting through trait-specific dosage
mechanisms.

Introduction
Genomic disorders are caused by recurrent genomic rearrangements that
lead to the gain (duplication) or loss (deletion) of large, multi-kilobase pair
(kb) DNA fragments. The proximal 16p11.2 rearrangement spans a region
of ∼600 kb between recurrent breakpoints (BP) 4 and 5 and includes 27
unique protein-coding genes. Copy-number variants (CNVs) of the region
represent one of the most common genomic disorders, with population
prevalence estimates of 1 in 3,000 and 1 in 2,800 for the deletion (MIM:
611913) and duplication (MIM: 614671), respectively1. Prevalence in clinical
cohorts is about eight-fold higher, with a particularly strong enrichment
in individuals ascertained for intellectual disability and developmental
delay (335, 523, 524) or autism spectrum disorder (386, 422, 525, 526),
the first phenotypes associated with the CNV. Other hallmark features
include a negative dosage effect on body mass index (BMI) (325, 326, 426)
and head circumference (421, 425), a predisposition for seizure disorders
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(389, 421, 523, 524), and a duplication-specific increased susceptibility
to schizophrenia and other psychiatric conditions (387, 423, 425, 500,
527–529). The recent establishment of large biobanks coupling genetic
information to phenotypic data such as physical measurements, blood
biomarkers, and electronic health records, has allowed to study the
phenotypic expression of 16p11.2 BP4-5 rearrangements in individuals
that are typically older and less severely affected than those recruited in
pediatric clinical cohorts (82, 208, 229, 292–295, 305, 306, 402, 530). Results
of these studies often converge onto similar pathophysiological processes
than those highlighted by clinical studies but also report associations
with biomarkers and common diseases that are typically overlooked or
not assessed in clinical cohorts.

If the pleiotropic nature of 16p11.2 BP4-5 rearrangements is now well-
established, the mechanisms through which CNVs in the region affect
such diversity of traits remain poorly studied. Under a model of direct (or
horizontal) pleiotropy, the CNV causally impacts associated phenotypes
through independent mechanisms (Figure 6.2A). Conversely, indirect (or
vertical) pleiotropy implies that the CNV causally impacts a mediatory
trait, which in turn causally impacts other traits that will appear as
linked with the CNV in association studies (Figure 6.2B). These models
are not mutually exclusive, and a fraction of the associations might
result from direct effects while others might be secondary consequences.
This question is particularly relevant given the BMI-modulating role
of 16p11.2 BP4-5 CNVs (208, 292, 294, 295, 325, 326, 426). Indeed, BMI
represents a strong risk factor for other diseases and knowledge about
which associations are consequential to altered BMI could therefore
inform epidemiology of associated comorbidities and clinical practice.
To address this knowledge gap, we re-analyzed two recent UK Biobank
(UKBB) studies that assessed the impact of 16p11.2 BP4-5 rearrangements
on 117 complex traits and common diseases (82, 208) with the aims to
i) determine the most likely dosage mechanism for different traits and
ii) estimate the fraction and nature of associations that are mediated by
primary changes in anthropometric measurements, cognitive ability, and
socio-economic status (Figure 6.2C).

Materials and methods
Study material

Software versions:
▶ MR pipeline: R v4.2.1.
▶ TwoSampleMR v0.5.7 (531).
▶ PLINK v1.9 (88).
▶ Statistical analyses: R v4.3.1.
▶ Graphs: R v4.3.1.

Cohort description & sample selection
Analyses were carried out in the UKBB, a volunteer-based UK population
cohort of about half a million individuals (54% females) aged 40-69 years
at recruitment, who signed a broad informed consent form (61). Available
data include microarray genotype data acquired in GRCh37/hg19 from
two similar arrays, as well as rich phenotypic data, including anthropo-
metric measurements, vital signs, blood biomarker levels, life history and
lifestyle questionnaire data, hospital-based International Classification
of Diseases, 10th Revision (ICD-10) codes (up to September 2021), and
self-reported conditions. Analyses conducted in this study focus on
331,522 unrelated individuals from the “white British” UKBB subset
(54% females) that were filtered to exclude samples with abnormal CNV
profiles and/or a report of blood malignancy. Filtering criteria to obtain
this set are described elsewhere (82).
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Figure 6.2: Study workflow.
(A-B) Schematic representation of pleiotropy mechanisms. For illustration, the 16p11.2 BP4-5 deletion is depicted but the same concept
applies to the duplication. (A) Direct (horizontal) pleiotropy: The CNV causally affects multiple traits – here Trait1, Trait2, and Trait3 –
through independent mechanisms. (B) Indirect (vertical) pleiotropy: The CNV causally impacts Trait2, which in turn causally affects
Trait1 and Trait3. The impact of the deletion on Trait1 and Trait3 is thus indirect and mediated by a shared mechanism, i.e., Trait2. (C)
Overview of the study. The first two analyses aim at detecting and characterizing the pleiotropy of 16p11.2 BP4-5 CNVs through four
distinct dosage models that estimate the effect of the CNV on the trait (𝑌) either (1) without or (2) with adjustment for one of four
covariates that could potentially mediate the CNV-phenotype association. The second part of the study aims at understanding the
mechanisms through which pleiotropy arises. (3) Bidirectional Mendelian randomization was used to investigate the causal relationship
between trait-mediator pairs for which the significance of the CNV effect on the trait was affected by adjustment for the mediator.
Support for mediation was claimed when the forward MR effect of the mediator on the trait (𝛼𝑀→𝑇 ) is significant and larger than the
reverse effect of the trait on the mediator (𝛼𝑇→𝑀 ), providing the latter is significant. (4) For traits that showed a significant association
with the CNV regardless of covariate adjustment, we performed a matched-control analysis that allowed us to adjust for all possible
mediators simultaneously and detect genuine, direct pleiotropic associations. PheWAS = phenome-wide association study.

CNV carrier identification
CNV calls from a previous study were used (208). Briefly, CNV calling
was done based on the UKBB microarray data using standard PennCNV
v1.0.5 settings (203). Each call was attributed a quality score ranging from
−1 (likely deletion) to 1 (likely duplication) reflecting the probability
for the CNV to be a consensus call across three algorithms and thus a
true positive (206). 16p11.2 BP4-5 deletion and duplication carriers were
identified as carrying a high-confidence CNV call (quality score < -0.5 for
deletions; quality score > 0.5 for duplications) on chromosome 16 with
start and end site within 29.4-29.8 Mb and 30.05-30.4 Mb, respectively.
Individuals with a low-quality 16p11.2 BP4-5 CNV were excluded from
copy-neutral controls. CNV genotype vectors were then encoded to allow
the fitting of regression models according to four dosage mechanisms
(82).

Phenotype selection
We analyzed the same 117 phenotypes as defined in previous studies
(82, 208). This includes 57 quantitative traits that were inverse normal
transformed before being corrected for sex (except for sex-specific traits),
age (UKBB field identifier #21003), age2, genotyping batch, and principal
components 1-40 (208). We further include 60 common diseases based
on ICD-10 clinical diagnoses using a case-control definition procedure
that excludes from controls individuals with a condition related to the
one under investigation (82).
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Mediator selection
We tested the role of four factors that could potentially mediate associa-
tions between 16p11.2 BP4-5 CNVs and the assessed phenotypes:

1. Body mass index (BMI): average over available instances of BMI
(#21001).

2. Educational attainment (EA): age at which full-time education
was completed (#845). Values matching “prefer not to answer”,
“never went to school”, and “do not know” were set as missing,
and average over available instances was calculated. Individuals
for which average age at which full-time education was completed
was below 14 years or over 19 years were set to 14 years and 19
years, respectively. Individuals reporting a “college or university
degree” in their qualifications (#6138) were set to 19 years.

3. Townsend deprivation index at recruitment (TDI; #22189).
4. Height: average over available instances of standing height (#50).

GWAS summary statistics
Mendelian randomization (MR) studies rely on publicly available genome-
wide association studies (GWAS) summary statistics for both sexes and
individuals of European ancestry. For mediators, summary statistics from
Pan-UK Biobank (manifest updated 01/03/2023) were used for BMI, TDI,
and height (532). For EA, summary statistics from a large meta-analysis
by Okbay et al. were used (excluding 23andMe data) (533). For other
phenotypes, summary statistics from the Neale group (released 07/2018)
were used. These summary statistics were favored over those of large
disease-specific consortia as summary statistics for binary traits were
calculated through linear regression, allowing comparison of forward
and reverse effects. For diseases, we used the closest possible match to
our phenotype definition, i.e., phenotype code: E10 for “T1D” (type 1
diabetes); G47 for “sleep” (sleep apnea); I10 for “HTN_essential” (es-
sential hypertension); I35 for “valves” (cardiac valve disorders); I44 for
“conduction” (cardiac conduction disorders); J45 for “asthma”; M19 for
“OA” (arthrosis); N18 for “CKD” (chronic kidney disease); 20002_1473
for “lipid” (lipidemias & lipoprotein disorders). Summary statistics for
autosomal chromosomes were harmonized to the UK10K reference panel
(534). After excluding palindromic single-nucleotide polymorphisms
(SNPs) and adjusting strand-flipped SNPs, effect sizes were standardized
to represent the square root of the explained variance.

16p11.2 BP4-5 association studies
Phenome-wide association study
For the phenome-wide association study (PheWAS), regression analysis
was performed to estimate the effect of the CNV genotype – encoded
according to either of the four models – and the 117 selected phenotypes.
For quantitative traits, linear regressions (lm() in R) were used and 95%
confidence intervals (CI) were calculated as beta ± 1.96 · standard error
(SE). For binary traits, Firth’s bias-reduced penalized-likelihood logistic
regression was used (logistf(plconf = 2, maxit = 100, maxstep =

10) from the logistf package v1.26.0 in R) to account for the fact that
both CNV carriers and disease cases are rare. The same function also
produces estimates for the 95% CIs. As disease diagnoses were defined
as binary variables and could not be adjusted beforehand, sex (except for
sex-specific traits), age, genotyping array, and principal components 1-40
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2: t-statistic: 𝑡 =
𝛽−𝛽𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑√
𝑆𝐸2+𝑆𝐸2

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

where SEs are the standard errors of the
effects

were included as covariates. For each trait, the dosage model yielding the
lowest p-value for the CNV effect was retained and effects were defined
as strictly significant under Bonferroni correction criteria (p ≤ 0.05/117 =
4.3 × 10-4).

Covariate analysis
For all phenotype-mediator pairs, including those involving pheno-
types that did not significantly associate with the CNV status in our
original PheWAS, we estimated the Pearson correlation (cor(use =

"pairwise.complete.obs") in R), as well as the effect of the mediator
on the phenotype in a linear/Firth regression model without covariates,
as previously described. For pairs with Pearson correlation < 0.5 and
effect of the mediator on the trait p ≤ 0.05/117 = 4.3 × 10-4, we estimated
the effect of the CNV carrier status encoded according to the best PheWAS
model. Regressions were implemented as previously described, adding
the mediator as an additional covariate. Adjusted effects were defined
as strictly significant when meeting Bonferroni correction criteria (p ≤
0.05/117 = 4.3 × 10-4). We additionally compared effect estimates with
(𝛽𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑) and without (𝛽) mediator adjustment based on a t-statistic2.
Two-sided p-values were calculated (2*pnorm(-abs(t), mean = 0, sd

= 1) in R). The difference in correlation between BMI-dependent and
BMI-independent traits with BMI was assessed with a two-sided t-test.

Mendelian randomization
GWAS summary statistics were used to conduct bidirectional MR accord-
ing to a previously published pipeline (175, 535) for 31 mediator-trait
pairs for which the CNV-trait association either gained or lost signifi-
cance upon adjusting for that mediator. Concretely, the forward effect
of the mediator (exposure) on the trait (outcome) and the reverse ef-
fect of the trait (exposure) on the mediator (outcome) were estimated.
Harmonized SNPs significantly (p < 5 × 10-8) associating with the ex-
posure were clumped with PLINK v1.9 (p1 = 0.0001, p2 = 0.01, kb

= 250, and r2 = 0.01) and retained as instrumental variables. Instru-
mental variables mapping to the extended HLA region (chr6:25-37 Mb;
GRCh37/hg19) were excluded, as well as those with a difference in
allele frequency (≥ 0.05) between the outcome and exposure summary
statistic. Steiger filtering was applied (Z ≤ -1.96) to ensure that the effect
of the selected variants on the exposure was stronger than their effect
on the outcome. Bidirectional inverse variance weighted MR analyses
were carried out with the TwoSampleMR R package when at least two
instrumental variables were available. MR effects were called significant
under Bonferroni correction criteria, when p ≤ 0.05/62 = 8.1 × 10-4, to
account for the 31 bidirectional tests performed.

Matched-control analysis
For each CNV carrier, we identified all copy-neutral unrelated individuals
from the “white British” subset of UKBB participants that were matching
based on sex (identical), age (± 2.5 years), BMI (± 2.5 kg/m2), TDI (±
2), average household income before tax (#738) averaged over instances
(identical category), and EA (± 1 year). Fifty-eight deletion and sixty-
one duplication carriers had no missing data and qualified for the
matching procedure. The number of identified matching controls per
carrier ranged from 1 to 918 and 12 to 1,590 for deletion and duplication
carriers, respectively, with 49 deletion and 60 duplication carriers having
at least 25 matching controls. When more than 25 matched controls were
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3: Prevalence standard error:

𝑆𝐸 =

√
𝑞·(1−𝑞)
𝑛

where 𝑞 is the disease prevalence,
and 𝑛 the sample size.

available, the ones used for the analysis were selected randomly (sample_-
n() in R), without replacement. For quantitative traits, we compared
mean phenotypic values between deletion and duplication carriers and
the respective control groups through a two-sided t-test. For binary traits,
disease prevalence was compared between the same groups based on
a two-sided Fisher test3. Sample sizes vary between phenotypes due to
missing data. We define significant associations based on a Bonferroni
correction that accounts for the 22 traits of interest in this analysis (p ≤
0.05/22 = 2.3 × 10-3), i.e., phenotypes that remained associated with the
CNV under strict Bonferroni correction when adjusting for BMI, height,
EA, or TDI individually. We report all nominally significant (p < 0.05)
associations on figures.

In a related analysis aiming at assessing the consequences of losing
samples for the matched-control analysis, we used the same statistical
framework to compare mean phenotypic value and disease prevalence
between deletion and duplication carriers that were included in the
matched-control analysis versus those that were not due to missing data
or lack of sufficient controls.

Results
16p11.2 BP4-5 phenome-wide association study
Using previously published high confidence CNV calls for 331,522
unrelated, white British UKBB participants (82, 208), we identified 73
and 89 individuals with a 16p11.2 BP4-5 (start: chr16:29.40-29.80 Mb;
end: chr16:30.05-30.40 Mb) deletion and duplication, respectively. CNV
genotypes were encoded to allow testing of four dosage mechanisms,
namely a mirror model assessing the additive impact of each additional
copy, a U-shape model testing the same-direction impact of any deviation
from the copy-neutral state, and duplication- and deletion-only models
that assess the separate impact of duplications and deletions, respectively.
Next, we evaluated the association between an individual’s CNV carrier
status and 117 phenotypes – that comprise 57 quantitative variables
including anthropometric measurements, vital signs, biomarker levels,
life history events, and 60 common diseases – while correcting for sex,
age, age2, genotyping array, and population stratification (Figure 6.3;
Table S6.1).

Overall, 46 (39%) traits, including 16 diseases, were associated with the
CNV carrier status under at least one association model (Bonferroni
correction: p ≤ 0.05/117 = 4.3 × 10-4; Table 6.1), with an additional 32
(27%) showing a trend for association (nominal significance: p ≤ 0.05).
Specifically, 10 and 38 traits showed a significant association through
the duplication-only and deletion-only models, respectively, indicating a
stronger propensity for pleiotropy and deleteriousness of the deletion,
compared to the duplication. Exceptions are recurrent depression and
bipolar disorder, the two only traits for which the duplication-only model
yielded the most significant result. This is in line with the duplication
representing a strong susceptibility factor for psychiatric conditions (387,
423, 425, 528, 529). Similarly, the risk for schizophrenia was strongly
increased by the duplication, even if our analysis finds that the relation
is better described by a U-shape model wherein the deletion also tends
to increase schizophrenia risk. Surprisingly, the CNV did not associate
with neuroticism score, despite the high genetic correlation between
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neuroticism and psychiatric conditions (536). Three other traits, namely
fluid intelligence, vitamin D levels, and waist-to-hip ratio adjusted for
BMI (WHRadjBMI), were also most significantly associated through a
U-shape effect, while grip strength was decreased in both deletion and
duplication carriers, but more strongly so in the former. Conversely,
ten traits were most significantly associated through a mirror model,
including multiple hepatic biomarkers, platelet count, and traits related
to sexual characteristics such as puberty timing and sex hormone binding
globulin (SHBG) levels. Finally, the deletion-only model was the most
significant fit for 30 phenotypes, including mostly pulmonary, cardiovas-
cular, metabolic, and renal traits.

duplication-only effectdeletion-only effect

top model: mirror
top model: U-shape

significant effects
non-significant effects

/
/

Figure 6.3: 16p11.2 BP4-5 phenome-wide association study.
Effect sizes (beta; x-axis) with 95% confidence interval (CI) of the 16p11.2 BP4-5 deletion (circle) and duplication (square) on 117 complex
traits and diseases, ordered by physiological system (y-axis). Effect sizes are in standard deviation units of the outcome (quantitative
traits) or logarithms of the odds ratio of a logistic regression (disease traits). Deletion- and duplication-only effects that are significant
under Bonferroni correction (p ≤ 0.05/117 = 4.3 × 10-4) are in blue and red, respectively, while non-significant effects are in gray. If
the most significant among the four tested association models was the mirror or U-shape model, it is denoted with an “M” or “U”,
respectively (right).

Covariate analysis
Having characterized the pleiotropic nature of 16p11.2 BP4-5 rearrange-
ments, we next sought to establish whether some of these associations
might be secondary to the CNV affecting core mediatory phenotypes,
i.e., reflect indirect pleiotropy (Figure 6.2). We focus on four traits that
proxy hallmark features of the 16p11.2 BP4-5 rearrangement and have the
potential to influence other associated traits: i) BMI, which characterizes
the negative correlation between dosage and adiposity (208, 295, 325, 326,
426, 500) and represents a major risk factor for many common diseases;
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Table 6.1: Traits significantly associated with 16p11.2 BP4-5 CNVs.
Traits that are significantly (p ≤ 0.05/117 = 4.3 × 10-4) associated with 16p11.2 BP4-5 CNVs through at least one of the four assessed
association models, following the ordering of Figure 6.3. (A) For quantitative traits, the mean value of the traits in copy-neutral individuals
(controls) is provided along with the mean value and standard error (SE) among duplication and deletion carriers. The number of
duplication and deletion carriers with available data is specified as N. Values are given in the indicated unit. (B) For binary disease traits,
prevalence in percentage among copy-neutral individuals is provided along with prevalence and SE among duplication and deletion
carriers. Diseased (case) and total (N) number of duplication and deletion carriers are indicated.

CNV status Controls Deletion carriers Duplication carriers
A. Quantitative traits

unit mean N mean ± SE N mean ± SE
Fluid intelligence score points 6.24 26 5.15 ± 0.39 32 4.05 ± 0.37
Platelet count 109 cells/L 252.8 70 286.4 ± 7.5 85 219.4 ± 5.7
Neutrophil count 109 cells/L 4.25 70 5.00 ± 0.15 85 4.14 ± 0.15
Heel bone mineral density g/cm2 0.54 29 0.66 ± 0.04 47 0.46 ± 0.01
Height cm 168.8 73 163.3 ± 1.0 89 171.1 ± 1.1
Insulin-like growth factor 1 (IGF-1) nmol/L 21.4 71 18.9 ± 0.7 88 21.4 ± 0.6
Hand grip strength kg 30.7 73 26.7 ± 1.0 89 28.6 ± 1.2
Vitamin D nmol/L 49.8 68 36.0 ± 2.1 86 44.7 ± 2.2
Forced vital capacity (FVC) L 3.63 64 2.94 ± 0.11 72 3.64 ± 0.12
Pulse rate bpm 69.3 67 74.3 ± 1.5 81 71.3 ± 1.3
Body mass index (BMI) kg/m2 27.4 72 35.0 ± 0.9 89 26.3 ± 0.4
Whole body fat mass kg 24.9 67 35.5 ± 1.6 85 23.2 ± 0.9
Glycated hemoglobin (HbA1c) mmol/mol 36.0 70 43.3 ± 1.8 85 35.7 ± 0.5
Waist-to-hip ratio (WHR) - 0.87 72 0.97 ± 0.01 89 0.87 ± 0.01
C-reactive protein (CRP) m/L 2.57 71 5.50 ± 0.76 88 2.03 ± 0.23
Weight kg 78.3 72 93.3 ± 2.7 89 77.1 ± 1.4
Triglycerides mmol/L 1.75 71 2.30 ± 0.14 87 1.60 ± 0.09
HDL cholesterol mmol/L 1.46 61 1.26 ± 0.04 79 1.45 ± 0.04
WHR adjusted for BMI - 0.00 71 0.03 ± 0.01 89 0.01 ± 0.01
Gamma-glutamyltransferase (GGT) U/L 37.3 71 64.1 ± 11.3 87 27.7 ± 2.8
Alkaline phosphatase (ALP) U/L 83.6 71 99.8 ± 3.4 88 79.8 ± 2.6
Aspartate aminotransferase (AST) U/L 26.2 70 35.8 ± 6.7 87 23.4 ± 0.7
Alanine aminotransferase (ALT) U/L 23.5 71 31.2 ± 2.1 88 20.8 ± 1.3
Albumin g/L 45.3 61 44.0 ± 0.4 79 45.6 ± 0.3
Cystatin C mg/L 0.91 71 1.04 ± 0.02 88 0.93 ± 0.02
Creatinine mmol/L 72.4 71 68.8 ± 1.6 87 76.9 ± 2.0
Urate mmol/L 309.4 70 355.2 ± 8.1 88 298.8 ± 9.1
Age at menarche years 12.9 27 11.7 ± 0.3 45 14.0 ± 0.4
Relative age at first facial hair (group 1-3) - 2.06 41 1.83 ± 0.06 38 2.26 ± 0.08
Sex hormone binding globulin (SHBG) nmol/L 51.9 61 38.4 ± 2.4 77 58.8 ± 3.4
B. Disease Prevalence

prevalence case/N prevalence ± SE case/N prevalence ± SE
Sleep apnea 2.1% 9/60 15.0 ± 4.6% 0/70 0.0 ± 0.0%
Recurrent depressive disorder 0.3% 0/49 0.0 ± 0.0% 3/68 4.4 ± 2.5%
Bipolar affective disorder 0.4% 1/50 2.0 ± 2.0% 6/71 8.5 ± 3.3%
Schizophrenia 0.2% 2/51 3.9 ± 2.7% 3/68 4.4 ± 2.5%
Other anemias 5.5% 13/67 19.4 ± 4.8% 6/84 7.1 ± 2.8%
Arthrosis (OA) 21.1% 23/62 37.1 ± 6.1% 15/74 20.3 ± 4.7%
Pneumonia 5.9% 19/61 31.1 ± 5.9% 2/83 2.4 ± 1.7%
Chronic obstructive pulmonary disease (COPD) 4.9% 17/55 30.9 ± 6.2% 4/76 5.3 ± 2.6%
Asthma 12.1% 19/55 34.5 ± 6.4% 9/69 13.0 ± 4.1%
Cardiac valve disorders 5.0% 7/33 21.2 ± 7.1% 3/54 5.6 ± 3.1%
Cardiac conduction disorders 19.5% 18/44 40.9 ± 7.4% 13/64 20.3 ± 5%
Essential hypertension (HTN) 35.3% 36/62 58.1 ± 6.3% 23/74 31.1 ± 5.4%
Type 1 diabetes (T1D) 1.0% 4/42 9.5 ± 4.5% 1/75 1.3 ± 1.3%
Lipidemias & lipoprotein disorders 22.0% 23/48 47.9 ± 7.2% 11/57 19.3 ± 5.2%
Acute kidney injury (AKI) 4.7% 20/65 30.8 ± 5.7% 7/71 9.9 ± 3.5%
Chronic kidney disease (CKD) 4.4% 9/54 16.7 ± 5.1% 6/70 8.6 ± 3.3%
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ii) Height, which is reduced in deletion carriers (208, 295, 500) and
can influence musculoskeletal phenotypes; iii) Educational attainment
(EA) proxied by age at which an individual completed their education.
This variable offers the advantage of being available for the near totality
of the UKBB cohort while strongly correlating with fluid intelligence
score that is limited to about half of its participants (Pearson correlation
= 0.42), thereby reflecting the decreased cognitive function observed
in both duplication and deletion carriers (208, 423, 500, 523, 524); and
iv) Townsend deprivation index (TDI) as a measure of SES, which we
expect to be reduced as a corollary of the health burden imposed by the
CNV (292). Of note, while TDI specifically aims at assessing SES, BMI,
height, and EA also partly capture socio-economic status (537). For the
association between CNV and phenotype to be mediated by one of these
factors, the mediator needs to significantly (p ≤ 0.05/117 = 4.3 × 10-4)
associate with the tested phenotype. Furthermore, phenotypes cannot be
too correlated with the mediator (Pearson’s correlation > 0.5), as in such
situations distinguishing mediator and outcome would be particularly
difficult. For all mediator-trait pairs that fulfilled these criteria, we tested
the impact of adjusting the CNV-trait effect for mediatory factors by
including them individually in the regression model yielding the most
significant CNV-trait effect (Figure 6.4A; Table S6.2).

Upon adjustment for BMI, TDI, EA, and height, nineteen, four, four,
and zero CNV-trait associations fell below the significance cutoff (p ≤
0.05/117 = 4.3× 10-4), respectively. Comparing effect sizes, only the mirror
association with sleep apnea was nominally significantly reduced upon
adjustment for BMI (p = 0.04). Remarkably, the association with basal
metabolic rate (deletion-only) became significant upon adjustment for
height, while the one with diastolic blood pressure (mirror), eosinophil
count (deletion-only), and lymphocyte count (deletion-only) became so
upon adjustment for BMI (Figure 6.4B), even though the change in effect
size were not significant (p > 0.45). The impact of adjusting for BMI was
most striking on deletion-driven associations, for which 61% (16/26) of
the associations fell below the significance threshold (Figure 6.4C). In line
with expectations, BMI-dependent traits tended to have a stronger corre-
lation with BMI than those that remained significant upon adjustment
for BMI (p = 0.05) (Figure 6.4D). Among the lost associations, we find
nine out of the ten metabolic and cardiovascular traits associated with
the deletion. These associations likely reflect secondary consequences of
the propensity for obesity of deletion carriers as they include levels of
serum lipid and the inflammation biomarker C-reactive protein (CRP),
cardiac valve and conduction disorders, and hypertension. The effect of
BMI on musculoskeletal, pulmonary, or renal traits is more balanced,
with some associations, such as the ones with arthritis (OA), asthma,
or urate and chronic kidney disease (CKD), appearing to be driven by
BMI, while others, such as grip strength, chronic obstructive pulmonary
disease (COPD), or cystatin C and acute kidney injury (AKI), remaining
significant upon BMI adjustment. The mediating role of TDI and EA
was much milder, as only four associations were lost upon adjustment
for either variable – including a shared association with WHR adjusted
for BMI, heart rate, and high-density lipoprotein (HDL) cholesterol –
suggesting that TDI and EA capture partially overlapping mediatory
processes. Surprisingly, associations with psychiatric disorders were
not affected by EA, suggesting that cognition and psychiatric diseases
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are regulated by (at least partially) independent pathways. Finally, the
observation that no associations were affected by adjusting for height
confirms that the decrease in traits such as grip strength and forced
vital capacity among deletion carriers is not driven solely by their short
stature.

Mendelian randomization
One caveat of our analysis is that it cannot distinguish whether changes in
CNV-trait associations are indeed secondary effects of the mediator on the
trait. At least three scenarios could result in the loss (or gain) of a CNV-trait
effect upon covariate adjustment (Figure 6.5A). The first one is mediation,
wherein the CNV affects the trait through the mediator, resulting in a
dominant causal effect of the mediator on the trait. The second scenario
is when the variable we adjusted for turns out to be a collider of the CNV
and the trait, in which case we expect a dominant causal effect from the
trait to the "mediator". Finally, data could be explained by an unobserved
confounder that affects both the adjustment variable and the trait, in
which case we do not expect any causal link between trait and mediator.
Of note, in the latter scenario, we further distinguish between whether
the CNV has an impact on the confounder, the “mediator”, the trait, or
a combination thereof. Importantly, adjusting for the mediator in the
regression model is an appropriate solution to obtain meaningful direct
CNV-trait effects (i.e., genuine direct pleiotropy) only in the i) mediator
scenario or ii) the confounder scenario where the CNV has a direct effect
on the trait, in which case adjustment for the mediator could result in
a gain of power (Figure 6.5A). To identify cases where mediation is a
likely scenario, we resorted to bidirectional Mendelian randomization
(MR), a causal inference approach that allows to estimate the genetically
determined causal effect of an exposure on an outcome (Figure 6.5B;
Table S6.3). Firstly, we estimated the forward mediator-to-trait effect for
all 31 mediator-trait pairs that either gained (N = 4; Figure 6.4B) or lost (N
= 27; Figure 6.4A) significance upon adjustment for the mediator. Except
for the four TDI-dependent associations which had large confidence
intervals due to the lack of good genetic instruments for TDI and the
effect of BMI on hypertension, type 1 diabetes, and cardiac conduction
disorders, all effects were significant (p ≤ 0.05/62 = 8.1× 10-4), confirming
that the mediators can causally influence the involved traits. Secondly, we
estimated the reverse trait-to-mediator causal effects. Ten reverse effects
were significant and thus represent mediator-trait pairs at risk for collider
bias. Yet, for nine of them, the forward effect had a larger magnitude,
making the mediator-to-trait causal path more likely. The only exception
is the association between the deletion and basal metabolic rate that
became significant upon adjustment for height and for which the reverse
effect was stronger than the forward effect. This suggests that height
could act as a collider and adjustment for it could bias estimates. Hence,
we conclude based on the unadjusted effect that the association between
the deletion and basal metabolic rate is non-significant. It is also worth
noting that six out of seven associations lacking a significant forward
effect also lacked a significant reverse effect, possibly indicating presence
of an unobserved confounder. This is particularly likely for the BMI
effect on hypertension, type 1 diabetes, and cardiac conduction disorders,
where estimates are close to null despite being well-instrumented (≥ 50
instruments). Globally, these analyses support that a large fraction (74%)
of the flagged associations are likely indirect consequences of the CNV’s
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Figure 6.4: Adjustment for potential mediators of 16p11.2 BP4-5 pleiotropy.
(A) Effects (beta) of 16p11.2 BP4-5 CNVs on traits with adjustment for potential mediators (y-axis) – i.e., body mass index (BMI), Townsend
deprivation index (TDI), age at end of education (EA), and height (rows, right) – against those without adjustment (x-axis), stratified
(columns, top) according to the best (i.e., most significant) association model (shape). Only associations that were significant prior to or
become significant after adjustment are plotted. Traits are colored according to physiological system. Size reflects whether the effect is
Bonferroni significant (large) or not (small) after adjusting for the potential mediator. Traits losing significance upon adjustment are
labeled. Gray dashed diagonal represents the identity line. (B) Negative logarithm of p-values of 16p11.2 BP4-5 CNV effects depicted
in (A), following the same legend. Traits that become Bonferroni significant after adjustment are labeled. Gray diagonal represents
the identity line; Dark gray dashed lines represent the Bonferroni threshold of p ≤ 0.05/117 = 4.3 × 10-4. (C) Enlargement of the area
delimited by a red dashed rectangle in (A), showing the effect of BMI adjustment for deletion-driven association, using the same legend
as in (A). (D) Pearson correlation of BMI with traits that are significantly associated with the deletion (red dashed square in (B)), stratified
according to whether the association with the deletion is lost (“BMI-dependent) or not (“BMI-independent”) after adjustment for BMI.
The P-value compares the two groups with a two-sided t-test. Number of traits in the two groups is indicated as N. ALT = alanine
aminotransferase; BMR = basal metabolic rate; BP = blood pressure; CKD = chronic kidney disease; CRP = C-reactive protein; eosinophil
= eosinophil count; HDL = high-density lipoprotein cholesterol; HTN = essential hypertension; IGF-1 = insulin-like growth factor 1;
lymphocyte = lymphocyte count; OA = arthritis; SHBG = sex hormone binding globulin; T1D = type 1 diabetes; TG = triglycerides;
WHRadjBMI = waist-to-hip ratio adjusted for BMI.
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effect on our selected mediators.
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Figure 6.5: Bidirectional Mendelian randomization.
(A) Schematic of the links between copy-number variant (CNV), potential mediators, and assessed traits. Covariate-adjusted phenome-
wide association studies (PheWAS) identified CNV-trait associations that are dependent on either of the four tested factors (thick gray
arrow) in (A). This scenario can be explained through mediation, collider bias, or confounding. We used Mendelian randomization (MR)
to assess the genetically determined causal effect of the putative mediator on the trait (forward effect, red arrow) and of the trait on the
mediator (reverse effect; dark blue arrow). MR effect arrows are proportional to causal effect sizes. When the forward effect is larger than
the reverse one, mediation is a likely scenario; when the reverse effect is larger, the putative mediator likely acts as a collider; absence of
causal effects likely indicates presence of an unobserved confounder, U. Depending on the scenario, adjustment for the mediator in the
regression analysis might (green) or might not (red) be appropriate, as reflected by the color of each scenario’s title. (B) Bidirectional
forward (red) and reverse (dark blue) MR effects with 95% confidence interval (CI; x-axis truncated on the right) of potential mediators
(left y-axis) on traits (right y-axis) for all mediator-trait pairs that either gained or lost significance upon adjustment for the mediator.
Non-significant effects (p > 0.05/62 = 8.1 × 10-4) are semi-transparent.

Matched-control analysis
Next, we focused on the 22 traits whose association with the CNV
remained significant after adjusting for BMI, height, TDI, or EA. To
confirm that these represent cases of genuine direct pleiotropy, we
used a matched-control approach that offers the advantage of allowing
adjustment for multiple mediatory variables at once but at the cost of
losing some statistical power. Specifically, for each of the 58 deletion and
61 duplication carriers with sufficient data to carry out the matching,
we identified individuals with matched age (± 2.5 years), sex (identical),
BMI (± 2.5 kg/m2), TDI (± 2), income class (identical), and EA (± 1
year) among a pool of copy-neutral, unrelated, white British UKBB
participants (Figure 6.6). For 49 deletion and 60 duplication carriers, at
least 25 matched controls could be identified, and phenotype mean or
disease prevalence between the two CNV groups and their respective
controls were compared (Figure 6.7; Tables S6.4-5). Eleven traits (50%)
retained a strictly significant effect (p ≤ 0.05/22 = 2.3 × 10-3), affecting six
independent physiological systems: musculoskeletal, neuropsychiatric,
pulmonary/immune, renal, hepatic, and hematological. Specifically,
deletion carriers presented with decreased hand grip strength (p = 1.4 ×
10-3; Figure 6.7A), shorter stature (p = 1.2 × 10-5; Figure 6.7B), increased
alkaline phosphatase (ALP; p = 1.8 × 10-3; Figure 6.7G), decreased forced
vital capacity (FVC; p = 2.2 × 10-3; Figure 6.7R), and increased risk for
pneumonia (p = 3.8 × 10-4; Figure 6.7Q) and AKI (p = 2.9 × 10-4; Figure
6.7T). Duplication carriers showed decreased bone mineral density (p
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= 6.3 × 10-4; Figure 6.7C), lower aspartate aminotransferase (AST; p
= 1.5 × 10-3; Figure 6.7E) and gamma-glutamyltransferase (GGT; p =
2.2 × 10-4; Figure 6.7F) levels, and reduced fluid intelligence (p = 1.6
× 10-3; Figure 6.7I). Noteworthy is the strong mirror effect on platelet
count (Figure 6.7P), with higher (p = 1.9 × 10-3) and lower (p = 3.4 ×
10-4) counts observed in deletion and duplication carriers, respectively.
Whereas for the other phenotypes the other CNV type did not meet strict
significance criteria, all effects showed a trend for a mirror effect, except
for fluid intelligence and AKI, which followed a U-shape trend. Besides
reinforcing its long-established consequence on cognitive function, our
results assert the role of the hepatic, musculoskeletal, and pulmonary
systems in the 16p11.2 BP4-5 pathophysiology through mechanisms that
are independent of the CNV’s impact on anthropometric traits and SES.

Figure 6.6: Number of matched controls
per 16p11.2 BP4-5 CNV carrier.
Total number of identified matched con-
trols (x-axis) per 16p11.2 BP4-5 duplica-
tion (N = 61; blue) and deletion (N = 58;
red) carrier (y-axis). The black vertical
line represents the cutoff of 25 randomly
sampled matched controls per CNV car-
rier. In total 60 duplication and 49 dele-
tion carriers passed this threshold.

Finally, we performed sensitivity analyses to validate the robustness of
our conclusions. As a negative control, we performed the matched-control
analysis for the 24 traits that were significantly associated with 16p11.2
BP4-5 CNVs in our PheWAS but whose association was dependent on
adjustment for mediators or that could not be tested in the covariate
analysis due to high trait-mediator correlation (Figure 6.8; Tables S6.4-5).
In line with these associations being secondary consequences to the effect
of the CNV on factors on which the matching was performed, only three
traits had a nominally significant CNV association, and none survived
Bonferroni correction. This strongly contrasts with our main matched-
control analysis, where only three traits lacked a nominally significant
effect: recurrent depression (Figure 6.7L), anemia (Figure 6.7O), and
cystatin C (Figure 6.7U). This absence of results could either be the result
of a loss in statistical power resulting from CNV carrier subsampling or
by these associations being driven by a combination of factors on which
the matching was performed. The former could be exacerbated by the
fact that CNV carriers with the more extreme phenotypes were less likely
to have 25 matched controls in the UKBB. To explore this hypothesis, we
compared mean trait value or disease prevalence between the subset of
CNV carriers used for the matched-control analysis and the one excluded
due to missing data or lack of a sufficient number of matched controls
(Figure 6.9; Tables S6.4-5). Except for recurrent depression and FVC, all
comparisons were non-significant (p ≥ 0.05), indicating that subsampling
does not strongly impact our results. For recurrent depression, the only
three duplication carriers diagnosed with the disease were not included
in the matched-control analysis (p = 0.03; Figure 6.9L), indicating that the
non-significant effect of the duplication on recurrent depression (Figure
6.7L) is likely caused by subsampling. For FVC, excluded deletion carriers
exhibited a more pronounced phenotypic decrease than the ones retained
for the matched-control analysis (p = 0.02; Figure 6.9R), suggesting that
an even more extreme difference would have been observed if these
individuals had been included in the matched-control analysis (Figure
6.7R). Conversely, the role of the CNV on anemia risk and cystatin C is
likely driven by the effect of the CNV on adiposity and SES.
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Figure 6.7: 16p11.2 BP4-5 CNV carriers matched-control analyses.
(A-V) Comparison between deletion (DEL) and duplication (DUP) carriers (darker shade) and their respective matched controls (DEL or
DUP ctrl; lighter shade) for 22 traits that remained Bonferroni-significant after individually adjusting for body mass index (BMI), height,
Townsend deprivation index (TDI), and age at end of education (EA). For quantitative traits, data are represented as boxplots without
outliers and data points for CNV carriers are shown as gray dots. Sample size of each group is indicated as N. P-values of two-sided
t-tests comparing CNV carriers to matched controls are indicated. For binary traits, bars represent disease prevalence in percentage and
error bars represent the standard error. Number of cases and total sample size for each group is indicated. P-values of two-sided Fisher
tests comparing CNV carriers to matched controls are indicated. “ns” indicates p > 0.05. Traits are colored according to physiological
systems. COPD = chronic obstructive pulmonary disease.
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Figure 6.8: 16p11.2 BP4-5 CNV carriers matched-control analyses negative control.
(A-X) Comparison between deletion (DEL) and duplication (DUP) carriers (dark shade) and their respective matched controls (DEL or
DUP ctrl; lighter shade) for 24 traits that were significantly associated with 16p11.2 BP4-5 CNVs in our PheWAS but whose association
was dependent on adjustment for mediators or that could not be tested in the covariate analysis due to high trait-mediator correlation.
For quantitative traits, data are represented as boxplots without outliers and data points for CNV carriers are shown as gray dots. Sample
size of each group is indicated as N. P-values of a two-sided t-test comparing CNV carriers to matched controls are indicated. For binary
traits, bars represent disease prevalence in percentage and error bars represent the standard error. Number of cases and total sample
size for each group are indicated. P-values of two-sided Fisher tests comparing CNV carriers to matched controls are indicated. “ns”
indicates p > 0.05. Traits are colored according to physiological systems. SHBG = sex hormone binding globulin.
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Figure 6.9: Impact of CNV carriers subsampling on matched-control analyses.
(A-V) Comparison between deletion (DEL; Nmax = 49) or duplication (DUP; Nmax = 60) carriers that were in the subset (subset; darker
shade) used for the matched-control analyses against deletion (DEL; Nmax = 24) or duplication (DUP; Nmax = 29) carriers that were not
included due to lack of data (excluded; lighter shade) for 22 traits which remained Bonferroni-significant after adjusting for body mass
index (BMI), height, Townsend deprivation index (TDI), and age at end of education (EA). For quantitative traits, data are represented as
boxplots without outliers and data points for CNV carriers are shown as gray dots. Sample size of each group is indicated as N. P-values
of two-sided t-test comparing CNV carriers to matched controls are indicated. For binary traits, bars represent disease prevalence in
percentage and error bars represent the standard error. Number of cases and total sample size for each group is indicated. P-values of
two-sided Fisher tests comparing CNV carriers to matched controls are indicated. “ns” indicates p > 0.05. Traits are colored according to
physiological systems. COPD = chronic obstructive pulmonary disease.
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Discussion

In this study, we perform a comprehensive PheWAS assessing the relation
between 16p11.2 BP4-5 CNVs and 117 complex traits and diseases in the
general population through four dosage mechanisms of action. Our
results confirm the extreme pleiotropy of 16p11.2 BP4-5 rearrangements,
with 46 traits associating with the CNV. In line with the more deleterious
nature of the deletion, haploinsufficiency associated with 38 unique traits,
while only 10 traits associated with the region’s duplication. Further em-
phasizing how the same genetic region can affect different traits through
different dosage mechanisms, we identify traits for which the loss and
gain of a copy had an opposite (e.g., BMI or platelet count) or alternatively,
a similar (e.g., grip strength or fluid intelligence) consequences on the
phenotype. Besides assessing the role of dosage in pleiotropy, we also
estimated the fraction of associations that are likely to be secondary to
some hallmark features of the CNV and validated through bidirectional
MR that mediation is a likely scenario. While height did not mediate
any associations, sixteen (61%) of the deletion-driven associations were
found to be BMI-dependent, thirteen of which (81%) received support
from MR for a scenario wherein the association is consequential to an
initial increase in BMI. Conversely, the role of EA and TDI was more
subtle, with only five associations showing confounding by these factors.
Importantly, some associations were found to be independent of all the
tested mediators, suggesting genuine direct pleiotropy of the region
on musculoskeletal, hepatic, metabolic, neuropsychiatric, reproductive,
hematological, pulmonary, immune, and renal function.

Our findings have far-reaching consequences for clinical practice and
highlight knowledge gaps. First, our results show that increased BMI in
deletion carriers drives numerous adult-onset comorbidities. Studies have
shown that weight gain in 16p11.2 BP4-5 deletion carriers starts during
early childhood, rapidly progressing to obesity (426, 500, 538–540). This
emphasizes the importance of following pediatric cases by a dedicated
team of endocrinologists and nutritionists who can implement a weight
control strategy at an early age to attenuate ensuing adult comorbidities.
Second, we show that some other traits are affected independently of
the CNV’s effect on BMI, cognition, and SES. Besides recapitulating
well-established hallmark features, such as the CNV’s negative impact
on cognitive ability or the duplication-specific risk of bipolar disorder
or depression, we also link the CNV with milder afflictions of systems
that had previously been implicated in clinical cohorts. For instance,
increased risk for AKI might be the consequence of subclinical structural
defects of the kidney that could affect renal function in the long term,
paralleling the predisposition of deletion carriers to congenital anomalies
of the kidney and urinary tract (277, 541, 542). Similarly, increased risk for
pneumonia might reflect an impaired immune system that is exacerbated
into a full-blown immunodeficiency in deletion carriers that also present
with a loss-of-function variant in CORO1A (543) (MIM: 605000). Other
traits that are affected through BMI-independent mechanisms, such as
bone mineral density, platelet counts, pulmonary function, and liver
enzymes have not been linked with the CNV in clinical cohorts and
future research should establish how often these traits are altered in
carriers and which are the molecular mechanisms that mediate this
pleiotropy. These could be explored by gene-to-trait mapping strategies
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such as rare variant gene burden tests (6, 145), as well as MR (173)
or colocalization (167) that integrate association signals from common
SNP-GWAS with transcriptomic and proteomic data to pinpoint genes
linked with specific phenotypes. These data could also be leveraged to
generate gene-by-trait association matrices whose clustering may reveal
groups of traits with shared underlying genetic influences and for which
CNV associations are more likely to disappear upon adjustment for
one another. Thirdly, our results expose intriguing findings, casting
light on questions that remain unanswered by the current study. For
instance, the BMI-dependent association of the deletion with type 1
diabetes could be driven by misdiagnosing type 2 diabetes as type 1 due
to early-onset diabetes following early-onset obesity. We also identify
an association between the deletion and decreased creatinine levels.
Creatinine levels are typically elevated in patients with renal dysfunction,
as is the case for many deletion carriers. We speculate that these results
could be the consequences of reduced hepatic function or muscle mass,
both of which are present among deletion carriers. Similarly, it remains
unclear whether elevated levels of ALP – for which levels of specific
isoenzymes were not determined in UKBB – reflect hepatic, renal, or
skeletal dysfunction. Validation of these hypotheses requires in-depth
phenotypic characterization of carriers’ medical records but will be
crucial to better define the molecular pathophysiology of 16p11.2 BP4-5
CNV carriers and hopefully lead to actionable insights related to the
management of the condition’s comorbidities.

Our study is not without limitations. First, by assessing a relatively ho-
mogenous cohort, our study likely misses pleiotropic consequences that
are only expressed in certain genetic or environmental backgrounds, a
phenomenon exacerbated by the relatively small absolute number of CNV
carriers which hinders our statistical power. Future studies are needed
to confirm trends that we observe at a sub-significant level. Second, we
decided to focus on only four covariates, which based on the literature,
represent strong candidates to mediate indirect pleiotropic consequences
of the region’s rearrangement. While height and BMI can be measured
with relatively high accuracy, EA and TDI only offer rough and imperfect
proxies for complex characteristics such as cognitive function and SES,
possibly explaining their weaker mediatory role. Other factors that we
did not assess might mediate the relation between 16p11.2 BP4-5 CNVs
and some of the associated traits. Third, the conducted MR analysis comes
with its own limitations, namely violation of the exclusion-restriction
assumption via correlated pleiotropy, which may have resulted in false
positive mediator-to-trait causal effects (544, 545). Still, if both adjusted
and unadjusted regression analyses show a significant CNV effect, we
can convincingly suggest that independent pleiotropic mechanisms are
at play. Finally, while our study brings us a step closer to understand-
ing the pleiotropy of the region, it fails to provide molecular insights
into mechanisms of pleiotropy, for which experimental approaches and
leveraging of other mutational classes offer promising avenues.

In conclusion, our study provides a framework to start disentangling
the complex pleiotropic patterns associated with genomic disorders.
For 16p11.2 BP4-5, the latter appears to be a mixture of indirect effects
mediated by the impact of the CNV on adiposity and cognition, and
direct effects on a broad range of physiological systems. This suggests that
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independent molecular mechanisms are involved in translating dosage
changes into the many comorbidities linked to the genomic disorder.
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4: Homologous recombination between
two DNA regions that typically show
high similarity but are not alleles. NAHR
is the main mechanism behind de novo
16p11.2 BP4-5 CNV generation.

5: Dosage-sensitive genes will lead to
pathogenic consequences when present
in more or less than two functional au-
tosomal copies, in which case they are
specifically referred to as triplosensitive
and haploinsufficient, respectively.
6: Approximate chromosomal locations
defined based on bands produced by
Giesma-staining. Cytobands are termed
by chromosome number (e.g., “16”), arm
(e.g., “p”), followed by region (e.g., “1”),
band (e.g., “1”), and sub-band (e.g., “2”),
the three last ones being numbers of in-
creasing value from centromere to telom-
ere, to describe a genomic location (e.g.,
16p11.2).
7: Constrained genetic regions are de-
pleted of deleterious genetic variants.
Such constraint indicates functionality,
under the assumption that mutations
have pathogenic consequences and will
be purged by natural selection.
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Abstract
Recurrent genomic rearrangements at 16p11.2 BP4-5 represent one of the
most common causes of genomic disorders. Originally associated with
increased risk for autism spectrum disorder, schizophrenia, intellectual
disability, adiposity, and head circumference, these CNVs have since been
associated with a plethora of phenotypic alterations, albeit with high
variability in expressivity and penetrance. Here, we comprehensively
review the pleiotropy associated with 16p11.2 BP4-5 rearrangements
to shine light on its full phenotypic spectrum. Illustrating this pheno-
typic heterogeneity, we find many parallels between findings gathered
from clinical versus population-based cohorts, which often point to the
same physiological systems, and emphasize the role of the CNV beyond
neuropsychiatric and anthropometric traits. Revealing the complex and
variable clinical manifestations of this CNV is crucial for accurate diag-
nosis and personalized treatment strategies for carriers. In a second time,
we discuss areas of research that will be key to identifying factors con-
tributing to phenotypic heterogeneity and gaining mechanistic insights
into the molecular pathways underlying observed associations, while
demonstrating how diversity in patients, cohorts, experimental models,
and analytical approaches can catalyze discoveries.

Hallmarks of 16p11.2 BP4-5 rearrangements
Chromosome 16 is particularly rich in segmental duplications, which
are typically defined as clusters of repeated sequences larger than 1 kb
(502, 546). Due to their high sequence similarity (≥ 90%), segmental
duplications promote non-allelic homologous recombination (NAHR)4

and form the breakpoints (BPs) of recurrent genomic rearrangements.
These rearrangements are at the origin of genomic disorders through the
deletion and/or reciprocal duplication of one or more dosage-sensitive
genes5 (180). The 16p11.2 cytoband6 comprises five segmental duplication
clusters termed BP1-5 (Figure 6.10), two of which (BP4 and BP5) under-
went a rapid, Homo sapiens-specific expansion that favors the creation of
proximal 16p11.2 copy-number variations (CNVs; MIM: 611913; 614671)
(41). While the exact breakpoints of the 16p11.2 BP4-5 rearrangements
might vary between individuals, the recurrent CNV encompasses a core
region of ∼600 kb (Table 6.3), which overlaps 27 unique protein-coding
genes, as well as 4 multi-copy genes mapping to the low-copy repeat flank-
ing regions. Expression of 16p11.2 BP4-5 genes is positively correlated
with the CNV dosage (547, 548), with no dosage compensation. Hinting
at the deleterious potential of 16p11.2 BP4-5 rearrangements, some of
these genes are evolutionarily constrained7 and/or have been linked
to Mendelian disorders in the Online Mendelian Inheritance in Man
(OMIM) (Figure 6.10). Accordingly, multiple mice models deleted for
single 16p11.2 BP4-5 orthologs show embryonic or preweaning lethality
(Box 1; Figure 6.11). While no homozygous 16p11.2 BP4-5 deletion has
been reported, suggesting lethality of such a rearrangement, triplication
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– either in tandem (549) or due to biparental inheritance (550, 551) – has
been reported in four individuals to date. More common is the loss or
gain of a single copy, resulting in a heterozygous deletion and duplication
(Figure 6.12A), which will represent the focus of this review.

Table 6.3: Genomic coordinates of the 16p11.2 BP4-5 rearrangement.
ClinGen coordinates for the minimal region affected by the 16p11.2 BP4-5 rearrangements in three human reference genome builds.
Coordinates in GRCh37 were lifted over with the University of California Santa Cruz (UCSC) LiftOver tool. Because breakpoints might
occur at several locations within the segmental duplication region, exact genomic coordinates and length might vary across individuals.

chromosome start [bp] end [bp]
GRCh37 (hg19) 16 29,649,997 30,199,852
GRCh38 (hg38) 16 29,638,676 30,188,531
T2T-CHM13 16 29,920,721 30,473,113

28,400,000 28,500,000 28,600,000 29,000,00028,900,00028,800,00028,700,000 29,100,000 29,200,000 29,300,000 29,700,00029,600,00029,500,00029,400,000 30,000,00029,900,00029,800,000 30,200,00030,100,000 30,300,000
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Figure 6.10: Genomic landscape of the 16p11.2 region.
Overview of 16p11.2 cytoband (GRCh38), with the minimal 16p11.2 BP4-5 region highlighted in blue. Upper track: exonic structure of
protein-coding genes overlapping the region colored according to GnomAD v2.1.1 loss-of-function observed over expected upper bound
fraction (LOEUF) score. Small LOEUF (< 0.35) indicates selection against loss-of-function variants in the gene, i.e., constraint. Genes with
no LOEUF score are in gray. Tagged genes: ◦Indicates OMIM morbid genes; *Have a new HGNC symbol since the GnomAD v2.1.1 release
(CCDC101 = SGF29; FAM57B = TLCD3B). Middle track: segmental duplications colored according to similarity degree, ranging from 90%
to ≥ 99%. These form the breakpoints (BP) for recurrent copy-number variants (CNVs). Lower track: Density of CNVs reported in the
Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources DECIPHER (06/12/2020) (265) colored
according to CNV count. While rearrangements of the BP4-5 interval are the most common, rearrangements between other BPs have
been described, in particular the 220 kb interval between the BP2-3 (MIM: 613444), the second most common CNV in the region.

Box 1. Animal models of 16p11.2 BP4-5 rearrangements

Three different series of CNV mice models approximating the 16p11.2
deletion (Del/+) or reciprocal duplication (Dup/+) have been engi-
neered (552–554). The oldest mouse models’ rearrangement extends
on the 7qF3 mouse chromosome beyond the region syntenic8 8: Genetic region with conserved gene

order across species.
to the

16p11.2 BP4-5 interval orthologous to the single copy genes of the
BP4-5 interval. Specifically, it ranges from Slx1b to Sept1, while at
the same time excluding Sult1a1, one of the multi-copy genes in the
breakpoint region (552). That gene is also excluded from the second
deletion mouse model (553). The third set of models modifies the
number of copies of all syntenic genes orthologous to unique genes
of the BP4-5 interval (Figure 6.10), i.e., Sult1a1 to Spn (554). Impor-
tantly, none of these models is fully representative of the human
rearrangements as the segmental duplication regions forming BP4
and 5 are Homo sapiens-specific (41) and human deletion carriers
can retain multiple copies of BOLA2A/B (MIM: 613182), SLX1A/B
(MIM: 615822; 615823) and SULT1A3/4 (MIM: 600641; 615819), while

https://search.clinicalgenome.org/kb/gene-dosage/region/ISCA-37400
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duplication carriers have an even higher number copy of these genes.
For instance, human deletion carriers have a mode of four copies of
BOLA2, compared to six for healthy controls (40). Compounded by
the poor reproducibility of mouse behavioral tests often used to proxy
human 16p11.2 BP4-5 phenotypes, differences in model engineering
and/or genetic background can lead to artefactual findings. To miti-
gate this, a consortium of laboratories recently set out to replicate their
findings across the three deletion models, highlighting divergences in
results across models despite globally concordant conclusions (555).
The recent engineering of two series of rat models that delete and
reciprocally duplicate the Sult1a1-Spn interval opens the possibility
of studying the 16p11.2 CNVs in outbred models (Sprague Dawley
and Long Evans) (272, 556).

Another approach is to target individual genes. The International
Mouse Phenotyping Consortium (IMPC) (557) has produced knockout
mice for 24 genes spanning the region and flanking breakpoints,
for which broad phenotyping is available (Figure 6.11). Detailed
neuroanatomical phenotypes were assessed for 20 of them (274) and
a similar screen in zebrafish (558) revealed that most genes in the
regions are required for proper nervous system development. While a
comprehensive description of all animal models individually knocked
down for 16p11.2 BP4-5 orthologs falls out of the scope of this review,
many single genes models partially replicate phenotypes observed in
16p11.2 BP4-5 CNV carriers. Furthermore, multiple studies explored
double/triple hemi-deletion and their reciprocal triplosensitivity in
Drosophila (559), zebrafish (266, 272, 328, 560), and mice (273, 274, 561).

Figure 6.11: International Mouse Phe-
notyping Consortium 16p11.2 BP4-5
mouse models.
Alphabetical list of mouse genes ortholo-
gous to human 16p11.2 BP4-5 genes and
whether a knockout was generated by the
International Mouse Phenotyping Con-
sortium (IMPC). Subsequent columns
indicate phenotypes that were assessed,
with black, white, and gray cells indicat-
ing whether the system was significantly
affected, not affected, or not assessed,
respectively. All systems for which at
least one model exhibited a phenotype
are shown. The total number of affected
models is indicated in the last row. For
lethality, the stage is indicated, along
with whether observed in homozygous
(-/-) or heterozygous (+/-) models and
if fully penetrant or not (*). Genes in the
flanking breakpoint regions are at the
bottom.
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9: The penetrance of variant A for a bi-
nary trait B describes the fraction of in-
dividuals carrying the A genotype who
will present with trait B. If penetrance is
incomplete (e.g., 60%), then not all indi-
viduals will present with the phenotype
(i.e., 6 out of 10 carriers). Note that if dis-
eases are considered on a liability scale
or in terms of severity of clinical presen-
tation, they can be described through
expressivity.

Studies in clinical cohorts allow to estimate the prevalence of 16p11.2
BP4-5 rearrangements to 1 in 360 and 1 in 390 for the deletion and recip-
rocal duplication, respectively (Table 6.4). The slightly higher deletion
prevalence hints at their stronger deleteriousness, which is reflected by a
higher global penetrance9 (47%) compared to duplications (28%) (499).
In line with their higher pathogenicity, deletions have a higher de novo
rate, with estimates ranging between 60% and 90%, compared to 25% for
duplication carriers (193, 286, 499). Unlike other CNVs linked to genomic
disorder, which tend to occur more frequently on the paternal haplotype,
de novo 16p11.2 BP4-5 CNVs exhibit up to 90% maternal transmission bias
which can neither be explained by older maternal age nor by imprinting,
suggesting that the 16p11.2 BP4-5 is a female-specific recombination
hotspot (193, 286). Specifically, 16p11.2 BP4-5 CNVs were established as
an important susceptibility risk factor for autism spectrum disorders
(ASD) (386, 422, 525, 526), developmental delay and intellectual disability
(DD/ID) (523, 524, 562), schizophrenia (SCZ) (387, 425), and seizure
disorders (389, 421, 562). Additionally, mirror effects on body mass index
(BMI) (325, 326, 426) and head circumference (421) were described, with
deletion carriers presenting with obesity and macrocephaly, while dupli-
cation carriers tended to be underweight and microcephalic.

Figure 6.12: Models of CNV dosage mechanisms.
(A) Most common copy-number states for the 16p11.2 BP5-4 locus, including the copy-neutral state (2 copies; white), deletion (1 copy;
red), and duplication (3 copies; blue), which typically arise through non-allelic homologous recombination (NAHR). (B) Phenotypic
distribution, shown as boxplots, of individuals with different 16p11.2 BP5-4 copy-number states according to four dosage mechanisms: an
additive mirror mechanism wherein deletion and duplication affect the phenotype in the opposite direction, a U-shape mechanism
wherein any deviation from the copy-neutral state affects the phenotype in the same direction, and a duplication-only or deletion-only
mechanism wherein only duplication or deletion carriers deviate from the copy-neutral phenotypic distribution, respectively. For the
two last models, deletion and duplication carriers (semi-transparent) are not assessed to obtain the effect of the duplication and deletion,
respectively. Different traits can follow distinct dosage models. At the right is one example trait behaving according to the adjacent
mechanism (563).
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Table 6.4: Prevalence estimates of 16p11.2 BP4-5 CNVs in clinical cohorts.
Prevalence of 16p11.2 BP4-5 deletion and duplication estimated from non-overlapping clinical cohorts, ascertained for various phenotypes.
The cohort description includes the cohort’s name, sample size (N), the predominant age group, and the proportion of females (~).
Country reflects where samples were recruited; The predominant ancestry group usually matches the most common ancestry group of
the recruitment country. Relatives specifies if there are relatives present (Yes) or not (No) in the cohort. The number of carriers (N) and
prevalence (Prev) of the deletion (DEL) and duplication (DUP) are reported. Empty cells reflect data that were not reported. Average
sample size and prevalence are calculated and put in comparison to the prevalence of carriers among individuals with at least one
of the 54 diseases considered in a large meta-analysis (with sample overlap) (229). ADHD = attention-deficit hyperactivity disorder;
ASD = autism spectrum disorder; BP = Bipolar disorder; CA = congenital anomalies; CAKUT = Congenital anomalies of the kid-
ney and urinary tract; DD/ID = Developmental delay/intellectual disability; Int. = International; SCZ = schizophrenia; YA = young adults.

Cohort
N Age ~ Country Relatives Disease NDEL PrevDEL NDUP PrevDUP

Baylor Genetics
Laboratories
(564)

54,407 pediatric USA No
DD/ID,
ASD, CA

186
0.342%
(1/290)

136
0.250%
(1/400)

iPSYCH2012
(408)

35,955
pediatric

& YA
43% Denmark Yes

Psychiatry
(1981-2005)

28
0.078%

(1/1,300)
88

0.245%
(1/410)

Signature
Genomics Labo-
ratories (499)

33,226 pediatric USA
DD/ID, ASD,
epilepsy, CA

146
0.439%
(1/230)

93
0.280%
(1/360)

Epi25 (410) 26,699 Int. Seizures 44
0.165%
(1/610)

34
0.127%
(1/790)

PGC - SCZ (466) 21,094 adult Int. No SCZ 70
0.332%
(1/300)

SCZ cohorts
(565)

9,384 adult 44% China SCZ 26
0.277%
(1/360)

ADHD cohorts
(566)

8,883
pediatric
& adults

43%
Iceland,
Norway

Yes ADHD 7
0.079%

(1/1,270)
17

0.191%
(1/520)

CLOZUK1+2
(567)

6,934 adults 29% UK SCZ 4
0.058%

(1/1,700)
47

0.678%
(1/150)

DD/ID cohorts
(523)

4,284 pediatric Europe Yes
DD/ID,

CA
22

0.514%
(1/200)

Children’s
Hospital Boston
(568)

3,450 pediatric USA
DD/ID,
ASD, CA

20
0.580%
(1/170)

Obesity cohorts
(326)

3,103
pediatric
& adults

Europe Obesity 26
0.838%
(1/120)

0 0%

KIMONO +
CKiD (277)

2,824
pediatric

& YA
43% Int. No CAKUT 7

0.248%
(1/400)

1
0.035%

(1/2,800)

BDRN (569) 2,591 adults 69% UK No BP 3
0.116%
(1/860)

AGRE + ACC
(570)

2,195
pediatric

& YA
20% USA Yes ASD 9

0.410%
(1/240)

8
0.364%
(1/270)

ASD cohort
(571)

1,132
pediatric

& YA
22% Japan ASD 1

0.088%
(1/1,100)

4
0.353%
(1/280)

SSCs (572) 1,124
pediatric

& YA
14% USA No ASD 8

0.712%
1/140)

6
0.534%
(1/190)

TOTAL 217,285 508
0.276%
(1/360)

533
0.254%
(1/390)

Meta-analysis
(229)

0.264% 0.153%
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Table 6.5: Prevalence estimates of 16p11.2 BP4-5 CNVs in population cohorts.
Prevalence of 16p11.2 BP4-5 deletion and duplication estimated from non-overlapping population cohorts. The cohort description
includes the cohort’s name, sample size (N), the predominant age group, and the proportion of females (~). Country reflects where
samples were recruited; The predominant ancestry group usually matches the most common ancestry group of the recruitment
country. Relatives specifies if there are relatives present (Yes) or not (No) in the cohort. Recruitment is described, with years of birth in
parentheses. The number of carriers (N) and prevalence (Prev) of the deletion (DEL) and duplication (DUP) are reported. Empty cells
reflect data that were not reported. Average sample size and prevalence are calculated and put in comparison to the prevalence of
carriers among individuals with none of the 54 diseases considered in a large meta-analysis (with sample overlap)(229). NB = newborns;
Int. = International YA = young adults.

Cohort
N Age ~ Country Relatives Recruitment NDEL PrevDEL NDUP PrevDUP

UKBB (61) 331,522 adults 54% UK No Invitation
(1936-1970)

73
0.022%

(1/4,500)
89

0.027%
(1/3,700)

deCODE (566) 155,122 adults 54% Iceland Yes General pop-
ulation

56
0.036%

(1/2,800)
69

0.045%
(1/2,200)

DiscovEHR
(402)

90,595 adults 61% USA Yes Health care
system

59
0.065%

(1/1,500)
63

0.070%
(1/1,400)

Estonian
Biobank (62)

89,516 adults 66% Estonia No Health care
system

14
0.016%

(1/6,400)
11

0.012%
(1/8,100)

BioMe (530) 24,877 adults 59% USA Yes Health care
system

15
0.060%

(1/1,700)
4

0.016%
(1/6,300)

FINRISK (385) 23,053 adults 53% Finland No 2,000 sam-
ples per
Finnish
region every
5 years
(1992-2012)

6
0.026%

(1/3,800)
5

0.022%
(1/4,600)

Rosenfeld 2013
controls (499)

22,246 adults Int. Neurologically
normal
adults

6
0.027%

(1/3,700)
9

0.040%
(1/2,500)

iPSYCH2012
controls (408)

19,169
pediatric

& YA
49% Denmark Yes Random

sample
(1981-2005)

10
0.052%

(1/1,900)
21

0.110%
(1/910)

MoBA (481) 12,252 NB Norway Yes Children
from women
attending
routine
ultrasound
(1999-2009)

6
0.049%

(1/2,000)
5

0.041%
(1/2,400)

NFBC1966
(385)

4,895 NB 49% Finland No All children
Oulu/Lapp-
land (1966)

3
0.061%

(1/1,600)
3

0.061%
(1/1,600)

TOTAL 773,247 248
0.032%
(1/3,100)

279
0.036%
(1/2,800)

Meta-analysis
(229)

0.026% 0.032%
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Table 6.6: Prevalence estimates of 16p11.2 BP4-5 CNVs in prenatal cohorts.
Prevalence of 16p11.2 BP4-5 deletion and duplication estimated from non-overlapping prenatal cohorts of pregnant women undergoing
amniocentesis due to abnormal ultrasound, high-risk pregnancy, or family history of developmental delay/intellectual disability. The
cohort description includes the sample origin, sample size (N), predominant age group, and proportion of females (~). Country reflects
where samples were recruited. Relatives specifies if there are relatives present (Yes) or not (No) in the cohort. Ascertainment describes
how participants were recruited. The number of carriers (N) and prevalence (Prev) of the deletion (DEL) and duplication (DUP) are
reported. Empty cells reflect data that were not reported. Average sample size and prevalence are calculated.

Cohort
N Age ~ Country Relatives NDEL PrevDEL NDUP PrevDUP

West China Second University
Hospital (573)

86,035 prenatal China 55
0.064%

(1/1,600)

Maternal and Child Health
Hospital of Hubei (573)

8,578 prenatal China Yes 17
0.198%
(1/500)

4
0.047%

(1/2,100)

Chengdu Women’s and Chil-
dren’s Central Hospital (574)

7,078 prenatal China 3
0.042%

(1/2,400)
4

0.057%
(1/1,800)

TOTAL 101,691 75
0.073%
(1/1,400)

8
0.051%

(1/2,000)

10: Sampling bias that will lead some
individuals to be more or less likely to
be included in a study or cohort, so that
the resulting sample is not fully repre-
sentative of the targeted population.
11: Type of ascertainment bias wherein
individuals who volunteer to participate
in a study tend to be healthier (and of-
ten from a higher socio-economic back-
ground) than the general population
from which they originate. This will af-
fect phenotype prevalence estimates and
bias estimates of genetic effect sizes.
12: Degree to which a variant A will
impact a typically quantitative trait B.
Variable expressivity indicates that not
all individuals with variant A will show
the same levels of B.

13: Phenomenon through which a single
genetic variant or locus is associated with
multiple traits.

Beyond clinical cohorts
Large biobanks encompassing thousands of individuals allowed esti-
mating the prevalence of 16p11.2 BP4-5 deletions and duplications in
the general population to 1 in 3,100 and 1 in 2,800, respectively (Table
6.5), which corresponds to approximatively eight-fold lower estimates
than in clinically ascertained cohorts. Interestingly, both our clinical and
population prevalence estimates align with the ones obtained for individ-
uals suffering from any or none of the 54 diseases assessed, respectively,
in the largest CNV meta-analysis to date (229) (Table 6.4; Table 6.5).
Furthermore, our deletion population estimate closely matches the one
predicted by another study (1 in 3,021), based on clinical and epidemio-
logical data (564). Some population cohorts, such as BioMe (530), exhibit
stronger discrepancies in deletion versus duplication prevalence that
might be attributed to slight enrichment for diseased individuals due
to their enrollment protocol. These observations showcase the role of
ascertainment bias10 in obtaining accurate prevalence estimates. While
clinical cohorts are enriched for 16p11.2 BP4-5 CNV carriers, population
studies suffer from a healthy volunteer bias11 (59), leading to prevalence
underestimation. In line with that, prenatal cohorts, which have lower
ascertainment, yield intermediate prevalence estimates (Table 6.6), sug-
gesting that true prevalence lies somewhere in between estimates from
clinical and population cohorts. Nevertheless, the presence of carriers in
cohorts largely considered to be healthy reinforces a model of variable
expressivity12 and penetrance. Because biobanks are typically coupled
with comprehensive phenotypic assessment and electronic health records,
they offer the opportunity to evaluate the consequences of 16p11.2 BP4-5
CNVs in a population that is not ascertained for severe clinical conditions
and likely at the milder end of the phenotypic spectrum.

Besides replicating core features associated with 16p11.2 BP4-5 CNV
carriers, such as decreased cognitive ability (300, 384, 435) or the mirror
effect on BMI (295), phenome-wide analyses consistently highlighted
16p11.2 BP4-5 as one of the most pleiotropic13 structural rearrangements
genome-wide (82, 208, 229, 292–294, 305, 530). We recently developed a
framework to perform CNV genome-wide association studies (GWAS) in
the UK Biobank (UKBB) (208, 563), allowing us to assess the impact of
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16p11.2 BP4-5 CNVs on 117 complex traits and diseases according to four
dosage mechanisms: an additive mirror model, a U-shape model, and two
models assessing the impact of duplications and deletions independently
(Figure 6.12B). A total of 46 traits were significantly affected by CNVs
in the region (p ≤ 0.05/117 = 4.3 × 10-4) (563). Deletions were more
deleterious, leading on average to 2.8 additional disease diagnoses (p =
2.6× 10-24), as opposed to 0.3 for duplication carriers (p = 0.183). About 9%
of the signals were better captured by a U-shape model, including those
related to cognitive function and grip strength. Conversely, 22% of the
associations exhibited a mirror effect with a positive dosage correlation
with puberty timing, liver enzymes, bone mineral density, or sleep apnea
risk. The marked difference between the U-shaped and mirror models
indicates that disparate evolutionary forces (directional vs stabilizing
selection) may act on the expression level of certain genes in the region.
Most importantly, and in line with the syndromic nature of 16p11.2 BP4-5
rearrangements, associations involved a broad spectrum of physiological
systems (Figure 6.13), even after accounting for potential confounders
such as adiposity or cognition (563).

Here, we review evidence from both clinical and population studies to de-
scribe the full phenotypic spectrum associated with 16p11.2 BP4-5 CNVs.
Highlighting the complementarity of these approaches, we discuss the
importance of awareness around phenotypic heterogeneity and adoption
of diverse data sources and analytic strategies to better diagnose, monitor,
and possibly prevent 16p11.2 BP4-5-associated comorbidities.

16p11.2 BP4-5
deletion

16p11.2 BP4-5
duplication

Reproductive
↑ Genitalia malformations
↓ Puberty timing
↓ SHBG
↓ Fecundity

Metabolic
↑ Adiposity
↑ Diabetes & glycemia 
↑ Lipidemia 
↑ C-reactive protein Reproductive 

↑ Puberty timing
↑ SHBG

Pulmonary
↓ Forced vital capacity
↑ Asthma, COPD
↑ Pneumonia & infections

Neuropsychiatric
↑ Bipolar, ADHD, depression
↓ Brain size & connectivity

Hematologic
↓ Platelet count

Musculoskeletal
↓ Bone mineral density
↑ Creatinine

Musculoskeletal
↓ Grip strength
↓ Vitamin D
↑ Rib & vertebral anomalies

Musculoskeletal
↓ Height & IGF-1
↑ Bone mineral density 
↑ Arthritis
↓ Creatinine
↑ CDH

Hepatic
↓ Liver enzymes

Neuropsychiatric
↓ Cognition (DD/ID)
↑ Autism spectrum disorder
↑ Schizophrenia & psychosis
↑ Seizure disorders
↑ Motor impairments

Neuropsychiatric
↑ Brain size & connectivity
↑ Speech & language delays
↑ PKD & ICCA
↑ Chiari I malformations 
↑ Spinal cord defects
↑ Sleep apnea
↑ Neuroblastoma

Metabolic
↓ Adiposity

Renal
↑ CAKUT
↑ Urate, cystatin C
↑ Renal failure

Hepatic
↑ Liver enzymes
↓ Albumin

Cardiovascular
↑ Hypertension
↑ Heart rate, arrhythmia
↑ Cardiac valve disorders

Metabolic
↑ WHR adjust for BMI

Cardiovascular
↑ Congenital heart disease

Hematologic
↑ Anemia
↑ Platelet count
↑ Neutophil count
↓ Lymphocyte count

Figure 6.13: Pleiotropy of the 16p11.2 BP4-5 region.
Overview of phenotypes associated with the 16p11.2 BP4-5 deletion (left) and duplication (right) across clinical and population cohorts,
organized by physiological system. For each trait, an arrow indicates if the phenotype is increased (upwards) or decreased (downwards)
in the CNV carriers, compared to copy-neutral individuals. Phenotypes listed in the middle are shared between deletion and duplication
carriers and follow a U-shape model. Phenotypes on the left and right are either specific to deletion or duplication carriers or are affected
in opposite directions, in which case they are reported in bold. ADHD = attention-deficit hyperactivity disorder; BMI = body mass index;
CAKUT = congenital anomalies of the kidney and urinary tract; CDH = congenital diaphragmatic hernias; COPD = chronic obstructive
pulmonary disorder; DD/ID = developmental delay/intellectual disability; ICCA = infantile convulsion with choreoathetosis; IGF-1 =
insulin-like growth factor 1; PKD = paroxysmal kinesigenic dyskinesia; SHBG = sex hormone binding globulin; WHR = waist-to-hip ratio.
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14: Language disorders describe diffi-
culties in understanding (receptive lan-
guage) or getting across (expressive lan-
guage) a message, which is distinct from
speech disorders wherein the individ-
ual struggles with forming the sounds
necessary to communicate.

Pleiotropy of 16p11.2 rearrangements
Neurology

Developmental delay & intellectual disability
DD/ID was present in virtually all probands of early descriptive studies
of 16p11.2 BP4-5 duplication and deletion carriers (421, 524, 562) and
studies of clinical cohorts ascertained for DD/ID systematically identified
enrichment for 16p11.2 BP4-5 CNV, particularly deletion, carriers (335,
523). Compared to non-carrier parents, deletion probands have an average
reduction of 25-35 full-scale intelligence quotient (IQ) points (500, 575),
with similar findings for duplication carriers (423, 576). Accordingly,
about one third of clinically ascertained CNV carriers meet ID criteria
(529). Duplication carriers exhibit higher variation in full-scale IQ, with
an almost 20-fold enrichment for individuals with extremely low values,
compared to deletion carriers (423). Reduced cognitive performance
among 16p11.2 BP4-5 CNV carriers was replicated in multiple population
cohorts (300, 384, 435), including in our UKBB analysis that found a
highly significant U-shape effect on fluid intelligence score with a slightly
stronger effect in duplication carriers (208, 563). Together, this makes
DD/ID one of the most consistently associated traits with the region’s
rearrangement.

One crucial component of DD in 16p11.2 BP4-5 CNV carriers is language
and speech impairments14, which have systematically been reported
(523, 524, 526, 527, 562), and manifest through lower verbal, as opposed
to non-verbal IQ, and high (83%) rates of speech and language therapy
during childhood among deletion carriers (500). All language compo-
nents (i.e., phonology, lexicon, syntax, semantics, and pragmatics) are
negatively impacted in deletion carriers, with milder evidence in dupli-
cation carriers, which even tended to outperform familial controls with
similar IQ for verbal memory skills (577, 578). Motor speech disorders
are also common, with 79% of deletion and 30% of duplication carriers
suffering from speech articulation defects (498), possibly due to reduced
sensorimotor adaptation (579). There is evidence that 16p11.2 BP4-5 dele-
tions predispose to childhood apraxia of speech (580–582), which often
co-occurs with receptive (73%) and expressive (70%) language disorders,
as well as mild-to-moderate speech impairments (89%) in deletion car-
riers (582). If about three quarter of children carrying a deletion meet
childhood apraxia of speech diagnostic criteria, about two thirds of them
go undiagnosed (582) and prevalence estimates among duplication carri-
ers are currently lacking. While the presence of cognitive delay or ASD
diagnosis exacerbates speech and language impairments, they cannot
fully account for them, indicating that the latter represent core features of
16p11.2 BP4-5 rearrangements, with exacerbated penetrance in deletion
carriers (577, 578, 582).

Developmental trajectories in childhood are globally similar between
deletion and duplication carriers, with an increase in verbal IQ over time
(583). Yet, deletion carriers showed a decrease in motor and social function
over the same period, so that 67% of deletion (and 56% of duplication)
carriers end up being diagnosed with developmental coordination dis-
order at age 6-8 years (583). Motor delays include feeding difficulties
in newborns (421), hypotonia (498, 524), hyporeflexia (498), poor agility
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15: Cells derived from (human) embry-
onic stem cells or induced pluripotent
stem cells cultured into 3D structures
that aim at partially recapitulating brain
structure and organization, and in vivo
cell interactions.

16: Cerebellar herniation in the spinal
canal due to malformation (or small)
skull. Type I malformations are the least
severe ones.

(498), and impaired balance, speed, and endurance in locomotion tests
(584). If most of these are observed in both deletion and duplication
carriers, the latter showed stronger impairments with additional features
such as hyperreflexia (32%) and tremors (43%)(498), as well as very late
onset walking (423). This is paralleled by the finding that duplication
carriers had worse accuracy and speed in a battery of neurocognitive
assessments evaluating executive function, episodic memory, complex
and social cognition, and psychomotor speed, compared to deletion
carriers (585). Furthermore, diagnosed deletion (N = 48) and duplication
(N = 48) carriers in the Vanderbilt University Medical Center’s biobank
(BioVU) showed increased rates of “abnormal movement and develop-
mental delay” (CNV carriers), “muscle weakness” (deletion carriers), and
“speech and language disorders” (duplication carriers) in their electronic
health records, even though age of the CNV carrier and age at diagnosis
were not reported (413). Adult populations are not ideally suited to study
language, speech, and motor impairment, and only very few diagnosed
cases of language and speech, scholastic skills, and motor impairment
are present in UKBB. Yet, decreased grip strength was observed in both
deletion and duplication carriers (208), suggesting that impaired motor
function persists in adulthood.

Structural alterations of the nervous system
Recent efforts have concentrated on identifying brain alterations that
could explain the strong predisposition of 16p11.2 BP4-5 CNV carriers
for neurodevelopmental and psychiatric disorders. One striking feature
includes the global increase of brain size – including total intracranial,
white matter, and gray matter volumes – among deletion carriers, which
opposes the pervasive size reduction observed among duplication carri-
ers (586–589) and aligns with the previously described macrocephaly and
microcephaly phenotypes observed in deletion and duplication carriers,
respectively (421, 425) (see Craniofacial features). Changes in brain volume
have been modeled in cellular models and cortical organoids15, where
dosage negatively correlates with neuron size, dendrite length, and neu-
ronal differentiation (590–592). Focal cortical anomalies are widespread
among CNV carriers. They correlate negatively with full-scale IQ, with
duplication carriers exhibiting an increased number of abnormally thin
cortex areas, while deletion carriers rather exhibit increased cortical thick-
ness (593). Up to a quarter of duplication carriers present with increased
ventricular volume (589, 594) and cerebellar tonsillar ectopia/Chiari type
I malformations16 (MIM: 118420) have been reported in up to a third
of deletion carriers (423, 498, 500, 594–596). Other defects of the spinal
cord such as syringomyelia (MIM: 186700) (276, 423, 500, 595) or spina
bifida (276, 423, 500, 597–600) have been reported, especially among
deletion carriers. Whereas the precise onset of these structural alterations
is unclear, they are often already present at age 5 and remain stable
until adulthood (589, 594). Dosage effect of white matter microstructure
was also identified (601), with deletion carriers consistently showing
increased diffusivity that could reflect decreased myelin or axonal den-
sity (601–604). Importantly, anomalies often involve regions involved in
auditory, language, speech, and social function (588, 593, 603, 604), the
reward system (587, 588), or the cerebellum (586, 588), all of which play
crucial roles in the etiology of phenotypes commonly observed among
16p11.2 BP4-5 CNV carriers. At the molecular level, neuroanatomical
changes have been reported for over 14 mouse models with individual
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16p11.2 BP4-5 gene deletion – including Mapk3 (Erk1) (605), Taok2 (606),
Mvp (274), and Doc2a (607) – often resulting in cognitive or behavioral
deficits. This emphasizes that brain morphology is highly polygenic and
regulated by multiple genes of the region.

Aligning with the idea that brain structure correlates with function,
impaired prefrontal connectivity was found in human and mouse 16p11.2
BP4-5 deletion carriers (608), with global reinforcement of functional
connectivity among deletion carriers and a trend for lower connectivity
among duplication carriers, suggesting a dosage effect (609). Specifically,
pervasive increase in intra-axonal volume in multiple white matter
tracts is already visible at an early age (2 years) in deletion carriers
(610). In parallel, several studies have reported atypical neural activity
upon auditory (611–613), visual (614, 615), or social (616) stimuli, as
well as during preparation of overt speech and hand movement (617),
with left hemispheric language specialization being decreased among
deletion carriers (617). The deletion mice model correspondingly showed
abnormally high activity in the motor cortex during learning in males
(618). If these studies identify clear alterations in brain signal processing
in deletion carriers, the effect of the duplication remains less clear.
Neurophysiological differences might translate into the broad spectrum of
phenotypic alterations observed in 16p11.2 BP4-5 CNVs. Indeed, affected
brain areas overlap with the ones altered in idiopathic psychiatric cases
(588) – with a particularly strong correlation between the effect of the
region’s deletion and ASD (619) – but also harbor some unique features
(586). Importantly, 16p11.2 BP4-5 CNVs exert a stronger effect on overall
brain structure (619) and connectivity (609) than idiopathic cases of
ASD or SCZ, motivating genotype-first approaches to elucidate the
pathological mechanisms of these diseases. This is the approach followed
by Enhancing NeuroImaging Genetics through Meta-Analysis CNV
(ENIGMA-CNV), which aims to meta-analyze brain imaging data from
both population and clinical CNV carriers originating from 38 worldwide
research and data collection sites (620). While no ENIGMA study focusing
on 16p11.2 BP4-5 has been released to date, others have shown that
brain structure profiles defined from clinically ascertained CNV carriers
mimicked those of seven duplication and four deletion carriers with
available brain imaging in the UKBB (404). Duplication and deletion
profiles further associated with 55 and 34 traits, respectively, linking
them more broadly to the human phenome (404). The low frequency
of 16p11.2 BP4-5 CNVs compounded by the even smaller number of
carriers with available brain imaging, will make collaborative approaches
crucial to accurately establish the impact of the region’s dosage on brain
structure and connectivity and interpret the functional consequences of
these differences.

Seizure disorders
Early prevalence estimates for seizure disorders and epilepsy from clin-
ically ascertained 16p11.2 BP4-5 cohorts range between 10 and 30% for
both duplication and deletion carriers (421, 423, 424, 498, 500, 523, 524,
562, 621), making it one of the phenotypes systematically associated with
these CNVs, albeit at lower prevalence than other neurodevelopmental
and psychiatric disorders. The association was reiterated by a case-control
study that found that both deletion and duplication carriers were en-
riched in over 26,000 individuals diagnosed with epilepsy and seizures
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17: Group of rare and severe epilep-
tic syndromes characterized by severe
seizures and epileptic activity that
leads to cognitive impairment/regres-
sion. DEE are often refractory to treat-
ment and associated with early age of
onset.

18: Formerly known as Rolandic
epilepsy, it is the most common
form of epilepsy in childhood and is
characterized by seizures originating in
the Rolandic area of the brain. Seizures
usually disappear in adolescence.

19: More frequent in children, the gener-
alized onset seizures of absence epilepsy
are characterized by very brief, sudden-
onset periods of “blanking out” and of-
ten disappear in adolescence.
20: Formerly known as benign infantile
seizures, SeLIE seizures typically start
around 6 months and remit within one
year of onset, without disrupting devel-
opmental progress.

21: Model of genetic architecture
wherein a trait is under the control of
few genetic loci or genes.

22: Type of dosage sensitivity wherein a
single wildtype copy of a gene is not suffi-
cient to produce the wildtype phenotype.
Happloinsufficient genes are therefore in-
tolerant to heterozygous loss-of-function
mutations.

(410). Duplication and deletions are associated with both severe and
milder epilepsies. Among 315 cases with developmental and epileptic
encephalopathies (DEE)17, 7.9% harbored a rare CNV, including two
16p11.2 BP4-5 duplication carriers with West syndrome and multifocal
epileptic encephalopathy (390). These results are paralleled by case re-
ports of duplication carriers with epilepsy of infancy with migrating
focal seizures (622), Landau-Kleffner syndrome (424), and epileptic en-
cephalopathy with continuous spike and wave in sleep (621), as well as
a deletion carrier with West syndrome (623). West syndrome was also
diagnosed in 0.5% of 390 deletion and 1.1% of 270 duplication carriers
(423). Milder epilepsies typically resolve without disrupting develop-
mental progress. Childhood epilepsy with centrotemporal spikes18

(MIM: 117100) was diagnosed in 1.5% of duplication carriers (424), a
finding supported by a smaller study identifying two duplication car-
riers among 47 cases (624). This association was specific to duplication
carriers, who were not enriched for other specific epilepsy types (424).
Conversely, absence epilepsy19 was observed in 33% of deletion but only
5% of duplication carriers (498). A recent systematic characterization
of seizure disorders among 16p11.2 BP4-5 CNV carriers found that self-
limited familial and non-familial infantile epilepsy (SeLIE)20 (MIM:
605751) was the most common seizure disorder among deletion carriers,
accounting for 42% of epilepsies (621) and was wound in 3 out of 33
deletion carriers in a Dutch study (625). SeLIE accounted for only 13%
of epilepsies among duplication carriers, which presented with a more
heterogeneous disease spectrum (621). While we previously reported
increased epilepsy risk among UKBB deletion carriers (82), the associ-
ation falls below the threshold for significance in our new re-analysis
(563). Overall, these results highlight the contribution of 16p11.2 BP4-5
CNVs to a broad spectrum of epileptic disorders with varying severity
degrees and suggest that the region’s dosage affects epilepsy subtype.
Consistent with this hypothesis, the 16p11.2 BP4-5 genes PRRT2 (MIM:
614386) and SEZ6L2 (MIM: 616667) act as hubs in an epilepsy protein
subnetwork dysregulated in a duplication mouse model, and correcting
the dosage of the former gene rescued seizure susceptibility in these mice
(626). In zebrafish, an epistatic contribution to seizure susceptibility has
been reported in double doc2a+/-fam57b4+/- knockdowns (560), suggesting
an oligogenic21 contribution to the phenotype.

Movement disorders
Paroxysmal kinesigenic dyskinesia (PKD; MIM: 128200), a rare movement
disorder characterized by brief and recurrent involuntary movement
attacks, has been associated with 16p11.2 BP4-5 deletions (627–631). PKD
can co-occur with SeLIE, a combination of features referred to as infantile
convulsion with choreoathetosis syndrome (ICCA; MIM: 602066). These
disorders were shown to be caused by heterozygous variants in the
epilepsy-hub gene PRRT2 (626, 632). In a review of 1,444 published cases
with 70 distinct PRRT2 mutations, 42%, 39%, and 14% of affected indi-
viduals were diagnosed with SeLIE, PKD, and ICCA, respectively, with
the remaining cases suffering from various disorders, including seizures
and headache disorders (633). Importantly, PRRT2 mutations can lead to
different disorders within the same family (634). Single cases of deletion
carriers with benign nocturnal alternating hemiplegia of childhood (635)
and hemiplegic migraine (636) suggested that haploinsufficiency22 of
PRRT2 might also be associated with these related pathologies. Yet, UKBB
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deletion carriers were not more prone to migraines and headaches (82).
Interestingly, a female carrier of a heterozygous PRRT2 mutation with
SeLIE was found to experience sudden and extreme autistic regression
at 15 months (637). While SeLIE is typically not associated with poor
neurodevelopment outcomes, this case highlights a possible contribution
of PRRT2 to the autism phenotype in 16p11.2 BP4-5 CNV carriers. While
the pleiotropy and variable expressivity of PRRT2 haploinsufficiency
are well established, further research is required to ascertain the full
phenotypic range linked to 16p11.2 BP4-5 deletions.

The first case of PKD among a 16p11.2 BP4-5 deletion carrier presented
with dopa-responsive parkinsonism (627), and a later case report de-
scribed a duplication carrier with levodopa-non-responsive early-onset
parkinsonism (638). This increased rate of tremors and dysrhythmia
in duplication carriers and the reduced nimbleness of CNV carriers in
general (498) suggests that 16p11.2 BP4-5 CNV carriers could have an
increased liability for Parkinson’s disease. This hypothesis could not be
cross-validated in the UKBB (82), possibly because UKBB volunteers,
like participants of clinical cohorts, are typically too young to assess
associations with late-onset diseases such as Parkinson’s disease.

Sleep disorders
Based on questionnaire data and compared to familial controls, 16p11.2
BP4-5 CNV carriers have higher rates of sleep disturbance in childhood
and adolescence and medical sleep concerns and insomnia in adulthood,
even if no difference in sleep duration was observed (639). Obesity, which
is common among deletion carriers, represents a key risk factor for
obstructive sleep apnea, a comorbidity reported by several descriptive
studies (421, 423, 599, 640). In line with this, increased prevalence of
sleep apnea was identified in deletion carriers of both BioVU (413) and
UKBB (82), where the association was demonstrated to be driven by
increased BMI (563). Conversely, associations with other sleep-related
disorders such as insomnia, hypersomnia, or narcolepsy were not identi-
fied in UKBB (82), despite differential sleep architecture and increased
wake time being reported in mouse models of the deletion (641–643).
Studies investigating sleep quality through objective approaches, such as
polysomnography, will be required to gauge the extent to which these
mouse findings translate to human CNV carriers.

Psychiatry
Autism spectrum disorder
CNVs at 16p11.2 BP4-5 were associated with ASD early on. With about 1%
of individuals suffering from ASD across various cohorts (e.g., Autism
Genetic Resource Exchange (AGRE), Icelandic cohort, Simon Simplex
Cohort (SSC)) being deletion carriers, and another 1% carrying the
duplication (315, 386, 422, 525, 526), 16p11.2 BP4-5 CNVs represent one
of the strongest genetic risk factors for ASD and are commonly used
as a model to study the disease (644). In line with that, about 20% of
individuals carrying a 16p11.2 BP4-5 CNVs showed autistic features
(423, 500, 528, 529). For example, 22% and 26% of 294 and 146 16p11.2
deletion and duplication carriers, respectively, presented with ASD with
a wider variation for any psychiatric disorder for duplication carriers
(529). The short arm of chromosome 16 encompasses multiple ASD-
associated loci, as rearrangements of the nearby 16p11.2 BP2-3 interval
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23: Model of genetic architecture
wherein a trait is under the control of
many genetic loci or genes.

were similarly associated with ASD (279) (Figure 6.10), and as the entire
33 Mb of this chromosomal arm presents with the greatest excess of
autism’s common polygenic23 influence (282). Response to social cues was
correspondingly altered in mouse (645, 646) and rat (556) deletion models,
while duplication models presented an increase in electrophysiological
perturbations in regions of the brain critical for social and cognitive
functions (647, 648).

Schizophrenia & psychosis
Shortly after describing the association with ASD, the 16p11.2 BP4-5
duplication – but not its deletion – was identified as a major risk factor
for SCZ (425). This association was replicated multiple times (466, 567,
649), including in individuals of Han Chinese ancestry (565), leading
to a 10-fold increase in SCZ risk with a penetrance of 6.9% (650). These
results contrast with recent results from the Danish Lundbeck Foundation
Initiative for Integrative Psychiatric Research (iPSYCH), which did not
find any significant effect of 16p11.2 BP4-5 CNVs on SCZ (407). This study
also found a damped effect for other SCZ CNVs, such as the 22q11.2
deletion, suggesting that these results might stem from differences in
ascertainment. With 4.1% of deletion and 4.6% of duplication carriers
being diagnosed with SCZ in UKBB (82), our analysis is compatible with
a model wherein both the region’s deletion and duplication increase risk
for SCZ. While never meeting criteria for significance, deletion carriers
have been identified in SCZ clinical cohorts (425, 466, 567, 649). We
hypothesize that the milder affliction of deletion carriers in population
cohorts unmasks SCZ, whose diagnosis might be impaired in clinically
ascertained deletion carriers with severe DD/ID.

Duplication carrier status also increases risk for psychotic symptoms
(651), which represents a hallmark of SCZ. Psychosis is common in
Alzheimer’s disease and shared mechanisms between Alzheimer’s with
psychosis and SCZ have been hypothesized (652). In line with this, two
duplication carriers have been identified among 440 cases of severe
Alzheimer’s disease with psychosis, while none were found among 729
cases with mild/no psychosis (653). While this enrichment was not
significant, further studies assessing the possibility that 16p11.2 BP4-5
CNV carriers are more prone to develop Alzheimer’s disease as they age
are warranted.

Bipolar disorder
While frequency of de novo CNVs is increased in bipolar disorder (654),
their role in the disease’s etiology is less clear than for SCZ and remains
debated (655, 656). The 16p11.2 BP4-5 duplication represents the only
CNV robustly associated with the risk of bipolar disorder (425, 569).
Importantly, duplications were confirmed to represent a risk factor for
bipolar disorder in UKBB (82), with at least 9% of duplication carriers
being diagnosed with the condition, even though comorbidity with other
psychiatric disorders such as SCZ was not assessed.

Attention-deficit hyperactivity disorder
Children with attention-deficit hyperactivity disorder (ADHD) present
with an excess of both large duplications and deletions, irrespective
of the concurrent presence of an ID/DD diagnosis (657). ADHD was
consistently reported in descriptive studies of clinically ascertained
16p11.2 BP4-5 duplication and deletion carriers, with higher prevalence
among duplication carriers (421, 524, 527–529, 583). This association
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was confirmed in 8,883 cases of Icelandic and Norwegian origin, which
identified the region’s duplication as a risk factor for ADHD (566),
an observation later confirmed in iPSYCH (407, 408). Importantly, a
nominally significant association with ADHD remains upon exclusion
of ASD and SCZ cases (566), indicating that the condition can arise
independently of the latter diagnoses. As ADHD is predominantly
diagnosed in children, the number of cases in the UKBB is low, preempting
association analysis.

Depression
Early literature investigating the role of CNVs in depression reported
conflicting results (658–660) with a single study reporting a nominally
significant enrichment for 16p11.2 BP4-5 CNV carriers among 604 patients
suffering from major depressive disorder (661). After excluding individ-
uals with ASD, SCZ, bipolar disorder, ADHD, and ID, a UKBB study
identified the 16p11.2 BP4-5 duplication as one of three recurrent CNVs
associated at Bonferroni significance level with self-reported depression
(302). These results were replicated based on hospital-diagnosed cases in
UKBB (82) but not in iPSYCH (407, 408), paralleling the dampened effect
size observed for SCZ.

Other psychiatric conditions
Over the last 15 years, the pleiotropic effect of 16p11.2 BP4-5 CNVs on
psychiatric conditions became increasingly evident (408, 423, 500, 528,
529) and it is not uncommon for CNV carriers to be diagnosed with
multiple conditions: on average, clinically ascertained deletion carriers
were diagnosed with 2.9 psychiatric conditions, a 10-fold increase com-
pared to familial controls (527). These results remain significant when
accounting for ASD diagnosis, indicating that they are not solely driven
by the latter. Indeed, 16p11.2 BP4-5 CNVs have been linked to additional
psychiatric conditions, such as anxiety, disruptive behavior, tic disor-
ders, and obsessive-compulsive disorders (402, 498, 500, 527–529, 651,
662), although with more limited evidence. Perplexingly, neuroticism,
which strongly correlates with several psychiatric conditions (663), was
associated with neither duplication nor deletion carrier status in UKBB
(82, 208). While both duplications and deletions are now recognized
as important risk factors for psychiatric conditions, current evidence
suggests higher prevalence and heterogeneity in diagnoses among du-
plication carriers (528, 529). In line with this, psychiatric conditions are
the only disease type primarily driven by the region’s duplication in
UKBB. Further research is required to better delineate the precise nature
and penetrance of various psychiatric disorders linked to 16p11.2 BP4-5
rearrangements and determine the extent of shared disease mechanisms
among them.

Endocrinology & Metabolism
Obesity
Despite obesity being frequent among the first described 16p11.2 BP4-5
deletion carriers (422, 523, 526, 562, 664), obesity was only recognized as a
core feature of the rearrangement when 1-3% of individuals suffering from
severe obesity were found to carry the deletion (325, 426), an association
later reproduced in large deletion clinical cohorts (500, 538). While feeding
difficulties and failure to thrive have been reported early in life (538),
BMI was consistently found to increase at around 4-6 years and rapidly
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progresses to obesity (426, 538–540), leading to a penetrance of 70% in
adulthood (500). Conversely, duplication carriers were found to be at
increased risk for being underweight, establishing a negative correlation
between the region’s copy number and BMI and demonstrating for the
first time that overweight and underweight could have the same etiology
(326, 423). This mirror effect was replicated in UKBB, with the deletion
and duplication leading to a BMI increase and decrease of 6.2 kg/m2

and 1.8 kg/m2, respectively (295). Similar findings in population cohorts
have since been reported for continuous measures of adiposity such
as BMI, weight, or body fat mass (208, 292, 294, 306), as well as binary
diagnosis of obesity (293, 306), with the deletion exerting a stronger
phenotypic effect than the duplication. Multiple studies also reported
an association with waist-to-hip ratio (208, 292, 294), the latter being
indicative of a shift from subcutaneous to visceral adiposity that has been
linked to adverse health outcomes, even if this association is strongly
attenuated upon adjustment for BMI (208). The abundance of evidence
from clinical and population cohorts means that the dosage effect on BMI
is one of the most striking and robust features associated with 16p11.2
BP4-5 CNVs. Mechanistically, hyperphagia is prevalent among deletion
carriers, especially those suffering from obesity (426, 500, 526), and
deletion carriers were found to exhibit altered satiety response preceding
obesity onset (665), as well as structural changes in parts of the brain
associated with reward mechanisms. Consistent with this observation,
deletion carriers are prone to disinhibiting eating disorders leading to
eating in the absence of hunger when they see others eat or are bored
(539). These behaviors likely do not fully account for BMI increase (539),
suggesting that other mechanisms, such as reduced energy expenditure,
might be at play. Importantly, several studies have suggested that obesity
is independent of the neuropsychiatric phenotypes frequently observed
among CNV carriers (423, 426, 500, 665).

Diabetes & pancreas disorders
Obesity is common among 16p11.2 BP4-5 deletion carriers and represents
a major risk factor for type II diabetes (666). Still, prevalence of the latter
has not been systematically studied in clinical cohorts of deletions carriers.
Population studies have shown that deletion carriers are at increased risk
for type II diabetes (292, 293, 306) and exhibit higher levels of glycated
hemoglobin (208, 292, 305), which are at least partially independent of
BMI (563). Deletions were also found to increase risk for type I diabetes
(82) an autoimmune disease caused by insulin deficiency, as opposed
to insulin resistance. While this disease is not strongly associated with
obesity, this association is lost upon adjusting for BMI (563), suggesting
that the observed association might result from early-onset type II
diabetes cases misdiagnosed as type I, which often has a childhood onset
(667). Independent reports identified two deletion carriers with neonatal
hyperinsulinemic hypoglycemia (668, 669), and a third presenting with
hypoglycemic coma with fluctuating blood glucose levels (640). These
cases suggest broad, early-onset insulin dysregulation as a feature of the
deletion. This highlights the need for better assessment of glycemia and
insulinemia in pediatric cohorts, allowing improved characterization of
the type, severity, and age of onset of different forms of diabetes and the
adoption of adequate treatment strategies.

Other features of the metabolic syndrome
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Features of the metabolic syndrome in 16p11.2 BP4-5 CNV carriers have
primarily been assessed in adult population cohorts. Besides previously
described increased rates of obesity and poor glycemic control, UKBB
deletion carriers are at increased risk for essential hypertension (82, 292,
293). This association is lost when accounting for BMI, revealing that
deletion carriers have lower diastolic blood pressure compared to BMI-
matched copy-neutral individuals (563). Similarly, UKBB deletion carriers
have lower levels of high-density lipoprotein cholesterol and elevated
triglycerides (208), putting them at increased risk for hyperlipidemia (563),
even though these associations are largely driven by the increase in BMI.
Despite these observations, deletion carriers were not at a significantly
increased risk for ischemic heart disease, regardless if accounting for
BMI or not (82, 563).

Characterized by hepatic fat accumulation, onset of metabolic dysfunction-
associated steatotic liver disease – previously referred to as non-alcoholic
fatty liver disease – is precipitated by the metabolic syndrome and
typically evolves towards hepatic steatohepatitis and fibrosis, which
further contributes to the metabolic syndrome through over-secretion of
triglycerides and glucose in the plasma (670, 671). Elevated liver enzymes
are an indicator of hepatic dysfunction and even though liver biopsy
remains the diagnostic gold standard, the condition should be suspected
in presence of metabolic syndrome features. Accordingly, key liver en-
zymes, i.e., alanine aminotransferase (ALT), aspartate aminotransferase
(AST), and gamma-glutamyltransferase (GGT), negatively correlated with
16p11.2 BP4-5 dosage (208). Furthermore, alkaline phosphatase (ALP)
(208, 306) and albumin (208) levels were increased and decreased among
deletion carriers, respectively. The effects on AST, GGT, and ALP remain
significant when accounting for BMI, even though no increased risk for
hepatic fibrosis was observed (82), possibly due to the condition being
underdiagnosed (672). Finally, C-reactive protein, a nonspecific marker
of inflammation, was increased among deletion carriers (208, 292, 305) in
a BMI-dependent fashion (563).

Epidemiologic data on the age of onset of metabolic phenotypes, as well
as estimates of prevalence and efficacy of medication and lifestyle modifi-
cations, remain scarce. This is particularly relevant as other comorbidities
could alter adherence to treatment strategies, e.g., motor delays and the
slower walking pace of deletion carriers (292) could impair capacity to
exercise. Current data suggest that while a large fraction of metabolic
alterations is consequential of increased BMI, some, including changes in
glycemic and hepatic biomarkers, are driven by independent pathways
(563). This parallels findings for the adjacent 16p11.2 BP2-3 deletion
(412) (Figure 6.10), but more research is needed to decipher underlying
molecular mechanisms. Interestingly, in mouse models for the CNV, the
mirror effect is reversed (552–554), with animals carrying the deletion
having small body size and altered basal metabolism (673), while animals
harboring the duplication are severely overweight and exhibit hepatic
steatosis, hyperlipidemia, and hyperinsulinemia (674). Mice with the
deletion further exhibit altered brain metabolism and a reduced number
of mitochondria in brain endothelial cells (675). Using human and ze-
brafish models, haploinsufficiency of the ceramide synthase modulator
FAM57B (now TLCD3B; MIM: 615175) was shown to disrupt sphingolipid
and glycerolipid homeostasis in the brain, leading to defects in synapto-
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genesis, brain activity, and behavior (676). Together, these studies start
to establish a link between the metabolic and neurologic phenotypes
observed in CNV carriers.

Recently, long-term follow-up of two deletion carriers treated with
liraglutide (glucagon-like peptide 1 analog) demonstrated effective weight
loss accompanied by improved glycemia, lipidemia, and overall life
quality (677). Offering promising perspectives, replication studies are
required to establish the safety and efficacy of these therapies in deletion
carriers.

Reproduction
Robust evidence shows that dosage of 16p11.2 BP4-5 correlates with
age at menarche in both clinical (328) and population cohorts (208, 306,
328), with deletion and duplication carriers experiencing menarche on
average 1.5 years earlier and later than controls, respectively. As for
other metabolic phenotypes, mice models of the CNV exhibit a reversed
mirror effect on female sexual maturation, with duplication and deletion
carriers experiencing earlier and delayed first ovulation, respectively
(328). While childhood obesity causally lowers age at menarche (678), in
humans the mirror effect was robust to correction for adult BMI (328).
A similar effect is observed on relative age at first facial hair (208, 328),
suggesting that puberty timing is affected in both males and females.
Conversely, age at menopause and balding are not affected (208). Despite
lowering puberty timing, an Icelandic study found that deletion carriers
exhibited markedly reduced fecundity – measured as the number of
children in individuals over 45 years – while no effect was observed for
the duplication carriers (435). Males were more affected than females, an
observation that has since been generalized to a broader spectrum of rare
deleterious mutations with potential explanations including infertility,
congenital malformations, and increased burden of neuropsychiatric
disorders and other health outcomes that make it less likely to find a
partner (679). In support of the former, sex hormone binding globulin
levels, which regulate the amount of bioavailable testosterone, were
reduced in UKBB deletion carriers (82), even though this association was
driven by increased BMI (563). Susceptibility for congenital malforma-
tions of the genital system, discussed later in this review, along with the
high prevalence of neuropsychiatric conditions, discussed earlier, could
additionally contribute to the reduced fecundity and further research
should disentangle the contribution of these factors.

Cardiac

Case reports have identified multiple congenital heart defects among
16p11.2 BP4-5 CNV carriers (524, 562, 680–690). Within a study of 1,118
fetuses with congenital heart defects, 16p11.2 BP4-5 deletions were the
second most common chromosomal alteration found in 0.9% of cases
(690). Penetrance of congenital heart defects among deletion carriers is
low, with estimates consistently ranging between 5-10% (423, 500, 691)
and it is unclear if dosage of the interval is causal for these anoma-
lies. Arguing in favor of a causal role, mouse models for the deletion
present with subtle heterogenous alterations in cardiac structure and
function (692). Furthermore, over 5% of BioVU CNV carriers had cardiac
findings in their electronic health records, with enrichment for “cardiac
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dysrhythmias” among deletion carriers, and various congenital anoma-
lies of the heart, cardiomegaly, and cardiac interventions (e.g., “heart
transplant/surgery”) among duplication carriers (413). In the UKBB
increased risk for cardiac valve disorders and arrhythmias were observed
among deletion carriers (82), but associations were lost when adjusting
for BMI (563). Hence, congenital heart anomalies represent a rare but
consequential feature of the 16p11.2 BP4-5 rearrangement with milder
defects potentially contributing to cardiac diseases in adulthood.

Pulmonary
Thorough investigation of pulmonary phenotypes is lacking in clini-
cal cohorts, despite isolated reports of infancy or childhood onset of
asthma (421, 640, 687). In UKBB, deletion carriers have strongly reduced
pulmonary function (208, 292, 294, 306), as well as increased risk for
asthma (82, 293), chronic obstructive pulmonary disease (COPD) (82, 306),
and respiratory failure (292). Similarly, BioVU CNV carriers frequently
presented with “abnormal findings during examination of lungs” (413).
Importantly, while asthma risk was driven by an increase in BMI, a
well-known risk factor for the disease, this was not the case for COPD and
forced vital capacity (563). Recurrent pulmonary infections (see Hemato-
logical & Immune system) and environmental factors such as smoking, air
pollution, occupational or residential exposure to allergens, chemicals,
dust, fumes, or molds represent major risk factors for lung diseases.
Except for tobacco smoking, whose rates were found to be increased
among UKBB CNV carriers (292), very little is known about whether
16p11.2 CNV carriers are differentially exposed to such factors and how
these exposures affect expressivity of the rearrangement.

Musculoskeletal & connective tissue
Global musculoskeletal features
16p11.2 BP4-5 CNV carriers present with global musculoskeletal alter-
ations. Unlike the mirror effect on BMI, the effect of the region’s dosage
on height is more subtle, with shorter stature in deletion carriers reported
in both clinical (500) and population (208, 292, 294, 306) cohorts but only
a fraction of population studies reporting a taller stature in duplication
carriers (294, 306). As a consequence of increased BMI (563), adult lev-
els of insulin-like growth factor 1 (IGF-1), which mediates the effect of
growth hormone, are decreased in UKBB deletion carriers (208, 292).
Future studies should establish whether decreased levels of IGF-1 are
already present during childhood, as this could explain the short stature
of deletion carriers. Bone composition is also affected, with the region’s
dosage negatively correlating with heel bone mineral density (208, 294,
306). Even though obesity correlates with high bone mineral density (693)
the dosage effect is robust to BMI correction. The observed increased risk
for arthrosis among UKBB deletion carriers (82) appears to be caused by
excess adiposity (82), even though other mechanisms, such as structural
anomalies of the joints, cannot be excluded. Indeed, several reports of
joint hypermobility among clinically ascertained CNV carriers have been
described (421, 423, 523, 524). Joint laxity – along with short stature, limb
malalignment, and spinal deformity – is a hallmark feature of spondy-
loepimetaphyseal dysplasia with joint laxity type 2 (MIM: 603546), and
autosomal dominant disorder caused by mutations in the 16p11.2 gene
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24: Rare birth defect characterized by
premature fusion of skull bones that can
affect brain development.

25: Small cavity in the skull in which the
cerebellum and part of the brain stem are
located. Malformations typically affect
cerebellum development and are clas-
sified depending on whether the fossa
is enlarged (e.g., Dandy-Walker malfor-
mation) or too small (e.g., rhomben-
cephalosynapsis).

KIF22 (MIM: 603213) that often leads to early-onset arthrosis (694). To
date, prevalence of this disorder among deletion carriers has not been
assessed. UKBB CNV carriers also exhibited a strong decrease in hand
grip strength (208, 294), paralleled by high rates of “muscle weakness” in
BioVU deletion carriers (413). While decreased muscle strength could not
be explained by increased BMI and shorter stature, possible mechanisms
might include low IGF-1 levels, reduced physical activity, or neurological
defects leading to hypotonia and muscle weakness.

Craniofacial features
The mirror effect on head circumference – making deletion and dupli-
cation carriers more prone to macro- and microcephaly, respectively –
represents one of the first described hallmarks of the 16p11.2 BP4-5 rear-
rangement (421, 423, 425, 498, 500) and was later paralleled by changes
in brain volume (586–589). Importantly, head circumference positively
correlates with BMI, with about one third of obese deletion carriers being
macrocephalic (423, 500). Mechanistically, modulating expression of the
ortholog of the 16p11.2 gene KCTD13 (MIM: 608947) in zebrafish was
found to recapitulate the head size phenotype through perturbation of
RhoA signaling (266, 273, 695, 696). kctd13 expression negatively correlated
with proliferation of neuronal progenitor as well as increasing apoptosis
upon overexpression (266). While kctd13 was sufficient to establish the
neuroanatomical changes, expressivity was increased by simultaneously
altering the expression of two other genes in the region, mvp and mapk
(266), suggesting cis-epistatic interactions. Concordantly, dysregulation
of the ERK signaling cascade – of which MAPK3 is part – was suggested
to play a role in the increase in progenitor proliferation and decrease in
hippocampal synaptic protein synthesis in a mouse model of the deletion
(697, 698). Increased dendritic arborization in a duplication mouse model
was linked to the same kinase cascade (699). Another study investigating
global craniofacial features in 16p11.2 BP4-5 CNV carriers found that indi-
vidual overexpression of seven 16p11.2 genes in zebrafish could induce an
analogous phenotype to the lower jaw protrusion phenotype observed in
human duplication carriers (272). Simultaneous overexpression of kctd13,
mapk3, and mvp yielded an even stronger jaw protrusion phenotype,
despite no effect of individual gene overexpression (272). In addition
to jaw protrusion, a positive and negative dosage effect on the nasal
and frontal regions, respectively, were identified from 3D morphometric
facial imaging, even if these effects remain small and variable (272).
These findings align with the frequently reported facial features of CNV
carriers - broad forehead, micrognathias, or flattened profile – despite no
recognizable facial gestalt (421, 500, 523, 524, 687). Dysmorphic features
can result from skull deformities, such as craniosynostosis24, which
has been reported in deletion carriers (500, 562, 600), with a prevalence
estimate of 1.3% (423). Syndromic and multisuture craniosynostosis can
also lead to Chiari type 1 malformations, which are frequent among
deletion carriers (423, 498, 500, 594–596) (see Structural alterations of the
nervous system). In rarer cases, more severe malformations of the posterior
fossa25 have been reported (700, 701). To conclude, 16p11.2 BP4-5 dosage
negatively correlates with head circumference and predisposes to a broad
range of usually mild dysmorphic features and cranial anomalies. The
latter have low penetrance, especially among duplication carriers and
non-medically ascertained deletion carriers (500).
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26: Partial loss-of-function allele that re-
sults in reduced production, function, or
stability of the wildtype allele.

27: A genetic variant is compounded
when another variant impacting the func-
tion of the same gene is present on the
other allele. Compound heterozygotes
will carry two different mutations, one
on each allele, which can result in a re-
cessive disorder.
28: Abnormal forward rounding of the
spine (“hunchback”), in opposition to
scoliosis, which is defined by an abnor-
mal sideways curvature of the spine.
29: Rare disorder characterized by se-
vere, congenital deformities of the spine
and ribs that cause short-trunk dwarfism.
Deformities increase risk of breathing
problems, hernia, spina bifida, and
Chiari malformations.

30: Relatively common male congenital
birth defect in premature infants char-
acterized by at least one testis not fully
descended into the scrotum.
31: Mayer-Rokitansky-Küster-Hauser
syndrome or Müllerian aplasia is a
rare congenital defect of the female
reproductive system characterized
by aplasia of the uterus, cervix, and
vagina, leading to infertility. It can be
accompanied by malformations of the
Fallopian tubes, ovaries, urinary tract,
and spine, in which case it is referred
to as Müllerian-renal-cervicothoracic
somite dysplasia.

Spine and thoracic cage deformities
Deformities of the spine and thoracic cage, such as pectus excavatum (421,
423, 500, 702, 703), or idiopathic scoliosis and vertebral anomalies (500,
523, 681, 703, 704), represent recurrent phenotypes of the 16p11.2 BP4-5
deletion. Interestingly, carriers of the deletion or a loss-of-function variant
in the 16p11.2 TBX6 (MIM: 602427) gene in combination with a hypomor-
phic26 TBX6 allele explained up to 11% of congenital scoliosis cases in a
Chinese population (142). Highlighting TBX6 as the causal gene for spinal
malformations, these results were replicated in additional cohorts (598,
705). Further research showed that TBX6-associated congenital scoliosis
presents with distinguishable endophenotypes including earlier onset,
increased prevalence of hemivertebrae and rib anomalies, and lower
rates of spinal cord defect (706). TBX6 compound inheritance27 was also
shown to be associated with a broad spectrum of disorders of vertebral
development and segmentation – ranging in severity from scoliosis or
kyphosis28 to generalized defects such as spondylocostal dysostosis29

(MIM: 122600) (683) – as well as a cooccurrence of structural defects
of the vertebra, ribs, and kidney (275), in line with the role of TBX6 in
development of the genitourinary tract (277, 542) (see Congenital anomalies
of the genitourinary tract). Effects of increased dosage of TBX6 are less
well defined, although duplication carriers have been reported to suffer
from congenital vertebral malformations (421, 664, 707). Interestingly,
duplication carriers tend to be more affected by upper spine (i.e., cervical
vertebra) defects (707), in contrast with the higher predisposition to lower
spine defects (i.e., thoracic and lumbar vertebra) in deletion carriers
(276, 706). Note that KIF22-associated spondyloepimetaphyseal dysplasia
with joint laxity type 2 is also characterized by spinal deformities (694),
so that additive or epistatic interactions between 16p11.2 genes could
contribute to heterogeneity in skeletal phenotypes. While we did not
identify an association with scoliosis in UKBB (unpublished data), other
reported increased risk for sciatica among duplication carriers (293),
while BioVU deletion carriers had higher diagnostic rates of “congenital
musculoskeletal deformities of the spine” (413).

Hernia
Increased risk for abdominal hernia among UKBB 16p11.2 BP4-5 CNV
has been reported (292), even though others did not find the effect to be
significant (82, 293). Inguinal and umbilical hernias account for about
85% of repaired abdominal hernias (708) and have at times been reported
among clinically ascertained 16p11.2 BP4-5 CNV carriers (423, 562, 687,
704). More striking are the multiple reports of the much more rare and
severe congenital diaphragmatic hernias (421, 423, 524, 664). Across two
studies totaling 120 congenital diaphragmatic hernia cases, 2.5% were
deletion carriers (709, 710). Further research is needed to elucidate what
predisposes CNV carriers to different types of congenital and acquired
hernia, with possible explanations including weakness of the connective
tissue, increased pressure on abdominal organs due to spinal and thoracic
cage deformities, cryptorchidism30, or obesity.

Genitourinary

Congenital anomalies of the genitourinary tract
With a 6.3% fraction of the cases, 16p11.2 BP4-5 deletions were found
to be enriched in a Müllerian aplasia31 (MIM: 277000; 601076) cohort
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32: Male congenital birth defect caus-
ing the opening of the urethra not to be
located at the tip of the penis.

33: Abnormal flow of urine from the
bladder back up the ureters towards the
kidneys, which increases infection risk
and can cause renal damage.

(278), while haploinsufficiency of TBX6 – through gene deletion or point
mutations – was identified in 23 out 112 cases of Müllerian aplasia (711), as
well as in one patient with distal vaginal atresia but normally developed
uterus and cervix (712). The role of the deletion was consolidated by two
studies in individuals of Chinese ancestry, where it accounted for 0.9-1.4%
of the cases (713, 714). These findings echo the increased rate of female
reproductive tract disorders observed among Estonian Biobank CNV
carriers, which have been proposed to be driven by dosage of ASPHD1
and KCTD13 based on Mendelian randomization and single-gene dosage
modulation in zebrafish (328). Anomalies of the male genitalia, including
cryptorchidism, hypospadias32, and micropenis, have also been reported
in 16p11.2 BP4-5 deletion (421, 523, 664) and less frequently in duplication
(326, 421) carriers. After identifying an enrichment of 16p11.2 BP4-5
overlapping deletions among individuals with genitourinary defects,
two studies used mice models to show that decreased dosage of KCTD13
associated with penile and testicular anomalies (715), while reduced
dosage of MAZ (MIM: 600999) led to defects of the upper genitourinary
tract and high penetrance of congenital anomalies of the kidney and
urinary tract (CAKUT) (716).

CAKUT describes a broad spectrum of phenotypes, including kidney
anomalies, ectopic or horseshoe kidneys, obstructive uropathies, and
vesicoureteral reflux33. It was reported in a small fraction of early
descriptive studies of 16p11.2 BP4-5 CNV carriers (421, 524). Echoing the
finding that 0.5% of fetuses with ultrasound renal anomalies harbored a
16p11.2 BP4-5 deletion (717), deletion carriers were enriched in a cohort
of 2,800 CAKUT cases (277). Unlike other recurrent CNVs, 16p11.2 BP4-
5 deletions induced a broad spectrum of genitourinary defects (277,
541). Using a genotype-first approach, another study found that 13 of
52 deletion carriers presented with defects of the urinary tract (542),
establishing the deletion as an important risk factor for CAKUT. Frequent
co-occurrence of skeletal and genitourinary malformations (275) has
led to the hypothesis that haploinsufficiency of TBX6 is at the origin of
both phenotypes. Concordantly, mouse models with various degrees of
reduced Tbx6 expression exhibited CAKUT phenotypes (277, 542). This
implicates TBX6 dosage as the driver of both skeletal and genitourinary
phenotypes, with dosage of cis-genes (i.e., KIF22, KCTD13, MAZ, and
ASPHD1) likely contributing to phenotypic variability.

Renal function
16p11.2 BP4-5 deletion carriers were enriched in a cohort of 6,679 chronic
kidney disease cases (409). Paralleling these findings, UKBB CNV carri-
ers, and in particular deletion carriers, had increased levels of the renal
biomarker cystatin C (208, 292, 305) and were at increased risk for both
chronic kidney disease and acute kidney injury (82, 293, 306). The region’s
dosage was also found to positively correlate with serum creatinine levels
(208, 306). While impaired kidney function is typically associated with
high levels of creatinine, we cannot exclude that muscle wasting or liver
diseases, both observed in deletion carriers, play a role in the lowered
creatinine levels. Importantly, the U-shape effect on cystatin C and acute
kidney injury and the mirror effect on creatinine were robust to BMI
adjustment, putting forward the hypothesis that other mechanisms, such
as presence of subclinical structural renal alterations, affect renal function
in the long term. Deletion carriers also exhibited high levels of serum
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uric acid (208). Hyperuricemia is linked to the metabolic syndrome and
represents a strong risk factor for gout, whose prevalence was increased,
albeit not significantly, among deletion carriers (82). Overall, there is clear
evidence for impairment of renal function among adult CNV carriers.

Hematological & Immune system

16p11.2 BP4-5 deletion carriers are at increased risk for anemia, and in
particular iron deficiency anemia (40, 82, 293). Anemia risk was associ-
ated with the number of copies of BOLA2, a gene involved in cellular
iron homeostasis mapping within the 16p11.2 BP4-5 flanking breakpoints
(Figure 6.10) and present in 3 to 8 copies in humans (40, 41). These
Homo sapiens-specific copy number polymorphic duplications of BOLA2
are under positive selection and were suggested to provide an adap-
tive role in protecting against iron deficiency (40, 41). Other findings
related to red blood cells include increased mean reticulocyte volume
and decreased high light scatter reticulocyte count in deletion carriers, as
well as increased immature reticulocyte fraction in duplication carriers
(306). There is also evidence that the myeloid and lymphoid lineages are
compromised in deletion carriers. Severe combined immunodeficiency 8
(MIM: 615401) with T lymphocytopenia has been reported in deletion
carriers compounded with mutations in the 16p11.2 T-cell mediated
immunity gene CORO1A (MIM: 605000) (543, 718), while immune de-
ficiency was suspected in three independent deletion carriers due to
severe pneumonia or low immunoglobulins (562, 640, 687). Retrospective
analysis of 170 deletion carriers ascertained for ASD revealed that 81%
had a history of significant infection, including recurrent otitis (28%),
chronic bronchitis (4%), or pneumonia (26%) (719). Low lymphocyte
levels have been reported in UKBB deletion carriers (306, 720), along
with an increased risk for pneumonia (82, 306), with recent evidence
suggesting that the 16p-associated impaired immunity is not secondary
to increased adiposity (563). More controversial are findings related
to neutrophil count, which were increased in UKBB deletion carriers
(208, 306, 720) despite cases of neutropenia in clinical cohorts (720) or
platelet count, which in UKBB show a strong, BMI-independent, negative
correlation with the region’s dosage (208, 306) despite a case report of a
deletion carrier with thrombocytopenia (687). Recently, the immunity
gene CORO1A has also been shown to play an important role in platelet
biology (718, 721), while the encoded protein is part of the AP2-mediated
clathrin-coated pit subcomplex within the atlas of autism protein inter-
actions (722). While some of these associations remain to be clarified,
current evidence indicates that the 16p11.2 BP4-5 deletion represents an
important risk factor for both anemia and recurrent infection.

Sensory organs

Overall sensory processing is affected in 16p11.2 BP4-5 CNV carriers (641,
723, 724). Ophthalmologic findings have sporadically been documented
in 16p11.2 BP4-5 CNV carriers and their frequency in 43 deletion carriers
was recently reviewed, highlighting abnormal palpebral fissures (41.9%),
deep-set eyes (20.9%), ptosis (18.6%), and hypertelorism (18.6%) as the
most common findings (596). Strabismus and refractive errors were re-
ported in 6-8% of CNV carriers (423, 524, 681), while 11% and 30% of
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34: Rare congenital ophthalmic defect
characterized by the absence of eye tissue
(e.g., iris, retina, or optic nerve).

deletion and duplication carriers were diagnosed with abnormal eye con-
vergence, respectively (498). More severe defects, such as microphthalmia
and optic nerve coloboma34 have been described (702), and prevalence
of major ophthalmic malformations or blindness was estimated at 2.6%
and 1.5% among deletion and duplication carriers, respectively, while
it is estimated at 0.5% in the general population (423). Unfortunately,
comprehensive ophthalmologic examination of CNV carriers is often
lacking. In the UKBB, no significant increase in cataract, glaucoma, and
cornea disorders was observed (82). Auditory dysfunction was reported
in about 9.5% of deletion (421, 500, 524, 562) and 3.7% of duplication
(423) carriers. However, the same caveats apply as for ophthalmologic
findings, and a more detailed and systematic characterization of auditory
dysfunctions is required. Future studies should investigate associations
with UKBB refractometer, intraocular pressure, and visual acuity mea-
surements, as well as hearing test results to assess presence of subtle
ophthalmologic and/or auditory defects and establish whether CNV
carriers are at increased risk for sensory impairment.

Cancer

Tumors and cancers have rarely been reported in 16p11.2 BP4-5 CNV
carriers (423, 725) and no significant associations were reported in general
populational cohorts, even if cancers were not assessed as thoroughly as
other phenotypes. The only robustly associated cancer is neuroblastoma,
with 22 deletion carriers identified out of 5,585 cases (726). None of
the neuroblastomas among deletion carriers harbored a MYC (MIM:
190080) amplification, so that two thirds were anticipated to have a low
risk of relapse (726), suggesting that the deletion is associated with less
aggressive neuroblastoma.

Embrace diversity to better understand pheno-
typic heterogeneity
Over the years, numerous studies have demonstrated the extensive
pleiotropy of 16p11.2 BP4-5 CNVs, establishing the rearrangement as an
important susceptibility locus for a wide range of disorders. As such,
diagnostic identification of the CNV is typically disclosed to patients.
Yet, in 90,000 patients from the Geisinger MyCode Community Health
Initiative health system, less than 10% of carriers of a CNV associated with
a genomic disorder had received a clinical diagnosis, despite exhibiting
clinical features associated with the condition (402). From a personalized
medicine perspective, this emphasizes the importance of adopting a
holistic approach, allowing diagnosis of individuals with milder and/or
atypical presentation, as well as follow-up by multiple specialists to
anticipate and potentially treat and/or prevent future complications.
This is particularly relevant, given the highly heterogeneous clinical
manifestation of the CNV (Figure 6.14). To achieve this, it is imperative
to i) define and bring awareness to clinicians of the spectrum of possible
manifestations of the rearrangement, ii) understand factors contributing
to phenotypic heterogeneity, and iii) gain mechanistic insights into the
molecular pathways connecting altered gene dosage to phenotype. Here,
we discuss some key areas that might allow filling missing knowledge
gaps, while emphasizing how diversity in patients, experimental models,
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and analytical approaches can catalyze discoveries.

Diversity in ascertainment and demographics
As extensively described in this review, results from clinical and popu-
lation studies often converge onto similar physiological systems. Both
types of studies suffer from ascertainment biases, leading to over- and
under-estimation of the CNV’s effect, respectively, while still exposing
the two extremities of the same phenotypic continuum. The latter ranges
from subtle subclinical alterations – as often seen in transmitting parents
of clinically ascertained carriers identified by cascade testing (287, 727) or
carriers from population cohorts – to severe medical conditions observed
in probands from clinical cohorts. Hence, results of clinical and popula-
tion cohorts should be seen as complementary approaches investigating
the same question but from a different angle.

disease liability

... ...... ...

population
cohort

clinical
cohort

CNV effect

overall health burden

disease threshold

genetics
- ancestry
- genetic background 
- mutation classes

environment
- early life events
- socio-economic factors
- lifestyle and occupation

demographics
- recruitment strategy
- age
- sex and gender

...

FACTORS MODULATING PHENOTYPIC HETEROGENEITY

CNV carriers

copy-neutral

Figure 6.14: Model of phenotypic variability among CNV carriers.
Schematic view on a holistic approach to understanding phenotypic heterogeneity. Top: Distribution of the global health burden among
copy-neutral (gray) and CNV carriers (black). CNV carriers from population cohorts tend to be sampled from the left side of the CNV
carrier distribution, while CNV carriers from clinical cohorts tend to be sampled from the right side of that distribution. Bottom: Liability
to diseases affecting different physiological systems for five individuals sampled from the above distributions. The red mark represents
the liability threshold that needs to be exceeded for an individual to be diagnosed with a disease. The threshold is lower for common
diseases and individuals that are near the threshold might present with subclinical features, e.g., the first individual is overweight
without meeting diagnostic criteria for obesity (orange). The dark-colored area represents the true contribution of the CNV to disease
liability, which in the absence of epistasis or gene-environment interactions is constant across CNV carriers but variable across diseases.
Typically, contribution is stronger for rarer disorders, but usually not sufficient to pass the disease threshold. The light-colored area
represents the contribution of various other genetic, demographic, and environmental factors to disease liability, which will determine
whether the individual reaches the disease threshold or not. Importantly, contribution of these factors is variable across both diseases
and individuals, resulting in phenotypic heterogeneity across CNV carriers.
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35: Genetic interactions indicate that the
relation between a genotype and a phe-
notype will depend on another factor,
such as an individual’s sex, environmen-
tal exposures, or other genetic variants.
The latter is referred to as epistasis, in
opposition to additive genetic effects.

Differences in ascertainment also mean that clinical and population
cohorts have different demographics. Clinical cohorts tend to be enriched
for severe pediatric cases, while population cohorts are usually composed
of adults. The latter often provide longitudinal follow-up data, which
offers the opportunity to investigate age at disease onset and clinical
trajectory in adulthood, especially for phenotypes expressed only later in
life, which are often less well characterized among carriers of syndromic
CNVs. Indeed, not only do 16p11.2 BP4-5 CNV carriers suffer from in-
creased risk for a broad range of common diseases, but they also suffer
from earlier age of onset, compared to individuals lacking the CNV (82).
This information can be tapped by physicians to establish preventive
measures to anticipate and attenuate later-onset comorbidities. For in-
stance, given the important neurodevelopmental phenotypes associated
with 16p11.2 BP4-5 CNVs, we should assess whether carriers also have
altered risk for neurodegenerative disorders at older ages.

Another important consideration relates to sex. Because clinical cohorts
are typically recruited with a phenotype-first approach and as many
traits exhibited skewed male-female ratios, this could impact sex repre-
sentation and lead to biases in the clinical description of comorbidities.
For instance, ASD, a hallmark feature of the 16p11.2 BP4-5 rearrangement,
has an estimated male-to-female ratio of 3:1 (728). While true differences
in disease prevalence, behavioral symptoms, and neurobiological profiles
between sexes exist (729), evidence suggests that we underdiagnose ASD
among females due to differences in clinical presentation and/or societal
stereotypes (728, 730). Furthermore, factors such as comorbidities and
genetic etiology impact sex ratio estimates (731). Interestingly, the sex
ratio across 16p11.2 BP4-5 deletion carriers appears stable – about 1.5 male
carriers per female carrier – across different ascertainment strategies,
whereas for the duplication, there are about twice as many male carriers
in clinically ascertained cohorts, compared to an almost equal sex ratio
in population cohorts (Table 6.7). Surprisingly, and unlike what would
be expected from a female-protective effect (312), UKBB is significantly
depleted from female deletion carriers (Table 6.7). One explanation for
this could be sex-specific differences in participation compounded over
multiple traits affected by the deletion, as suggested by the widespread
genetic correlation between sex and adipose or psychiatric traits (732).
This would mean that females with hallmark features of the deletion,
such as increased BMI and decreased cognitive ability, might be less
likely to participate. In line with this hypothesis, the BMI-increasing
FTO (MIM: 610966) allele was present at a higher frequency in male
UKBB participants (732), suggesting that obese females are less likely to
enroll in biobanks. Differences in prevalence across sexes might reflect
the existence of genetic interaction35 with sex. Little is known about
single-sex or sex differential effects of 16p11.2 BP4-5 rearrangements.
Rodents deleted for the 16p11.2 BP4-5 syntenic region show broad sex-
and age-specific behavioral differences (556, 733), as well as male-specific
sleep (643), reward-learning (734), neovascularization (735), and vocal
communication (736) impairments, while females exhibit increased levels
of anxiety (737). Similarly, the social behavior and the reaction to novel
objects were more affected in 16p11.2 male rat models (556). In humans, a
significantly stronger reduction in fecundity was observed in male dele-
tion carriers (435), while another study found that female CNV carriers
ascertained for DD/ID experienced a larger number of comorbidities
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Table 6.7: Sex ratio among 16p11.2 BP4-5 CNV carriers with different ascertainments.
Number and percentage of male and female 16p11.2 BP4-5 deletion and duplication carriers for two clinical cohorts ascertained for i)
autism spectrum disorder (ASD) and ii) developmental delay/intellectual disability (DD/ID), as well as the general population cohort
UK Biobank (UKBB). Sex distribution of each cohort is indicated as a third row with gray background. Sex ratio is provided as the
number of males per female in the considered sample. P-values of two-sided Fisher tests are reported, assessing differences in sex ratio
among CNV carriers, compared to the entire cohort. Significant results (p ≤ 0.05) are in bold.

Ascertainment 16p11.2BP4-5 status Male (%) Female (%) Ratio P
deletion 9 (56%) 7 (44%) 1.3:1 0.061

duplication 6 (67%) 3 (33%) 2:1 0.420ASD (731)
cohort 4,588 (78%) 1,284 (22%) 3.6:1

deletion 45 (61%) 29 (39%) 1.6:1 0.910
duplication 29 (64%) 16 (36%) 1.8:1 0.547DD/ID (731)

cohort 17,061 (60%) 11,492 (40%) 1.5:1
deletion 45 (62%) 28 (38%) 1.6:1 0.009

duplication 41 (46%) 48 (54%) 0.9:1 1
Population cohort

(UKBB) (563)
cohort 152,967 (46%) 178,555 (54%) 0.9:1

(731). In the future, sex differences should be investigated for a broad
range of traits associated with 16p11.2 BP4-5 rearrangements.

Diversity in genetic background

There is a significant correlation between a CNV carrier’s cognitive and
social skills and those of non-carrier first-degree relatives, indicating
that familial background modulates phenotypic expressivity with similar
effects in deletion and duplication carriers (500, 575, 576). An individual’s
familial background encompasses many genetic variants that can be
grouped depending on their frequency and phenotypic impact. Early
studies hypothesized that additional rare variants sensitize genomes,
leading to differential phenotypic expression of the same 16p11.2 BP4-5
rearrangement (285). Validating this “two-hit” theory, 16% of duplication
and 8% of deletion carriers were found to harbor a second large CNV
and these individuals exhibited a more severe and diverse phenotype
(286). A later study found that 70% of clinically ascertained 16p11.2 BP4-5
CNV carriers harbored a rare secondary CNV and that there was a strong
maternal transmission bias for pathogenic secondary deletions (193).
Similarly, the number of secondary rare and predicted-to-be pathogenic
variants was shown to be negatively correlated with cognitive function
and head circumference in 16p11.2 BP4-5 deletion carriers (287). In some
cases, the second hit is linked to known genetic disorders, such as severe
combined immunodeficiency (543, 718), Cohen syndrome (MIM: 216550)
(738), Mowat-Wilson syndrome (MIM: 235730) (739), Zellweger spectrum
disorders (MIM: 614862) (669), or Friedreich ataxia (MIM: 229300) (740),
leading to more severe cases with atypical presentation, highlighting dual
diagnosis as a possible explanation for phenotypic heterogeneity (741).
While syndrome coexistence or bi-parental inheritance of duplication
(550, 551) might occur at random, the phenomenon might be fostered
by cross-disorder assortative mating (727). Only a few studies (193,
727) have investigated the interplay between assortative mating, CNV
inheritance mode, and parent-of-origin effects and future work should
aim at characterizing the interaction between these processes to better
determine how phenotype severity and heterogeneity is compounded
over multiple generations.
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36: Quantity reflecting the contribution
of a group of variants to a given phe-
notype in a single individual. Most of-
ten, PGS capture the additive effects of
thousands of genome-wide single poly-
morphisms, even though they can also
be built to account for other mutation
types or be restricted to specific genomic
regions.

The “two-hit” model is paralleled by experimental findings in various
model organisms. Pairwise gene knockdown experiments (Box 1) revealed
intraregional epistatic interactions. Interestingly, a mouse model hemi-
deleted for three genes (Taok2, Sez6l2, and Mvp) recapitulates the male-
specific behavioral alterations observed in 16p11.2Del/+ mice, while the
additional hemi-deletion of Mapk3 decreased phenotypic similarities
(561). Yet, another mouse model hemi-deleted for Mapk3 and Mvp leads
to altered behavior in male mice (274). This suggests that phenotypes
linked to the CNVs can be recapitulated through perturbation of various
gene combinations, implying redundancy. Combinatorial knockdown
and overexpression experiments, as well as transcriptome-wide studies
of the gene expression dysregulation induced by the rearrangement also
revealed widespread interactions between 16p11.2 BP4-5 homologs and
other DD/ID, genomic disorder, and ciliopathy genes (547, 559). Long-
range interactions involve homologs of the distal 16p11.2 BP2-3 CNV
region (559) (Figure 6.10), whose rearrangement in humans generates
similar phenotypes to BP4-5 rearrangements, including increased risk
for ASD and a mirror effect on BMI and head circumference (279).
Specifically, mouse and zebrafish studies found that the ortholog of the
BP2-3 LAT (MIM: 602354) gene acted in concert with KCTD13 – the
major BP4-5 driver of head circumference (266) – to modulate brain
size, with additional contributions of MVP (MIM: 605088) and MAPK3
(MIM: 601795) (273, 280). Chromatin conformation assays have further
demonstrated high levels of evolutionary conserved interaction between
BP2-3 and BP4-5 (279, 742), as well as the entire short arm of chromosome
16 (16p) (282), suggesting that CNVs in the region lead to broad disruption
of local 3D genomic structure. This could explain why 16p11.2 BP4-5
deletions induce global downregulation of neuronally expressed 16p
genes (282). This observation is exemplified by the downregulation of
genes linked to DD/ID and psychiatric conditions in human cortical
organoids derived from deletion carriers, including the 16p mRNA
splicing regulator RBFOX1 (MIM: 605104) (743). Intriguingly, increased
local 16p polygenic score (PGS)36 for ASD exerted a similar impact on
gene expression (282), reconciling the rare and common component of
an individual’s familial background.

More commonly, PGSs are assessed genome-wide and there is emerging
evidence that the latter act additively to CNVs. For instance, 16p11.2 BP4-5
duplication carriers with a PGS predisposing to high BMI tend to exhibit
a less severe reduction in BMI than those with a PGS predisposing to
low BMI, with opposite trends observed among deletion carriers (289).
Another study showed that SCZ cases carrying an SCZ-associated CNV
had lower SCZ PGS than those that did not (290). Because PGS reduction
was proportional to the CNV’s effect on SCZ and the 16p11.2 BP4-5
duplication substantially contributes to SCZ risk, SCZ PGS was not a
significant predictor among duplication carriers (290). These studies
suggest that expression of 16p11.2 BP4-5 rearrangements is modulated by
multiple common variants with minute effects, extending the “two-hit”
model to a polygenic one. Studying the contribution of the polygenic
background is complicated by healthy volunteer bias and assortative
mating. While more work is required to gain an understanding of how
different mutations act in concert to determine an individual’s disease
liability, these studies highlight the importance of evaluating the genomic
context in which CNVs occur if we ought to understand phenotypic
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37: Allele with mutation that increases
production, function, or stability of the
wild type gene product.

expressivity.

Diversity in ancestry

An important source of diversity stems from genetic ancestry. A first key
question is whether the frequency of the 16p11.2 BP4-5 rearrangements
varies across ancestries. Deleterious CNVs were found to be less preva-
lent in UKBB samples of non-European ancestry (744). This could be
explained by some haplotypes, e.g., at cytobands 17q21.31 and 16p12.1,
favoring genetic rearrangements due to the size and/or orientation of en-
compassed segmental duplication blocks (285). This in turn could make
some populations more susceptible to de novo CNVs (285) but does not
seem to be the case for 16p11.2 BP4-5 (41), despite archaic introgression
in this cytoband in some populations (745). Accordingly, neither the ASD
Simons Foundation Powering Autism Research for Knowledge cohort
(SPARK; N = 58,419; 20% non-European) (744) nor the healthcare cohort
BioMe (N = 24,877; 68% non-European) (530) identified a significant
divergence in 16p11.2 BP4-5 CNV prevalence across ancestries, even
though estimates are limited by the relatively small sample size of each
ancestry group. Alternatively, differences in frequency of other mutations
might modulate the CNV expressivity, leading to certain phenotypes
being more frequently expressed in specific populations. For instance,
autosomal recessive phenotypes might be more frequent in carriers
from a population in which loss-of-function alleles are widespread, as
illustrated by the high prevalence of congenital scoliosis in deletion
carriers of Asian ancestry due to the high prevalence (44%) of a TBX6
hypomorphic haplotype, which is rarer in individuals of European (33%)
and African (<1%) ancestries (276). Similarly, compounding the deletion
with a haplotype associated with reduced expression of MAPK3 affects
early neuronal development (746). Conversely, one could expect pheno-
types to become apparent in populations of duplication carriers in which
relevant hypermorphic37 alleles are widespread, even though no such
example has been reported for the 16p11.2 BP4-5 rearrangement to our
knowledge.

A major limitation is that except for a few large studies in individuals of
Asian ancestry, the bulk of current knowledge stems from investigating
CNV carriers of European ancestry, specifically the Simons Variation in
Individuals Project (Simons VIP) (644) and the 16p11.2 European Consor-
tium for clinically ascertained cohorts and the UKBB (61) and Estonian
Biobank (62) for general-population biobanks. While these cohorts have
pioneered the field, more diverse population cohorts have been set up
in recent years (8, 9, 65, 461), which should allow to better grasp the
extent to which frequency and phenotypic expression depend on an
individual’s ancestral background.

Diversity in environment

Environmental exposures are potent phenotypic modulators and could
account for part of the phenotypic heterogeneity observed among 16p11.2
BP4-5 CNV carriers. Yet, their role remains unexplored. So far, one study
found that an increased number of perinatal events (e.g., preterm birth,
abnormal presentation, low birthweight, or respiratory distress), but
not prenatal events, led to an increase in ASD symptomatology among
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38: Joint analysis of multiple rare vari-
ants meeting certain criteria that are
grouped into a single analysis unit, typ-
ically a gene, to perform an association
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deletion carriers (747). In mice modeling the duplication, adolescent
exposure to the psychoactive constituent of cannabis exacerbated deficits
in social memory in adulthood (748), while Mapk3 knockout mice are
hypersensitive to the rewarding properties of morphine (605). Many other
exposures during childhood, adolescence, and adulthood, including diet,
smoking habitat, alcohol consumption, physical activity, sleep hygiene,
medication usage, exposure to pollutants, occupation, socio-economic
status, and access to medical care could impact penetrance, expressivity,
and age of onset of diseases associated with the rearrangements. Future
studies should systematically assess whether environmental factors ex-
acerbate (or mitigate) clinical features beyond simple additive effects,
i.e., through CNV-environment interactions. For common variants, it
was demonstrated that genetic effects are modulated by different en-
vironments between populations, more so than by true differences in
causal effects across ancestries (749). Hence, it would be useful to identify
environmental exposures that prompt more severe expression of certain
phenotypes, as well as factors, such as early genetic diagnosis or follow-up
by multidisciplinary teams, that have the potential to effectively alleviate
the symptomatologic burden.

Diversity in mutation classes

A longstanding challenge relates to linking genetic content to specific
phenotypic features of 16p11.2 BP4-5 rearrangement. Besides the ex-
perimental approaches described below, it is possible to leverage the
existing genetic diversity at the locus to gain functional insights. For
instance, larger rearrangements, e.g., between BP1 and BP5 (Figure 6.10),
demonstrated the additive contribution of BP2-3 and BP4-5 to BMI and
head circumference (280), while a smaller 118 kb deletion encompass-
ing only MVP, CDIPT (MIM: 605893), SEZ6L2, ASPHD1, and KCTD13
was found to segregate with ASD features over three generations (750).
Due to the absence of segmental duplications between BP4 and BP5,
reports of recurrent partial rearrangements are sparse. Alternatively, rare
protein-coding variants can provide insights into the function of some
genes, as exemplified for PRRT2 and TBX6, the causal genes for PKD
(632) and congenital scoliosis (142), respectively. While these examples
have been elucidated through family studies, an alternative approach
in population cohorts are burden tests38 or more elaborated variance
component and combination tests (e.g., optimal sequence kernel associa-
tion test (SKAT-O)) (143). These have been performed in the UKBB for a
wide spectrum of traits (6, 145) but did not yield any strictly significant
association for 16p11.2 BP4-5 genes, except for an association between
SLX1A and cannabis usage (145). The weakness of these tests, however,
is that rare variants account for only a small fraction of heritability39,
which is concentrated on a few, highly constrained genes (106).

Common variants account for a much larger fraction of trait heritability
and can also be leveraged to increase confidence in the causal role of the
locus. For instance, early GWASs found the BP4-5 variant rs4583255[T]
to increase risk for psychosis while decreasing BMI, mimicking two
hallmark phenotypes of the duplication (752). Since then, 290 association
signals with single nucleotide variants mapping to the CNV region
have been reported in the NHGRI-EBI GWAS Catalog (78) (Figure 6.15).
Paralleling the phenotypes observed in CNV carriers, most signals relate
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Figure 6.15: GWAS Catalog associations at 16p11.2 BP4-5.
Top: 290 single nucleotide variants (SNVs) associations mapping to the 16p11.2 BP4-5 CNV region (GRCh38) reported in the GWAS
Catalog (78) (accessed 14/03/2024). The negative logarithm of the association p-value (left y-axis) is plotted against the genomic position
(x-axis). The dashed red line represents the threshold for genome-wide significance, at -log10(5 × 10-8). Associations are plotted from the
suggestive p-value of 7 × 10-6. P-values for three signals, depicted as upward-facing triangles, were truncated. Associations are colored
according to physiological system, using the same color scheme as in Figure 6.13. Number of signals for each category and subcategory
is reported (n). The GRCh38 recombination rate in cM/Mb is depicted in blue (right y-axis) and was downloaded from Eagle (751).
Bottom: Exonic structure of protein-coding genes overlapping the region. ◦ indicates OMIM morbid genes. * indicates genes that have a
new HGNC symbol since the GnomAD v2.1.1 release: FAM57B = TLCD3B.

40: Genetic variant associated with a
given gene’s expression (i.e., transcript
levels).
41: Causal inference approach used in ge-
netic epidemiology to identify causal re-
lationships between two traits, i.e., from
an exposure to an outcome. It does so by
assessing the impact of genetic variants
associated with the exposure trait on the
outcome trait.

to metabolic, hematologic/immune, and neuropsychiatric phenotypes.
Yet, associations with other traits, such as platelet count or diabetes,
that have been associated with 16p11.2 BP4-5 CNVs only more recently,
are also reported. This supports CNV findings, through independent
genetic perturbations converging onto the same phenotypic changes,
although the significance of the observed trait overlap has not been
rigorously assessed via statistical tests. One caveat of single nucleotide
variants GWAS results is that the lack of recombination prevents ac-
curate mapping of these signals to specific causal genes. Strategies to
contend with this include the incorporation of molecular data such as
transcriptomics or proteomics. For instance, expression quantitative
loci (eQTL)40 were used to estimate the impact of changes in expres-
sion of 16p11.2 BP4-5 genes on hematological traits using Mendelian
randomization41 (720). The approach identified decreased expression of
CORO1A, KIF22, and BOLA2-SMG1P6 as causally decreasing lymphocyte
count, thereby mimicking both the decreased gene expression expected
from the region’s deletion and the decreased lymphocyte count observed
in deletion carriers (720). While few studies have successfully incorpo-
rated other mutation classes to gain functional insights, this strategy
has not been systematically explored. Of course, this approach assumes
that a single, or maybe a few genes in the region are responsible for a
given phenotype (458). While this model might be true for some traits,
other phenotypes might have a more polygenic basis, possibly involving
interactions with genes beyond 16p11.2 BP4-5 (273, 279, 280, 282, 547, 559).
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Diversity in experimental approaches

Establishment of the core features of 16p11.2 BP4-5 CNV carriers prompted
the study of the region in controlled experimental settings through animal
and human cellular models (e.g., using induced pluripotent stem cells)
to gain mechanistic insights into the molecular pathways that connect al-
tered dosage to disease features. They can be broadly divided into models
that study the impact of the entire CNV versus those that independently
assess the function of each of the genes mapping to the interval, sometimes
using combinatorial approaches (Box 1). By controlling environmental
variables and allowing engineering of precise genetic alterations, model
organisms allow dissection of the individual contribution of the different
genes at the locus. These experiments catalyze the development of phar-
macological interventions – often targeting the GABAergic (555, 753, 754)
and serotonin (755–758) systems – that result in improved cognitive and
behavioral responses in mice models of the CNV. Similarly, inhibition of
RhoA signaling partially restored neuronal morphology and migration,
as well as functional and cognitive deficits in cellular and mouse models
of the CNV (590, 591, 759), while inhibiting the ERK pathway rescued
anatomical and behavioral deficits in cellular models of the duplication
(699) and a mouse model of the deletion (760), respectively. Because all
these models present their own limitations, it is important to replicate
results across multiple experimental strategies and validate findings in
humans to ensure their robustness and clinical utility (761). Indeed, a
recent study performing transcriptional and functional profiling across
various mouse tissues and human-derived cellular models emphasized
the strong context dependency of transcriptomic, morphological, elec-
trophysiological, and cell-fate signatures of the 16p11.2 CNV models (548).

Conclusions
The 16p11.2 BP4-5 rearrangement represents one of the most common
etiologies of genomic disorders, leading to a broad and variable spectrum
of phenotypes that extends far beyond neurodevelopmental disorders.
Poor awareness around the syndrome and presence of varied phenotypes
that require personalized solutions have been described as a challenge
to access adequate and continued support after diagnosis by parents
of children affected by 16p11.2 BP4-5 CNVs (762). To ensure equity in
terms of diagnosis and provide personalized treatment plans, physicians
must be aware of the different clinical presentations of these CNVs and
assemble multidisciplinary teams of specialists who can anticipate and
manage the different associated comorbidities (507, 763). This task is
complicated by our lack of understanding of the specific genetic and
environmental factors that contribute to phenotypic heterogeneity. Yet,
surveys of both parents of pediatric 16p11.2 BP4-5 deletion carriers and
adults with incidental findings of a 16p11.2 BP4-5 CNV consecutive to
their participation in a biobank reported that overall, they felt empowered
and positively valued the diagnosis (402, 764, 765). In this review, we
emphasize how integrating results from diverse data sources in terms
of ascertainment, demographics, and ancestry, as well as analytical
approach and experimental setting, can help fill current knowledge gaps
and deepen our understanding of the mechanisms underlying variability



226 6 16p11.2 BP4-5

in expressivity and penetrance, with the hope that this will guide the
development of personalized prevention and treatment strategies.

Deleterious enough to be enriched in clinical cohorts but not enough so
to be absent from population cohorts, 16p11.2 BP4-5 is an ideal showcase
example of pleiotropy, but we envision that the approaches described
in this review can be adapted to better delineate and understand the
pleiotropic spectrum of other recurrent CNVs and structural variants.
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The greatest danger for most of us is not that our aim is too high and we miss it,
but that it is too low and we reach it.

– attributed to Michelangelo

7.1 Lessons learned from CNV-GWAS

My thesis aimed to establish a framework to study the phenotypic
consequences of CNVs in the general population. In Chapters 2 and 3,
I present two studies in which this framework is described, with the
first study establishing the foundations, and the second study providing
numerous extensions that allow to accommodate binary traits. The
framework was originally developed for microarray-based CNV calls. At
the time when I started my PhD, the UK (∼500k) and Estonian (∼200k)
Biobanks were among the largest publicly accessible cohorts with genetic
information linked to phenotypic data. Hence, we applied our framework
to these datasets. Other population cohorts have reached similar sample
sizes since (Table 1.3) and represent prime candidates to deploy our
framework.

7.1.1 Methodological advances

One of the main challenges when developing the CNV-GWAS framework
was to deal with the low frequency of the accessed variants, which
compounded with the low disease prevalence in UKBB severely ham-
pered our statistical power. We used several strategies to mitigate the
consequences of low power. First, we put great care into defining cases
and controls, aggregating related diagnoses, and excluding individuals
with uncertain disease status. By reducing noise in the phenotype, we
improved statistical power. In Chapter 5, we further integrate continuous
blood biomarker information to define cases and controls, illustrating
how this approach can be tailored to specific research questions. Second,
we adapted our multiple testing correction to account for the true number
of independent tests performed. Still, relying on an arbitrary p-value cut-
off was particularly subjective in the low-power setting we were working
in. Indeed, different statistical tests would highlight different subsets of
associations and very few associations reached statistical significance
through all approaches, despite strong literature evidence supporting the
finding. We found that a transparent way to deal with this uncertainty
was to stratify our results into confidence tiers. By reporting these associ-
ations, along with all evidence gathered in favor of them, others might
(or might not) validate our findings in the future. While not dealing with
power per se, a third challenge was linked to the high computation time for
logistic regressions in a setting where both the genetic event and outcome
are rare. We pre-tested all genetic positions with computationally fast
statistical models, allowing to eliminate the ones that do not show any
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sign of association with the phenotype. More accurate – but also more
time-consuming – statistical models can then be run on selected variants
to obtain effect size estimates and p-values. This allowed to speed up
computation time without compromising on accuracy. Importantly, the
described strategies can be applied to other scenarios, providing a wider
usage to the statistical genetics community.

Other methodological aspects, such as the choice of testing unit, are
specific to CNV studies. A naïve approach is to group CNVs based
on breakpoints, allowing some flexibility in absolute (i.e., fixed range)
or relative (i.e., proportional to the CNV length) terms, to account
for biological and technical variability in breakpoints. This tolerance
parameters is arbitrary and introduces noise in the genotype definition,
thereby reducing statistical power. Many of the studies presented in
this dissertation use the copy-number state of the genotyping probe
as the testing unit, bypassing the need for arbitrary CNV grouping.
By leveraging correlation across the CNV genotype matrix, redundant
probes at the core region of the CNV are grouped, reducing computation
time while retaining variability around the breakpoint regions and further
enabling selection of an adequate multiple testing correction threshold.
Alternative strategies include using the gene or a sliding window as
the testing unit (34, 306). Another specificity of CNV-GWAS are the
association models. Despite the existence of multiple SNP-GWAS models
(Table 1.5), most studies rely on an additive model, which was shown to
capture the bulk of h2

SNP (89, 90). In CNV-GWAS, the advantage of one
model over the others is less pronounced. There is an overall trend for
deletions to be more deleterious but whether the duplication will generate
a similar, opposite, or no phenotype is highly dependent on the genomic
region. Even at a single locus, different traits might associate through
distinct models, making it crucial to test various dosage mechanisms.
Yet, an additional complication is that the effect size of a CNV tends to
negatively correlate with its frequency, especially in population biobanks
subject to health cohort bias. This can lead to differences in power across
models, warranting caution in effect interpretation.

7.1.2 Beyond CNV-GWAS

The two first chapters also propose developments that go beyond simple
GWASs, allowing to gain a deeper understanding of the global impact
of CNVs on human health. First, we propose a time-to-event framework
that we applied to demonstrate that cases of common disease caused by
rare CNVs tend to have an earlier onset than sporadic cases, regardless of
the considered disease. These findings related to the concepts discussed
in the introduction stating that i) common diseases represent aggregates
of rarer conditions and ii) diseases with a strong genetic etiology tend
to have an earlier onset. Second, CNV burden analyses increase our
power to assess the role of this mutational class as a whole. Our results
unanimously showed that CNVs negatively impact human health and that
these consequences extend to global aspects of an individual’s life, such
as socio-economic status and lifespan. We hypothesize that the negative
impact on lifespan results from an increased disease burden, despite not
formally testing this premise. Partitioning the CNV burden to identify
which genomic regions most strongly contribute to the disease burden
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1: Haplotypes are blocks of genetic se-
quence inherited from a single parent
as not broken up by recombination dur-
ing gamete formation. They are defined
through genetic linkage. Haplotype infor-
mation can be obtained through phasing,
which is key to e.g., detecting compound
heterozygotes.

revealed that the majority of the detected signal originates from regions
linked to known genomic disorders, including a small contribution
from regions that did not yield any CNV-GWAS signal. Importantly,
this analysis emphasized that the pleiotropy of these regions remains
underestimated. Nonetheless, the CNV burden only explains a marginal
fraction of the overall disease burden (∼0.02%) and differences across
diseases reflect the prominent role CNVs play in the genetic architecture
of psychiatric conditions (766). These results are unsurprising given that
the CNVs considered in our studies are rare and thus cannot explain
many disease cases. One limitation is the lack of tools to properly estimate
CNV-based heritability as existing methodology relies on assumptions
about SNP genetic architecture that do not hold for CNVs. While such
tools should provide more accurate estimates, it is unlikely that they
will reveal large contributions of rare, large CNVs to the heritability of
complex traits.

7.1.3 The future of CNV-GWAS

Presented conclusions only hold in the specific context of CNVs de-
tectable from SNP microarrays. In section 1.4.2, I described modern
technologies such as short- and long-read WGS that enable detection of
the full spectrum of SVs, including smaller events missed by array-based
technologies. Based on the observation that mutation size negatively
correlates with frequency (21, 34, 35), it can be speculated that newly
detected SVs will share characteristics with SNPs, so that a larger number
of common SVs contribute to the genetic architecture of complex traits,
possibly encapsulating some of the missing heritability. Because of their
lower pathogenicity, these SVs might be more frequently inherited and
thus in LD with (i.e., "tagged") by SNPs. This opens the possibility to
impute SVs, a currently under-developed field. Supporting this view, hap-
lotype sharing1 can help to more sensitively detect small CNVs from both
microarrays and WES data (211, 306). While associations with common
SVs are less likely to be novel (as tagged by SNPs), they might provide
functional insights when the SV represent the casual variant. The release
of hundreds of thousands of genomes over the last couple of years will
allow to determine whether these speculations hold. While there is no
doubt that these technologies will revolutionize our knowledge about
SVs, it is worth mentioning that many of the methodological aspects
developed throughout my PhD can be adapted to accommodate this new
input data.

7.2 From global patterns to translational
knowledge

Besides informing on general patterns that describe the relation between
rare CNVs and the human phenome, the studies presented in Chapters 2
and 3 also form the foundation for in-depth analyses of specific CNVs,
as presented in Chapters 4 through 6. These studies focus on providing
mechanistic insights for specific CNVs, generating clinically valuable
knowledge about these regions.
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7.2.1 Pleiotropy

In line with the single gene model described in Figure 1.21A, the few
single-gene CNVs uncovered by our CNV-GWAS (e.g., LDLR and BRCA1
deletions) tended to manifest themselves through disruption of a single
physiological system. These events amount to detecting human knock-
downs and can be highly informative about a gene’s function and the
consequences of its disruption. Leveraging the rich phenotypic data that
is available for carriers can generate new insights about the epidemiology
and comorbidities of these gene-disease pairs, beyond the associated
trait. A particularly exciting perspective about the increasingly common
availability of sequencing-based CNV calls is the ability to detect more
broadly small SV disrupting single exons/genes (209–211).

Yet, most trait-associated genetic regions overlapped multiple genes
and were highly pleiotropic. Understanding this pleiotropy is key to
understanding how these regions exert their pathogenic consequences,
and in turn, develop treatment strategies. We use a combination of
MR, covariate analysis, and matched-control approaches to elucidate
whether the pleiotropy of 22q11.2, 16p11.2 BP2-3, and 16p11.2 BP4-5
CNVs is horizontal or vertical (Figure 1.13). For instance, deletions of
the two 16p11.2 loci associated with severe obesity. We show that a
subset of associations with these regions is secondary to the deletion’s
impact on adiposity. Yet, a dozen associations across a broad range of
physiological systems were independent of the effect of 16p11.2 BP4-
5 CNVs on BMI and other confounders, demonstrating the genuine
pleiotropy of the region. The 16p11.2 BP2-3 study focused on metabolic
traits and identified increased risk for early-onset type 2 diabetes, renal
impairment, and inflammation as BMI-independent consequences of
the deletion, suggesting a distinct form of metabolic disease. Together,
this indicates that the phenotypic expression of genomic disorder CNVs
results from a combination of direct and indirect pleiotropic effects. Of
note, while BMI can be measured accurately and can be well-instrumented
for MR studies, this is not the case for other potential confounding factors.
Future research should aim at better capturing the mediatory role of a
broader set of traits by incorporating CNV-specific information.

7.2.2 Molecular mechanisms

Mechanisms of pleiotropy can also be elucidated at the molecular level,
by identifying driver and modifier genes (Figure 1.21). As discussed in
the review presented in Chapter 6, smaller mutations can pinpoint genes
whose disruption phenocopy the CNV, e.g., by leveraging SNP-GWASs
and rare protein-coding burden test results, as well as molecular QTL data
in an MR or colocalization framework. Phenotypic convergence across
mutation types provides strong evidence for the causal involvement
of a gene. A particularly interesting type of phenotypic convergence is
described through the phenomenon of allelic series, wherein a collection
of variants with variable consequences on a gene’s product results in
a graded phenotype (e.g., SLCO1B1/SLCO1B3). When multiple groups
of recurrent CNVs are present, pleiotropic patterns can be dissected to
narrow the putative causal region, sometimes down to a single gene
(e.g., ABCC6 and kidney stones). Importantly, different genes might drive
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distinct phenotypes (e.g., 15q13.3) and multiple genes might drive the
same trait (e.g., 22q11.2). Despite exploring the usage of other mutation
classes throughout most of the studies presented in my thesis, more
systematic and comprehensive work in that direction is needed. I discuss
a few approaches in the ensuing Perspectives.

7.2.3 Variable expressivity

Another phenomenon that became increasingly apparent is the vari-
able expressivity of recurrent CNVs. We identified multiple exam-
ples where a CNV linked to a severe clinical outcome was present
in biobank participants exhibiting subclinical phenotypes. For instance,
only about a third of carriers of the 17p12 duplication were diagnosed
with Charcot-Marie-Tooth, despite non-diagnosed individuals having
lower grip strength. Related to that, CNVs at loci linked with autosomal
recessive Mendelian disorders were found to lead to mild phenotypic
alterations reminiscent of the linked disorder, as exemplified by the allelic
series at SLCO1B1/SLCO1B3 locus, which causes Rotor syndrome in a
digenic recessive fashion. Overall, these results indicate that the classical
dichotomies between rare versus common diseases or recessive versus
dominant inheritance modes do not reflect the reality where the same
variant can generate a spectrum of phenotypic alterations. The severity
of a CNV’s expression is influenced by the ascertainment of the carriers,
with the more severe expressions being clustered in clinical cohorts in
which these CNVs have historically been studied. We show for 22q11.2
and 16p11.2 BP4-5 – two CNVs with notoriously high phenotypic hetero-
geneity – that findings from clinical and population cohorts converge on
the same physiological systems, re-iterating the importance of studying
these CNVs in diverse cohorts to capture their full phenotypic expression.

7.3 Perspectives

From a personalized medicine perspective, awareness of CNV pleiotropy
and variable expressivity is key to improving diagnostic rates and antici-
pating comorbidities. While the review presented in Chapter 6 focuses on
16p11.2 BP4-5, many of the points raised relating to leveraging diversity
to better understand phenotypic heterogeneity can be applied to other
large, recurrent CNVs. In the following section, I explore more explicitly,
and with the help of preliminary data, three key areas that I believe
will answer open questions in the field and catalyze the translation of
theoretical knowledge into clinical practice.

7.3.1 Mechanisms of CNV action

Protein-coding CNVs
I presented a few examples where dissecting the CNV-GWAS signal
could pinpoint putative causal genes for a specific phenotype. Yet, doing
so remains challenging and relies on the presence of multiple clusters of
recurrent CNVs at the same loci and/or literature knowledge about the
overlapping genes. If experimental approaches represent a great avenue
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2: MR provides the phenotypic effect of
one SD increase in expression. We assume
that the deletion will decrease expression,
hence the negative sign.

to decipher molecular mechanisms of CNV action, I will here focus on
computational approaches that are more related to the work I conducted
during my PhD. One strategy is to use MR to estimate the impact of
changes in the expression of CNV-overlapping genes on the phenotypes
linked to the region by CNV-GWAS, as done in Chapters 4 and 5. With
the release of UKBB pQTLs (4), an exciting extension will be to determine
how changes in transcript and protein levels of CNV-encompassed genes
compare to results obtained through CNV-GWAS.

One limitation is that this approach determines the impact of individual
genes. Yet, most trait-associated CNVs harbor multiple genes and there
is increasing evidence for the presence of multiple driver and modifier
genes per phenotype. As such, an extension of the single-gene approach
would be to estimate the global causal effect of a CNV through changes in
expression of encompassed genes. For deletions, this corresponds to the
sum of the negative2 gene-level MR effects weighted by the normalized
expected change in expression upon deletion (Figure 7.1).

𝑇 =

𝑛∑
𝑖=1

−𝛼𝑔𝑒𝑛𝑒𝑖 ·
1/2 𝜇𝑔𝑒𝑛𝑒𝑖
𝑆𝐷𝑔𝑒𝑛𝑒𝑖

(7.1)

where

▶ 𝑛: Number of deleted genes.
▶ 𝛼𝑔𝑒𝑛𝑒𝑖 : MR effect of gene 𝑖.
▶ 𝜇𝑔𝑒𝑛𝑒𝑖 : Average gene expression of gene 𝑖.
▶ 𝑆𝐷𝑔𝑒𝑛𝑒𝑖 : SD of gene expression of gene 𝑖.

Figure 7.1: Deletion causal effect.
Global causal effect of changes in gene
expression induced by a multi-gene dele-
tion on a trait, as described in Equation
7.1. For each gene (colored boxes) en-
compassed in the deletion region (gray
box), the negative causal MR effect (ar-
rows whose length and direction reflect
the magnitude and sign of the causal ef-
fect) is multiplied by a normalized gene
expression score. Individual gene-level
estimates are summed up into a global
causal effect.

These scores could be compared to CNV-GWAS estimates, with deviations
indicating epistatic interactions or the presence of post-translational
mechanisms aiming at buffering changes in gene expression. In practice,
however, there are several limitations. Focusing on the MR effects, a
first consideration is whether all deleted genes, or only the ones with
a significant causal effect, should be considered to calculate 𝑇. While
the former might add noise, the latter might neglect true effects that
we were underpowered to detect. Related to that, some genes might
lack sufficient IVs to be instrumented through MR. As genes will by
definition be adjacent, they are also likely to share IVs. It is also unknown
whether MR effects, that assess the impact of increased expression, can be
extrapolated to the negative range. Concerning the weights, assuming
halving of expression is likely an over-simplification (227), and the
approach requires access to gene expression data (i.e., not only eQTLs),
which might not always be available. In addition, knowledge about the
relevant tissue is key, and calculating the score based on expression
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3: Large genomic regions (> 500 kb) de-
voided of protein-coding genes. They of-
ten occur near developmental transcrip-
tion factors and tend to harbor regulatory
elements for these genes.

data from an impertinent tissue might result in discrepancies with the
CNV-GWAS effect, estimated at the organismal level. While larger and
more diverse mRNA and protein expression studies are likely to solve
some of these caveats, further theoretical work is needed to assess the
implications of the abovementioned caveats.

Non-coding CNVs
Another exciting and underexplored area relates to non-coding CNVs.
In the introduction, I briefly describe how SVs can act as eQTLs and
have even more profound phenotypic consequences when disrupting
TADs. Despite non-coding regions having lower probe coverage, a small
proportion of our signals do not overlap any protein-coding region. For
instance, a 260 kb 18q21.32 deletion downstream of MC4R was found to
increase BMI by 4.2 kg/m2 (208, 295). As described in Figure 5.2, MC4R
plays a key role in the leptin-melanocortin satiety pathway, providing a
strong link to the obesity phenotype induced by the CNV. Similarly, we
identify multiple independent association signals for height that map
to the pseudo-autosomal region harboring SHOX (208), a gene whose
haploinsufficiency is associated with penetrant forms of short stature (316,
317). In the two described examples, the CNVs occur in gene deserts3,
and the adjacent genes are well-characterized. As the phenotypes caused
by the CNV are reminiscent of the phenotypes caused by the genes’
LoF, we can speculate that they exert their impact by disrupting gene
regulatory regions. In other cases, the mechanism of action might not
be as straightforward. The latter can be investigated by integrating data
from epigenomic assays.

Epigenomic assays

DNA is bound by a multitude of chemical groups (e.g., methyl groups)
and proteins (e.g., histones), that together form chromatin. These
modifications regulate the structure and packaging of DNA in a
dynamic way, which in turn influences which parts of the genome
are expressed at which time and in which cell. The study of these
modifications is termed epigenetics (i.e., features on top of genetics).
Several high-throughput assays have been developed to assess the
epigenome:

▶ ChIP-seq (chromatin immunoprecipitation sequencing): De-
tects DNA binding sites for specific proteins, including tran-
scription factors and histone modifications. The latter are useful
to distinguish promoter from enhancer regions and determine
whether they are in an active or repressed state.

▶ ATAC-seq (assay for transposase-accessible chromatin sequenc-
ing): Measures chromatin openness. This allows detection of
accessible chromatin regions corresponding to enhancers or
promoters.

▶ Hi-C: Measures chromatin conformation and interactions. Hi-
C allows probing of the 3D genome structure, including the
position of genomic compartments, TADs, and smaller-scale
interactions.

Initiative such as the Encyclopedia of DNA Elements (ENCODE)
(767), NIH Roadmap, (768), or BLUEPRINT (769), have generated
epigenomic datasets that cover a larger number of cell types and
states. These are made publicly, available, under the umbrella of the
International Human Epigenome Consortium (IHEC).

https://www.encodeproject.org/
https://egg2.wustl.edu/roadmap/web_portal/index.html
https://epigenomesportal.ca/ihec/
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Alternatively, if the region is conserved, model organisms harboring the
mutation can be generated, allowing characterization of its functional
consequences in vivo. While I did not have the time to pursue this line
of investigation in depth, we started a collaboration with the laboratory
of Guillaume Andrey at the University of Geneva to gain functional
insights into the molecular mechanisms linking non-coding deletions in
the gene desert surrounding SHOX to height. They will use the enSERT
(enhancer insertion) protocol that uses the clustered regularly interspaced
short palindromic repeats (CRISPR)/Cas9 technology to mediate site-
directed insertion of an enhancer-reporter (LacZ) transgenic construct
into the Hipp11 intergenic safe-harbor site (770). This approach has
higher efficiency than random insertion transgenesis (∼50% vs ∼12%) and
reduced ectopic expression as the transgenic cassettes are not subject to
position effects, making the method more reproducible (771). Specifically,
we will test whether two human candidate enhancers – selected based
on our CNV-GWAS and epigenomic data (772, 773) – are sufficient to
drive expression in mouse through the Shh minimal promoter in mouse
embryonic tissue at day 12.5-13.5. Of note, humans have two paralogs of
the gene, SHOX on chromosome X, and SHOX2 on chromosome 3, yet
only the former has been associated with skeletal anomalies. Rodents
have lost the copy mapping to chromosome X, and only harbor Shox2,
suggesting that the latter has overtaken the function of both human genes.
Correspondingly, this gene has often been studied in chicken or zebrafish
where both copies are retained. Yet, SHOX and Shox2 share an identical
DNA-interacting homeodomain and conserved regulatory elements and
it was demonstrated that human SHOX enhancers can be characterized
in transgenic mice models (774–777).

7.3.2 Modulators of CNV impact

Genetic background
Following the model described in Figure 6.14 in Chapter 6, other genetic
variants represent prime candidates to explain the variable expressivity
and incomplete penetrance that we observed across CNVs associated
with genomic disorders. While these interactions are highly complex,
a strategy to study them is to decompose the genetic background into
various components whose individual contributions and interactions
with CNVs can be assessed. While there are many ways to do so, I here
provide an analysis plan detailing how I would address the question.

Starting from a given CNV region, the simplest approach is to assess the
presence of other variants on the remaining copies. This includes, for
instance, the detection of compound heterozygotes generated through
LoF of the single remaining copy in the case of a deletion, or the detection
of more subtle effects triggered by haplotypes harboring non-coding
variants whose combined effect leads to increased or decreased expression
of encompassed genes. Phenotypes expressed only when compounded
by another mutation have been described sporadically in clinical reports
(e.g., Chapter 6), but no systematic study of CNV compounding has been
performed in large population cohorts. The recent release of phased WGS
and WES for UKBB (778), makes such analyses increasingly feasible.

Moving away from the CNV region itself, the next step involves assessing
the contribution of other rare, pathogenic mutations, following the



7.3 Perspectives 237

logic of the previously described two-hit model (Figure 1.21F) (285,
286). First, variants affecting genes linked to the same phenotype as the
CNV should be identified. This can be done through literature review,
leveraging resources such as OMIM or HPO that summarize findings
from clinical studies. Alternatively, genes can be selected based on
rare protein-coding burden tests from population cohorts. Once selected,
variants are used to build predictors. In their simplest form, these describe
the presence or absence of any of the selected variants. More complex
predictors can be built as the sum of the number of present variants in a
given individual, possibly weighted by pathogenicity, zygosity, and/or
inheritance mode. The phenotype can then be modeled as a function
of the CNV status, the rare variant predictor, and their interaction,
allowing quantification of their respective contribution and possible
interaction. An interesting extension would be to model these effects
through time-to-event analysis.

Figure 7.2: PGS partitioning.
Schematic representation of the genome-
wide PGS (top) partitioned into an out
(middle) and local (bottom) PGS. The out
and local PGS are built by accounting for
on all common variants (SNPs; orange)
that do not or do overlap the CNV region
(CNVR; blue) ± an adjacent region (here
50 kb, grey), respectively.

Finally, the above-described framework can be extended by replacing
the rare variant predictor with the PGS, which captures the contribution
of common variants to the trait of interest. Using publicly available
PGS weights calculated by LDpred2-auto (779), we explored how these
scores relate to 108 CNV-trait associations described in Chapter 2 (Figure
7.3). We hypothesized that CNV carriers either have a similar PGS
distribution to copy-neutral individuals (i.e., no interaction) or have a
PGS that counteracts the effect of the CNV, based on the assumption that
CNV carriers present in UKBB suffer from selection bias and have low
CNV expressivity. It should be noted that differential PGS distribution
between copy-neutral and CNV carriers could be due to either selection
bias or PGS × CNV interactions, reiterating the importance of conducting
studies in cohorts with various ascertainment biases to disentangle these
mechanisms. While explicitly modeling the interaction did not yield any
significant results, we were surprised to observe that for five associations,
the PGS was synergetic to the CNV, pushing the phenotype toward the
same direction. A similar trend was further observed for 13 additional
associations. By partitioning the PGS (Figure 7.2), we demonstrate that
three of these associations (i.e., hematological traits mapping to the RHD
deletion described in Figure 2.15) can be explained by the local PGS.
Tagging of a CNV by the PGS is only possible if the CNV appeared
several generations ago (as opposed to de novo) and was inherited over
multiple generations on the same haplotype. In line with this, the RHD
deletion is the only common CNV (frequency 3.8%) among our set of
studied CNV-trait pairs.

Figure 7.3: PGS of CNV carriers.
Possible scenarios of how the PGS of
CNV carriers might compare to the PGS
of non-carriers, illustrated here with
a BMI-increasing deletion (top). Com-
pared to the BMI PGS of the general pop-
ulation (orange distribution), the BMI
PGS distribution of deletion carriers
(blue distribution), might be: i) biased
towards low PGS, thereby counteracting
the deletion’s effect (left), ii) similar to the
general population (middle), iii) biased
towards a high PGS, thereby exacerbat-
ing the deletion’s effect (right).
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While the other synergetic effects were weaker, they might be explained
through assortative mating (Figure 7.4), a phenomenon that was recently
proposed to contribute to the variable expressivity of rare variants linked
to NDD (727). This, however, implies that a substantial fraction of CNVs
is inherited. Yet, the average fraction of shared CNVs among siblings
is about half of what is expected under Mendelian inheritance (see
Chapter 2), implying a substantial de novo rate or selection bias. This
analysis was not stratified by CNV pathogenicity and further research is
needed to accurately determine CNV-specific rates of inheritance in the
general population. Such studies will be limited by the low numbers of
CNV carriers and relatives in UKBB, so that other cohorts with higher
proportions of relatives might be more suitable for this type of analysis.

Figure 7.4: Assortative mating inducing
CNV-PGS correlation.
In this scheme, assortative mating hap-
pens between the father (F), who has a
high PGS for the trait on which assort-
ment occurs but no CNV, and a mother
(M), who has a low PGS for the trait on
which assortment occurs but carries a
CNV that associates with the trait on
which assortment occurs. They produce
an offspring (O) that inherits the CNV
from the mother and a PGS of interme-
diate value that compounds to create a
stronger phenotype than in either par-
ent. This phenomenon can explain the
positive correlation or synergetic effect
of PGS and CNV.

Once the individual contribution of local versus distant, and rare versus
common variants have been described in relation to CNVs, more complex
models that provide a holistic description of how several mutational
classes interact to produce the observed phenotype can be built. For
instance, an interesting extension will be to determine whether CNV carri-
ers are enriched among individuals whose observed phenotype strongly
deviates from their PGS-predicted phenotype (780). Yet, even the most
complex models are unlikely to perfectly explain phenotypic variance,
due to the contribution of environmental factors. In the next section, I
describe a research plan to study the role of one such factor, biological sex.

Biological sex
As the role of SV in the genetics of complex traits is emerging, so is
our appreciation of biological sex as a modulator of genetic effects (781).
Indeed, sex differences in phenotype are ubiquitous, and among the
diseases studied in Chapter 3, most exhibit sex differences in prevalence.
Interestingly, a substantial fraction of diseases had a significant sex-by-age
interaction term, indicating that the risk of developing these diseases
does not change at a constant rate across sexes, with life events such as
menopause strongly impacting disease risk.
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Figure 7.5: Genetics of sex differences.
(A) Three types of sex differential effects
(x-axis): opposite direction (top), same
direction but of different strength (mid-
dle), or present only in one sex (bottom).
(B) Illustration of the Carter effect or
sex-dependent liability threshold model,
where one sex requires a higher genetic
liability to develop the disease. (C) Un-
der the greater genetic variability, both
sexes have the same mean genetic lia-
bility, but one sex has higher variance,
so that more individuals pass the lia-
bility threshold.(D) The environmental
effect model has a fixed liability thresh-
old but protective and/or risk factors
push the total liability distribution of fe-
males and/or males away or toward the
threshold. (A-C) These are illustrations
and the male (blue) and female (pink)
effects might be inverted.

Genetics of sex differences

Recent studies have demonstrated that autosomal SNPs can exert
small, albeit differential effects in males versus females (Figure 7.5A)
(782–787). Explanations for sex differences in genetic architecture
remain poorly understood and are likely multiple.

A prominent paradigm, known as the Carter effect, female/male
protective effect, or sex-dependent liability threshold, stipulates
that one of the sexes (often females) requires greater genetic liability
to manifest the disease, a corollary of which being that, in theory,
the protected sex presents higher heritability for the trait (Figure
7.5B) (781). Protective effects, where relatives of a proband of the
protected sex are more likely to present the phenotype than relatives
of a proband of the liable sex, are common (788–792). Yet, significant
differences in heritability across sexes remain rare, even though they
tend to corroborate the prediction that the protected sex has higher
heritability (793–795). Intriguingly, a recent study in 1 million Swedish
individuals found that females had an 11% lower heritability than
males for ASD, despite females being less susceptible to the disease
(796). Greater genetic variability, here in males, has been proposed
as an explanation (Figure 7.5C), even though it should be noted that
this model is not mutually exclusive with a sex-dependent liability
threshold (796). Alternatively, sex modifies endogenous exposures
by altering the hormonal milieu and determining life history events
(e.g., pregnancies) while shaping environmental exposures through
cultural and societal norms that influence lifestyle and behavior –
including participation rates to genetic studies (732). In addition,
chromosomal effects, such as dosage of genes on the X and Y chromo-
somes, might also contribute to sex differences. Interaction between
these genetic and environmental factors and sex can modify total
liability without affecting heritability (Figure 7.5D) (781). Recently,
amplification was proposed as a mechanism to explain gene-by-sex in-
teractions (797). Studying 27 quantitative traits in UKBB, gene-by-sex
interactions were more often attributable to systematic sex differences
in effect size magnitude across numerous variants (i.e., sex differential
effects), rather than differences in the identity of causal variants (i.e.,
single-sex effects) or the direction of effects (i.e., dimorphic effects)
(Figure 7.5A). The latter phenomenon could explain differences in
genetic and phenotypic variance between sexes.

So far work investigating sex differences in CNV effects mainly focused
on ASD, which has a much higher prevalence in males than in females
(3:1 ratio) and for which CNVs represent an important risk factor
(728, 729). In line with the female-protective effect model, an excess of
deleterious CNVs has been reported in female ASD cases (313–315,
326), even though these results might be biased by differential clinical
manifestation and societal gender biases leading to underdiagnosis
in female individuals (728, 729). Hence, while there seems to be
a differential impact of CNVs between sexes, it remains unclear
whether these observations are generalizable to a broader range of
complex traits. Furthermore, sex differences of specific CNV regions
(as opposed to the CNV burden) and how these relate to disparities
in disease prevalence and CNV frequency across sexes remain poorly
understood.

Conversely to what was observed in ASD cohorts (313–315, 326), we
did not identify a significantly higher CNV burden in female UKBB
participants, even though it should be noted that we did not filter for
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4: Gout is a disease characterized by in-
flammatory arthritis caused by hyper-
uricemia, i.e., elevated levels of uric acid.
Among diseases studied in Chapter 3, it
is the disease with the second strongest
(after hernia) difference in prevalence
across sexes (ORmales = 6.9, p < 1× 10-300).

pathogenic CNVs specifically. Yet, studying the same quantitative traits as
in Chapter 2, preliminary data identified 21 independent sex-differential
CNV effects. Only three regions with sex-differential CNV effect showed
a significant difference in CNV frequency across sexes, among which
two exhibited a higher CNV frequency in the sex with the smaller size
effect. This could indicate selection bias in the general population and/or
(sex-differential) participation bias (732). Indeed, we show that UKBB
is depleted for female 16p11.2 BP4-5 deletion carriers (Table 6.7) and a
similar trend is observed for the BP2-3 region, with one explanation
being sex-specific participation biases.

Examples of sex-specific CNV effects include a stronger increase in
adiposity among female 16p11.2 BP2-3 deletion carriers, lower fluid intel-
ligence among male 22q11.2 duplication carriers, or stronger decrease in
grip strength among carriers of the Charcot-Marie-Tooth 17p12 duplica-
tion. Another interesting example is the association between PDZK1’s
deletion and decreased serum urate levels, which was only significant in
males. Several loci with sex differential impact on serum urate levels have
been reported (798) and a variant upstream of PDZK1 (rs1471633) was
found to have a male-specific gout-increasing4 effect (799). In line with
this, a UKBB study found that a cluster of SNPs overlapping the region
decreased risk for self-reported gout only in males (782). Experimental
work showed that one of these SNPs modulates PDZK1 expression by
affecting binding of the transcription factor HNF4A, indicating that the
region overlaps a PDZK1 enhancer (345).

Overall, these preliminary results highlight that sex-specific effects might
play an important role in the CNV architecture of complex traits, despite
further research being required to assess the potential impact of sex-
specific participation bias on the conclusions derived from such analyses.
Importantly, other mutational classes and molecular data can be leveraged
to elucidate the sex-specific underlying molecular mechanisms, even
though such analyses are limited by the paucity of publicly available
sex-stratified data. An interesting follow-up would be to extend these
analyses to disease phenotypes, even though the already low power to
detect CNV-disease effects in a sex-combined framework might prohibit
such investigations at current sample sizes.

7.3.3 Clinical translation

Figure 7.6: Clinical translation.
Positive feedback loop that illustrates
how knowledge generated by population
and clinical studies reinforce each other.

During my thesis, I laid out a framework exemplifying how rare pathogenic
CNVs can be studied in the general population to gain new clinical in-
sights, with the ultimate goal that this knowledge will help diagnose
and treat carriers. In the future, it will be key to consolidate findings by
validating them in other biobanks (e.g., Table 1.3). This includes targeted
PheWAS-based studies for clinically relevant CNVs, as presented in Chap-
ters 4 to 6. By focusing on a single region, such studies can be tailored
based on a priori knowledge about these regions. This allows, for instance,
to refine phenotypic definitions or control for known confounders. In a
second step, findings should be validated in clinical cohorts to assess
their relevance. Future work should also aim at comparing frequency
and effect size estimates resulting from both study settings, to quantify
the impact of ascertainment and reveal the true spectrum of phenotypic
consequences linked to clinically relevant CNVs. As such, I envision
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that both types of studies can inform each other, generating a positive
feedback loop (Figure 7.6). In parallel, more studies should assess the
ethical considerations and impact of returning data to participants of
biobanks, including the incidental finding of a CNV linked to a genomic
disorder with variable expressivity. Current studies report a globally
positive impact (402, 764, 765, 800). Were these findings to be confirmed,
it should promote the development of a biobank model wherein data
sharing benefits both researchers and participants.

7.4 Conclusions

Because of challenges linked to their detection, CNVs remain an under-
studied mutational class. More specifically, at the start of my PhD, the
bulk of knowledge about this mutational class stemmed from studies
in clinical cohorts, where large, recurrent CNVs had been linked to
genomic disorders. During my thesis, I adapted tools borrowed from
the quantitative genetics field, which typically focuses on the study of
common variants within population cohorts, to gain new insights into
the phenotypic consequences of CNVs. This revealed that rare CNVs
are present in a non-negligible fraction of the general population, where
they act as pleiotropic phenotype modulators with variable expressivity.
While their contribution at the population level remains marginal, they
strongly modulate complex traits and common disease risk in carriers,
making them highly valuable in the context of developing personalized
medicine approaches.

Circling back to the title of my thesis, where rare meets common has a
double meaning that is reflected both in the methodological approaches
followed – at the intersection of statistical and medical genetics – as
well as in the results of my research. Indeed, if I had to summarize
the single most important conclusion of this body of work, it would be
that the old paradigm linking rare variants to rare diseases represents
an oversimplification of the complex biological reality. Instead, the
same variant might produce a spectrum of phenotypic consequences,
depending on the context in which it finds itself. While simplifications
are sometimes necessary to grasp complexity, I believe that the next major
advancements in human genetics will result from developing approaches
that aim at embracing this diversity by providing a more nuanced and
holistic understanding of the genetic architecture of complex human
traits in the general population.





Bibliography

Here are the references in citation order.

1. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022) (cited on pages 3–5).
2. Codd, V. et al. Polygenic basis and biomedical consequences of telomere length variation. Nature

Genetics 53, 1425–1433 (2021) (cited on page 3).
3. UK Biobank Whole-Genome Sequencing Consortium. Whole-genome sequencing of half-a-million UK

Biobank participants. medRxiv, 2023–12 (2023) (cited on pages 3, 6–8).
4. Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature 622,

329–338 (2023) (cited on pages 3, 26, 234).
5. Julkunen, H. et al. Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from

the UK Biobank. Nature Communications 14, 604 (2023) (cited on pages 3, 26).
6. Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599,

628–634 (2021) (cited on pages 3, 25, 26, 166, 192, 223).
7. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590,

290–299 (2021) (cited on page 3).
8. Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population.

Nature 613, 508–518 (2023) (cited on pages 3, 14, 123, 222).
9. Bick, A. G. et al. Genomic data in the All of Us Research Program. Nature (2024) (cited on pages 3, 6, 14,

222).
10. Beyter, D. et al. Long-read sequencing of 3,622 Icelanders provides insight into the role of structural

variants in human diseases and other traits. Nature Genetics 53, 779–786 (2021) (cited on pages 3, 8, 14,
36, 86).

11. Ebert, P. et al. Haplotype-resolved diverse human genomes and integrated analysis of structural
variation. Science 372, eabf7117 (2021) (cited on pages 3, 7, 8, 36).

12. Gustafson, J. A. et al. Nanopore sequencing of 1000 Genomes Project samples to build a comprehensive
catalog of human genetic variation. medRxiv, 2024–03 (2024) (cited on pages 3, 8).

13. Gong, J. et al. Long-read sequencing of 945 Han individuals identifies novel structural variants
associated with phenotypic diversity and disease susceptibility. medRxiv, 2024–03 (2024) (cited on
pages 3, 8).

14. Schloissnig, S. et al. Long-read sequencing and structural variant characterization in 1,019 samples
from the 1000 Genomes Project. bioRxiv, 2024–04 (2024) (cited on pages 3, 8, 36).

15. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids: A structure for deoxyribose nucleic
acid. Nature 171, 737–738 (1953) (cited on page 4).

16. Ganai, R. A. & Johansson, E. DNA replication—a matter of fidelity. Molecular Cell 62, 745–755 (2016)
(cited on page 6).

17. Acuna-Hidalgo, R., Veltman, J. A. & Hoischen, A. New insights into the generation and role of de novo
mutations in health and disease. Genome Biology 17, 1–19 (2016) (cited on page 6).

18. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human
genome. Nature 409, 860–921 (2001) (cited on pages 6, 15).

19. Wang, T. et al. The Human Pangenome Project: A global resource to map genomic diversity. Nature
604, 437–446 (2022) (cited on page 6).

20. Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023) (cited on page 6).
21. Collins, R. L. The Landscape and Consequences of Structural Variation in the Human Genome PhD thesis

(Harvard University, 2022) (cited on pages 7, 9, 37, 231).
22. 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68

(2015) (cited on pages 7, 9).



23. Dhindsa, R. S. et al. A minimal role for synonymous variation in human disease. The American Journal
of Human Genetics 109, 2105–2109 (2022) (cited on page 7).

24. Ng, P. C. & Henikoff, S. Predicting deleterious amino acid substitutions. Genome Research 11, 863–874
(2001) (cited on page 8).

25. Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations
using PolyPhen-2. Current Protocols in Human Genetics 76, 7–20 (2013) (cited on page 8).

26. Cheng, J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science
381, eadg7492 (2023) (cited on page 8).

27. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus
recommendation of the American College of Medical Genetics and Genomics and the Association for
Molecular Pathology. Genetics in Medicine 17, 405–423 (2015) (cited on page 8).

28. Blakes, A. J. et al. A systematic analysis of splicing variants identifies new diagnoses in the 100,000
Genomes Project. Genome Medicine 14, 79 (2022) (cited on page 8).

29. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans.
Nature 581, 434–443 (2020) (cited on pages 8, 76, 166).

30. Samocha, K. E. et al. A framework for the interpretation of de novo mutation in human disease. Nature
Genetics 46, 944–950 (2014) (cited on page 8).

31. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic
variants. Nature Genetics 46, 310–315 (2014) (cited on page 8).

32. Chen, S. et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature
625, 92–100 (2024) (cited on page 8).

33. Schipper, M. & Posthuma, D. Demystifying non-coding GWAS variants: An overview of computational
tools and methods. Human Molecular Genetics 31, R73–R83 (2022) (cited on page 8).

34. Collins, R. L. et al. A structural variation reference for medical and population genetics. Nature 581,
444–451 (2020) (cited on pages 8, 9, 36–38, 59, 86, 230, 231).

35. Abel, H. J. et al. Mapping and characterization of structural variation in 17,795 human genomes. Nature
583, 83–89 (2020) (cited on pages 8, 9, 36–38, 59, 86, 231).

36. Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526,
75–81 (2015) (cited on pages 8, 36, 50, 81, 86).

37. Hassold, T. & Hunt, P. To err (meiotically) is human: The genesis of human aneuploidy. Nature Reviews
Genetics 2, 280–291 (2001) (cited on page 9).

38. Ohno, S. Evolution by gene duplication (Springer Berlin, Heidelberg, 1970) (cited on page 9).
39. Handsaker, R. E. et al. Large multiallelic copy number variations in humans. Nature Genetics 47, 296–303

(2015) (cited on pages 9, 55).
40. Giannuzzi, G. et al. The human-specific BOLA2 duplication modifies iron homeostasis and anemia

predisposition in chromosome 16p11.2 autism individuals. The American Journal of Human Genetics 105,
947–958 (2019) (cited on pages 9, 40, 86, 196, 216).

41. Nuttle, X. et al. Emergence of a Homo sapiens-specific gene family and chromosome 16p11.2 CNV
susceptibility. Nature 536, 205–209 (2016) (cited on pages 9, 194, 195, 216, 222).

42. Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. Nature Genetics
39, 1256–1260 (2007) (cited on page 9).

43. Hoyt, S. J. et al. From telomere to telomere: The transcriptional and epigenetic state of human repeat
elements. Science 376, eabk3112 (2022) (cited on page 9).

44. Tanudisastro, H. A., Deveson, I. W., Dashnow, H. & MacArthur, D. G. Sequencing and characterizing
short tandem repeats in the human genome. Nature Reviews Genetics, 1–16 (2024) (cited on page 9).

45. Kloosterman, W. P. et al. Chromothripsis as a mechanism driving complex de novo structural rear-
rangements in the germline. Human Molecular Genetics 20, 1916–1924 (2011) (cited on page 9).

46. Schoeler, T., Pingault, J.-B. & Kutalik, Z. Self-report inaccuracy in the UK Biobank: Impact on inference
and interplay with selective participation. medRxiv, 2023–10 (2023) (cited on page 10).

47. Fischbach, G. D. & Lord, C. The Simons Simplex Collection: A resource for identification of autism
genetic risk factors. Neuron 68, 192–195 (2010) (cited on page 11).



48. Feliciano, P. et al. SPARK: A US cohort of 50,000 families to accelerate autism research. Neuron 97,
488–493 (2018) (cited on page 11).

49. Pedersen, C. B. et al. The iPSYCH2012 case–cohort sample: New directions for unravelling genetic and
environmental architectures of severe mental disorders. Molecular Psychiatry 23, 6–14 (2018) (cited on
page 11).

50. Fraser, A. et al. Cohort profile: The Avon Longitudinal Study of Parents and Children: ALSPAC mothers
cohort. International Journal of Epidemiology 42, 97–110 (2013) (cited on page 12).

51. Rantakallio, P. The longitudinal study of the northern Finland birth cohort of 1966. Paediatric and
Perinatal Epidemiology 2, 59–88 (1988) (cited on page 12).

52. Olsen, J. et al. The Danish National Birth Cohort-its background, structure and aim. Scandinavian
Journal of Public Health 29, 300–307 (2001) (cited on page 12).

53. Magnus, P. et al. Cohort profile update: The Norwegian mother and child cohort study (MoBa).
International Journal of Epidemiology 45, 382–388 (2016) (cited on page 12).

54. Roden, D. M. et al. Development of a large-scale de-identified DNA biobank to enable personalized
medicine. Clinical Pharmacology & Therapeutics 84, 362–369 (2008) (cited on page 12).

55. Carey, D. J. et al. The Geisinger MyCode community health initiative: An electronic health record–linked
biobank for precision medicine research. Genetics in Medicine 18, 906–913 (2016) (cited on page 12).

56. Staples, J. et al. Profiling and leveraging relatedness in a precision medicine cohort of 92,455 exomes.
The American Journal of Human Genetics 102, 874–889 (2018) (cited on page 12).

57. Boutin, N. T. et al. The evolution of a large biobank at Mass General Brigham. Journal of Personalized
Medicine 12, 1323 (2022) (cited on page 12).

58. Banerjee, D. & Girirajan, S. Pathogenic variants and ascertainment: Neuropsychiatric disease risk in a health
system cohort 2023 (cited on page 12).

59. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank
participants with those of the general population. American Journal of Epidemiology 186, 1026–1034
(2017) (cited on pages 12, 72, 81, 86, 123, 144, 165, 200).

60. Sudlow, C. et al. UK biobank: An open access resource for identifying the causes of a wide range of
complex diseases of middle and old age. PLoS Medicine 12, e1001779 (2015) (cited on pages 12, 14).

61. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562,
203–209 (2018) (cited on pages 12, 14, 51, 52, 58, 86, 87, 89, 130, 151, 152, 157, 176, 199, 222).

62. Leitsalu, L. et al. Cohort profile: Estonian biobank of the Estonian genome center, university of Tartu.
International Journal of Epidemiology 44, 1137–1147 (2015) (cited on pages 12, 14, 51, 64, 87, 105, 152, 199,
222).

63. Zhou, W. et al. Global Biobank Meta-analysis Initiative: Powering genetic discovery across human
disease. Cell Genomics 2 (2022) (cited on page 13).

64. Schoeler, T. et al. Participation bias in the UK Biobank distorts genetic associations and downstream
analyses. Nature Human Behaviour, 1–12 (2023) (cited on page 13).

65. Nagai, A. et al. Overview of the BioBank Japan Project: Study design and profile. Journal of Epidemiology
27, S2–S8 (2017) (cited on pages 14, 222).

66. Jensson, B. O. et al. Actionable genotypes and their association with life span in Iceland. New England
Journal of Medicine 389, 1741–1752 (2023) (cited on page 14).

67. Feng, Y.-C. A. et al. Taiwan Biobank: A rich biomedical research database of the Taiwanese population.
Cell Genomics 2 (2022) (cited on page 14).

68. Walters, R. G. et al. Genotyping and population characteristics of the China Kadoorie Biobank. Cell
Genomics 3 (2023) (cited on page 14).

69. Brumpton, B. M. et al. The HUNT Study: A population-based cohort for genetic research. Cell Genomics
2 (2022) (cited on page 14).

70. Åsvold, B. O. et al. Cohort profile update: The HUNT study, Norway. International Journal of Epidemiology
53, dyae013 (2023) (cited on page 14).

71. Fatumo, S. et al. Uganda Genome Resource: A rich research database for genomic studies of communi-
cable and non-communicable diseases in Africa. Cell Genomics 2 (2022) (cited on page 14).



72. Botstein, D. & Risch, N. Discovering genotypes underlying human phenotypes: Past successes for
Mendelian disease, future approaches for complex disease. Nature Genetics 33, 228–237 (2003) (cited
on page 15).

73. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the
human genome. Nature 431, 931–945 (2004) (cited on page 15).

74. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of
seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007) (cited on page 15).

75. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association
studies. Nature Genetics 38, 904–909 (2006) (cited on page 16).

76. Aschard, H., Vilhjálmsson, B. J., Joshi, A. D., Price, A. L. & Kraft, P. Adjusting for heritable covariates
can bias effect estimates in genome-wide association studies. The American Journal of Human Genetics
96, 329–339 (2015) (cited on page 16).

77. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies,
targeted arrays and summary statistics 2019. Nucleic Acids Research 47, D1005–D1012 (2019) (cited on
pages 18, 54, 67).

78. Sollis, E. et al. The NHGRI-EBI GWAS Catalog: Knowledgebase and deposition resource. Nucleic Acids
Research 51, D977–D985 (2023) (cited on pages 18, 156, 166, 223, 224).

79. Hayhurst, J. et al. A community driven GWAS summary statistics standard. bioRxiv, 2022–07 (2022)
(cited on page 18).

80. Yang, J. et al. Genomic inflation factors under polygenic inheritance. European Journal of Human Genetics
19, 807–812 (2011) (cited on pages 18, 91).

81. Visscher, P. M. et al. 10 years of GWAS discovery: Biology, function, and translation. The American
Journal of Human Genetics 101, 5–22 (2017) (cited on pages 18, 26, 50, 77).

82. Auwerx, C. et al. Rare copy-number variants as modulators of common disease susceptibility. Genome
Medicine 16, 5 (2024) (cited on pages 18, 83, 131, 176, 177, 180, 200, 205–212, 214–217, 219).

83. Macé, A. CNV Detection, Association and Interpretation PhD thesis (Université de Lausanne, Faculté de
biologie et médecine, 2017) (cited on page 18).

84. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nature Reviews
Genetics 11, 499–511 (2010) (cited on page 19).

85. Gao, X., Starmer, J. & Martin, E. R. A multiple testing correction method for genetic association studies
using correlated single nucleotide polymorphisms. Genetic Epidemiology 32, 361–369 (2008) (cited on
pages 19, 53, 93, 132, 155).

86. Benner, C. et al. FINEMAP: Efficient variable selection using summary data from genome-wide
association studies. Bioinformatics 32, 1493–1501 (2016) (cited on page 20).

87. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in
regression, with application to genetic fine mapping. Journal of the Royal Statistical Society Series B:
Statistical Methodology 82, 1273–1300 (2020) (cited on page 20).

88. Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets.
Gigascience 4, s13742–015 (2015) (cited on pages 20, 23, 51, 87, 130, 176).

89. Hivert, V. et al. Estimation of non-additive genetic variance in human complex traits from a large
sample of unrelated individuals. The American Journal of Human Genetics 108, 786–798 (2021) (cited on
pages 20, 21, 230).

90. Pazokitoroudi, A., Chiu, A. M., Burch, K. S., Pasaniuc, B. & Sankararaman, S. Quantifying the
contribution of dominance deviation effects to complex trait variation in biobank-scale data. The
American Journal of Human Genetics 108, 799–808 (2021) (cited on pages 20, 21, 230).

91. Heng, T. H. et al. Widespread recessive effects on common diseases in a cohort of 44,000 British
Pakistanis and Bangladeshis with high autozygosity. medRxiv, 2024–04 (2024) (cited on page 20).

92. Heyne, H. et al. Mono-and biallelic variant effects on disease at biobank scale. Nature 613, 519–525
(2023) (cited on page 20).

93. Andersen, M. & Hansen, T. Genetics of metabolic traits in Greenlanders: Lessons from an isolated
population. Journal of Internal Medicine 284, 464–477 (2018) (cited on page 20).

94. Lim, E. T. et al. Distribution and medical impact of loss-of-function variants in the Finnish founder
population. PLoS Genetics 10, e1004494 (2014) (cited on page 20).



95. Xue, Y. et al. Enrichment of low-frequency functional variants revealed by whole-genome sequencing
of multiple isolated European populations. Nature Communications 8, 15927 (2017) (cited on page 20).

96. Norio, R. The Finnish disease heritage III: The individual diseases. Human Genetics 112, 470–526 (2003)
(cited on page 20).

97. Gross, S. J., Pletcher, B. A. & Monaghan, K. G. Carrier screening in individuals of Ashkenazi Jewish
descent. Genetics in Medicine 10, 54–56 (2008) (cited on page 20).

98. Palmer, D. S. et al. Analysis of genetic dominance in the UK Biobank. Science 379, 1341–1348 (2023)
(cited on pages 20, 21).

99. Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era—concepts and misconceptions.
Nature Reviews Genetics 9, 255–266 (2008) (cited on page 21).

100. Mayhew, A. J. & Meyre, D. Assessing the heritability of complex traits in humans: Methodological
challenges and opportunities. Current Genomics 18, 332–340 (2017) (cited on page 21).

101. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nature
Genetics 42, 565–569 (2010) (cited on pages 21, 22).

102. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: A tool for genome-wide complex trait
analysis. The American Journal of Human Genetics 88, 76–82 (2011) (cited on page 21).

103. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in
genome-wide association studies. Nature Genetics 47, 291–295 (2015) (cited on page 21).

104. Patxot, M. et al. Probabilistic inference of the genetic architecture underlying functional enrichment of
complex traits. Nature Communications 12, 6972 (2021) (cited on page 21).

105. Burch, K. S. et al. Partitioning gene-level contributions to complex-trait heritability by allele frequency
identifies disease-relevant genes. The American Journal of Human Genetics 109, 692–709 (2022) (cited on
page 21).

106. Weiner, D. J. et al. Polygenic architecture of rare coding variation across 394,783 exomes. Nature 614,
492–499 (2023) (cited on pages 21, 223).

107. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant
tissues and cell types. Nature Genetics 50, 621–629 (2018) (cited on page 21).

108. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009)
(cited on pages 21, 50).

109. Yengo, L. et al. A saturated map of common genetic variants associated with human height. Nature 610,
704–712 (2022) (cited on page 21).

110. Wainschtein, P. et al. Assessing the contribution of rare variants to complex trait heritability from
whole-genome sequence data. Nature Genetics 54, 263–273 (2022) (cited on page 21).

111. Hawkes, G. et al. Whole genome association testing in 333,100 individuals across three biobanks
identifies rare non-coding single variant and genomic aggregate associations with height. bioRxiv,
2023–11 (2023) (cited on page 21).

112. Schäffer, A. A. Digenic inheritance in medical genetics. Journal of Medical Genetics 50, 641–652 (2013)
(cited on page 21).

113. Chiang, C. et al. The impact of structural variation on human gene expression. Nature Genetics 49,
692–699 (2017) (cited on pages 21, 38).

114. Ferraro, N. M. et al. Transcriptomic signatures across human tissues identify functional rare genetic
variation. Science 369, eaaz5900 (2020) (cited on pages 21, 38).

115. Li, X. et al. The impact of rare variation on gene expression across tissues. Nature 550, 239–243 (2017)
(cited on pages 21, 38).

116. Hernandez, R. D. et al. Ultrarare variants drive substantial cis heritability of human gene expression.
Nature Genetics 51, 1349–1355 (2019) (cited on pages 21, 38).

117. Price, A. L., Zaitlen, N. A., Reich, D. & Patterson, N. New approaches to population stratification in
genome-wide association studies. Nature reviews genetics 11, 459–463 (2010) (cited on page 22).

118. Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M. & Price, A. L. Advantages and pitfalls in the
application of mixed-model association methods. Nature Genetics 46, 100–106 (2014) (cited on page 22).

119. Listgarten, J. et al. Improved linear mixed models for genome-wide association studies. Nature Methods
9, 525–526 (2012) (cited on page 22).



120. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nature
Genetics 44, 821–824 (2012) (cited on page 22).

121. Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts.
Nature Genetics 47, 284–290 (2015) (cited on page 22).

122. Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-scale data. Nature
Genetics 51, 1749–1755 (2019) (cited on page 22).

123. Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale
genetic association studies. Nature Genetics 50, 1335–1341 (2018) (cited on pages 22, 23).

124. Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary
traits. Nature Genetics 53, 1097–1103 (2021) (cited on pages 23, 25).

125. Ma, C., Blackwell, T., Boehnke, M., Scott, L. J. & Investigators, G. Recommended joint and meta-analysis
strategies for case-control association testing of single low-count variants. Genetic Epidemiology 37,
539–550 (2013) (cited on page 23).

126. Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 80, 27–38 (1993) (cited on page 23).
127. Daniels, H. E. Saddlepoint approximations in statistics. The Annals of Mathematical Statistics, 631–650

(1954) (cited on page 23).
128. Kuonen, D. Saddlepoint approximations for distributions of quadratic forms in normal variables.

Biometrika 86, 929–935 (1999) (cited on page 23).
129. Dey, R., Schmidt, E. M., Abecasis, G. R. & Lee, S. A fast and accurate algorithm to test for binary

phenotypes and its application to PheWAS. The American Journal of Human Genetics 101, 37–49 (2017)
(cited on page 23).

130. Berman, J. J. Rare diseases and orphan drugs: Keys to understanding and treating the common diseases
(Academic Press, London, 2014) (cited on pages 23, 39, 103).

131. Hughey, J. J. et al. Cox regression increases power to detect genotype-phenotype associations in genomic
studies using the electronic health record. BMC Genomics 20, 1–7 (2019) (cited on page 23).

132. Van Der Net, J. B. et al. Cox proportional hazards models have more statistical power than logistic
regression models in cross-sectional genetic association studies. European Journal of Human Genetics 16,
1111–1116 (2008) (cited on page 23).

133. Staley, J. R. et al. A comparison of Cox and logistic regression for use in genome-wide association
studies of cohort and case-cohort design. European Journal of Human Genetics 25, 854–862 (2017) (cited
on page 23).

134. Cox, D. R. Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological)
34, 187–202 (1972) (cited on page 23).

135. Bi, W., Fritsche, L. G., Mukherjee, B., Kim, S. & Lee, S. A fast and accurate method for genome-wide
time-to-event data analysis and its application to UK Biobank. The American Journal of Human Genetics
107, 222–233 (2020) (cited on page 24).

136. He, L. & Kulminski, A. M. Fast algorithms for conducting large-scale GWAS of age-at-onset traits using
cox mixed-effects models. Genetics 215, 41–58 (2020) (cited on page 24).

137. Dey, R. et al. Efficient and accurate frailty model approach for genome-wide survival association
analysis in large-scale biobanks. Nature Communications 13, 5437 (2022) (cited on page 24).

138. Falconer, D. S. The inheritance of liability to certain diseases, estimated from the incidence among
relatives. Annals of Human Genetics 29, 51–76 (1965) (cited on pages 25, 86).

139. Pedersen, E. M. et al. Accounting for age of onset and family history improves power in genome-wide
association studies. The American Journal of Human Genetics 109, 417–432 (2022) (cited on pages 25, 120,
121).

140. Xiao, R. & Boehnke, M. Quantifying and correcting for the winner’s curse in genetic association studies.
Genetic Epidemiology 33, 453–462 (2009) (cited on page 25).

141. Nicolae, D. L. Association tests for rare variants. Annual Review of Genomics and Human Genetics 17,
117–130 (2016) (cited on page 25).

142. Wu, M. C. et al. Rare-variant association testing for sequencing data with the sequence kernel association
test. The American Journal of Human Genetics 89, 82–93 (2011) (cited on pages 25, 214, 223).



143. Lee, S. et al. Optimal unified approach for rare-variant association testing with application to small-
sample case-control whole-exome sequencing studies. The American Journal of Human Genetics 91,
224–237 (2012) (cited on pages 25, 223).

144. Zhou, W. et al. SAIGE-GENE+ improves the efficiency and accuracy of set-based rare variant association
tests. Nature Genetics 54, 1466–1469 (2022) (cited on page 25).

145. Karczewski, K. J. et al. Systematic single-variant and gene-based association testing of thousands of
phenotypes in 394,841 UK Biobank exomes. Cell Genomics 2 (2022) (cited on pages 25, 192, 223).

146. Bastarache, L., Denny, J. C. & Roden, D. M. Phenome-wide association studies. JAMA 327, 75–76 (2022)
(cited on page 26).

147. Katz, D. H. et al. Proteomic profiling platforms head to head: Leveraging genetics and clinical traits to
compare aptamer-and antibody-based methods. Science Advances 8, eabm5164 (2022) (cited on page 26).

148. Emwas, A.-H. M. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with
particular focus on metabolomics research. Metabonomics: Methods and Protocols, 161–193 (2015) (cited
on page 26).

149. Oliva, M. et al. DNA methylation QTL mapping across diverse human tissues provides molecular links
between genetic variation and complex traits. Nature Genetics 55, 112–122 (2023) (cited on page 26).

150. Min, J. L. et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation.
Nature Genetics 53, 1311–1321 (2021) (cited on page 26).

151. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues.
Science 369, 1318–1330 (2020) (cited on pages 26, 30, 68, 157, 167).

152. Kerimov, N. et al. A compendium of uniformly processed human gene expression and splicing
quantitative trait loci. Nature Genetics 53, 1290–1299 (2021) (cited on pages 26, 30).

153. De Klein, N. et al. Brain expression quantitative trait locus and network analyses reveal downstream
effects and putative drivers for brain-related diseases. Nature Genetics 55, 377–388 (2023) (cited on
pages 26, 30).

154. Võsa, U. et al. Large-scale cis-and trans-eQTL analyses identify thousands of genetic loci and polygenic
scores that regulate blood gene expression. Nature Genetics 53, 1300–1310 (2021) (cited on pages 26, 57,
133, 157, 166, 167).

155. Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018) (cited on
page 26).

156. Folkersen, L. et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931
individuals. Nature Metabolism 2, 1135–1148 (2020) (cited on page 26).

157. Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nature
Genetics 53, 1712–1721 (2021) (cited on page 26).

158. Shin, S.-Y. et al. An atlas of genetic influences on human blood metabolites. Nature Genetics 46, 543–550
(2014) (cited on page 26).

159. Chen, Y. et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human
diseases. Nature Genetics 55, 44–53 (2023) (cited on page 26).

160. Lotta, L. A. et al. A cross-platform approach identifies genetic regulators of human metabolism and
health. Nature Genetics 53, 54–64 (2021) (cited on page 26).

161. Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature 593, 238–243
(2021) (cited on page 26).

162. Tambets, R., Kolde, A., Kolberg, P., Love, M. I. & Alasoo, K. Extensive co-regulation of neighbouring
genes complicates the use of eQTLs in target gene prioritisation. bioRxiv, 2023–09 (2023) (cited on
page 26).

163. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and
predisposes to childhood and adult obesity. Science 316, 889–894 (2007) (cited on page 26).

164. Dina, C. et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nature
Genetics 39, 724–726 (2007) (cited on page 26).

165. Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. New England
Journal of Medicine 373, 895–907 (2015) (cited on page 26).

166. Wu, Y. et al. Integrative analysis of omics summary data reveals putative mechanisms underlying
complex traits. Nature Communications 9, 918 (2018) (cited on page 27).



167. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies
using summary statistics. PLoS Genetics 10, e1004383 (2014) (cited on pages 27, 157, 167, 192).

168. Wallace, C. A more accurate method for colocalisation analysis allowing for multiple causal variants.
PLoS Genetics 17, e1009440 (2021) (cited on page 27).

169. Hormozdiari, F. et al. Colocalization of GWAS and eQTL signals detects target genes. The American
Journal of Human Genetics 99, 1245–1260 (2016) (cited on page 27).

170. Sanderson, E. et al. Mendelian randomization. Nature Reviews Methods Primers 2, 6 (2022) (cited on
pages 28, 29).

171. Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nature
Genetics 51, 1339–1348 (2019) (cited on pages 28, 50, 77).

172. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: Effect
estimation and bias detection through Egger regression. International Journal of Epidemiology 44, 512–525
(2015) (cited on page 29).

173. Porcu, E. et al. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants
of complex and clinical traits. Nature Communications 10, 3300 (2019) (cited on pages 29, 57, 68, 133, 157,
166, 192).

174. Porcu, E. et al. Differentially expressed genes reflect disease-induced rather than disease-causing
changes in the transcriptome. Nature Communications 12, 5647 (2021) (cited on pages 29, 30).

175. Sadler, M. C., Auwerx, C., Lepik, K., Porcu, E. & Kutalik, Z. Quantifying the role of transcript levels in
mediating DNA methylation effects on complex traits and diseases. Nature Communications 13, 7559
(2022) (cited on pages 29, 151, 157, 179).

176. Auwerx, C. et al. Exploiting the mediating role of the metabolome to unravel transcript-to-phenotype
associations. eLife 12, e81097 (2023) (cited on pages 29, 30).

177. Van der Graaf, A. et al. MR-link-2: Pleiotropy robust cis Mendelian randomization validated in four
independent gold-standard datasets of causality. medRxiv, 2024–01 (2024) (cited on page 30).

178. Zuber, V. et al. Combining evidence from Mendelian randomization and colocalization: Review and
comparison of approaches. The American Journal of Human Genetics 109, 767–782 (2022) (cited on
page 30).

179. Alasoo, K. et al. Genetic effects on promoter usage are highly context-specific and contribute to complex
traits. eLife 8, e41673 (2019) (cited on page 30).

180. Carvalho, C. M. & Lupski, J. R. Mechanisms underlying structural variant formation in genomic
disorders. Nature Reviews Genetics 17, 224–238 (2016) (cited on pages 31, 32, 86, 194).

181. Weckselblatt, B. & Rudd, M. K. Human structural variation: Mechanisms of chromosome rearrange-
ments. Trends in Genetics 31, 587–599 (2015) (cited on page 31).

182. Gu, W., Zhang, F. & Lupski, J. R. Mechanisms for human genomic rearrangements. Pathogenetics 1, 1–17
(2008) (cited on page 31).

183. Lehrman, M. A. et al. Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding
transmembrane and cytoplasmic domains. Science 227, 140–146 (1985) (cited on page 31).

184. Le Saux, O. et al. A spectrum of ABCC6 mutations is responsible for pseudoxanthoma elasticum. The
American Journal of Human Genetics 69, 749–764 (2001) (cited on pages 31, 40, 114).

185. Ringpfeil, F., Nakano, A., Uitto, J. & Pulkkinen, L. Compound heterozygosity for a recurrent 16.5-kb
Alu-mediated deletion mutation and single-base-pair substitutions in the ABCC6 gene results in
pseudoxanthoma elasticum. The American Journal of Human Genetics 68, 642–652 (2001) (cited on
pages 31, 40, 114).

186. Rossetti, L. C., Goodeve, A., Larripa, I. B. & De Brasi, C. D. Homeologous recombination between
AluSx-sequences as a cause of hemophilia. Human Mutation 24, 440–440 (2004) (cited on page 31).

187. Boone, P. M. et al. The Alu-rich genomic architecture of SPAST predisposes to diverse and functionally
distinct disease-associated CNV alleles. The American Journal of Human Genetics 95, 143–161 (2014) (cited
on page 31).

188. Turner, D. J. et al. Germline rates of de novo meiotic deletions and duplications causing several genomic
disorders. Nature Genetics 40, 90–95 (2007) (cited on page 31).

189. Lopes, J. et al. Sex–dependent rearrangements resulting in CMT1A and HNPP. Nature Genetics 17,
136–137 (1997) (cited on page 31).



190. Wirth, B. et al. De novo rearrangements found in 2% of index patients with spinal muscular atrophy:
Mutational mechanisms, parental origin, mutation rate, and implications for genetic counseling. The
American Journal of Human Genetics 61, 1102–1111 (1997) (cited on page 31).

191. Hehir-Kwa, J. Y. et al. De novo copy number variants associated with intellectual disability have a
paternal origin and age bias. Journal of Medical Genetics 48, 776–778 (2011) (cited on page 31).

192. Lázaro, C. et al. Sex differences in mutational rate and mutational mechanism in the NF1 gene in
neurofibromatosis type 1 patients. Human Genetics 98, 696–699 (1996) (cited on page 31).

193. Duyzend, M. H. et al. Maternal modifiers and parent-of-origin bias of the autism-associated 16p11.2
CNV. The American Journal of Human Genetics 98, 45–57 (2016) (cited on pages 31, 197, 220).

194. MacArthur, J. A. et al. The rate of nonallelic homologous recombination in males is highly variable,
correlated between monozygotic twins and independent of age. PLoS Genetics 10, e1004195 (2014) (cited
on page 31).

195. Abyzov, A. et al. Analysis of deletion breakpoints from 1,092 humans reveals details of mutation
mechanisms. Nature Communications 6, 7256 (2015) (cited on page 32).

196. Pannunzio, N. R., Li, S., Watanabe, G. & Lieber, M. R. Non-homologous end joining often uses
microhomology: Implications for alternative end joining. DNA Repair 17, 74–80 (2014) (cited on
page 32).

197. Burssed, B., Zamariolli, M., Bellucco, F. T. & Melaragno, M. I. Mechanisms of structural chromosomal
rearrangement formation. Molecular Cytogenetics 15, 23 (2022) (cited on page 32).

198. Carvalho, C. M. et al. Replicative mechanisms for CNV formation are error prone. Nature Genetics 45,
1319–1326 (2013) (cited on page 32).

199. Newman, S., Hermetz, K. E., Weckselblatt, B. & Rudd, M. K. Next-generation sequencing of duplication
CNVs reveals that most are tandem and some create fusion genes at breakpoints. The American Journal
of Human Genetics 96, 208–220 (2015) (cited on page 33).

200. Winchester, L., Yau, C. & Ragoussis, J. Comparing CNV detection methods for SNP arrays. Briefings in
Functional Genomics and Proteomics 8, 353–366 (2009) (cited on page 34).

201. Korn, J. M. et al. Integrated genotype calling and association analysis of SNPs, common copy number
polymorphisms and rare CNVs. Nature Genetics 40, 1253–1260 (2008) (cited on page 34).

202. Colella, S. et al. QuantiSNP: An objective Bayes hidden-Markov model to detect and accurately map
copy number variation using SNP genotyping data. Nucleic Acids Research 35, 2013–2025 (2007) (cited
on pages 34, 35).

203. Wang, K. et al. PennCNV: An integrated hidden Markov model designed for high-resolution copy
number variation detection in whole-genome SNP genotyping data. Genome Research 17, 1665–1674
(2007) (cited on pages 34, 51, 59, 87, 130, 151, 152, 158, 177).

204. McCarroll, S. A. et al. Integrated detection and population-genetic analysis of SNPs and copy number
variation. Nature Genetics 40, 1166–1174 (2008) (cited on page 35).

205. Valsesia, A., Macé, A., Jacquemont, S., Beckmann, J. S. & Kutalik, Z. The growing importance of
CNVs: New insights for detection and clinical interpretation. Frontiers in Genetics 4, 92 (2013) (cited on
pages 35, 43, 50, 65, 123).

206. Mace, A. et al. New quality measure for SNP array based CNV detection. Bioinformatics 32, 3298–3305
(2016) (cited on pages 35, 51, 52, 59, 81, 87, 88, 130, 131, 151, 152, 158, 177).

207. Lepamets, M. et al. Omics-informed CNV calls reduce false-positive rates and improve power for
CNV-trait associations. Human Genetics and Genomics Advances 3 (2022) (cited on page 35).

208. Auwerx, C. et al. The individual and global impact of copy-number variants on complex human traits.
The American Journal of Human Genetics 109, 647–668 (2022) (cited on pages 35, 38, 47, 83, 86, 87, 90,
93–95, 99, 100, 102, 105–108, 110–112, 114, 116, 120, 122, 130–132, 141, 143, 150–153, 158, 169, 176, 177, 180,
181, 183, 200, 202, 203, 208–213, 215, 216, 235).

209. Fitzgerald, T. & Birney, E. CNest: A novel copy number association discovery method uncovers 862
new associations from 200,629 whole-exome sequence datasets in the UK Biobank. Cell Genomics 2
(2022) (cited on pages 36, 68, 81, 86, 232).

210. Babadi, M. et al. GATK-gCNV enables the discovery of rare copy number variants from exome
sequencing data. Nature Genetics 55, 1589–1597 (2023) (cited on pages 36, 86, 232).

211. Hujoel, M. L. et al. Protein-altering variants at copy number-variable regions influence diverse human
phenotypes. Nature Genetics, 1–10 (2024) (cited on pages 36, 86, 231, 232).



212. Danecek, P. et al. Detection and characterisation of copy number variants from exome sequencing in
the DDD study. Genetics in Medicine Open, 101818 (2024) (cited on page 36).

213. Quinodoz, M. et al. Detection of elusive DNA copy-number variations in hereditary disease and cancer
through the use of noncoding and off-target sequencing reads. The American Journal of Human Genetics
111, 701–713 (2024) (cited on page 36).

214. Gabrielaite, M. et al. A comparison of tools for copy-number variation detection in germline whole
exome and whole genome sequencing data. Cancers 13, 6283 (2021) (cited on page 36).

215. Klambauer, G. et al. cn.MOPS: Mixture of Poissons for discovering copy number variations in next-
generation sequencing data with a low false discovery rate. Nucleic Acids Research 40, e69–e69 (2012)
(cited on page 36).

216. Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: A probabilistic framework for structural
variant discovery. Genome Biology 15, 1–19 (2014) (cited on page 36).

217. Rausch, T. et al. DELLY: Structural variant discovery by integrated paired-end and split-read analysis.
Bioinformatics 28, i333–i339 (2012) (cited on page 36).

218. Chen, X. et al. Manta: Rapid detection of structural variants and indels for germline and cancer
sequencing applications. Bioinformatics 32, 1220–1222 (2016) (cited on page 36).

219. Van Dĳk, E. L. et al. Genomics in the long-read sequencing era. Trends in Genetics (2023) (cited on
page 36).

220. Smolka, M. et al. Detection of mosaic and population-level structural variants with Sniffles2. Nature
Biotechnology, 1–10 (2024) (cited on page 36).

221. Jiang, T. et al. Long-read-based human genomic structural variation detection with cuteSV. Genome
Biology 21, 1–24 (2020) (cited on page 36).

222. Heller, D. & Vingron, M. SVIM: Structural variant identification using mapped long reads. Bioinformatics
35, 2907–2915 (2019) (cited on page 36).

223. Marx, V. Method of the year: Long-read sequencing. Nature Methods 20, 6–11 (2023) (cited on page 36).
224. Miller, D. E. et al. Targeted long-read sequencing identifies missing disease-causing variation. The

American Journal of Human Genetics 108, 1436–1449 (2021) (cited on page 37).
225. Van der Sanden, B. et al. Optical genome mapping enables accurate repeat expansion testing. bioRxiv,

2024–04 (2024) (cited on page 37).
226. Dremsek, P. et al. Optical genome mapping in routine human genetic diagnostics—its advantages and

limitations. Genes 12, 1958 (2021) (cited on page 37).
227. Weischenfeldt, J., Symmons, O., Spitz, F. & Korbel, J. O. Phenotypic impact of genomic structural

variation: Insights from and for human disease. Nature Reviews Genetics 14, 125–138 (2013) (cited on
pages 37, 86, 108, 234).

228. Harel, T. & Lupski, J. Genomic disorders 20 years on—mechanisms for clinical manifestations. Clinical
Genetics 93, 439–449 (2018) (cited on page 37).

229. Collins, R. L. et al. A cross-disorder dosage sensitivity map of the human genome. Cell 185, 3041–3055
(2022) (cited on pages 38, 77, 86, 87, 93, 120, 159, 176, 198–200).

230. Spielmann, M., Lupiáñez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nature Reviews
Genetics 19, 453–467 (2018) (cited on page 38).

231. Han, L. et al. Functional annotation of rare structural variation in the human brain. Nature Communications
11, 2990 (2020) (cited on page 38).

232. Benito-Sanz, S. et al. Identification of the first recurrent PAR1 deletion in Léri-Weill dyschondrosteosis
and idiopathic short stature reveals the presence of a novel SHOX enhancer. Journal of Medical Genetics
49, 442–450 (2012) (cited on page 38).

233. Jensen, T. D. et al. Integration of transcriptomics and long-read genomics prioritizes structural variants
in rare disease. medRxiv, 2024–03 (2024) (cited on page 38).

234. Chen, R. et al. Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian
childhood diseases. Nature Biotechnology 34, 531–538 (2016) (cited on pages 39, 73, 79, 86, 121).

235. Wright, C. F. et al. Assessing the pathogenicity, penetrance, and expressivity of putative disease-causing
variants in a population setting. The American Journal of Human Genetics 104, 275–286 (2019) (cited on
pages 39, 73, 79, 81, 86, 121, 130).



236. Goodrich, J. K. et al. Determinants of penetrance and variable expressivity in monogenic metabolic
conditions across 77,184 exomes. Nature Communications 12, 3505 (2021) (cited on pages 39, 73, 79, 81,
86, 121).

237. Kingdom, R. et al. Rare genetic variants in genes and loci linked to dominant monogenic developmental
disorders cause milder related phenotypes in the general population. The American Journal of Human
Genetics 109, 1308–1316 (2022) (cited on pages 39, 86, 121, 122, 144).

238. Urpa, L. et al. Evidence for the additivity of rare and common variant burden throughout the spectrum
of intellectual disability. European Journal of Human Genetics, 1–8 (2024) (cited on page 39).

239. Mars, N. et al. The role of polygenic risk and susceptibility genes in breast cancer over the course of life.
Nature Communications 11, 6383 (2020) (cited on page 39).

240. Cirnigliaro, M. et al. The contributions of rare inherited and polygenic risk to ASD in multiplex families.
Proceedings of the National Academy of Sciences 120, e2215632120 (2023) (cited on page 39).

241. Kingdom, R. & Wright, C. F. Incomplete penetrance and variable expressivity: From clinical studies to
population cohorts. Frontiers in Genetics 13, 920390 (2022) (cited on pages 39, 130).

242. Phillips 3rd, J. & Cogan, J. Genetic basis of endocrine disease. 6. Molecular basis of familial human
growth hormone deficiency. The Journal of Clinical Endocrinology & Metabolism 78, 11–16 (1994) (cited on
page 40).

243. Hobbs, H. H., Russell, D. W., Brown, M. S. & Goldstein, J. L. The LDL receptor locus in familial
hypercholesterolemia: Mutational analysis of a membrane protein. Annual Review of Genetics 24, 133–170
(1990) (cited on pages 40, 109).

244. Iacocca, M. A. & Hegele, R. A. Role of DNA copy number variation in dyslipidemias. Current Opinion
in Lipidology 29, 125–132 (2018) (cited on pages 40, 109).

245. Van de Steeg, E. et al. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome
by interrupting conjugated bilirubin reuptake into the liver. The Journal of Clinical Investigation 122,
519–528 (2012) (cited on pages 40, 72).

246. Sleegers, K. et al. APP duplication is sufficient to cause early onset Alzheimer’s dementia with cerebral
amyloid angiopathy. Brain 129, 2977–2983 (2006) (cited on page 40).

247. Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer
disease with cerebral amyloid angiopathy. Nature Genetics 38, 24–26 (2006) (cited on page 40).

248. Duan, D., Goemans, N., Takeda, S., Mercuri, E. & Aartsma-Rus, A. Duchenne muscular dystrophy.
Nature Reviews Disease Primers 7, 13 (2021) (cited on page 40).

249. Campuzano, V. et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet
repeat expansion. Science 271, 1423–1427 (1996) (cited on page 40).

250. MacDonald, M. E. et al. A novel gene containing a trinucleotide repeat that is expanded and unstable
on Huntington’s disease chromosomes. Cell 72, 971–983 (1993) (cited on page 40).

251. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene.
Cell 80, 155–165 (1995) (cited on page 40).

252. Mailman, M. D. et al. Molecular analysis of spinal muscular atrophy and modification of the phenotype
by SMN2. Genetics in Medicine 4, 20–26 (2002) (cited on page 40).

253. Lakich, D., Kazazian Jr, H. H., Antonarakis, S. E. & Gitschier, J. Inversions disrupting the factor VIII
gene are a common cause of severe haemophilia A. Nature Genetics 5, 236–241 (1993) (cited on page 40).

254. Becker, J. et al. Characterization of the factor VIII defect in 147 patients with sporadic hemophilia A:
Family studies indicate a mutation type-dependent sex ratio of mutation frequencies. The American
Journal of Human Genetics 58, 657 (1996) (cited on page 40).

255. Tamary, H. & Dgany, O. Alpha-thalassemia (GeneReviews, Seattle (WA), 2020) (cited on page 40).
256. Avent, N. D. & Reid, M. E. The Rh blood group system: A review. Blood 95, 375–387 (2000) (cited on

pages 40, 68, 69).
257. Yang, Y. et al. Gene copy-number variation and associated polymorphisms of complement component

C4 in human systemic lupus erythematosus (SLE): Low copy number is a risk factor for and high copy
number is a protective factor against SLE susceptibility in European Americans. The American Journal
of Human Genetics 80, 1037–1054 (2007) (cited on page 40).

258. Gonzalez, E. et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS
susceptibility. Science 307, 1434–1440 (2005) (cited on page 40).



259. Manickam, K. et al. Exome and genome sequencing for pediatric patients with congenital anomalies
or intellectual disability: An evidence-based clinical guideline of the American College of Medical
Genetics and Genomics (ACMG). Genetics in Medicine 23, 2029–2037 (2021) (cited on page 40).

260. Leblond, C. S. et al. Operative list of genes associated with autism and neurodevelopmental disorders
based on database review. Molecular and Cellular Neuroscience 113, 103623 (2021) (cited on page 40).

261. Manning, M., Hudgins, L. & Professional Practice and Guidelines Committee. Array-based technology
and recommendations for utilization in medical genetics practice for detection of chromosomal
abnormalities. Genetics in Medicine 12, 742–745 (2010) (cited on page 40).

262. Miller, D. T. et al. Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test
for individuals with developmental disabilities or congenital anomalies. The American Journal of Human
Genetics 86, 749–764 (2010) (cited on page 40).

263. Stankiewicz, P. & Lupski, J. R. Structural variation in the human genome and its role in disease. Annual
Review of Medicine 61, 437–455 (2010) (cited on page 40).

264. Girirajan, S., Campbell, C. D. & Eichler, E. E. Human copy number variation and complex genetic
disease. Annual Review of Genetics 45, 203–226 (2011) (cited on page 40).

265. Firth, H. V. et al. DECIPHER: Database of chromosomal imbalance and phenotype in humans using
ensembl resources. The American Journal of Human Genetics 84, 524–533 (2009) (cited on pages 41, 50,
86, 153, 158, 195).

266. Golzio, C. et al. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy
number variant. Nature 485, 363–367 (2012) (cited on pages 42, 196, 213, 221).

267. Lupski, J. R. et al. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell 66,
219–232 (1991) (cited on page 42).

268. Patel, P. I. et al. The gene for the peripheral myelin protein PMP–22 is a candidate for Charcot–Marie–
Tooth disease type 1A. Nature Genetics 1, 159–165 (1992) (cited on page 42).

269. Ionasescu, V. V. et al. Severe Charcot-Marie-Tooth neuropathy type 1A with 1-base pair deletion and
frameshift mutation in the peripheral myelin protein 22 gene. Muscle & Nerve 20, 1308–1310 (1997)
(cited on page 42).

270. Valentĳn, L. J. et al. Identical point mutations of PMP–22 in Trembler–J mouse and Charcot–Marie–Tooth
disease type 1A. Nature Genetics 2, 288–291 (1992) (cited on page 42).

271. Suter, U. et al. Trembler mouse carries a point mutation in a myelin gene. Nature 356, 241–244 (1992)
(cited on page 42).

272. Qiu, Y. et al. Oligogenic effects of 16p11.2 copy-number variation on craniofacial development. Cell
Reports 28, 3320–3328 (2019) (cited on pages 42, 196, 213).

273. Arbogast, T. et al. Kctd13-deficient mice display short-term memory impairment and sex-dependent
genetic interactions. Human Molecular Genetics 28, 1474–1486 (2019) (cited on pages 42, 196, 213, 221,
224).

274. Kretz, P. F. et al. Dissecting the autism-associated 16p11.2 locus identifies multiple drivers in neu-
roanatomical phenotypes and unveils a male-specific role for the major vault protein. Genome Biology
24, 261 (2023) (cited on pages 42, 196, 204, 221).

275. Li, G. et al. TBX6 as a cause of a combined skeletal-kidney dysplasia syndrome. American Journal of
Medical Genetics Part A 188, 3469–3481 (2022) (cited on pages 42, 214, 215).

276. Wu, N. et al. TBX6 null variants and a common hypomorphic allele in congenital scoliosis. New England
Journal of Medicine 372, 341–350 (2015) (cited on pages 42, 203, 214, 222).

277. Verbitsky, M. et al. The copy number variation landscape of congenital anomalies of the kidney and
urinary tract. Nature Genetics 51, 117–127 (2019) (cited on pages 42, 86, 110, 191, 198, 214, 215).

278. Nik-Zainal, S. et al. High incidence of recurrent copy number variants in patients with isolated and
syndromic Müllerian aplasia. Journal of Medical Genetics 48, 197–204 (2011) (cited on pages 42, 215).

279. Loviglio, M. N. et al. Chromosomal contacts connect loci associated with autism, BMI and head
circumference phenotypes. Molecular Psychiatry 22, 836–849 (2017) (cited on pages 42, 64, 150, 165, 207,
221, 224).

280. Loviglio, M. N. et al. The immune signaling adaptor LAT contributes to the neuroanatomical phenotype
of 16p11.2 BP2-BP3 CNVs. The American Journal of Human Genetics 101, 564–577 (2017) (cited on pages 42,
168, 221, 223, 224).



281. Pizzo, L. et al. Functional assessment of the “two-hit” model for neurodevelopmental defects in
Drosophila and X. laevis. PLoS Genetics 17, e1009112 (2021) (cited on page 42).

282. Weiner, D. J. et al. Statistical and functional convergence of common and rare genetic influences on
autism at chromosome 16p. Nature Genetics 54, 1630–1639 (2022) (cited on pages 42, 207, 221, 224).

283. Jensen, M. et al. Combinatorial patterns of gene expression changes contribute to variable expressivity
of the developmental delay-associated 16p12.1 deletion. Genome Medicine 13, 1–21 (2021) (cited on
page 42).

284. Singh, M. D. et al. NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila
and Xenopus laevis models. PLoS Genetics 16, e1008590 (2020) (cited on page 42).

285. Girirajan, S. & Eichler, E. E. Phenotypic variability and genetic susceptibility to genomic disorders.
Human Molecular Genetics 19, R176–R187 (2010) (cited on pages 42, 220, 222, 237).

286. Girirajan, S. et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. New
England Journal of Medicine 367, 1321–1331 (2012) (cited on pages 42, 197, 220, 237).

287. Pizzo, L. et al. Rare variants in the genetic background modulate cognitive and developmental
phenotypes in individuals carrying disease-associated variants. Genetics in Medicine 21, 816–825 (2019)
(cited on pages 42, 218, 220).

288. Jensen, M. et al. A higher rare CNV burden in the genetic background potentially contributes to
intellectual disability phenotypes in 22q11.2 deletion syndrome. European Journal of Medical Genetics 61,
209–212 (2018) (cited on page 42).

289. Oetjens, M., Kelly, M., Sturm, A., Martin, C. & Ledbetter, D. Quantifying the polygenic contribution to
variable expressivity in eleven rare genetic disorders. Nature Communications 10, 4897 (2019) (cited on
pages 42, 79, 221).

290. Bergen, S. E. et al. Joint contributions of rare copy number variants and common SNPs to risk for
schizophrenia. American Journal of Psychiatry 176, 29–35 (2019) (cited on pages 42, 221).

291. Davies, R. W. et al. Using common genetic variation to examine phenotypic expression and risk
prediction in 22q11.2 deletion syndrome. Nature Medicine 26, 1912–1918 (2020) (cited on pages 42, 130).

292. Aguirre, M., Rivas, M. A. & Priest, J. Phenome-wide burden of copy-number variation in the UK
biobank. The American Journal of Human Genetics 105, 373–383 (2019) (cited on pages 43, 51, 59, 61, 79,
86, 106, 141, 150, 158, 176, 183, 200, 209, 210, 212, 214, 215).

293. Crawford, K. et al. Medical consequences of pathogenic CNVs in adults: Analysis of the UK Biobank.
Journal of Medical Genetics 56, 131–138 (2019) (cited on pages 43, 51, 86, 95, 100, 104, 106, 116, 120, 141, 142,
150, 158, 176, 200, 209, 210, 212, 214–216).

294. Owen, D. et al. Effects of pathogenic CNVs on physical traits in participants of the UK Biobank. BMC
Genomics 19, 1–9 (2018) (cited on pages 43, 51, 79, 86, 106, 111, 116, 141, 143, 176, 200, 209, 212, 213).

295. Macé, A. et al. CNV-association meta-analysis in 191,161 European adults reveals new loci associated
with anthropometric traits. Nature Communications 8, 744 (2017) (cited on pages 43, 47, 51–53, 59, 61, 79,
81, 86, 93, 106, 122, 150, 158, 176, 181, 183, 200, 209, 235).

296. Canela-Xandri, O., Rawlik, K. & Tenesa, A. An atlas of genetic associations in UK Biobank. Nature
Genetics 50, 1593–1599 (2018) (cited on pages 50, 77).

297. Shaikh, T. H. Copy number variation disorders. Current Genetic Medicine Reports 5, 183–190 (2017) (cited
on page 50).

298. Myocardial Infarction Genetics Consortium. Nature Genetics 41, 334–341 (2009) (cited on page 50).
299. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared

controls. Nature 464, 713–720 (2010) (cited on page 50).
300. Kendall, K. M. et al. Cognitive performance among carriers of pathogenic copy number variants:

Analysis of 152,000 UK Biobank subjects. Biological Psychiatry 82, 103–110 (2017) (cited on pages 51, 79,
86, 122, 141, 200, 202).

301. Warland, A., Kendall, K. M., Rees, E., Kirov, G. & Caseras, X. Schizophrenia-associated genomic copy
number variants and subcortical brain volumes in the UK Biobank. Molecular Psychiatry 25, 854–862
(2020) (cited on page 51).

302. Kendall, K. M. et al. Association of rare copy number variants with risk of depression. JAMA Psychiatry
76, 818–825 (2019) (cited on pages 51, 86, 141, 208).



303. Bracher-Smith, M. et al. Effects of pathogenic CNVs on biochemical markers: A study on the UK
Biobank. bioRxiv, 723270 (2019) (cited on page 51).

304. Li, Y. R. et al. Rare copy number variants in over 100,000 European ancestry subjects reveal multiple
disease associations. Nature Communications 11, 255 (2020) (cited on pages 51, 86).

305. Sinnott-Armstrong, N. et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nature
Genetics 53, 185–194 (2021) (cited on pages 51, 67–69, 72, 79, 80, 86, 176, 200, 209, 210, 215).

306. Hujoel, M. L. et al. Influences of rare copy-number variation on human complex traits. Cell 185,
4233–4248 (2022) (cited on pages 51, 61, 79, 81, 86, 95, 120, 122, 176, 209–212, 215, 216, 230, 231).

307. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from
high-throughput sequencing data. Nucleic Acids Research 38, e164–e164 (2010) (cited on pages 51, 87).

308. Mägi, R. & Morris, A. P. GWAMA: Software for genome-wide association meta-analysis. BMC
Bioinformatics 11, 1–6 (2010) (cited on page 51).

309. Wu, P. et al. Mapping ICD-10 and ICD-10-CM codes to PheCodes: Workflow development and initial
evaluation. JMIR Medical Informatics 7, e14325 (2019) (cited on pages 52, 89, 131).

310. Dufour, D. R. et al. Diagnosis and monitoring of hepatic injury. II. Recommendations for use of
laboratory tests in screening, diagnosis, and monitoring. Clinical Chemistry 46, 2050–2068 (2000) (cited
on pages 57, 68).

311. Van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R.
Journal of Statistical Software 45, 1–67 (2011) (cited on page 58).

312. Jacquemont, S. et al. A higher mutational burden in females supports a “female protective model” in
neurodevelopmental disorders. The American Journal of Human Genetics 94, 415–425 (2014) (cited on
pages 59, 219).

313. Gilman, S. R. et al. Rare de novo variants associated with autism implicate a large functional network
of genes involved in formation and function of synapses. Neuron 70, 898–907 (2011) (cited on pages 59,
239).

314. Levy, D. et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders.
Neuron 70, 886–897 (2011) (cited on pages 59, 239).

315. Sanders, S. J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71
risk loci. Neuron 87, 1215–1233 (2015) (cited on pages 59, 206, 239).

316. Rao, E. et al. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in
idiopathic short stature and Turner syndrome. Nature Genetics 16, 54–63 (1997) (cited on pages 62, 235).

317. Ellison, J. W. et al. PHOG, a candidate gene for involvement in the short stature of Turner syndrome.
Human Molecular Genetics 6, 1341–1347 (1997) (cited on pages 62, 235).

318. Fukami, M., Seki, A. & Ogata, T. SHOX haploinsufficiency as a cause of syndromic and nonsyndromic
short stature. Molecular Syndromology 7, 3–11 (2016) (cited on page 62).

319. Schiller, S. et al. Phenotypic variation and genetic heterogeneity in Leri-Weill syndrome. European
Journal of Human Genetics 8, 54–62 (2000) (cited on page 62).

320. Gaillard, F. Madelung deformity | Radiology Reference Article | Radiopaedia.org — radiopaedia.org https:
//radiopaedia.org/articles/7582 (cited on page 62).

321. Mefford, H. C. et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes.
New England Journal of Medicine 359, 1685–1699 (2008) (cited on page 63).

322. Bernier, R. et al. Clinical phenotype of the recurrent 1q21.1 copy-number variant. Genetics in Medicine 18,
341–349 (2016) (cited on page 63).

323. Brunetti-Pierri, N. et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with
microcephaly or macrocephaly and developmental and behavioral abnormalities. Nature Genetics 40,
1466–1471 (2008) (cited on page 63).

324. Conrad, D. F. et al. Origins and functional impact of copy number variation in the human genome.
Nature 464, 704–712 (2010) (cited on pages 64, 86).

325. Bochukova, E. G. et al. Large, rare chromosomal deletions associated with severe early-onset obesity.
Nature 463, 666–670 (2010) (cited on pages 64, 106, 150, 175, 176, 181, 197, 208).

326. Jacquemont, S. et al. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome
16p11.2 locus. Nature 478, 97–102 (2011) (cited on pages 64, 107, 175, 176, 181, 197, 198, 209, 215, 239).

https://radiopaedia.org/articles/7582
https://radiopaedia.org/articles/7582


327. Bachmann-Gagescu, R. et al. Recurrent 200-kb deletions of 16p11.2 that include the SH2B1 gene are
associated with developmental delay and obesity. Genetics in Medicine 12, 641–647 (2010) (cited on
pages 64, 150, 156).

328. Männik, K. et al. Leveraging biobank-scale rare and common variant analyses to identify ASPHD1 as
the main driver of reproductive traits in the 16p11.2 locus. BioRxiv, 716415 (2019) (cited on pages 64,
196, 211, 215).

329. Kargi, A. Y. & Merriam, G. R. Diagnosis and treatment of growth hormone deficiency in adults. Nature
Reviews Endocrinology 9, 335–345 (2013) (cited on page 64).

330. Andrews, N. C. Genes determining blood cell traits. Nature Genetics 41, 1161–1162 (2009) (cited on
page 64).

331. Ganesh, S. K. et al. Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium. Nature
Genetics 41, 1191–1198 (2009) (cited on page 64).

332. Aguirre, G., De Ita, J. R., De La Garza, R. & Castilla-Cortazar, I. Insulin-like growth factor-1 deficiency
and metabolic syndrome. Journal of Translational Medicine 14, 1–23 (2016) (cited on page 67).

333. Sakaue, S. et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nature
Genetics 53, 1415–1424 (2021) (cited on page 67).

334. Rudd, M. K. et al. Segmental duplications mediate novel, clinically relevant chromosome rearrangements.
Human Molecular Genetics 18, 2957–2962 (2009) (cited on page 67).

335. Cooper, G. M. et al. A copy number variation morbidity map of developmental delay. Nature Genetics
43, 838–846 (2011) (cited on pages 67, 86, 87, 122, 175, 202).

336. Yu, H. et al. A recurrent 1.71 Mb genomic imbalance at 2q13 increases the risk of developmental delay
and dysmorphism. Clinical Genetics 81, 257–264 (2012) (cited on page 67).

337. Riley, K. N. et al. Recurrent deletions and duplications of chromosome 2q11.2 and 2q13 are associated
with variable outcomes. American Journal of Medical Genetics Part A 167, 2664–2673 (2015) (cited on
page 67).

338. Wolfe, K. et al. Delineating the psychiatric and behavioral phenotype of recurrent 2q13 deletions and
duplications. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 177, 397–405 (2018)
(cited on page 67).

339. De Bruyne, E. et al. IGF-1 suppresses Bim expression in multiple myeloma via epigenetic and
posttranslational mechanisms. Blood 115, 2430–2440 (2010) (cited on page 67).

340. Anzai, N. et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of
renal urate-anion exchanger URAT1 via its C terminus. Journal of Biological Chemistry 279, 45942–45950
(2004) (cited on page 67).

341. Kolz, M. et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that
influence uric acid concentrations. PLoS Genetics 5, e1000504 (2009) (cited on pages 67, 69).

342. Köttgen, A. et al. Genome-wide association analyses identify 18 new loci associated with serum urate
concentrations. Nature Genetics 45, 145–154 (2013) (cited on pages 67, 69).

343. Yang, Q. et al. Multiple genetic loci influence serum urate levels and their relationship with gout
and cardiovascular disease risk factors. Circulation: Cardiovascular Genetics 3, 523–530 (2010) (cited on
page 67).

344. Sulem, P. et al. Identification of low-frequency variants associated with gout and serum uric acid levels.
Nature Genetics 43, 1127–1130 (2011) (cited on page 67).

345. Ketharnathan, S. et al. A non-coding genetic variant maximally associated with serum urate levels is
functionally linked to HNF4A-dependent PDZK1 expression. Human Molecular Genetics 27, 3964–3973
(2018) (cited on pages 67, 69, 240).

346. Yuan, X. et al. Population-based genome-wide association studies reveal six loci influencing plasma
levels of liver enzymes. The American Journal of Human Genetics 83, 520–528 (2008) (cited on pages 68,
70).

347. Kamatani, Y. et al. Genome-wide association study of hematological and biochemical traits in a Japanese
population. Nature Genetics 42, 210–215 (2010) (cited on pages 68, 70).

348. Chambers, J. C. et al. Genome-wide association study identifies loci influencing concentrations of liver
enzymes in plasma. Nature Genetics 43, 1131–1138 (2011) (cited on pages 68, 70).



349. Gurdasani, D. et al. Uganda genome resource enables insights into population history and genomic
discovery in Africa. Cell 179, 984–1002 (2019) (cited on page 68).

350. Seo, J. Y. et al. A genome-wide association study on liver enzymes in Korean population. PLoS One 15,
e0229374 (2020) (cited on page 68).

351. Pazoki, R. et al. Genetic analysis in European ancestry individuals identifies 517 loci associated with
liver enzymes. Nature Communications 12, 2579 (2021) (cited on page 68).

352. Vuckovic, D. et al. The polygenic and monogenic basis of blood traits and diseases. Cell 182, 1214–1231
(2020) (cited on page 68).

353. Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to common complex
disease. Cell 167, 1415–1429 (2016) (cited on page 68).

354. Nash, R. & Shojania, A. Hematological aspect of Rh deficiency syndrome: A case report and a review
of the literature. American Journal of Hematology 24, 267–275 (1987) (cited on page 68).

355. Rai, D., Wilson, A. M. & Moosavi, L. Histology, Reticulocytes (StatPearls Publishing, Treasure Island
(FL), 2019) (cited on page 68).

356. Goldstein, D. E. et al. Tests of glycemia in diabetes. Diabetes Care 27, 1761–1773 (2004) (cited on page 69).
357. Akinlaja, O. Hematological changes in pregnancy-The preparation for intrapartum blood loss. Interna-

tional Journal of Gynecology & Obstetrics 4, 00109 (2016) (cited on page 69).
358. Sanna, S. et al. Common variants in the SLCO1B3 locus are associated with bilirubin levels and

unconjugated hyperbilirubinemia. Human Molecular Genetics 18, 2711–2718 (2009) (cited on page 72).
359. Johnson, A. D. et al. Genome-wide association meta-analysis for total serum bilirubin levels. Human

Molecular Genetics 18, 2700–2710 (2009) (cited on page 72).
360. Kang, T.-W. et al. Genome-wide association of serum bilirubin levels in Korean population. Human

Molecular Genetics 19, 3672–3678 (2010) (cited on page 72).
361. Bielinski, S. J. et al. Mayo Genome Consortia: A genotype-phenotype resource for genome-wide

association studies with an application to the analysis of circulating bilirubin levels. Mayo Clinic
Proceedings 86, 606–614 (2011) (cited on page 72).

362. Dai, X. et al. A genome-wide association study for serum bilirubin levels and gene-environment
interaction in a Chinese population. Genetic Epidemiology 37, 293–300 (2013) (cited on page 72).

363. Smith, N. F., Figg, W. D. & Sparreboom, A. Role of the liver-specific transporters OATP1B1 and OATP1B3
in governing drug elimination. Expert Opinion on Drug Metabolism & Toxicology 1, 429–445 (2005) (cited
on page 72).

364. Mitchel, M. W. et al. 17q12 Recurrent Deletion Syndrome (GeneReviews, Seattle (WA), 2020) (cited on
page 73).

365. Mefford, H. 17q12 Recurrent Duplication (GeneReviews, Seattle (WA), 2021) (cited on page 73).
366. Van Paassen, B. W. et al. PMP22 related neuropathies: Charcot-Marie-Tooth disease type 1A and

hereditary neuropathy with liability to pressure palsies. Orphanet Journal of Rare Diseases 9, 1–15 (2014)
(cited on page 73).

367. Horowitz, G. L. & Staros, E. B. Creatinine: Reference Range, Interpretation, Collection and Panels —
emedicine.medscape.com 2019. https://emedicine.medscape.com/article/2054342-overview#a2?
form=fpf (cited on page 73).

368. Cooper, D. N., Krawczak, M., Polychronakos, C., Tyler-Smith, C. & Kehrer-Sawatzki, H. Where genotype
is not predictive of phenotype: Towards an understanding of the molecular basis of reduced penetrance
in human inherited disease. Human Genetics 132, 1077–1130 (2013) (cited on pages 73, 79).

369. Day, F. R. et al. Genomic analyses identify hundreds of variants associated with age at menarche and
support a role for puberty timing in cancer risk. Nature Genetics 49, 834–841 (2017) (cited on pages 76,
81).

370. Gasner, A. & Rehman, A. Primary Amenorrhea (StatPearls Publishing, Treasure Island (FL), 2021) (cited
on page 76).

371. Walker, M. H. & Tobler, K. J. Female Infertility (StatPearls Publishing, Treasure Island (FL), 2021) (cited
on page 76).

372. Su, Y.-Q. et al. MARF1 regulates essential oogenic processes in mice. Science 335, 1496–1499 (2012) (cited
on pages 76, 77).

https://emedicine.medscape.com/article/2054342-overview#a2?form=fpf
https://emedicine.medscape.com/article/2054342-overview#a2?form=fpf


373. Kawaguchi, S., Ueki, M. & Kai, T. Drosophila MARF1 ensures proper oocyte maturation by regulating
nanos expression. PLoS One 15, e0231114 (2020) (cited on pages 76, 77).

374. Islam, R. et al. Genome-wide runs of homozygosity, effective population size, and detection of positive
selection signatures in six Chinese goat breeds. Genes 10, 938 (2019) (cited on pages 76, 77).

375. Katari, S. et al. Chromosomal instability in women with primary ovarian insufficiency. Human
Reproduction 33, 531–538 (2018) (cited on pages 76, 77).

376. Yang, X. et al. Gene variants identified by whole-exome sequencing in 33 French women with premature
ovarian insufficiency. Journal of Assisted Reproduction and Genetics 36, 39–45 (2019) (cited on pages 76,
77).

377. Su, Y.-Q., Sun, F., Handel, M. A., Schimenti, J. C. & Eppig, J. J. Meiosis arrest female 1 (MARF1)
has nuage-like function in mammalian oocytes. Proceedings of the National Academy of Sciences 109,
18653–18660 (2012) (cited on page 77).

378. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science
266, 66–71 (1994) (cited on pages 77, 108).

379. McNally, E. J., Luncsford, P. J. & Armanios, M. Long telomeres and cancer risk: The price of cellular
immortality. The Journal of Clinical Investigation 129, 3474–3481 (2019) (cited on page 77).

380. Fisher, R. A. XV.—The correlation between relatives on the supposition of Mendelian inheritance.
Earth and Environmental Science Transactions of the Royal Society of Edinburgh 52, 399–433 (1918) (cited on
page 78).

381. Fahed, A. C. et al. Polygenic background modifies penetrance of monogenic variants for tier 1 genomic
conditions. Nature Communications 11, 3635 (2020) (cited on page 79).

382. Dauber, A. et al. Genome-wide association of copy-number variation reveals an association between
short stature and the presence of low-frequency genomic deletions. The American Journal of Human
Genetics 89, 751–759 (2011) (cited on pages 79, 122).

383. Wheeler, E. et al. Genome-wide SNP and CNV analysis identifies common and low-frequency variants
associated with severe early-onset obesity. Nature Genetics 45, 513–517 (2013) (cited on pages 79, 122).

384. Männik, K. et al. Copy number variations and cognitive phenotypes in unselected populations. JAMA
313, 2044–2054 (2015) (cited on pages 79, 122, 165, 200, 202).

385. Saarentaus, E. C. et al. Polygenic burden has broader impact on health, cognition, and socioeconomic
outcomes than most rare and high-risk copy number variants. Molecular Psychiatry 26, 4884–4895
(2021) (cited on pages 79, 122, 199).

386. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449
(2007) (cited on pages 79, 86, 87, 122, 175, 197, 206).

387. Walsh, T. et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in
schizophrenia. Science 320, 539–543 (2008) (cited on pages 79, 86, 87, 122, 176, 180, 197).

388. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk
of schizophrenia. Nature 455, 237–241 (2008) (cited on page 79).

389. Mefford, H. C. et al. Genome-wide copy number variation in epilepsy: Novel susceptibility loci in
idiopathic generalized and focal epilepsies. PLoS Genetics 6, e1000962 (2010) (cited on pages 79, 86, 87,
112, 122, 176, 197).

390. Mefford, H. C. et al. Rare copy number variants are an important cause of epileptic encephalopathies.
Annals of Neurology 70, 974–985 (2011) (cited on pages 79, 205).

391. McDaid, A. F. et al. Bayesian association scan reveals loci associated with human lifespan and linked
biomarkers. Nature Communications 8, 15842 (2017) (cited on page 79).

392. Freathy, R. M. et al. Common variation in the FTO gene alters diabetes-related metabolic traits to the
extent expected given its effect on BMI. Diabetes 57, 1419–1426 (2008) (cited on page 80).

393. Würtz, P. et al. Metabolic signatures of adiposity in young adults: Mendelian randomization analysis
and effects of weight change. PLoS Medicine 11, e1001765 (2014) (cited on page 80).

394. Fall, T. et al. The role of adiposity in cardiometabolic traits: A Mendelian randomization analysis. PLoS
Medicine 10, e1001474 (2013) (cited on page 80).

395. Barker, D. J. et al. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia
(syndrome X): Relation to reduced fetal growth. Diabetologia 36, 62–67 (1993) (cited on page 80).



396. Armengaud, J., Yzydorczyk, C., Siddeek, B., Peyter, A. & Simeoni, U. Intrauterine growth restriction:
Clinical consequences on health and disease at adulthood. Reproductive Toxicology 99, 168–176 (2021)
(cited on page 80).

397. Halvorsen, M. et al. Increased burden of ultra-rare structural variants localizing to boundaries of
topologically associated domains in schizophrenia. Nature Communications 11, 1842 (2020) (cited on
pages 81, 86).

398. Chen, L. et al. Association of structural variation with cardiometabolic traits in Finns. The American
Journal of Human Genetics 108, 583–596 (2021) (cited on pages 81, 86).

399. Li, J. et al. Whole genome distribution and ethnic differentiation of copy number variation in Caucasian
and Asian populations. PloS One 4, e7958 (2009) (cited on page 81).

400. Campbell, C. D. et al. Population-genetic properties of differentiated human copy-number polymor-
phisms. The American Journal of Human Genetics 88, 317–332 (2011) (cited on page 81).

401. Chen, W. et al. Copy number variation across European populations. PLoS One 6, e23087 (2011) (cited
on page 81).

402. Martin, C. L. et al. Identification of neuropsychiatric copy number variants in a health care system
population. JAMA Psychiatry 77, 1276–1285 (2020) (cited on pages 81, 176, 199, 208, 217, 225, 241).

403. Zhang, F., Gu, W., Hurles, M. E. & Lupski, J. R. Copy number variation in human health, disease, and
evolution. Annual Review of Genomics and Human Genetics 10, 451–481 (2009) (cited on page 86).

404. Kopal, J. et al. Rare CNVs and phenome-wide profiling highlight brain structural divergence and
phenotypical convergence. Nature Human Behaviour, 1–17 (2023) (cited on pages 86, 204).

405. Senn, S. Statistical issues in drug development (Wiley, Chichester, 2021) (cited on page 86).
406. Mollon, J. et al. Impact of Copy Number Variants and Polygenic Risk Scores on Psychopathology in the

UK Biobank. Biological Psychiatry 94, 591–600 (2023) (cited on page 86).
407. Vaez, M. et al. Population-based Risk of Psychiatric Disorders Associated with Recurrent CNVs. medRxiv

(2023) (cited on pages 86, 207, 208).
408. Sánchez, X. C. et al. Comparing copy number variations in a Danish case cohort of individuals with

psychiatric disorders. JAMA Psychiatry 79, 59–69 (2022) (cited on pages 86, 198, 199, 208).
409. Verbitsky, M. et al. Genomic disorders in CKD across the lifespan. Journal of the American Society of

Nephrology 34, 607–618 (2023) (cited on pages 86, 110, 215).
410. Montanucci, L. et al. Genome-wide identification and phenotypic characterization of seizure-associated

copy number variations in 741,075 individuals. Nature Communications 14, 4392 (2023) (cited on pages 86,
112, 198, 205).

411. Zamariolli, M. et al. The impact of 22q11.2 copy-number variants on human traits in the general
population. The American Journal of Human Genetics 110, 300–313 (2023) (cited on pages 86, 114, 122, 127).

412. Hanssen, R. et al. Chromosomal deletions on 16p11.2 encompassing SH2B1 are associated with
accelerated metabolic disease. Cell Reports Medicine 4, 101155 (2023) (cited on pages 86, 106, 122, 147,
210).

413. Vysotskiy, M. et al. Integration of genetic, transcriptomic, and clinical data provides insight into 16p11.2
and 22q11.2 CNV genes. Genome Medicine 13, 1–26 (2021) (cited on pages 86, 120, 203, 206, 212–214).

414. Kent, W. J. et al. The human genome browser at UCSC. Genome Research 12, 996–1006 (2002) (cited on
pages 87, 151).

415. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics
26, 2867–2873 (2010) (cited on page 89).

416. Therneau, T. M. A Package for Survival Analysis in R R package version 3.5-3 (2022) (cited on pages 95,
154).

417. Privé, F. Using the UK Biobank as a global reference of worldwide populations: Application to
measuring ancestry diversity from GWAS summary statistics. Bioinformatics 38, 3477–3480 (2022) (cited
on page 95).

418. Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Annals of Internal Medicine 150,
604–612 (2009) (cited on page 97).

419. Li, A. et al. Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2.
The American Journal of Human Genetics 74, 817–826 (2004) (cited on page 105).



420. Zhou, W. et al. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure
to defective DNA damage repair. Nature Genetics 44, 910–915 (2012) (cited on page 105).

421. Shinawi, M. et al. Recurrent reciprocal 16p11.2 rearrangements associated with global developmental
delay, behavioral problems, dysmorphism, epilepsy, and abnormal head size. Journal of Medical Genetics
(2010) (cited on pages 107, 150, 175, 176, 197, 202–204, 206, 207, 212–215, 217).

422. Weiss, L. A. et al. Association between microdeletion and microduplication at 16p11.2 and autism. New
England Journal of Medicine 358, 667–675 (2008) (cited on pages 107, 150, 175, 197, 206, 208).

423. D’Angelo, D. et al. Defining the effect of the 16p11.2 duplication on cognition, behavior, and medical
comorbidities. JAMA Psychiatry 73, 20–30 (2016) (cited on pages 107, 176, 180, 183, 202–206, 208, 209,
211–214, 216, 217).

424. Reinthaler, E. M. et al. 16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy.
Human Molecular Genetics 23, 6069–6080 (2014) (cited on pages 107, 204, 205).

425. McCarthy, S. E. et al. Microduplications of 16p11.2 are associated with schizophrenia. Nature Genetics
41, 1223–1227 (2009) (cited on pages 107, 175, 176, 180, 197, 203, 207, 213).

426. Walters, R. G. et al. A new highly penetrant form of obesity due to deletions on chromosome 16p11.2.
Nature 463, 671–675 (2010) (cited on pages 107, 150, 175, 176, 181, 191, 197, 208, 209).

427. Defesche, J. C. et al. Familial hypercholesterolaemia. Nature Reviews Disease Primers 3, 1–20 (2017) (cited
on page 109).

428. Iacocca, M. A. et al. Use of next-generation sequencing to detect LDLR gene copy number variation in
familial hypercholesterolemia. Journal of Lipid Research 58, 2202–2209 (2017) (cited on page 109).

429. Mach, F. et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to
reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European
Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). European Heart Journal 41,
111–188 (2020) (cited on page 110).

430. Fajans, S. S., Bell, G. I. & Polonsky, K. S. Molecular mechanisms and clinical pathophysiology of
maturity-onset diabetes of the young. New England Journal of Medicine 345, 971–980 (2001) (cited on
page 110).

431. Mefford, H. C. et al. Recurrent reciprocal genomic rearrangements of 17q12 are associated with renal
disease, diabetes, and epilepsy. The American Journal of Human Genetics 81, 1057–1069 (2007) (cited on
page 110).

432. Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million
individuals. Nature Genetics 51, 957–972 (2019) (cited on page 111).

433. Stanzick, K. J. et al. Discovery and prioritization of variants and genes for kidney function in > 1.2
million individuals. Nature Communications 12, 4350 (2021) (cited on page 111).

434. Girirajan, S. et al. A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental
delay. Nature Genetics 42, 203–209 (2010) (cited on page 111).

435. Stefansson, H. et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature
505, 361–366 (2014) (cited on pages 111, 165, 200, 202, 211, 219).

436. Girirajan, S., Pizzo, L., Moeschler, J. & Rosenfeld, J. 16p12.2 Recurrent Deletion (GeneReviews, Seattle
(WA), 2018) (cited on page 111).

437. International League Against Epilepsy Consortium on Complex Epilepsies. GWAS meta-analysis of
over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture. Nature
Genetics 55, 1471–1482 (2023) (cited on page 113).

438. Howles, S. A. et al. Genetic variants of calcium and vitamin D metabolism in kidney stone disease.
Nature Communications 10, 5175 (2019) (cited on page 113).

439. Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with
blood pressure traits. Nature Genetics 50, 1412–1425 (2018) (cited on page 113).

440. De Kovel, C. G. et al. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic
generalized epilepsies. Brain 133, 23–32 (2010) (cited on page 112).

441. Heinzen, E. L. et al. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy
syndromes. The American Journal of Human Genetics 86, 707–718 (2010) (cited on page 112).

442. Alkuraya, F. S. et al. Human Mutations in NDE1 cause extreme microcephaly with lissencephaly. The
American Journal of Human Genetics 88, 536–547 (2011) (cited on page 113).



443. Bakircioglu, M. et al. The essential role of centrosomal NDE1 in human cerebral cortex neurogenesis.
The American Journal of Human Genetics 88, 523–535 (2011) (cited on page 113).

444. Ringpfeil, F., Lebwohl, M. G., Christiano, A. M. & Uitto, J. Pseudoxanthoma elasticum: Mutations in
the MRP6 gene encoding a transmembrane ATP-binding cassette (ABC) transporter. Proceedings of the
National Academy of Sciences 97, 6001–6006 (2000) (cited on page 114).

445. Struk, B. et al. Mutations of the gene encoding the transmembrane transporter protein ABC-C6 cause
pseudoxanthoma elasticum. Journal of Molecular Medicine 78, 282–286 (2000) (cited on page 114).

446. Le Saux, O. et al. Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum.
Nature Genetics 25, 223–227 (2000) (cited on page 114).

447. Bergen, A. A. et al. Mutations in ABCC6 cause pseudoxanthoma elasticum. Nature Genetics 25, 228–231
(2000) (cited on page 114).

448. Ralph, D. et al. Kidney stones are prevalent in individuals with pseudoxanthoma elasticum, a genetic
ectopic mineralization disorder. International Journal of Dermatology and Venereology 3, 198–204 (2020)
(cited on pages 114, 122).

449. Legrand, A. et al. Mutation spectrum in the ABCC6 gene and genotype–phenotype correlations in
a French cohort with pseudoxanthoma elasticum. Genetics in Medicine 19, 909–917 (2017) (cited on
pages 114, 122).

450. Letavernier, E. et al. ABCC6 deficiency promotes development of Randall plaque. Journal of the American
Society of Nephrology 29, 2337–2347 (2018) (cited on pages 114, 122).

451. Nitschke, Y. et al. Generalized arterial calcification of infancy and pseudoxanthoma elasticum can be
caused by mutations in either ENPP1 or ABCC6. The American Journal of Human Genetics 90, 25–39
(2012) (cited on page 114).

452. Le Boulanger, G. et al. An unusual severe vascular case of pseudoxanthoma elasticum presenting as
generalized arterial calcification of infancy. American Journal of Medical Genetics Part A 152, 118–123
(2010) (cited on page 114).

453. McDonald-McGinn, D. M. et al. 22q11.2 deletion syndrome. Nature Reviews Disease Primers 1, 1–19 (2015)
(cited on pages 114, 115, 129, 143).

454. Bartik, L. E. et al. 22q11.2 duplications: Expanding the clinical presentation. American Journal of Medical
Genetics Part A 188, 779–787 (2022) (cited on page 115).

455. Sharp, A. J. et al. A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and
seizures. Nature Genetics 40, 322–328 (2008) (cited on page 115).

456. Lowther, C. et al. Delineating the 15q13.3 microdeletion phenotype: A case series and comprehensive
review of the literature. Genetics in Medicine 17, 149–157 (2015) (cited on page 115).

457. Gillentine, M. A. & Schaaf, C. P. The human clinical phenotypes of altered CHRNA7 copy number.
Biochemical Pharmacology 97, 352–362 (2015) (cited on page 115).

458. Golzio, C. & Katsanis, N. Genetic architecture of reciprocal CNVs. Current Opinion in Genetics &
Development 23, 240–248 (2013) (cited on pages 120, 224).

459. Kryger, M., Roth, T. & Goldstein, C. A. Principles and Practice of Sleep Medicine (Elsevier, Philadelphia
(PA), 2021) (cited on page 121).

460. Of Us Research Program Investigators, A. The “All of Us” research program. New England Journal of
Medicine 381, 668–676 (2019) (cited on page 123).

461. Hunter-Zinck, H. et al. Genotyping array design and data quality control in the Million Veteran
Program. The American Journal of Human Genetics 106, 535–548 (2020) (cited on pages 123, 222).

462. Monteiro, F. P. et al. Defining new guidelines for screening the 22q11.2 deletion based on a clinical
and dysmorphologic evaluation of 194 individuals and review of the literature. European Journal of
Pediatrics 172, 927–945 (2013) (cited on page 129).

463. Portnoï, M.-F. Microduplication 22q11.2: A new chromosomal syndrome. European Journal of Medical
Genetics 52, 88–93 (2009) (cited on page 130).

464. Verbesselt, J., Zink, I., Breckpot, J. & Swillen, A. Cross-sectional and longitudinal findings in patients
with proximal 22q11.2 duplication: A retrospective chart study. American Journal of Medical Genetics
Part A 188, 46–57 (2022) (cited on pages 130, 143).

465. Yobb, T. M. et al. Microduplication and triplication of 22q11.2: A highly variable syndrome. The American
Journal of Human Genetics 76, 865–876 (2005) (cited on page 130).



466. Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a genome-wide
study of 41,321 subjects. Nature Genetics 49, 27–35 (2017) (cited on pages 130, 198, 207).

467. Lin, A. et al. Reciprocal copy number variations at 22q11.2 produce distinct and convergent neurobe-
havioral impairments relevant for schizophrenia and autism spectrum disorder. Biological Psychiatry
88, 260–272 (2020) (cited on page 130).

468. Lin, A. et al. Mapping 22q11.2 gene dosage effects on brain morphometry. Journal of Neuroscience 37,
6183–6199 (2017) (cited on page 130).

469. Savoia, A. et al. Spectrum of the Mutations in Bernard-Soulier Syndrome. Human Mutation 35, 1033–1045
(2014) (cited on page 130).

470. Nunes, N. et al. CEDNIK syndrome in a Brazilian patient with compound heterozygous pathogenic
variants. European Journal of Medical Genetics 65, 104440 (2022) (cited on page 130).

471. Köhler, S. et al. The human phenotype ontology in 2021. Nucleic Acids Research 49, D1207–D1217 (2021)
(cited on pages 130, 142).

472. Bastarache, L. et al. Phenotype risk scores identify patients with unrecognized Mendelian disease
patterns. Science 359, 1233–1239 (2018) (cited on page 131).

473. Voll, S. L. et al. Obesity in adults with 22q11.2 deletion syndrome. Genetics in Medicine 19, 204–208
(2017) (cited on page 143).

474. Loid, P. et al. Targeted exome sequencing of genes involved in rare CNVs in early-onset severe obesity.
Frontiers in Genetics 13, 839349 (2022) (cited on page 143).

475. Campbell, I. M. et al. Platelet findings in 22q11.2 deletion syndrome correlate with disease manifestations
but do not correlate with GPIb surface expression. Clinical Genetics 103, 109–113 (2023) (cited on page 143).

476. Hierck, B. P. et al. A chicken model for DGCR6 as a modifier gene in the DiGeorge critical region.
Pediatric Research 56, 440–448 (2004) (cited on page 143).

477. Yu, A. et al. Genotypic and phenotypic variability of 22q11.2 microduplications: An institutional
experience. American Journal of Medical Genetics Part A 179, 2178–2189 (2019) (cited on page 143).

478. Courtens, W., Schramme, I. & Laridon, A. Microduplication 22q11.2: A benign polymorphism or a
syndrome with a very large clinical variability and reduced penetrance?—Report of two families.
American Journal of Medical Genetics Part A 146, 758–763 (2008) (cited on page 143).

479. Zhang, X. et al. Local and global chromatin interactions are altered by large genomic deletions associated
with human brain development. Nature Communications 9, 5356 (2018) (cited on page 143).

480. Tucker, T. et al. Prevalence of selected genomic deletions and duplications in a French Canadian
population-based sample of newborns. Molecular Genetics & Genomic Medicine 1, 87–97 (2013) (cited on
page 144).

481. Smajlagić, D. et al. Population prevalence and inheritance pattern of recurrent CNVs associated with
neurodevelopmental disorders in 12,252 newborns and their parents. European Journal of Human
Genetics 29, 205–215 (2021) (cited on pages 144, 199).

482. Kirov, G. et al. The penetrance of copy number variations for schizophrenia and developmental delay.
Biological Psychiatry 75, 378–385 (2014) (cited on page 144).

483. Olsen, L. et al. Prevalence of rearrangements in the 22q11.2 region and population-based risk of
neuropsychiatric and developmental disorders in a Danish population: A case-cohort study. The Lancet
Psychiatry 5, 573–580 (2018) (cited on page 144).

484. Baldini, G. & Phelan, K. D. The melanocortin pathway and control of appetite-progress and therapeutic
implications. Journal of Endocrinology 241, R1–R33 (2019) (cited on page 148).

485. Heymsfield, S. B. & Wadden, T. A. Mechanisms, pathophysiology, and management of obesity. New
England Journal of Medicine 376, 254–266 (2017) (cited on page 149).

486. Van der Klaauw, A. A. & Farooqi, I. S. The hunger genes: Pathways to obesity. Cell 161, 119–132 (2015)
(cited on page 150).

487. Clément, K. et al. MC4R agonism promotes durable weight loss in patients with leptin receptor
deficiency. Nature Medicine 24, 551–555 (2018) (cited on page 150).

488. Clément, K. et al. Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe
obesity due to LEPR or POMC deficiency: Single-arm, open-label, multicentre, phase 3 trials. The
Lancet Diabetes & Endocrinology 8, 960–970 (2020) (cited on pages 150, 170).



489. Kühnen, P. et al. Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. New
England Journal of Medicine 375, 240–246 (2016) (cited on page 150).

490. Maures, T. J., Kurzer, J. H. & Carter-Su, C. SH2B1 (SH2-B) and JAK2: A multifunctional adaptor
protein and kinase made for each other. Trends in Endocrinology & Metabolism 18, 38–45 (2007) (cited on
page 150).

491. Ren, D., Li, M., Duan, C. & Rui, L. Identification of SH2-B as a key regulator of leptin sensitivity, energy
balance, and body weight in mice. Cell Metabolism 2, 95–104 (2005) (cited on pages 150, 168).

492. Duan, C., Yang, H., White, M. F. & Rui, L. Disruption of the SH2-B gene causes age-dependent
insulin resistance and glucose intolerance. Molecular and Cellular Biology 24, 7435–7443 (2004) (cited on
pages 150, 168).

493. Li, M., Ren, D., Iseki, M., Takaki, S. & Rui, L. Differential role of SH2-B and APS in regulating energy
and glucose homeostasis. Endocrinology 147, 2163–2170 (2006) (cited on pages 150, 168).

494. Flores, A. et al. Crucial role of the SH2B1 PH domain for the control of energy balance. Diabetes 68,
2049–2062 (2019) (cited on pages 150, 169).

495. Pearce, L. R. et al. Functional characterization of obesity-associated variants involving the 𝛼 and 𝛽
isoforms of human SH2B1. Endocrinology 155, 3219–3226 (2014) (cited on page 150).

496. Doche, M. E. et al. Human SH2B1 mutations are associated with maladaptive behaviors and obesity.
The Journal of Clinical Investigation 122, 4732–4736 (2012) (cited on pages 150, 168).

497. Lupski, J. R. Genomic disorders: Structural features of the genome can lead to DNA rearrangements
and human disease traits. Trends in Genetics 14, 417–422 (1998) (cited on page 150).

498. Steinman, K. J. et al. 16p11.2 deletion and duplication: Characterizing neurologic phenotypes in a large
clinically ascertained cohort. American Journal of Medical Genetics Part A 170, 2943–2955 (2016) (cited on
pages 150, 202–206, 208, 213, 217).

499. Rosenfeld, J. A., Coe, B. P., Eichler, E. E., Cuckle, H. & Shaffer, L. G. Estimates of penetrance for recurrent
pathogenic copy-number variations. Genetics in Medicine 15, 478–481 (2013) (cited on pages 150, 197–199).

500. Zufferey, F. et al. A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and neuropsychiatric
disorders. Journal of Medical Genetics 49, 660 (2012) (cited on pages 150, 176, 181, 183, 191, 202–204, 206,
208, 209, 211–214, 217, 220).

501. Guha, S. et al. Implication of a rare deletion at distal 16p11.2 in schizophrenia. JAMA Psychiatry 70,
253–260 (2013) (cited on page 150).

502. Bailey, J. A., Yavor, A. M., Massa, H. F., Trask, B. J. & Eichler, E. E. Segmental duplications: Organization
and impact within the current human genome project assembly. Genome Research 11, 1005–1017 (2001)
(cited on pages 153, 194).

503. Bailey, J. A. et al. Recent segmental duplications in the human genome. Science 297, 1003–1007 (2002)
(cited on page 153).

504. Field, Z., Miles, J. & Field, A. Discovering statistics using R. Discovering Statistics Using R, 1–992 (2012)
(cited on page 156).

505. Lenth, R. V. Least-squares means: The R package lsmeans. Journal of Statistical Software 69, 1–33 (2016)
(cited on page 156).

506. Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means R package version 1.10.0 (2024)
(cited on page 156).

507. Taylor, C. M. et al. 16p11.2 Recurrent Deletion (GeneReviews, Seattle (WA), 2021) (cited on pages 156,
225).

508. International HapMap Consortium. A second generation human haplotype map of over 3.1 million
SNPs. Nature 449, 851 (2007) (cited on page 157).

509. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density
imputation and islet-specific epigenome maps. Nature Genetics 50, 1505–1513 (2018) (cited on pages 157,
167).

510. Walters, R. G. et al. Rare genomic structural variants in complex disease: Lessons from the replication
of associations with obesity. PloS One 8, e58048 (2013) (cited on page 158).

511. Floegel, A. et al. Identification of serum metabolites associated with risk of type 2 diabetes using a
targeted metabolomic approach. Diabetes 62, 639–648 (2013) (cited on page 164).



512. Carlsson, E. R., Grundtvig, J. L. G., Madsbad, S. & Fenger, M. Changes in serum sphingomyelin after
Roux-en-Y gastric bypass surgery are related to diabetes status. Frontiers in Endocrinology 9, 172 (2018)
(cited on page 164).

513. Roman-Urrestarazu, A. et al. Association of race/ethnicity and social disadvantage with autism
prevalence in 7 million school children in England. JAMA Pediatrics 175, e210054–e210054 (2021) (cited
on page 165).

514. Styne, D. M. et al. Pediatric obesity—assessment, treatment, and prevention: An Endocrine Society
clinical practice guideline. The Journal of Clinical Endocrinology & Metabolism 102, 709–757 (2017) (cited
on page 168).

515. Key, J. et al. Mid-gestation lethality of atxn2l-ablated mice. International Journal of Molecular Sciences 21,
5124 (2020) (cited on page 168).

516. Groza, T. et al. The International Mouse Phenotyping Consortium: Comprehensive knockout pheno-
typing underpinning the study of human disease. Nucleic Acids Research 51, D1038–D1045 (2023) (cited
on page 168).

517. He, M. et al. Spns1 is a lysophospholipid transporter mediating lysosomal phospholipid salvage.
Proceedings of the National Academy of Sciences 119, e2210353119 (2022) (cited on page 168).

518. Simonds, S. E. et al. Leptin mediates the increase in blood pressure associated with obesity. Cell 159,
1404–1416 (2014) (cited on page 169).

519. Metz, M. et al. Leptin increases hepatic triglyceride export via a vagal mechanism in humans. Cell
Metabolism 34, 1719–1731 (2022) (cited on page 169).

520. Jiang, L. et al. Neural deletion of Sh2b1 results in brain growth retardation and reactive aggression. The
FASEB Journal 32, 1830 (2018) (cited on page 169).

521. Sonoyama, T. et al. Human BDNF/TrkB variants impair hippocampal synaptogenesis and associate
with neurobehavioural abnormalities. Scientific Reports 10, 9028 (2020) (cited on page 169).

522. Javadi, M. et al. The SH2B1 adaptor protein associates with a proximal region of the erythropoietin
receptor. Journal of Biological Chemistry 287, 26223–26234 (2012) (cited on page 169).

523. Bĳlsma, E. et al. Extending the phenotype of recurrent rearrangements of 16p11.2: Deletions in mentally
retarded patients without autism and in normal individuals. European Journal of Medical Genetics 52,
77–87 (2009) (cited on pages 175, 176, 183, 197, 198, 202, 204, 208, 212–215).

524. Rosenfeld, J. A. et al. Speech delays and behavioral problems are the predominant features in
individuals with developmental delays and 16p11.2 microdeletions and microduplications. Journal of
Neurodevelopmental Disorders 2, 26–38 (2010) (cited on pages 175, 176, 183, 197, 202, 204, 207, 211–217).

525. Kumar, R. A. et al. Recurrent 16p11.2 microdeletions in autism. Human Molecular Genetics 17, 628–638
(2008) (cited on pages 175, 197, 206).

526. Marshall, C. R. et al. Structural variation of chromosomes in autism spectrum disorder. The American
Journal of Human Genetics 82, 477–488 (2008) (cited on pages 175, 197, 202, 206, 208, 209).

527. Hanson, E. et al. The cognitive and behavioral phenotype of the 16p11.2 deletion in a clinically
ascertained population. Biological Psychiatry 77, 785–793 (2015) (cited on pages 176, 202, 207, 208).

528. Green Snyder, L. et al. Autism spectrum disorder, developmental and psychiatric features in 16p11.2
duplication. Journal of Autism and Developmental Disorders 46, 2734–2748 (2016) (cited on pages 176, 180,
206–208).

529. Niarchou, M. et al. Psychiatric disorders in children with 16p11.2 deletion and duplication. Translational
Psychiatry 9, 8 (2019) (cited on pages 176, 180, 202, 206–208).

530. Birnbaum, R., Mahjani, B., Loos, R. J. & Sharp, A. J. Clinical characterization of copy number variants
associated with neurodevelopmental disorders in a large-scale multiancestry biobank. JAMA Psychiatry
79, 250–259 (2022) (cited on pages 176, 199, 200, 222).

531. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human
phenome. eLife 7, e34408 (2018) (cited on page 176).

532. Karczewski, K. J. et al. Pan-UK Biobank GWAS improves discovery, analysis of genetic architecture,
and resolution into ancestry-enriched effects. medRxiv, 2024–03 (2024) (cited on page 178).

533. Okbay, A. et al. Polygenic prediction of educational attainment within and between families from
genome-wide association analyses in 3 million individuals. Nature Genetics 54, 437–449 (2022) (cited
on page 178).



534. UK10K Consortium. The UK10K project identifies rare variants in health and disease. Nature 526, 82–90
(2015) (cited on page 178).

535. Moix, S., Sadler, M. C., Kutalik, Z. & Auwerx, C. Breaking down causes, consequences, and mediating
effects of age-related telomere shortening on human health. medRxiv, 2024–01 (2024) (cited on page 179).

536. Gale, C. R. et al. Pleiotropy between neuroticism and physical and mental health: Findings from 108,038
men and women in UK Biobank. Translational Psychiatry 6, e791–e791 (2016) (cited on page 181).

537. Tyrrell, J. et al. Height, body mass index, and socioeconomic status: Mendelian randomisation study in
UK Biobank. BMJ 352, i582 (2016) (cited on page 183).

538. Yu, Y. et al. Age-and gender-dependent obesity in individuals with 16p11.2 deletion. Journal of Genetics
and Genomics 38, 403–409 (2011) (cited on pages 191, 208, 209).

539. Gill, R., Chen, Q., D’Angelo, D. & Chung, W. K. Eating in the absence of hunger but not loss of control
behaviors are associated with 16p11.2 deletions. Obesity 22, 2625–2631 (2014) (cited on pages 191, 209).

540. Abawi, O. et al. Genetic Obesity Disorders: Body Mass Index Trajectories and Age of Onset of Obesity
Compared with Children with Obesity from the General Population. The Journal of Pediatrics 262, 113619
(2023) (cited on pages 191, 209).

541. Verbitsky, M. et al. Copy number variant analysis and genome-wide association study identify loci
with large effect for vesicoureteral reflux. Journal of the American Society of Nephrology 32, 805–820 (2021)
(cited on pages 191, 215).

542. Yang, N. et al. Human and mouse studies establish TBX6 in Mendelian CAKUT and as a potential
driver of kidney defects associated with the 16p11.2 microdeletion syndrome. Kidney International 98,
1020–1030 (2020) (cited on pages 191, 214, 215).

543. Shiow, L. R. et al. Severe combined immunodeficiency (SCID) and attention deficit hyperactivity
disorder (ADHD) associated with a Coronin-1A mutation and a chromosome 16p11.2 deletion. Clinical
Immunology 131, 24–30 (2009) (cited on pages 191, 216, 220).

544. Morrison, J., Knoblauch, N., Marcus, J. H., Stephens, M. & He, X. Mendelian randomization accounting
for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nature
Genetics 52, 740–747 (2020) (cited on page 192).

545. Darrous, L., Mounier, N. & Kutalik, Z. Simultaneous estimation of bi-directional causal effects and
heritable confounding from GWAS summary statistics. Nature Communications 12, 7274 (2021) (cited on
page 192).

546. Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome. Science
376, eabj6965 (2022) (cited on page 194).

547. Migliavacca, E. et al. A potential contributory role for ciliary dysfunction in the 16p11.2 600 kb BP4-BP5
pathology. The American Journal of Human Genetics 96, 784–796 (2015) (cited on pages 194, 221, 224).

548. Tai, D. J. et al. Tissue-and cell-type-specific molecular and functional signatures of 16p11.2 reciprocal
genomic disorder across mouse brain and human neuronal models. The American Journal of Human
Genetics 109, 1789–1813 (2022) (cited on pages 194, 225).

549. Wallace, A. S. et al. Longitudinal report of child with de novo 16p11.2 triplication. Clinical Case Reports
6, 147–154 (2018) (cited on page 195).

550. Badar, S. A., Breman, A. M., Christensen, C. K., Graham, B. H. & Golomb, M. R. Girl-Boy Twins with
Developmental Delay from 16p11.2 Triplication due to Biparental Inheritance from Two Parents with
16p11.2 Duplication. Cytogenetic and Genome Research 162, 40–45 (2022) (cited on pages 195, 220).

551. Pohovski, L. M., Sansović, I., Vulin, K. & Odak, L. The first case report of distal 16p12.1p11.2 trisomy and
proximal 16p11.2 tetrasomy inherited from both parents. Croatian Medical Journal 64, 339–343 (2023)
(cited on pages 195, 220).

552. Horev, G. et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proceedings
of the National Academy of Sciences 108, 17076–17081 (2011) (cited on pages 195, 210).

553. Portmann, T. et al. Behavioral abnormalities and circuit defects in the basal ganglia of a mouse model
of 16p11.2 deletion syndrome. Cell Reports 7, 1077–1092 (2014) (cited on pages 195, 210).

554. Arbogast, T. et al. Reciprocal effects on neurocognitive and metabolic phenotypes in mouse models of
16p11.2 deletion and duplication syndromes. PLoS Genetics 12, e1005709 (2016) (cited on pages 195, 210).

555. Gundersen, B. B. et al. Towards Preclinical Validation of Arbaclofen (R-baclofen) Treatment for 16p11.2
Deletion Syndrome. bioRxiv, 2023–09 (2023) (cited on pages 196, 225).



556. Martin Lorenzo, S. et al. Changes in social behavior with MAPK2 and KCTD13/CUL3 pathways
alterations in two new outbred rat models for the 16p11.2 syndromes with autism spectrum disorders.
Frontiers in Neuroscience 17, 1148683 (2023) (cited on pages 196, 207, 219).

557. Skarnes, W. C. et al. A conditional knockout resource for the genome-wide study of mouse gene
function. Nature 474, 337–342 (2011) (cited on page 196).

558. Blaker-Lee, A., Gupta, S., McCammon, J. M., De Rienzo, G. & Sive, H. Zebrafish homologs of genes
within 16p11.2, a genomic region associated with brain disorders, are active during brain development,
and include two deletion dosage sensor genes. Disease Models & Mechanisms 5, 834–851 (2012) (cited on
page 196).

559. Iyer, J. et al. Pervasive genetic interactions modulate neurodevelopmental defects of the autism-
associated 16p11.2 deletion in Drosophila melanogaster. Nature Communications 9, 2548 (2018) (cited on
pages 196, 221, 224).

560. McCammon, J. M., Blaker-Lee, A., Chen, X. & Sive, H. The 16p11.2 homologs fam57ba and doc2a
generate certain brain and body phenotypes. Human Molecular Genetics 26, 3699–3712 (2017) (cited on
pages 196, 205).

561. Kim, J. et al. Dissecting 16p11.2 hemi-deletion to study sex-specific striatal phenotypes of neurodevel-
opmental disorders. Molecular Psychiatry, 1–12 (2024) (cited on pages 196, 221).

562. Ghebranious, N., Giampietro, P. F., Wesbrook, F. P. & Rezkalla, S. H. A novel microdeletion at 16p11.2
harbors candidate genes for aortic valve development, seizure disorder, and mild mental retardation.
American Journal of Medical Genetics Part A 143, 1462–1471 (2007) (cited on pages 197, 202, 204, 208, 211,
213, 214, 216, 217).

563. Auwerx, C., Moix, S., Kutalik, Z. & Reymond, A. Disentangling mechanisms behind the pleiotropic
effects of proximal 16p11.2 BP4-5 CNVs. medRxiv, 2024–03 (2024) (cited on pages 197, 200–202, 205,
206, 209–212, 216, 220).

564. Gillentine, M. A., Lupo, P. J., Stankiewicz, P. & Schaaf, C. P. An estimation of the prevalence of genomic
disorders using chromosomal microarray data. Journal of Human Genetics 63, 795–801 (2018) (cited on
pages 198, 200).

565. Zhou, W. et al. Study of the association between schizophrenia and microduplication at the 16p11.2
locus in the Han Chinese population. Psychiatry Research 265, 198–199 (2018) (cited on pages 198, 207).

566. Gudmundsson, O. O. et al. Attention-deficit hyperactivity disorder shares copy number variant risk
with schizophrenia and autism spectrum disorder. Translational Psychiatry 9, 258 (2019) (cited on
pages 198, 199, 208).

567. Rees, E. et al. Analysis of intellectual disability copy number variants for association with schizophrenia.
JAMA Psychiatry 73, 963–969 (2016) (cited on pages 198, 207).

568. Hanson, E. et al. Cognitive and behavioral characterization of 16p11.2 deletion syndrome. Journal of
Developmental & Behavioral Pediatrics 31, 649–657 (2010) (cited on page 198).

569. Green, E. et al. Copy number variation in bipolar disorder. Molecular Psychiatry 21, 89–93 (2016) (cited
on pages 198, 207).

570. Glessner, J. T. et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes.
Nature 459, 569–573 (2009) (cited on page 198).

571. Kushima, I. et al. Comparative analyses of copy-number variation in autism spectrum disorder and
schizophrenia reveal etiological overlap and biological insights. Cell Reports 24, 2838–2856 (2018) (cited
on page 198).

572. Sanders, S. J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams
syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011) (cited on page 198).

573. Liu, N., Li, H., Li, M., Gao, Y. & Yan, H. Prenatally diagnosed 16p11.2 copy number variations by SNP
Array: A retrospective case series. Clinica Chimica Acta 538, 15–21 (2023) (cited on page 200).

574. Kang, H. et al. Pathogenic recurrent copy number variants in 7,078 pregnancies via chromosomal
microarray analysis. Journal of Perinatal Medicine 52, 171–180 (2024) (cited on page 200).

575. Moreno-De-Luca, A. et al. The role of parental cognitive, behavioral, and motor profiles in clinical
variability in individuals with chromosome 16p11.2 deletions. JAMA Psychiatry 72, 119–126 (2015) (cited
on pages 202, 220).

576. Taylor, C. M. et al. Phenotypic shift in copy number variants: Evidence in 16p11.2 duplication syndrome.
Genetics in Medicine 25, 151–154 (2023) (cited on pages 202, 220).



577. Hippolyte, L. et al. The number of genomic copies at the 16p11.2 locus modulates language, verbal
memory, and inhibition. Biological Psychiatry 80, 129–139 (2016) (cited on page 202).

578. Kim, S. H. et al. Language characterization in 16p11.2 deletion and duplication syndromes. American
Journal of Medical Genetics Part B: Neuropsychiatric Genetics 183, 380–391 (2020) (cited on page 202).

579. Demopoulos, C. et al. Abnormal speech motor control in individuals with 16p11.2 deletions. Scientific
Reports 8, 1274 (2018) (cited on page 202).

580. Raca, G. et al. Childhood Apraxia of Speech (CAS) in two patients with 16p11.2 microdeletion syndrome.
European Journal of Human Genetics 21, 455–459 (2013) (cited on page 202).

581. Fedorenko, E. et al. A highly penetrant form of childhood apraxia of speech due to deletion of 16p11.2.
European Journal of Human Genetics 24, 302–306 (2016) (cited on page 202).

582. Mei, C. et al. Deep phenotyping of speech and language skills in individuals with 16p11.2 deletion.
European Journal of Human Genetics 26, 676–686 (2018) (cited on page 202).

583. Bernier, R. et al. Developmental trajectories for young children with 16p11.2 copy number variation.
American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 174, 367–380 (2017) (cited on
pages 202, 207).

584. Goldman, S. et al. Quantitative gait assessment in children with 16p11.2 syndrome. Journal of Neurode-
velopmental Disorders 11, 1–5 (2019) (cited on page 203).

585. Gur, R. et al. Neurocognitive Profiles of 22q11.2 and 16p11.2 Deletions and Duplications. Research Square,
2023–12 (2023) (cited on page 203).

586. Qureshi, A. Y. et al. Opposing brain differences in 16p11.2 deletion and duplication carriers. Journal of
Neuroscience 34, 11199–11211 (2014) (cited on pages 203, 204, 213).

587. Martin-Brevet, S. et al. Quantifying the effects of 16p11.2 copy number variants on brain structure: A
multisite genetic-first study. Biological Psychiatry 84, 253–264 (2018) (cited on pages 203, 213).

588. Maillard, A. et al. The 16p11.2 locus modulates brain structures common to autism, schizophrenia and
obesity. Molecular Psychiatry 20, 140–147 (2015) (cited on pages 203, 204, 213).

589. Cárdenas-De-La-Parra, A. et al. Developmental trajectories of neuroanatomical alterations associated
with the 16p11.2 copy number variations. NeuroImage 203, 116155 (2019) (cited on pages 203, 213).

590. Sundberg, M. et al. 16p11.2 deletion is associated with hyperactivation of human iPSC-derived
dopaminergic neuron networks and is rescued by RHOA inhibition in vitro. Nature Communications 12,
2897 (2021) (cited on pages 203, 225).

591. Urresti, J. et al. Cortical organoids model early brain development disrupted by 16p11.2 copy number
variants in autism. Molecular Psychiatry 26, 7560–7580 (2021) (cited on pages 203, 225).

592. Deshpande, A. et al. Cellular phenotypes in human iPSC-derived neurons from a genetic model of
autism spectrum disorder. Cell Reports 21, 2678–2687 (2017) (cited on page 203).

593. Blackmon, K. et al. Focal cortical anomalies and language impairment in 16p11.2 deletion and duplication
syndrome. Cerebral Cortex 28, 2422–2430 (2018) (cited on page 203).

594. Owen, J. P. et al. Brain MR imaging findings and associated outcomes in carriers of the reciprocal copy
number variation at 16p11.2. Radiology 286, 217–226 (2018) (cited on pages 203, 213).

595. Schaaf, C. P. et al. Expanding the clinical spectrum of the 16p11.2 chromosomal rearrangements: Three
patients with syringomyelia. European Journal of Human Genetics 19, 152–156 (2011) (cited on pages 203,
213).

596. Stingl, C. S., Jackson-Cook, C. & Couser, N. L. Ocular findings in the 16p11.2 microdeletion syndrome:
A case report and literature review. Case Reports in Pediatrics 2020 (2020) (cited on pages 203, 213, 216).

597. Buchan, J. G. et al. Are copy number variants associated with adolescent idiopathic scoliosis? Clinical
Orthopaedics and Related Research® 472, 3216–3225 (2014) (cited on page 203).

598. Takeda, K. et al. Compound heterozygosity for null mutations and a common hypomorphic risk
haplotype in TBX6 causes congenital scoliosis. Human Mutation 38, 317–323 (2017) (cited on pages 203,
214).

599. Rodà, D., Gabau, E., Baena, N. & Guitart, M. Phenotype variability in thirteen 16p11.2 deletion patients in
Anales de Pediatria 89 (2017), 62–63 (cited on pages 203, 206).

600. Yoon, J. G. et al. Molecular diagnosis of craniosynostosis using targeted next-generation sequencing.
Neurosurgery 87, 294–302 (2020) (cited on pages 203, 213).



601. Chang, Y. S. et al. Reciprocal white matter alterations due to 16p11.2 chromosomal deletions versus
duplications. Human Brain Mapping 37, 2833–2848 (2016) (cited on page 203).

602. Owen, J. P. et al. Aberrant white matter microstructure in children with 16p11.2 deletions. Journal of
Neuroscience 34, 6214–6223 (2014) (cited on page 203).

603. Berman, J. I. et al. Abnormal auditory and language pathways in children with 16p11.2 deletion.
NeuroImage: Clinical 9, 50–57 (2015) (cited on page 203).

604. Ahtam, B., Link, N., Hoff, E., Ellen Grant, P. & Im, K. Altered structural brain connectivity involving
the dorsal and ventral language pathways in 16p11.2 deletion syndrome. Brain Imaging and Behavior 13,
430–445 (2019) (cited on page 203).

605. Mazzucchelli, C. et al. Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and
facilitates striatal-mediated learning and memory. Neuron 34, 807–820 (2002) (cited on pages 204, 223).

606. Richter, M. et al. Altered TAOK2 activity causes autism-related neurodevelopmental and cognitive
abnormalities through RhoA signaling. Molecular Psychiatry 24, 1329–1350 (2019) (cited on page 204).

607. Wang, Q.-W. et al. 16p11.2 CNV gene Doc2𝛼 functions in neurodevelopment and social behaviors
through interaction with Secretagogin. Cell Reports 42, 112691 (2023) (cited on page 204).

608. Bertero, A. et al. Autism-associated 16p11.2 microdeletion impairs prefrontal functional connectivity in
mouse and human. Brain 141, 2055–2065 (2018) (cited on page 204).

609. Moreau, C. A. et al. Mutations associated with neuropsychiatric conditions delineate functional brain
connectivity dimensions contributing to autism and schizophrenia. Nature Communications 11, 5272
(2020) (cited on page 204).

610. Maillard, A. M. et al. Pervasive alterations of intra-axonal volume and network organization in young
children with a 16p11.2 deletion. Translational Psychiatry 14, 95 (2024) (cited on page 204).

611. Berman, J. I. et al. Relationship between M100 auditory evoked response and auditory radiation
microstructure in 16p11.2 deletion and duplication carriers. American Journal of Neuroradiology 37,
1178–1184 (2016) (cited on page 204).

612. Jenkins 3rd, J. et al. Auditory evoked M100 response latency is delayed in children with 16p11.2 deletion
but not 16p11.2 duplication. Cerebral Cortex 26, 1957–1964 (2016) (cited on page 204).

613. Matsuzaki, J. et al. Abnormal auditory mismatch fields in children and adolescents with 16p11.2 deletion
and 16p11.2 duplication. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 5, 942–950 (2020)
(cited on page 204).

614. LeBlanc, J. J. & Nelson, C. A. Deletion and duplication of 16p11.2 are associated with opposing effects
on visual evoked potential amplitude. Molecular Autism 7, 1–7 (2016) (cited on page 204).

615. Al-Jawahiri, R., Jones, M. & Milne, E. Atypical neural variability in carriers of 16p11.2 copy number
variants. Autism Research 12, 1322–1333 (2019) (cited on page 204).

616. Hudac, C. M. et al. Modulation of mu attenuation to social stimuli in children and adults with 16p11.2
deletions and duplications. Journal of Neurodevelopmental Disorders 7, 1–13 (2015) (cited on page 204).

617. Hinkley, L. B. et al. Sensorimotor cortical oscillations during movement preparation in 16p11.2 deletion
carriers. Journal of Neuroscience 39, 7321–7331 (2019) (cited on page 204).

618. Yin, X. et al. Delayed motor learning in a 16p11.2 deletion mouse model of autism is rescued by locus
coeruleus activation. Nature Neuroscience 24, 646–657 (2021) (cited on page 204).

619. Kumar, K. et al. Subcortical brain alterations in carriers of genomic copy number variants. American
Journal of Psychiatry 180, 685–698 (2023) (cited on page 204).

620. Sønderby, I. E. et al. Effects of copy number variations on brain structure and risk for psychiatric illness:
Large-scale studies from the ENIGMA working groups on CNVs. Human Brain Mapping 43, 300–328
(2022) (cited on page 204).

621. Moufawad El Achkar, C. et al. Clinical characteristics of seizures and epilepsy in individuals with
recurrent deletions and duplications in the 16p11.2 region. Neurology. Genetics 8, e200018 (2022) (cited
on pages 204, 205).

622. Bedoyan, J. K. et al. Duplication 16p11.2 in a child with infantile seizure disorder. American Journal of
Medical Genetics Part A 152, 1567–1574 (2010) (cited on page 205).

623. Hino-Fukuyo, N. et al. Genomic analysis identifies candidate pathogenic variants in 9 of 18 patients
with unexplained West syndrome. Human Genetics 134, 649–658 (2015) (cited on page 205).



624. Dimassi, S. et al. A subset of genomic alterations detected in rolandic epilepsies contains candidate or
known epilepsy genes including GRIN2A and PRRT2. Epilepsia 55, 370–378 (2014) (cited on page 205).

625. Vlaskamp, D. R. et al. PRRT2-related phenotypes in patients with a 16p11.2 deletion. European Journal of
Medical Genetics 62, 265–269 (2019) (cited on page 205).

626. Forrest, M. P. et al. Rescue of neuropsychiatric phenotypes in a mouse model of 16p11.2 duplication
syndrome by genetic correction of an epilepsy network hub. Nature Communications 14, 825 (2023)
(cited on page 205).

627. Lipton, J. & Rivkin, M. J. 16p11.2-related paroxysmal kinesigenic dyskinesia and dopa-responsive
parkinsonism in a child. Neurology 73, 479–480 (2009) (cited on pages 205, 206).

628. Dale, R. C., Grattan-Smith, P., Nicholson, M. & Peters, G. B. Microdeletions detected using chromosome
microarray in children with suspected genetic movement disorders: A single-centre study. Developmental
Medicine & Child Neurology 54, 618–623 (2012) (cited on page 205).

629. Silveira-Moriyama, L. et al. Clinical features of childhood-onset paroxysmal kinesigenic dyskinesia
with PRRT2 gene mutations. Developmental Medicine & Child Neurology 55, 327–334 (2013) (cited on
page 205).

630. Weber, A., Köhler, A., Hahn, A., Neubauer, B. & Müller, U. Benign infantile convulsions (IC) and
subsequent paroxysmal kinesigenic dyskinesia (PKD) in a patient with 16p11.2 microdeletion syndrome.
Neurogenetics 14, 251–253 (2013) (cited on page 205).

631. Termsarasab, P. et al. Paroxysmal kinesigenic dyskinesia caused by 16p11.2 microdeletion. Tremor and
Other Hyperkinetic Movements 4, 274 (2014) (cited on page 205).

632. Heron, S. E. & Dibbens, L. M. Role of PRRT2 in common paroxysmal neurological disorders: A gene
with remarkable pleiotropy. Journal of Medical Genetics 50, 133–139 (2013) (cited on pages 205, 223).

633. Ebrahimi-Fakhari, D., Saffari, A., Westenberger, A. & Klein, C. The evolving spectrum of PRRT2-
associated paroxysmal diseases. Brain 138, 3476–3495 (2015) (cited on page 205).

634. Brueckner, F. et al. Unusual variability of PRRT2 linked phenotypes within a family. European Journal of
Paediatric Neurology 18, 540–542 (2014) (cited on page 205).

635. Maas, R. P. et al. Benign nocturnal alternating hemiplegia of childhood: A clinical and nomenclatural
reappraisal. European Journal of Paediatric Neurology 22, 1110–1117 (2018) (cited on page 205).

636. Sen, K., Genser, I., DiFazio, M. & DiSabella, M. Haploinsufficiency of PRRT2 Leading to Familial
Hemiplegic Migraine in Chromosome 16p11.2 Deletion Syndrome. Neuropediatrics 53, 279–282 (2022)
(cited on page 205).

637. Zhang, L. et al. A Girl with PRRT2 Mutation Presenting with Benign Familial Infantile Seizures
Followed by Autistic Regression. Case Reports in Pediatrics 2024, 5539799 (2024) (cited on page 206).

638. Roeben, B., Blum, D., Gabriel, H. & Synofzik, M. Atypical parkinsonism with severely reduced striatal
dopamine uptake associated with a 16p11.2 duplication syndrome. Journal of Neurology 266, 775–776
(2019) (cited on page 206).

639. Kamara, D., De Boeck, P., Lecavalier, L., Neuhaus, E. & Beauchaine, T. P. Characterizing sleep problems
in 16p11.2 deletion and duplication. Journal of Autism and Developmental Disorders, 1–14 (2023) (cited on
page 206).

640. Bamonte, L. Developmental presentation, medical complexities, and service delivery for a child with
16p11.2 deletion syndrome. Pediatric Physical Therapy 27, 90–99 (2015) (cited on pages 206, 209, 212, 216).

641. Choi, A. et al. Circuit mechanism underlying fragmented sleep and memory deficits in 16p11.2 deletion
mouse model of autism. bioRxiv, 2023–12 (2023) (cited on pages 206, 216).

642. Lu, H.-C., Pollack, H., Lefante, J. J., Mills, A. A. & Tian, D. Altered sleep architecture, rapid eye movement
sleep, and neural oscillation in a mouse model of human chromosome 16p11.2 microdeletion. Sleep 42,
zsy253 (2019) (cited on page 206).

643. Angelakos, C. C. et al. Hyperactivity and male-specific sleep deficits in the 16p11.2 deletion mouse
model of autism. Autism Research 10, 572–584 (2017) (cited on pages 206, 219).

644. Simons VIP Consortium. Simons Variation in Individuals Project (Simons VIP): A genetics-first
approach to studying autism spectrum and related neurodevelopmental disorders. Neuron 73, 1063–
1067 (2012) (cited on pages 206, 222).

645. Rusu, A. et al. Day-to-day spontaneous social behaviours is quantitatively and qualitatively affected
in a 16p11.2 deletion mouse model. Frontiers in Behavioral Neuroscience 17, 1294558 (2023) (cited on
page 207).



646. Yang, M. et al. 16p11.2 deletion syndrome mice display sensory and ultrasonic vocalization deficits
during social interactions. Autism Research 8, 507–521 (2015) (cited on page 207).

647. Bristow, G. C. et al. 16p11 duplication disrupts hippocampal-orbitofrontal-amygdala connectivity,
revealing a neural circuit endophenotype for schizophrenia. Cell Reports 31 (2020) (cited on page 207).

648. Rein, B. et al. Reversal of synaptic and behavioral deficits in a 16p11.2 duplication mouse model via
restoration of the GABA synapse regulator Npas4. Molecular Psychiatry 26, 1967–1979 (2021) (cited on
page 207).

649. Levinson, D. F. et al. Copy number variants in schizophrenia: Confirmation of five previous findings
and new evidence for 3q29 microdeletions and VIPR2 duplications. American Journal of Psychiatry 168,
302–316 (2011) (cited on page 207).

650. Vassos, E. et al. Penetrance for copy number variants associated with schizophrenia. Human Molecular
Genetics 19, 3477–3481 (2010) (cited on page 207).

651. Jutla, A., Turner, J. B., Green Snyder, L., Chung, W. K. & Veenstra-VanderWeele, J. Psychotic symptoms
in 16p11.2 copy-number variant carriers. Autism Research 13, 187–198 (2020) (cited on pages 207, 208).

652. Ismail, Z. et al. Psychosis in Alzheimer disease—mechanisms, genetics and therapeutic opportunities.
Nature Reviews Neurology 18, 131–144 (2022) (cited on page 207).

653. Zheng, X. et al. A rare duplication on chromosome 16p11.2 is identified in patients with psychosis in
Alzheimer’s disease. PLoS One 9, e111462 (2014) (cited on page 207).

654. Malhotra, D. et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron 72,
951–963 (2011) (cited on page 207).

655. Charney, A. W. et al. Contribution of rare copy number variants to bipolar disorder risk is limited to
schizoaffective cases. Biological Psychiatry 86, 110–119 (2019) (cited on page 207).

656. Grozeva, D. et al. Rare copy number variants: A point of rarity in genetic risk for bipolar disorder and
schizophrenia. Archives of General Psychiatry 67, 318–327 (2010) (cited on page 207).

657. Williams, N. M. et al. Rare chromosomal deletions and duplications in attention-deficit hyperactivity
disorder: A genome-wide analysis. The Lancet 376, 1401–1408 (2010) (cited on page 207).

658. O’Dushlaine, C. et al. Rare copy number variation in treatment-resistant major depressive disorder.
Biological Psychiatry 76, 536–541 (2014) (cited on page 208).

659. Tansey, K. et al. Copy number variants and therapeutic response to antidepressant medication in major
depressive disorder. The Pharmacogenomics Journal 14, 395–399 (2014) (cited on page 208).

660. Rucker, J. J. et al. Genome-wide association analysis of copy number variation in recurrent depressive
disorder. Molecular Psychiatry 18, 183–189 (2013) (cited on page 208).

661. Degenhardt, F. et al. Association between copy number variants in 16p11.2 and major depressive
disorder in a German case–control sample. American Journal of Medical Genetics Part B: Neuropsychiatric
Genetics 159, 263–273 (2012) (cited on page 208).

662. McGrath, L. M. et al. Copy number variation in obsessive-compulsive disorder and Tourette syndrome:
A cross-disorder study. Journal of the American Academy of Child & Adolescent Psychiatry 53, 910–919
(2014) (cited on page 208).

663. Kotov, R., Gamez, W., Schmidt, F. & Watson, D. Linking “big” personality traits to anxiety, depressive,
and substance use disorders: A meta-analysis. Psychological Bulletin 136, 768–821 (2010) (cited on
page 208).

664. Fernandez, B. A. et al. Phenotypic spectrum associated with de novo and inherited deletions and
duplications at 16p11.2 in individuals ascertained for diagnosis of autism spectrum disorder. Journal of
Medical Genetics 47, 195–203 (2010) (cited on pages 208, 214, 215).

665. Maillard, A. et al. 16p11.2 Locus modulates response to satiety before the onset of obesity. International
Journal of Obesity 40, 870–876 (2016) (cited on page 209).

666. Narayan, K. V., Boyle, J. P., Thompson, T. J., Gregg, E. W. & Williamson, D. F. Effect of BMI on lifetime
risk for diabetes in the US. Diabetes Care 30, 1562–1566 (2007) (cited on page 209).

667. Shah, A. S. & Nadeau, K. J. The changing face of paediatric diabetes. Diabetologia 63, 683–691 (2020)
(cited on page 209).

668. Kostopoulou, E. et al. Hyperinsulinaemic hypoglycaemia: A new presentation of 16p11.2 deletion
syndrome. Clinical Endocrinology, 766–769 (2019) (cited on page 209).



669. Hoytema van Konĳnenburg, E. M. et al. Hyperinsulinism in a patient with a Zellweger Spectrum
Disorder and a 16p11.2 deletion syndrome. Molecular Genetics and Metabolism Reports 23, 100590 (2020)
(cited on pages 209, 220).

670. Chan, W.-K. et al. Metabolic dysfunction-associated steatotic liver disease (MASLD): A state-of-the-art
review. Journal of Obesity & Metabolic Syndrome 32, 197–213 (2023) (cited on page 210).

671. Yki-Järvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome.
The Lancet Diabetes & Endocrinology 2, 901–910 (2014) (cited on page 210).

672. Cusi, K. et al. American Association of Clinical Endocrinology clinical practice guideline for the
diagnosis and management of nonalcoholic fatty liver disease in primary care and endocrinology
clinical settings: Co-sponsored by the American Association for the Study of Liver Diseases (AASLD).
Endocrine Practice 28, 528–562 (2022) (cited on page 210).

673. Menzies, C. et al. Distinct basal metabolism in three mouse models of neurodevelopmental disorders.
Eneuro 8 (2021) (cited on page 210).

674. Wang, D. et al. Microduplication of 16p11.2 locus Potentiates Hypertrophic Obesity in Association with
Imbalanced Triglyceride Metabolism in White Adipose Tissue. Molecular Nutrition & Food Research 66,
2100241 (2022) (cited on page 210).

675. Béland-Millar, A. et al. 16p11.2 haploinsufficiency reduces mitochondrial biogenesis in brain endothelial
cells and alters brain metabolism in adult mice. Cell Reports 42, 112485 (2023) (cited on page 210).

676. Tomasello, D. L. et al. 16pdel lipid changes in iPSC-derived neurons and function of FAM57B in lipid
metabolism and synaptogenesis. iScience 25, 103551 (2022) (cited on page 211).

677. Welling, M. S. et al. Effects of glucagon-like peptide-1 analogue treatment in genetic obesity: A case
series. Clinical Obesity 11, e12481 (2021) (cited on page 211).

678. Richardson, T. G., Sanderson, E., Elsworth, B., Tilling, K. & Smith, G. D. Use of genetic variation to
separate the effects of early and later life adiposity on disease risk: Mendelian randomisation study.
BMJ 369, m1203 (2020) (cited on page 211).

679. Gardner, E. J. et al. Reduced reproductive success is associated with selective constraint on human
genes. Nature 603, 858–863 (2022) (cited on page 211).

680. Puvabanditsin, S. et al. Microdeletion of 16p11.2 associated with endocardial fibroelastosis. American
Journal of Medical Genetics Part A 152, 2383–2386 (2010) (cited on page 211).

681. Shen, Y. et al. Intra-family phenotypic heterogeneity of 16p11.2 deletion carriers in a three-generation
Chinese family. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 156, 225–232 (2011)
(cited on pages 211, 214, 216).

682. Zhu, X. et al. Identification of copy number variations associated with congenital heart disease by
chromosomal microarray analysis and next-generation sequencing. Prenatal Diagnosis 36, 321–327
(2016) (cited on page 211).

683. Lefebvre, M. et al. Autosomal recessive variations of TBX6, from congenital scoliosis to spondylocostal
dysostosis. Clinical Genetics 91, 908–912 (2017) (cited on pages 211, 214).

684. Karunanithi, Z., Vestergaard, E. M. & Lauridsen, M. H. Transposition of the great arteries-a phenotype
associated with 16p11.2 duplications? World Journal of Cardiology 9, 848–852 (2017) (cited on page 211).

685. Maya, I. et al. Prenatal microarray analysis in right aortic arch—a retrospective cohort study and review
of the literature. Journal of Perinatology 38, 468–473 (2018) (cited on page 211).

686. Xie, H. & Hong, N. Identification of rare copy number variants associated with pulmonary atresia
with ventricular septal defect. Frontiers in Genetics 10, 436730 (2019) (cited on page 211).

687. Szelest, M., Stefaniak, M., Ręka, G., Jaszczuk, I. & Lejman, M. Three case reports of patients indicating
the diversity of molecular and clinical features of 16p11.2 microdeletion anomaly. BMC Medical Genomics
14, 1–11 (2021) (cited on pages 211–214, 216).

688. Cai, M. et al. Prenatal Diagnosis of genetic aberrations in fetuses with pulmonary stenosis in southern
China: A retrospective analysis. BMC Medical Genomics 16, 119 (2023) (cited on page 211).

689. Li, R. et al. Isolated aberrant right subclavian artery: An underlying clue for genetic anomalies. The
Journal of Maternal-Fetal & Neonatal Medicine 36, 2183762 (2023) (cited on page 211).

690. Lin, S. et al. Contribution of genetic variants to congenital heart defects in both singleton and twin
fetuses: A Chinese cohort study. Molecular Cytogenetics 17, 2 (2024) (cited on page 211).



691. Ehrlich, L. & Prakash, S. K. Copy-number variation in congenital heart disease. Current Opinion in
Genetics & Development 77, 101986 (2022) (cited on page 211).

692. Assimopoulos, S. et al. Genetic mouse models of autism spectrum disorder present subtle heterogenous
cardiac abnormalities. Autism Research 15, 1189–1208 (2022) (cited on page 211).

693. Turcotte, A.-F. et al. Association between obesity and risk of fracture, bone mineral density and bone
quality in adults: A systematic review and meta-analysis. PloS One 16, e0252487 (2021) (cited on
page 212).

694. Min, B.-J. et al. Whole-exome sequencing identifies mutations of KIF22 in spondyloepimetaphyseal
dysplasia with joint laxity, leptodactylic type. The American Journal of Human Genetics 89, 760–766 (2011)
(cited on pages 213, 214).

695. Escamilla, C. O. et al. Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature 551,
227–231 (2017) (cited on page 213).

696. Lin, G. N. et al. Spatiotemporal 16p11.2 protein network implicates cortical late mid-fetal brain
development and KCTD13-Cul3-RhoA pathway in psychiatric diseases. Neuron 85, 742–754 (2015)
(cited on page 213).

697. Tian, D. et al. Contribution of mGluR5 to pathophysiology in a mouse model of human chromosome
16p11.2 microdeletion. Nature Neuroscience 18, 182–184 (2015) (cited on page 213).

698. Pucilowska, J. et al. The 16p11.2 deletion mouse model of autism exhibits altered cortical progenitor
proliferation and brain cytoarchitecture linked to the ERK MAPK pathway. Journal of Neuroscience 35,
3190–3200 (2015) (cited on page 213).

699. Blizinsky, K. D. et al. Reversal of dendritic phenotypes in 16p11.2 microduplication mouse model
neurons by pharmacological targeting of a network hub. Proceedings of the National Academy of Sciences
113, 8520–8525 (2016) (cited on pages 213, 225).

700. Nascimento, L. P. C. et al. 16p11.2 Microduplication Syndrome with Increased Fluid in the Cisterna:
Coincidence or Phenotype Extension? Genes 14, 1583 (2023) (cited on page 213).

701. Démurger, F. et al. Array-CGH analysis suggests genetic heterogeneity in rhombencephalosynapsis.
Molecular Syndromology 4, 267–272 (2013) (cited on page 213).

702. Bardakjian, T. M., Kwok, S., Slavotinek, A. M. & Schneider, A. S. Clinical report of microphthalmia
and optic nerve coloboma associated with a de novo microdeletion of chromosome 16p11.2. American
Journal of Medical Genetics Part A 152, 3120–3123 (2010) (cited on pages 214, 217).

703. Al-Kateb, H. et al. Scoliosis and vertebral anomalies: Additional abnormal phenotypes associated with
chromosome 16p11.2 rearrangement. American Journal of Medical Genetics Part A 164, 1118–1126 (2014)
(cited on page 214).

704. Shimojima, K., Inoue, T., Fujii, Y., Ohno, K. & Yamamoto, T. A familial 593-kb microdeletion of 16p11.2
associated with mental retardation and hemivertebrae. European Journal of Medical Genetics 52, 433–435
(2009) (cited on page 214).

705. Yang, N. et al. TBX6 compound inheritance leads to congenital vertebral malformations in humans and
mice. Human Molecular Genetics 28, 539–547 (2019) (cited on page 214).

706. Liu, J. et al. TBX6-associated congenital scoliosis (TACS) as a clinically distinguishable subtype of
congenital scoliosis: Further evidence supporting the compound inheritance and TBX6 gene dosage
model. Genetics in Medicine 21, 1548–1558 (2019) (cited on page 214).

707. Ren, X. et al. Increased TBX6 gene dosages induce congenital cervical vertebral malformations in
humans and mice. Journal of Medical Genetics 57, 371–379 (2020) (cited on page 214).

708. Dabbas, N., Adams, K., Pearson, K. & Royle, G. Frequency of abdominal wall hernias: Is classical
teaching out of date? JRSM Short Reports 2, 1–6 (2011) (cited on page 214).

709. Wat, M. J. et al. Genomic alterations that contribute to the development of isolated and non-isolated
congenital diaphragmatic hernia. Journal of Medical Genetics 48, 299–307 (2011) (cited on page 214).

710. Brady, P. et al. Identification of dosage-sensitive genes in fetuses referred with severe isolated congenital
diaphragmatic hernia. Prenatal Diagnosis 33, 1283–1292 (2013) (cited on page 214).

711. Sandbacka, M. et al. TBX6, LHX1 and copy number variations in the complex genetics of Müllerian
aplasia. Orphanet Journal of Rare Diseases 8, 1–13 (2013) (cited on page 215).

712. Chu, C. et al. Whole-exome sequencing identified a TBX6 loss of function mutation in a patient with
distal vaginal atresia. Journal of Pediatric and Adolescent Gynecology 32, 550–554 (2019) (cited on page 215).



713. Chen, N. et al. Perturbations of genes essential for Müllerian duct and Wölffian duct development
in Mayer-Rokitansky-Küster-Hauser syndrome. The American Journal of Human Genetics 108, 337–345
(2021) (cited on page 215).

714. Su, K. et al. Recurrent human 16p11.2 microdeletions in type I Mayer–Rokitansky–Küster–Hauser
(MRKH) syndrome patients in Chinese Han population. Molecular Genetics & Genomic Medicine 12,
e2280 (2024) (cited on page 215).

715. Seth, A. et al. Gene dosage changes in KCTD13 result in penile and testicular anomalies via diminished
androgen receptor function. The FASEB Journal 36, e22567 (2022) (cited on page 215).

716. Haller, M., Au, J., O’Neill, M. & Lamb, D. J. 16p11.2 transcription factor MAZ is a dosage-sensitive
regulator of genitourinary development. Proceedings of the National Academy of Sciences 115, E1849–E1858
(2018) (cited on page 215).

717. Su, J. et al. Association of prenatal renal ultrasound abnormalities with pathogenic copy number
variants in a large Chinese cohort. Ultrasound in Obstetrics & Gynecology 59, 226–233 (2022) (cited on
page 215).

718. Khoreva, A. et al. Novel hemizygous CORO1A variant leads to combined immunodeficiency with
defective platelet calcium signaling and cell mobility. Journal of Allergy and Clinical Immunology: Global
3, 100172 (2024) (cited on pages 216, 220).

719. Wang, L. A., Larson, A. & Abbott, J. K. The Immune Status of Patients with 16p11.2 Deletion Syndrome.
Journal of Clinical Immunology 43, 1792–1795 (2023) (cited on page 216).

720. Giannuzzi, G. et al. Possible association of 16p11.2 copy number variation with altered lymphocyte and
neutrophil counts. NPJ Genomic Medicine 7, 38 (2022) (cited on pages 216, 224).

721. Stocker, T. J. et al. The actin regulator coronin-1A modulates platelet shape change and consolidates
arterial thrombosis. Thrombosis and Haemostasis 118, 2098–2111 (2018) (cited on page 216).

722. Wang, B. et al. A foundational atlas of autism protein interactions reveals molecular convergence.
bioRxiv, 2023–12 (2023) (cited on page 216).

723. Smith, H., Lane, C., Al-Jawahiri, R. & Freeth, M. Sensory processing in 16p11.2 deletion and 16p11.2
duplication. Autism Research 15, 2081–2098 (2022) (cited on page 216).

724. Osório, J. M. A. et al. Touch and olfaction/taste differentiate children carrying a 16p11.2 deletion from
children with ASD. Molecular Autism 12, 1–14 (2021) (cited on page 216).

725. Ventura, M. et al. Bifocal germinoma in a patient with 16p11.2 microdeletion syndrome. Endocrinology,
Diabetes & Metabolism Case Reports 2019 (2019) (cited on page 217).

726. Egolf, L. E. et al. Germline 16p11.2 microdeletion predisposes to neuroblastoma. The American Journal of
Human Genetics 105, 658–668 (2019) (cited on page 217).

727. Smolen, C. et al. Assortative mating and parental genetic relatedness contribute to the pathogenicity of
variably expressive variants. The American Journal of Human Genetics 110, 2015–2028 (2023) (cited on
pages 218, 220, 238).

728. Loomes, R., Hull, L. & Mandy, W. P. L. What is the male-to-female ratio in autism spectrum disorder?
A systematic review and meta-analysis. Journal of the American Academy of Child & Adolescent Psychiatry
56, 466–474 (2017) (cited on pages 219, 239).

729. Santos, S., Ferreira, H., Martins, J., Goncalves, J. & Castelo-Branco, M. Male sex bias in early and late
onset neurodevelopmental disorders: Shared aspects and differences in Autism Spectrum Disorder,
Attention Deficit/hyperactivity Disorder, and Schizophrenia. Neuroscience & Biobehavioral Reviews 135,
104577 (2022) (cited on pages 219, 239).

730. Ratto, A. B. et al. What about the girls? Sex-based differences in autistic traits and adaptive skills. Journal
of Autism and Developmental Disorders 48, 1698–1711 (2018) (cited on page 219).

731. Polyak, A., Rosenfeld, J. A. & Girirajan, S. An assessment of sex bias in neurodevelopmental disorders.
Genome Medicine 7, 1–11 (2015) (cited on pages 219, 220).

732. Pirastu, N. et al. Genetic analyses identify widespread sex-differential participation bias. Nature Genetics
53, 663–671 (2021) (cited on pages 219, 239, 240).

733. Lynch III, J. F. et al. Comprehensive behavioral phenotyping of a 16p11.2 Del mouse model for
neurodevelopmental disorders. Autism Research 13, 1670–1684 (2020) (cited on page 219).

734. Grissom, N. et al. Male-specific deficits in natural reward learning in a mouse model of neurodevelop-
mental disorders. Molecular Psychiatry 23, 544–555 (2018) (cited on page 219).



735. Ouellette, J. et al. Vascular contributions to 16p11.2 deletion autism syndrome modeled in mice. Nature
Neuroscience 23, 1090–1101 (2020) (cited on page 219).

736. Agarwalla, S. et al. Male-specific alterations in structure of isolation call sequences of mouse pups with
16p11.2 deletion. Genes, Brain and Behavior 19, e12681 (2020) (cited on page 219).

737. Giovanniello, J., Ahrens, S., Yu, K. & Li, B. Sex-specific stress-related behavioral phenotypes and central
amygdala dysfunction in a mouse model of 16p11.2 microdeletion. Biological Psychiatry Global Open
Science 1, 59–69 (2021) (cited on page 219).

738. Dastan, J. et al. Exome sequencing identifies pathogenic variants of VPS13B in a patient with familial
16p11.2 duplication. BMC Medical Genetics 17, 1–6 (2016) (cited on page 220).

739. Amor, D. J. & Bĳlsma, E. K. Letter regarding the article" Extending the phenotype of recurrent
rearrangements of 16p11.2: Deletions in mentally retarded patients without autism and in normal
individuals ()" and the diagnosis of coexisting Mowat-Wilson syndrome in a patient with 16p11.2
deletion. European Journal of Medical Genetics 61, 48–49 (2018) (cited on page 220).

740. Pelliccia, V., Ferranti, S., Mostardini, R. & Grosso, S. A case of Friedreich ataxia in an adolescent with
16p11.2 microdeletion syndrome. Neurological Sciences 41, 721–722 (2020) (cited on page 220).

741. Posey, J. E. et al. Resolution of disease phenotypes resulting from multilocus genomic variation. New
England Journal of Medicine 376, 21–31 (2017) (cited on page 220).

742. Blumenthal, I. et al. Transcriptional consequences of 16p11.2 deletion and duplication in mouse cortex
and multiplex autism families. The American Journal of Human Genetics 94, 870–883 (2014) (cited on
page 221).

743. Kostic, M. et al. Patient brain organoids identify a link between the 16p11.2 copy number variant and
the RBFOX1 gene. ACS Chemical Neuroscience 14, 3993–4012 (2023) (cited on page 221).

744. Schultz, L. M. et al. Copy number variants differ in frequency across genetic ancestry groups. medRxiv,
2024–03 (2024) (cited on page 222).

745. Hsieh, P. et al. Adaptive archaic introgression of copy number variants and the discovery of previously
unknown human genes. Science 366, eaax2083 (2019) (cited on page 222).

746. Liu, F. et al. Haplotype-specific MAPK3 expression in 16p11.2 deletion contributes to variable neurode-
velopment. Brain 146, 3347–3363 (2023) (cited on page 222).

747. Hudac, C. M. et al. Evaluating heterogeneity in ASD symptomatology, cognitive ability, and adaptive
functioning among 16p11.2 CNV carriers. Autism Research 13, 1300–1310 (2020) (cited on page 223).

748. Hasegawa, Y. et al. Microglial cannabinoid receptor type 1 mediates social memory deficits in mice
produced by adolescent THC exposure and 16p11.2 duplication. Nature Communications 14, 6559 (2023)
(cited on page 223).

749. Hou, K. et al. Causal effects on complex traits are similar for common variants across segments of
different continental ancestries within admixed individuals. Nature Genetics 55, 549–558 (2023) (cited
on page 223).

750. Crepel, A. et al. Narrowing the critical deletion region for autism spectrum disorders on 16p11.2.
American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 156, 243–245 (2011) (cited on
page 223).

751. Loh, P.-R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nature
Genetics 48, 1443–1448 (2016) (cited on page 224).

752. Steinberg, S. et al. Common variant at 16p11.2 conferring risk of psychosis. Molecular Psychiatry 19,
108–114 (2014) (cited on page 223).

753. Stoppel, L. J. et al. R-baclofen reverses cognitive deficits and improves social interactions in two lines of
16p11.2 deletion mice. Neuropsychopharmacology 43, 513–524 (2018) (cited on page 225).

754. Rein, B., Conrow-Graham, M., Frazier, A., Cao, Q. & Yan, Z. Inhibition of histone deacetylase 5
ameliorates abnormalities in 16p11.2 duplication mouse model. Neuropharmacology 204, 108893 (2022)
(cited on page 225).

755. Walsh, J. J. et al. 5-HT release in nucleus accumbens rescues social deficits in mouse autism model.
Nature 560, 589–594 (2018) (cited on page 225).

756. Walsh, J. J. et al. Systemic enhancement of serotonin signaling reverses social deficits in multiple mouse
models for ASD. Neuropsychopharmacology 46, 2000–2010 (2021) (cited on page 225).



757. Panzini, C. M., Ehlinger, D. G., Alchahin, A. M., Guo, Y. & Commons, K. G. 16p11.2 deletion syndrome
mice perseverate with active coping response to acute stress–rescue by blocking 5-HT 2A receptors.
Journal of Neurochemistry 143, 708–721 (2017) (cited on page 225).

758. Mitchell, E. J. et al. Drug-responsive autism phenotypes in the 16p11.2 deletion mouse model: A central
role for gene-environment interactions. Scientific Reports 10, 12303 (2020) (cited on page 225).

759. Martin Lorenzo, S., Nalesso, V., Chevalier, C., Birling, M.-C. & Herault, Y. Targeting the RHOA pathway
improves learning and memory in adult Kctd13 and 16p11.2 deletion mouse models. Molecular Autism
12, 1–13 (2021) (cited on page 225).

760. Pucilowska, J. et al. Pharmacological inhibition of ERK signaling rescues pathophysiology and
behavioral phenotype associated with 16p11.2 chromosomal deletion in mice. Journal of Neuroscience 38,
6640–6652 (2018) (cited on page 225).

761. Nadeau, J. H. & Auwerx, J. The virtuous cycle of human genetics and mouse models in drug discovery.
Nature Reviews Drug discovery 18, 255–272 (2019) (cited on page 225).

762. Butter, C. E. et al. Experiences and concerns of parents of children with a 16p11.2 deletion or duplication
diagnosis: A reflexive thematic analysis. BMC Psychology 12, 137 (2024) (cited on page 225).

763. Chung, W. K., Herrera, F. F. & Simon’s Searchlight Foundation. Health supervision for children
and adolescents with 16p11.2 deletion syndrome. Molecular Case Studies 9, a006316 (2023) (cited on
page 225).

764. Leitsalu, L. et al. Reporting incidental findings of genomic disorder-associated copy number variants
to unselected biobank participants. Personalized Medicine 13, 303–314 (2016) (cited on pages 225, 241).

765. Wilkins, E. J., Archibald, A. D., Sahhar, M. A. & White, S. M. “It wasn’t a disaster or anything”: Parents’
experiences of their child’s uncertain chromosomal microarray result. American Journal of Medical
Genetics Part A 170, 2895–2904 (2016) (cited on pages 225, 241).

766. Rees, E. & Kirov, G. Copy number variation and neuropsychiatric illness. Current Opinion in Genetics &
Development 68, 57–63 (2021) (cited on page 231).

767. Moore, J. E. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes.
Nature 583, 699–710 (2020) (cited on page 235).

768. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015)
(cited on page 235).

769. Adams, D. et al. BLUEPRINT to decode the epigenetic signature written in blood. Nature Biotechnology
30, 224–226 (2012) (cited on page 235).

770. Osterwalder, M. et al. in Craniofacial Development: Methods and Protocols 147–186 (Springer, 2021) (cited
on page 236).

771. Kvon, E. Z. et al. Comprehensive in vivo interrogation reveals phenotypic impact of human enhancer
variants. Cell 180, 1262–1271 (2020) (cited on page 236).

772. Gerrard, D. T. et al. An integrative transcriptomic atlas of organogenesis in human embryos. eLife 5,
e15657 (2016) (cited on page 236).

773. Gerrard, D. T. et al. Dynamic changes in the epigenomic landscape regulate human organogenesis and
link to developmental disorders. Nature Communications 11, 3920 (2020) (cited on page 236).

774. Rosin, J. M., Abassah-Oppong, S. & Cobb, J. Comparative transgenic analysis of enhancers from the
human SHOX and mouse Shox2 genomic regions. Human Molecular Genetics 22, 3063–3076 (2013)
(cited on page 236).

775. Liu, H. et al. Functional redundancy between human SHOX and mouse Shox2 genes in the regulation
of sinoatrial node formation and pacemaking function. Journal of Biological Chemistry 286, 17029–17038
(2011) (cited on page 236).

776. Cobb, J., Dierich, A., Huss-Garcia, Y. & Duboule, D. A mouse model for human short-stature syndromes
identifies Shox2 as an upstream regulator of Runx2 during long-bone development. Proceedings of the
National Academy of Sciences 103, 4511–4515 (2006) (cited on page 236).

777. Abassah-Oppong, S. et al. A gene desert required for regulatory control of pleiotropic Shox2 expression
and embryonic survival. bioRxiv, 2020–11 (2020) (cited on page 236).

778. Hofmeister, R. J., Ribeiro, D. M., Rubinacci, S. & Delaneau, O. Accurate rare variant phasing of
whole-genome and whole-exome sequencing data in the UK Biobank. Nature Genetics 55, 1243–1249
(2023) (cited on page 236).



779. Privé, F. et al. Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9
ancestry groups from the same cohort. The American Journal of Human Genetics 109, 12–23 (2022) (cited
on page 237).

780. Hawkes, G. et al. Identification and analysis of individuals who deviate from their genetically-predicted
phenotype. PLoS Genetics 19, e1010934 (2023) (cited on page 238).

781. Khramtsova, E. A., Davis, L. K. & Stranger, B. E. The role of sex in the genomics of human complex
traits. Nature Reviews Genetics 20, 173–190 (2019) (cited on pages 238, 239).

782. Bernabeu, E. et al. Sex differences in genetic architecture in the UK Biobank. Nature Genetics 53,
1283–1289 (2021) (cited on pages 239, 240).

783. Randall, J. C. et al. Sex-stratified genome-wide association studies including 270,000 individuals show
sexual dimorphism in genetic loci for anthropometric traits. PLoS Genetics 9, e1003500 (2013) (cited on
page 239).

784. Döring, A. et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects.
Nature Genetics 40, 430–436 (2008) (cited on page 239).

785. Dumitrescu, L. et al. Sex differences in the genetic predictors of Alzheimer’s pathology. Brain 142,
2581–2589 (2019) (cited on page 239).

786. Hartiala, J. A. et al. Genome-wide association study and targeted metabolomics identifies sex-specific
association of CPS1 with coronary artery disease. Nature Communications 7, 10558 (2016) (cited on
page 239).

787. Johnston, K. J. et al. Sex-stratified genome-wide association study of multisite chronic pain in UK
Biobank. PLoS Genetics 17, e1009428 (2021) (cited on page 239).

788. Carter, C. & Evans, K. Inheritance of congenital pyloric stenosis. Journal of Medical Genetics 6, 233 (1969)
(cited on page 239).

789. Robinson, E. B., Lichtenstein, P., Anckarsäter, H., Happé, F. & Ronald, A. Examining and interpreting
the female protective effect against autistic behavior. Proceedings of the National Academy of Sciences 110,
5258–5262 (2013) (cited on page 239).

790. Taylor, M. J. et al. Is there a female protective effect against attention-deficit/hyperactivity disorder?
Evidence from two representative twin samples. Journal of the American Academy of Child & Adolescent
Psychiatry 55, 504–512 (2016) (cited on page 239).

791. Kruse, L. M., Buchan, J. G., Gurnett, C. A. & Dobbs, M. B. Polygenic threshold model with sex
dimorphism in adolescent idiopathic scoliosis: the Carter effect. The Journal of Bone and Joint Surgery 94,
1485–1491 (2012) (cited on page 239).

792. Kantarci, O. et al. Men transmit MS more often to their children vs women: the Carter effect. Neurology
67, 305–310 (2006) (cited on page 239).

793. Ge, T., Chen, C.-Y., Neale, B. M., Sabuncu, M. R. & Smoller, J. W. Phenome-wide heritability analysis of
the UK Biobank. PLoS Genetics 13, e1006711 (2017) (cited on page 239).

794. Stringer, S., Polderman, T. J. & Posthuma, D. Majority of human traits do not show evidence for
sex-specific genetic and environmental effects. Scientific Reports 7, 8688 (2017) (cited on page 239).

795. Traglia, M. et al. Genetic mechanisms leading to sex differences across common diseases and anthropo-
metric traits. Genetics 205, 979–992 (2017) (cited on page 239).

796. Sandin, S. et al. Examining sex differences in autism heritability. JAMA Psychiatry (2024) (cited on
page 239).

797. Zhu, C. et al. Amplification is the primary mode of gene-by-sex interaction in complex human traits.
Cell Genomics 3, 100297 (2023) (cited on page 239).

798. Halperin Kuhns, V. L. & Woodward, O. M. Sex differences in urate handling. International Journal of
Molecular Sciences 21, 4269 (2020) (cited on page 240).

799. Narang, R. K. et al. Interactions between serum urate-associated genetic variants and sex on gout risk:
Analysis of the UK Biobank. Arthritis Research & Therapy 21, 1–9 (2019) (cited on page 240).

800. Vears, D. F. et al. Return of individual research results from genomic research: A systematic review of
stakeholder perspectives. PloS One 16, e0258646 (2021) (cited on page 241).


	Thesis_CAuwerx2024_Unil_WithImprimature.pdf
	Imprimatur_CAuwerx2024.pdf
	Thesis_CAuwerx_2024_Unil.pdf
	ThesisTitle_CAuwerx.pdf


	Thesis_CAuwerx_2024_Unil_final.pdf
	Where rare meets common: Leveraging population cohorts to study rare copy-number variants
	Preface
	Acknowledgments
	Abstract
	Résumé
	Contents
	Introduction
	Introduction
	The human genome

	The human genome
	DNA as a vehicle to store genetic information
	Inheritance of genetic information
	The landscape of human genetic variation
	Biobanks

	Biobanks
	Clinical cohorts
	Birth cohorts
	Healthcare cohorts
	Population cohorts
	Link genotype to phenotype

	Link genotype to phenotype
	Basic statistical concepts behind GWASs
	Fixed effect models
	Reporting & interpreting GWASs
	GWAS model extensions
	Leveraging molecular phenotypes
	Copy-number variants

	Copy-number variants
	CNV mechanisms
	CNV detection tools
	Functional consequences of CNVs

	Developing a framework for CNV-GWAS
	Quantitative traits
	Aims

	Aims
	Key Findings

	Key Findings
	Author Contributions

	Author Contributions
	The individual and global impact of copy-number variants on complex human traits

	The individual and global impact of copy-number variants on complex human traits
	Common diseases
	Aims

	Aims
	Key Findings

	Key Findings
	Author Contributions

	Author Contributions
	Rare copy‑number variants as modulators of common disease susceptibility

	Rare copy‑number variants as modulators of common disease susceptibility

	Approaches to dissect the pleiotropy of recurrent genomic rearrangements
	22q11.2
	Aims

	Aims
	Key Findings

	Key Findings
	Author Contributions

	Author Contributions
	The impact of 22q11.2 copy-number variants on human traits in the general population

	The impact of 22q11.2 copy-number variants on human traits in the general population
	16p11.2 BP2-3
	Aims

	Aims
	Key Findings

	Key Findings
	Author Contributions

	Author Contributions
	Chromosomal deletions on 16p11.2 encompassing SH2B1 are associated with accelerated metabolic disease

	Chromosomal deletions on 16p11.2 encompassing SH2B1 are associated with accelerated metabolic disease
	16p11.2 BP4-5
	Aims

	Aims
	Key Findings

	Key Findings
	Author Contributions

	Author Contributions
	Disentangling mechanisms behind the pleiotropic effects of proximal 16p11.2 CNVs

	Disentangling mechanisms behind the pleiotropic effects of proximal 16p11.2 CNVs
	The pleiotropic spectrum of proximal 16p11.2 CNVs

	The pleiotropic spectrum of proximal 16p11.2 CNVs

	Discussion
	Discussion
	Lessons learned from CNV-GWAS

	Lessons learned from CNV-GWAS
	Methodological advances
	Beyond CNV-GWAS
	The future of CNV-GWAS
	From global patterns to translational knowledge

	From global patterns to translational knowledge
	Pleiotropy
	Molecular mechanisms
	Variable expressivity
	Perspectives

	Perspectives
	Mechanisms of CNV action
	Modulators of CNV impact
	Clinical translation
	Conclusions

	Conclusions

	Bibliography

	Blank Page
	Blank Page



