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essentially inactive (Fig. 4H), suggesting thatMPC1
function is evolutionarily conserved from yeast
to humans.

The data presented here demonstrate that the
Mpc1-Mpc2 complex is an essential component
of the mitochondrial pyruvate carrier in yeast,
flies, and mammals. This is consistent with ex-
periments performed in rat liver, heart, and castor
beans, which implicated proteins of 12 to 15 kD
in mitochondrial pyruvate uptake (15)—similar
to the molecular masses ofMpc1 (15 kD), Mpc2
(14 kD), and Mpc3 (16 kD). Although these
individual sizes are relatively small, Mpc1 and
Mpc2 form a complex of ~150 kD, suggesting
that an oligomeric structure mediates pyruvate
transport. The demonstration thatMpc1 andMpc2
are sufficient to promote pyruvate uptake in a
heterologous system provides further evidence that
they constitute an essential pyruvate transporter
(16). Finally, the degree to which carbohydrates
are imported into mitochondria and converted
into acetyl-CoA is a critical step in normal glu-
cose oxidation as well as the onset of diabetes,
obesity, and cancer. Thus, like PDH, which is con-
trolled by allostery and posttranslational modifi-
cation (17), the mitochondrial import of pyruvate
is likely to be precisely regulated (18, 19). The
identification of Mpc1 and Mpc2 as critical for

mitochondrial pyruvate transport provides a new
framework for understanding this level of meta-
bolic control, as well as new directions for po-
tential therapeutic intervention.
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An Abundance of Rare Functional
Variants in 202 Drug Target Genes
Sequenced in 14,002 People
Matthew R. Nelson,1*† Daniel Wegmann,2* Margaret G. Ehm,1 Darren Kessner,2

Pamela St. Jean,1 Claudio Verzilli,3 Judong Shen,1 Zhengzheng Tang,4 Silviu-Alin Bacanu,1

Dana Fraser,1 Liling Warren,1 Jennifer Aponte,1 Matthew Zawistowski,5 Xiao Liu,6 Hao Zhang,6

Yong Zhang,6 Jun Li,7 Yun Li,4 Li Li,1 Peter Woollard,3 Simon Topp,3 Matthew D. Hall,3

Keith Nangle,1 Jun Wang,6,8 Gonçalo Abecasis,5 Lon R. Cardon,9 Sebastian Zöllner,5,10

John C. Whittaker,3 Stephanie L. Chissoe,1 John Novembre,2†‡ Vincent Mooser9‡

Rare genetic variants contribute to complex disease risk; however, the abundance of rare variants
in human populations remains unknown. We explored this spectrum of variation by sequencing
202 genes encoding drug targets in 14,002 individuals. We find rare variants are abundant
(1 every 17 bases) and geographically localized, so that even with large sample sizes, rare variant
catalogs will be largely incomplete. We used the observed patterns of variation to estimate
population growth parameters, the proportion of variants in a given frequency class that are
putatively deleterious, and mutation rates for each gene. We conclude that because of rapid
population growth and weak purifying selection, human populations harbor an abundance of rare
variants, many of which are deleterious and have relevance to understanding disease risk.

Understanding the genetic contribution to
human disease requires knowledge of
the abundance and distribution of func-

tional genetic diversity within and among pop-
ulations. The “common-disease rare-variant”
hypothesis posits that variants affecting health
are under purifying selection and thus should
be found only at low frequencies in human pop-
ulations (1–3). This hypothesis has become

increasingly credible because very large genome-
wide association studies of common variants
have explained only a fraction of the known her-
itability of most traits (4, 5). Investigating the role
of rare variants for complex trait mapping has
led to tests that aggregate rare variants (6) and
determine the abundance, distribution, and phe-
notypic effects of rare variants in human popu-
lations (7, 8).

Population genetic models predict that mu-
tation rates, the strength of selection, and de-
mography affect the abundance of rare variants,
although the relative importance of each is a
long-standing question (9–11). To understand
rare variant diversity in humans, we sequenced
202 genes in a sample of 14,002 well-phenotyped
individuals (table S1). These genes represent
approximately 1% of the coding genome and
approximately 7% of genes considered current
or potential drug targets (12) and are enriched
for cell-signaling proteins and membrane-bound
transporters (table S2). A total of 864 kb were
targeted, including 351 kb of coding and 323 kb
of untranslated (UTR) exon regions (database S1).
More than 93% of target bases were successfully
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sequenced, at a median depth of 27 reads per site
(13). Because rare variant discovery can easily be
confoundedwith sequencing errors, we performed
numerous experiments to demonstrate high data
quality (table S3) (13). The sequenced subjects
include two population samples (n = 1322 and
2059 subjects) and 12 disease collections (n = 125
to 1125 cases) (table S4). The self-reported ances-
try of the sample was predominantly European
(12,514),AfricanAmerican (594), and SouthAsian
(567). Some of the following analyses focus on
the European subset, which is well-powered to in-
vestigate rare variants. On the basis of our sample
size, we expect that 94% of variant alleles with mi-
nor allele frequency (MAF) of 0.01% in Europeans
were sampled at least once.

Sequencing revealed an abundance of rare
(MAF < 0.5%) single-nucleotide variants (SNVs)
compared with common variants (Fig. 1, A and
B).We observed on average 1 variant per 17 base

pair (bp) in the overall sample and 1 variant
per 21 bp in the Europeans (table S5). Among
all variants, more than 95% were rare (MAF ≤
0.5%), and more than 74% were observed in
only one or two subjects. Approximately 90%
of rare variants were not previously reported, as
opposed to ~5% of common variants (MAF >
0.5%) (fig. S1). For the large European subset,
Watterson’s qW—a metric of genetic diversity
(Table 1)—was much larger (40.38 × 10−4) than
in previous smaller-scale studies and an order
of magnitude larger than the pairwise metric qp
(3.96 × 10−4). We observed a third allele at 2.0%
of variable sites, and among those, 1.6% had a
fourth allele. We found between 1.2 and 1.9 non-
diallelic SNVs per kilobase of sequence (fig. S2),
which tended to occur at sites under lower evo-
lutionary conservation (fig. S3) (13). The rate of
variant discovery remained nearly constant with
increasing sample size (Fig. 2A).We project 111

to 153 variants per kilobase in a sample of 100,000
Europeans and 337 to 452 variants per kilobase
in a sample of 1 million (Fig. 2, A and B).

These patterns are at odds with notions that
human genetic diversity can be summarized by
use of an effective population size (Ne) of 10,000
individuals (14). AnNe of 10,000 individuals is
predictive of the average pairwise differences
between human sequences (Table 1, qp) and is
reflective of our emergence from a small popu-
lation in Africa (15). However, the excess of rare
variants observed here (qW >> qp) is a signature
of the rapid growth and large population sizes
that typify more recent human demographic
history (8). When we fit a demographic model
to the fourfold degenerate synonymous (S) var-
iants in Europeans, we obtained a maximum-
likelihood estimate for a recent growth rate of
1.7% [95%confidence interval (CI) = 1.2 to 2.3%]
and a recent European effective population size
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The number of common (MAF > 0.5%, above the origin) and rare (MAF ≤
0.5%, below the origin) coding variants observed in each gene are shown as
stacked bars of NS and S variants. (C) Log-likelihood surface of European pop-
ulation growth (r) and population size (Ne) in a demographic model. Colored
contours correspond to 2 log-likelihood intervals. The blue point is the max-
imum likelihood estimate of r and Ne. (D) Per-gene mutation rates with 2 log-
likelihood intervals. Horizontal lines are 10th, 50th and 90th mutation rate

percentiles. Seven genes on the X chromosome and four genes with low target
coverage or yielding too few common variants for inference (ADRB3, CCR5,
MIF, and PTGER1) were excluded. (E) Proportion of rare cMAF accounted for by
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of 4.0 million (95% CI = 2.5 million to 5.0 mil-
lion) (Fig. 1C).

Taking advantage of the large size of this
study for population genetics inference (8, 16),
we estimated mutation rates for each gene (Fig.
1D) (13) and obtained a median estimate of
1.38 × 10−8 per base pair per generation, with
90% of estimates falling between 1.7 × 10−9 and
2.4 × 10−8. Incorporating singleton discovery
false negative rates from 2 to 8% resulted in
median estimates no greater than 1.45 × 10−8.
These population-genetic–based rate estimates
are similar to recent pedigree-based mutation
rate estimates of 1.36 × 10−8 per base pair per
generation (17) and 1.17 × 10−8 per base pair per
generation (13, 18). Further, these data reject a
model of uniform mutation rates across genes
(P < 2 × 10−8) and show synonymous mutation
rates are correlated with the number of non-
synonymous (NS) rare variants (P = 0.04) and
guanine-cytosine content (P < 2.4 × 10−9) (13).

The excess of rare variants observed in cod-
ing regions is also due to an abundance of NS
variants segregating at low frequencies that are
not seen at more common variant frequencies as
a result of purifying selection. Summing across
all frequencies of variant sites, S and intronic var-
iants occurred more frequently (~70 variants per
kilobase each) as compared with UTR and NS
variant sites (~55 and ~45 per kilobase of UTR or

NS sequence, respectively) (Fig. 2A). Yet, exam-
ining the abundance of rare variants across func-
tional categorizations of variant sites reveals little
difference among classes whenminor allele count
is low (Fig. 1A). These patterns are likely due to
an equal input of mutations for each category
followed by purifying selection preventing dele-
terious NS and UTR variants from reaching
higher frequencies (13, 19). The ratio of NS:S in
singletons is close to that expected among new
mutations and then decreases with increasing
frequency (Fig. 2C). Using the approach of (2),
we estimate that although ~70% of all NS sin-

gletons in our sample are sufficiently deleterious
that they will never reach frequencies >5%, only
13% of new NS mutations appear so deleterious
that they would not be observed even as single-
tons in a sample of this size (13), putting an upper
bound on the frequency of dominant lethal
mutations (15). The output of functional predic-
tion algorithms (Fig. 2, D and E) also suggest that
rare variants are enriched for damaging variants.

On average, each subject carried a rare minor
allele at 0.02% of all NS sites, of which ~56% are
expected to be deleterious enough to never be
fixed. More than 0.3% of sequenced subjects
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Fig. 2. (A and B) Number of variants per kilobase of intronic, UTR, NS, or S
sequence with sample size increasing to 50,000 (A) and 1 million (B) Europeans.
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hypergeometric expectations and jackknife projections, respectively. (C) Expected
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possibly damaging, or probably damaging by use of PolyPhen or SIFT and the
proportion of NS variants that is neutral, deleterious so that they will never
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Table 1. Comparison of classical population genetic measures of sequence diversity across studies.

Study
Number
of genes*

Sample size Sample† Length (Mb)
qp

(×10−4)
qW

(×10−4)

Akey (27) 132 23 EU 2.50 3.41 7.35
SeattleSNPs (28) 213 23 EU 7.26 6.81 6.36
Ahituv (29) 58 757 EU 0.13 4.32 10.11
Current study 202 500‡ EU 0.74 3.96 8.79

11,000 EU 0.74 3.96 40.38
500‡ SA 0.69 4.04 10.67

Akey et al. 132 24 AA 2.50 4.49 12.10
SeattleSNPs 213 24 AA 7.26 8.97 10.15
Current study 202 500‡ AA 0.70 4.89 13.78
*Studies differ in the relative proportion of coding and noncoding sequences. †Ancestry is indicated as EU, European; AA,
African-American; SA, South Asian. ‡Sampled to n = 500 subjects.
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carried at least one mutation reported to be a
dominant cause of disease (table S6) (13). We
also identified variants at 0.5% < MAF ≤ 2%,
the so-called goldilocks variants (20), in that
they would be common enough to be detected
in large population samples and rare enough to
be enriched for variants under purifying selection
(Fig. 2, C to E). In the European sample, we ob-
served 105 amino acid–changing variants in 73
genes falling within this frequency range. Half of
these were predicted to be functionally damaging,
relative to 31% of more common coding SNVs
(>2%) and 65% of singletons. By comparison, we
found 210 goldilocks variants in African Amer-
icans and 132 in South Asians, supporting the
value of non-European samples for the genetic
analysis of complex traits (21).

Rare variants can be tested in aggregate for
an association with disease (6), in which the
power of the test is strongly correlated with the
cumulative MAF (cMAF) of potentially dele-
terious SNVs within each gene (Fig. 1, E and F,
and figs. S4 and S5). Thirty-seven percent of
genes had cMAFs > 0.5% of rare alleles predicted
to be deleterious. We tested associations of com-
mon variants individually and rare coding vari-
ants in aggregate with the diseases represented
in this study (13). When possible, we matched
controls with cases using genome-wide genetic
similarity. Nevertheless, type 1 error rate inflation
consistent with effects of population stratifica-
tion was observed (table S7 and fig. S6) and
was worse for rare variant tests. There were no
statistically significant rare variant associations
and thus no compelling evidence connecting any

genes with the studied diseases. Of 13 more
closely examined genes reported to be associ-
ated with six of the diseases investigated (table
S8) (22), only the association of rare variants in
IL6 with multiple sclerosis was noteworthy
(OR = 12, P = 0.007) (table S9).

Because rare variants are typically the result
of recent mutations, they are expected to be geo-
graphically clustered or even private to specific
populations. Using a measure of variant sharing
between two samples (7), we found that for com-
mon variants, any two European populations
appear to be panmictic, whereas for rare vari-
ants, European populations show lower levels of
sharing (fig. S7). In general, the level of sharing
depends on geographic distance, with the depen-
dence increasing substantially with decreasing
allele frequency (fig. S8). The Finnish population
shows substantially lower levels of sharing with
other European populations than predicted by
geographic distance, which is consistent with
hypotheses of a historical Finnish demographic
bottleneck (23). Levels of rare variant sharing
are even lower when comparing populations from
distinct continents. Thus, catalogs of rare vari-
ants will need to be generated locally across the
globe (7, 24).

We found substantial variation in the total
abundance of variants across populations, even
within Europe (Fig. 3 and fig. S7D), which is
likely due to demographic history. In particu-
lar, we observed a north-south gradient in the
abundance of rare variants across Europe, with
increased numbers of rare variants in Southern
Europe and a very small number of variants

among Finns, who had about one third as many
variants as southern Europeans. The gradient is
consistent with observed gradients in haplotype
diversity (25) and a Finnish ancestral bottleneck
(23). Association mapping approaches based on
rare variant diversity levels will be more suscep-
tible to subtle effects of population stratification
(26) and more likely to result in false-positive
disease associations.

To evaluate our conclusions relative to the
rest of the genome, we compared the NS:S var-
iant ratios of the sequenced genes with the en-
tire coding genomewithin the low-coverage CEU
1000 Genomes Project data. The average per sub-
ject NS:S ratio from our 202 genes was 0.54,
whereas all other genes had an average ratio of
0.94 (P < 10−15) (fig. S9). By comparison, genes
found in Online Mendelian Inheritance in Man
(OMIM) and the genome-wide association studies
catalog (22) had average ratios of 0.75 and 0.78,
respectively. This implies that the genes in this
study are under stronger purifying selection,which
is consistent with their choice as drug targets
and importance to human health. Hence, our re-
sults cannot be simply extrapolated to the whole
exome. Instead, it is likely that our results under-
estimate the average genetic diversity that will
be found in more typical human gene-coding
regions, primarily regarding the amount of NS
variation.

This large-scale resequencing study provides
a unique description of variation for 202 drug tar-
get genes and insight into the very rare spectrum
of variation. Although sequencing error might be
a concern, we show that the error rates in this
study are low (table S3). Another caveat is that
our inference of demographic parameters and
mutation rates ignores the effects of background
selection on synonymous variants. Despite these
caveats, the results show there is an abundance of
rare variation in human populations and that sur-
veys of common variants are only observing a
small fraction of the genetic diversity in any gene.
Further, much of the rare variation in coding re-
gions appears to be functional and may be cru-
cial for yielding insights into the genetic basis
of human disease. Because the genes studied
are related to drug discovery, development, or
repositioning efforts, this work has potential to
help investigate drug target biology and drug
response.
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Recurrent Hemizygous Deletions
in Cancers May Optimize
Proliferative Potential
Nicole L. Solimini,1 Qikai Xu,1 Craig H. Mermel,2,3 Anthony C. Liang,1 Michael R. Schlabach,1*
Ji Luo,1† Anna E. Burrows,1 Anthony N. Anselmo,1 Andrea L. Bredemeyer,1 Mamie Z. Li,1

Rameen Beroukhim,2,3,4 Matthew Meyerson,2,3 Stephen J. Elledge1‡

Tumors exhibit numerous recurrent hemizygous focal deletions that contain no known tumor
suppressors and are poorly understood. To investigate whether these regions contribute to
tumorigenesis, we searched genetically for genes with cancer-relevant properties within these
hemizygous deletions. We identified STOP and GO genes, which negatively and positively regulate
proliferation, respectively. STOP genes include many known tumor suppressors, whereas GO genes
are enriched for essential genes. Analysis of their chromosomal distribution revealed that recurring
deletions preferentially overrepresent STOP genes and underrepresent GO genes. We propose a
hypothesis called the cancer gene island model, whereby gene islands encompassing high densities of
STOP genes and low densities of GO genes are hemizygously deleted to maximize proliferative fitness
through cumulative haploinsufficiencies. Because hundreds to thousands of genes are hemizygously
deleted per tumor, this mechanism may help to drive tumorigenesis across many cancer types.

Cancer progression is directed by alter-
ations in oncogenes and tumor suppressor
genes (TSGs) that provide a competitive

advantage to increase proliferation, survival, and
metastasis (1–3). The cancer genome is riddled
with amplifications, deletions, rearrangements,
point mutations, loss of heterozygosity (LOH),

and epigenetic changes that collectively result
in tumorigenesis (4–7). How these changes con-
tribute to the disease is a central question in can-
cer biology. In his “two-hit hypothesis,” Knudson
proposed that two mutations in the same gene are
required for tumorigenesis, indicating a reces-
sive disease (8). In addition, there are now sev-
eral examples of haploinsufficient TSGs (9–11).
Current models do not explain the recent ob-
servation that hemizygous recurrent deletions
are found in most tumors (12, 13). Whether
multiple genes within such regions contribute
to the tumorigenic phenotype remains to be
elucidated.

Recent analysis of 3131 tumors revealed 82
regions of recurrent focal deletion (13), averaging
six deletions per tumor and 24 genes per dele-
tion (Fig. 1C, fig. S1A, and table S1) (14). Breast,
gastric, bladder, pancreatic, and ovarian cancers
average ≥10 deletions/tumor (Fig. 1A). Several
possible explanations exist for the roles of these

deletions in tumorigenesis. First, they may con-
tain a recessive TSG where mutation or epige-
netic silencing of the second allele is necessary
for tumorigenesis. Second, they may recur be-
cause they mark unstable genomic regions, such
as fragile sites (12). Finally, it is possible that
single-copy loss may provide a selective advan-
tage irrespective of changes in the remaining
allele.

To address the possibility that recurrent de-
letions are enriched for recessive TSGs, we ana-
lyzed these regions for the presence of known
or putative recessive TSGs. For this purpose
we used a list from the Cancer Gene Census
(15) and a list of putative TSGs that we iden-
tified with homozygous loss-of-function (ter-
mination codon or frameshift) mutations from
whole-genome sequencing of 526 tumors in
the Catalogue of Somatic Mutations in Cancer
(COSMIC) (Fig. 1B and tables S2 and S3) (16).
Only 14 of 82 recurrent deletions contained a
known TSG, and only 10 had a mutant or puta-
tive TSG, 6 of which were in a region with a
known TSG (Fig. 1C and fig. S1). Thus, only 18
of 82 deletions can be explained by known or
putative recessive TSGs. This number may in-
crease if gene silencing is as prevalent as point
mutation for gene inactivation, but this remains
to be determined across all cancers. These data
suggest that in addition to the two-hit mechanism,
an alternative mechanism may function to pro-
vide a selective advantage to these deletions.

Of the many altered processes promoting tu-
morigenesis, proliferation is likely to encompass
the most genes, as it is integrated into all devel-
opmental decisions. Cancer evolution relies on
alterations that provide incremental increases in
cell number—a function of cell duplication fre-
quency coupled with cell survival efficiency.
The average fitness increase of a single alteration
in tumors is estimated to be 0.4% (17). Because
subtle changes in proliferation rates can have
profound effects on tumor fitness and clonal se-
lection, we examined whether recurrent dele-
tions affect regulators of cell proliferation. We
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