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S U M M A R Y 

In the context of Ba yesian inversion, w e consider sequential Monte Carlo (SMC) methods 
that provide an approximation of the posterior probability density function and the evidence 
(marginal likelihood). These particle approaches build a sequence of importance sampling 

steps between gradually tempered distributions evolving from the prior to the posterior PDF. 
To automate the definition of the tempering schedule, adaptive SMC (ASMC) allows tuning 

the temperature increments on-the-go. One general challenge in Bayesian inversions is the 
computational burden associated with e xpensiv e, high-fidelity forward solv ers. Lower-fidelity 

surrogate models are interesting in this context as they can emulate the response of e xpensiv e 
forward solvers at a fraction of their cost. We consider surrogate modelling within ASMC and 

introduce first an approach involving surrogate modelling only, in which either prior samples 
are used to train the surrogate, or the surrogate model is retrained by updating the training 

set during the inversion. In our implementation, we rely on polynomial chaos expansions for 
surrogate modelling, principal component analysis for model parametrization and a ground- 
penetrating radar cross-hole tomography problem with either an eikonal or finite-difference 
time-domain solver as high-fidelity solver. We find that the method based on retraining the 
surrogate during the inversion outperforms the results obtained when only considering prior 
samples. We then introduce a computationally more e xpensiv e multifidelity approach including 

a transition to the high-fidelity forward solver at the end of the surrogate-based ASMC run 

leading to even more accurate results. Both methods result in speed-ups that are larger than 

one order of magnitude compared to standard high-fidelity ASMC inversion. 
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1  I N T RO D U C T I O N  

Bayesian inversion provides a comprehensive characterization of the 
uncertainty associated with inferred model parameters (Sambridge 
& Mosegaard 2002 ). General formulations of Bayesian inversion 
problems can be computationally e xpensiv e to solv e as implementa- 
tions typically require a large number (possibly millions) of forward 
problem e v aluations to obtain a suf ficient number of independent 
samples from the posterior distribution. In addition to their computa- 
tional costs, standard Markov chain Monte Carlo (MCMC) methods 
tend to perform rather poorly when dealing with high-dimensional 
parameter spaces and/or highly non-linear forward problems, fail- 
ing to adequately explore the posterior probability density function 
(PDF). 

Exploration can be enhanced by using tempering-based MCMC 

methods such as parallel tempering (Earl & Deem 2005 ) that re- 
lies on temperature-dependent posteriors, known as power poste- 
riors. Tempering with high temperatures increases the exploration 
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capacity; a property exploited in simulated annealing for global op- 
timization (Kirkpatrick et al. 1983 ). Schemes based on tempering 
have been implemented to solve challenging geophysical Bayesian 
inv ersions, for e xample, geoacustic inv ersions (Yardim et al. 2010 ; 
Dettmer et al. 2010 , 2011 ) and earthquake source inversions (Min- 
son et al. 2013 ; Vasyura-Bathke et al. 2020 ). Annealed importance 
sampling (AIS, Neal 2001 ) and sequential Monte Carlo (SMC, 
Doucet & Johansen 2011 ) are two tempering-based methods that 
approximate the posterior distribution by a weighted sample of par- 
ticle states. Both AIS and SMC perform a sequence of importance 
sampling steps targeting power posteriors with gradually decreas- 
ing temperatures. An important advantage of both methods with 
respect to MCMC methods is that they also allow estimating the 
evidence, the normalizing constant in Bayes’ theorem and a cru- 
cial parameter in Bayesian model selection (Kass & Raftery 1995 ; 
Sch öniger et al. 2014 ). The difference between the two methods is 
that SMC incorporates resampling of the particle population when 
the variance of the importance weights becomes high. To address 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
 any medium, provided the original work is properly cited. 
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he challenge of finding a suitable sequence of temperatures, Zhou
t al. ( 2016 ) proposed an adaptive version of SMC that we will
efer to as ASMC, which automatically adjusts the temperature
ecrease between adjacent power posteriors. Such adaptive SMC
lgorithms have recently been introduced and successfully applied
n geophysical applications demonstrating performances superior
o state-of-the-art MCMC methods (Amaya et al. 2021 ; Davies
t al. 2023 ). Fur ther more, ASMC has shown a stronger capacity to
xplore multi-modal posteriors (Amaya et al. 2022 ). 

In this study, we consider forward solvers with different fidelity
evels within ASMC to reduce the computational cost of the inver-
ion. High-fidelity modelling is used herein to refer to schemes that
chiev e high-accurac y, but typically involv e a high computational
urden. On the other hand, low-fidelity models (also known as sur-
ogate, meta- or proxy models) are mathematical tools that seek to
mulate the behaviour of e xpensiv e high-fidelity forward solvers
t negligible cost per run. The use of surrogate modelling for geo-
hysical inversion purposes has been somehow limited despite their
otential to greatly reduce the computational cost associated with
ayesian inversion (Linde et al. 2017 ; Wagner et al. 2021 ; Meles
t al. 2022 ). Common types of surrogate models include Kriging or
aussian process modelling (Santner et al. 2003 ), and polynomial

haos expansions (Xiu & Karniadakis 2002 ; L üthen et al. 2022 ).
olynomial chaos expansion (PCE) is a type of surrogate that ap-
roximates models by their spectral representations in a suitable
asis of polynomial functions (Xiu & Karniadakis 2002 ; Blatman
 Sudret 2011 ), and has been successfully implemented within var-

ous Bayesian inversion frameworks (Marzouk et al. 2007 ; Marzouk
 Xiu 2009 ; Wagner et al. 2020 ; Meles et al. 2022 ). 
In Bayesian inversion, the combination of forward solvers with

if ferent fidelity le vels has shown to be adv antageous (Peherstor-
er et al. 2018 ). For instance, e volving surro gate solvers within
MC has already been considered, for instance, in biology to pre-
ict dynamics of gene expression (Catanach et al. 2020 ). In solid
echanics, the combination of gradually increasing the spatial reso-

ution in forward modelling and ASMC tempering was proposed by
outsourelakis ( 2009 ), a scheme further automatized by Latz et al.
 2018 ). The concept of multifidelity modelling was introduced in
ncertainty quantification by Ng & Eldred ( 2012 ) and has been ap-
lied to different surrogate modelling frameworks (Park et al. 2017 ).
e use the term multifidelity inversion to refer to Bay esian inver -

ion strategies that accelerate the computation by using low-fidelity
olv ers, while ensuring accurac y and conv ergence by including a
maller number of simulations with the high-fidelity solver. For
 xample, two-stage MCMC reserv es the high-fidelity e v aluations
or samples that have been pre-accepted by the low-fidelity solver
Christen & Fox 2005 ). In this study, we propose an ASMC algo-
ithm that operates within such a multifidelity framework. 

The novelty of this work lies in the inclusion of surrogate mod-
lling at different fidelity levels, including an ultimate transition to
he high-fidelity solver, within ASMC. The method is initialized
ith a low-fidelity solver, trained by realizations from the prior, and
pdates the surrogate as the inversion progresses. To achieve this,
igh-fidelity simulations are gathered and appended to the training
et cumulati vel y, such that the surro gate training set grows and con-
ains more specified samples (more representative of the posterior
DF) as the temperature decreases. To account for the transitions
etween different fidelity levels, importance sampling steps are per-
ormed. In our multifidelity framework, the sequence of updated
urrogates ends with a final transition to the high-fidelity solver.
e test the method in a cross-hole ground-penetrating radar (GPR)

omography setting similar to Meles et al. ( 2022 ). We first consider
n eikonal solver as the high-fidelity model, and we compare the
nversion results when using (i) the high-fidelity solver only, (ii)
 surrogate trained e xclusiv ely by realizations from the prior and
iii) a sequence of surrogate updates. We then evaluate the method
sing a more physically realistic and computationally demanding
nite-difference time-domain (FDTD) solver. We demonstrate that
ur multifidelity ASMC inversion can successfully reproduce the
esults obtained by traditional high-fidelity inversion, but at a much
ower computational cost. 

 M E T H O D  

.1 Bay esian infer ence and model selection 

 probabilistic formulation of the inverse problem is offered by
ay es’ theorem, w hich e xpresses the posterior PDF π ( ξ | y ) ov er
ertain parameters of interest ξ (e.g. pixel values of physical prop-
rties in a regular grid) given a set of observations y : 

( ξ | y ) = 

π ( ξ ) p( y | ξ ) 

π ( y ) 
. (1) 

All the prior knowledge on the system is encapsulated in the prior
DF π ( ξ ) , and the likelihood function p( y | ξ ) quantifies how likely

t is that a given model realization gave rise to the observations given
 prescribed error model. The normalizing constant π ( y ), known
s evidence , or marginal likelihood , quantifies the agreement be-
ween the observed data and the conceptual model, referring here
o the parametrization of the subsurface together with its prior PDF
Brunetti et al. 2017 ). The evidence is needed to compare or rank
ifferent conceptual models (Kass & Raftery 1995 ). Ho wever , this
uantity can be challenging to compute for high-dimensional prob-
ems, as it is a multidimensional inte gral ov er the prior (Sch öniger
t al. 2014 ): 

( y ) = 

∫ 
p( y | ξ ) π ( ξ ) d ξ . (2) 

.1.1 Model parametrization and model reduction 

hen considering spatially correlated fields, the number of param-
ters to be inferred can be reduced using dimensionality-reduction
echniques (e.g. Linde et al. 2015 ). The forward operator F( ξ ) com-
utes the observational output from a set of model parameters ξ .
f we consider a change of coordinates ξ = g( θ full ) and we assume
here is no modelling error in F( ξ ) or loss of information in the
ecomposition, we can formulate the forward problem as: 

 = F( g( θ full )) + εy , (3) 

here y represents the observed data corresponding to the set of
arameters θ full and εy the observational noise. The forward operator
( g( θ full )) can be expressed as a function composition M = F ◦

g. In practice, one achieves dimensionality-reduction by using a
runcated subset of θ full coordinates. For example, in this work
e rely on principal component analysis (PCA Jolliffe & Cadima
016 ). If the function composition over the truncated set of PCA
oordinates θ adequately approximate the forward operator, then: 

 = M ( θ ) + εy + εPCA , (4) 

here εPCA is the error in the computed forward response associated
ith the truncated projection. In this study, we rely on surrogate for-
ard models that, when dealing with a large number of parameters,
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require the use of dimensionality reduction techniques to be com- 
putationally feasible to implement (Torre et al. 2019 ). We consider 
a PCA decomposition that identifies the main features from a set of 
random realizations from the prior similarly to Meles et al. ( 2022 ). 
It has a simple implementation and has been used in many geoscien- 
tific inv ersions (Re ynolds et al. 1996 ; Sarma et al. 2006 ; Kitanidis & 

Lee 2014 ; Jiang & Jafarpour 2021 ). Ho wever , the method proposed 
in this paper is not e xclusiv ely linked to this choice and alternative 
dimensionality reduction techniques could be considered. 

2.2 Introduction to SMC 

SMC methods (Chopin 2002 ; Del Moral et al. 2006 ) are a group 
of algorithms in which N particles evolve in parallel towards an 
approximation of the posterior PDF. The un-normalized power pos- 
teriors γt ( θ t | y ) are distributions in which the likelihood function is 
raised to the power of an inverse temperature αt : 

γt ( θ t | y ) ≡ π ( θ t ) p( y | θ t ) 
αt . (5) 

The SMC particles target in a sequential manner a series of 
power posteriors with gradually increasing inverse temperatures 
(that is, decreasing temperatures), starting with the prior PDF ( α
= 0) and ending with the posterior PDF ( α = 1). To approximate 
the intermediate power posteriors, a set of K intermediate MCMC 

steps are performed. After K steps, a transition is made to the next 
power posterior (defined by an increment on the current αt ) using an 
importance sampling step (IS Hammersley & Handscomb 1964 ). In 
this step, the approximation of the present power posterior forms the 
importance distribution for the next one, resulting in an incremental 
weight for each particle i given by: 

w 

i 
t = 

γt ( θ
i 
t−1 | y ) 

γt−1 ( θ
i 
t−1 | y ) 

, (6) 

where θ i 
t−1 is the state of the particle after the K MCMC steps taken 

to approximate γ t − 1 . These incremental weights are multiplied 
throughout the run, for each particle, in the form of normalized 
particle weights: 

W 

i 
t = 

W 

i 
t−1 w 

i 
t ∑ N 

j= 1 W 

j 
t−1 w 

j 
t 

, (7) 

where W 

i 
t−1 is the normalized weight of the previous IS step. At the 

end of the run, the final particle states (each one is a set of model 
parameter values θ ) with associated weights W T approximate the 
posterior PDF. Fig. 1 shows a graphical representation of the SMC 

method using N = 4 particles. Since the estimation is performed 
through a series of importance sampling steps, the estimates are 
unbiased regardless of the number of K MCMC steps (e.g. there 
is no need to reach ‘burn-in’ as in MCMC methods). Ho wever , if 
using a too low K or even K = 0, the variance of the estimates 
will be very large rendering the resulting estimates unreliable. For 
a detailed treatment, we refer to Neal ( 2001 ) and Del Moral et al. 
( 2006 ). 

2.2.1 Resampling 

SMC methods uses resampling (Doucet & Lee 2018 ), a re- 
organization of the particle states with replications that are pro- 
portional to the particle weights (red-dashed lines in Fig. 1 ). During 
resampling, the states of particles with high normalized weights are 
likely to be reproduced, whereas the states of particles with low 
normalized weights are likely to be discarded. After each resam- 
pling step, the normalized weights of all particles are re-initialized 
to W 

i 
t = 1 /N . Resampling keeps the variance of the normalized 

particle weights from growing indefinitely by favouring particle 
trajectories with significant posterior probabilities. Ho wever , the 
resampling process increases the variance of the SMC estimates 
unnecessarily if it is performed too often (Douc & Capp é 2005 ). 
To make decisions on when to perform resampling, the ef fecti ve 
sample size ( ESS ) is monitored throughout the run: 

E S S t = 

( 
∑ N 

i= 1 W 

i 
t −1 w 

i 
t ) 

2 

∑ N 
h = 1 ( W 

h 
t −1 ) 

2 ( w 

h 
t ) 2 

. (8) 

The ESS quantifies the ef fecti ve number of particles in the particle 
appro ximation and w hen the ESS t / N ∈ [0, 1] gets lower than a 
threshold value ESS ∗/ N , a resampling step is performed. We rely 
on systematic resampling because of its simplicity and satisfactory 
performance (Doucet & Johansen 2011 ). 

2.2.2 Evidence estimation 

The normalizing constant in Bayes’ theorem (eq. 1 ) is the key 
quantity in Bayesian model selection and is obtained as a byproduct 
of the SMC method. Del Moral et al. ( 2006 ) show that the ratio 
of the normalizing constants of two consecutive power posteriors, 
Z t = 

∫ 
γt ( θ | y )d θ and Z t−1 = 

∫ 
γt−1 ( θ | y )d θ , can be approximated 

as: 

Z t 

Z t−1 
≈

N ∑ 

i= 1 
W 

i 
t−1 w 

i 
t . (9) 

As the prior PDF integrates to one ( Z 0 = 1), the evidence (eq. 2 ) 
can be expressed as the product of consecutive normalizing constant 
ratios and, hence, appro ximated using the ev olving particle weights 
as: 

π ( y ) = Z T = 

Z T 

Z 0 
= 

T ∏ 

t= 1 

Z t 

Z t−1 
≈

T ∏ 

t= 1 

N ∑ 

i= 1 
W 

i 
t−1 w t 

i . (10) 

2.2.3 Adaptive sequential Monte Carlo (ASMC) 

Pre-selecting a suitable sequence of αt is very challenging. The 
ASMC method by Zhou et al. ( 2016 ) aims at building a sequence of 
g radual inter mediate IS steps bridging the prior and the posterior, 
such that the quality of the importance sampling steps quantified 
b y the v ariance of the incremental weights in eq. ( 6 ), is controlled. 
In ASMC, the αt -increments are automatically defined on-the-go 
based on the conditional ESS ( CESS ): 

C E S S = N 

(∑ N 
i= 1 W 

i 
t −1 w 

i 
t 

)2 

∑ N 
j= 1 W 

j 
t −1 

(
w 

j 
t 

)2 
. (11) 

In practice, a binary search is made over a range of possible 
increments to find the one that provides incremental weights w t that 
give the CESS that is the closest to a pre-defined value ( CESS op ). The 
CESS op parameter controls the quality of the importance sampling 
steps and, hence, the quality of the resulting particle approximation. 
The CESS op / N can take values between 0 and 1, the higher it is, the 
better the quality of the importance distrib ution, b ut the larger is 
the number of resulting power posteriors in the sequence L . As the 
relationship between L and CESS op is non-linear, it is challenging 
to recommend suitable CESS op v alues. Results b y Amaya et al. 
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Figure 1. Schematic representation of SMC for N = 4 particles. The circles represent the particles evolving states with the initial samples drawn from the prior 
PDF (white circles) and K = 3 MCMC steps are used to approximate the power posteriors γ t with increasing inverse temperatures αt . Importance sampling 
steps are performed to transition betw een pow er posteriors, in which incremental weights w 

i 
t , contributing to the particle normalized weights W 

i 
t , are computed. 

The red-dashed lines indicate the re-organization of the particle states performed in a resampling step. 
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 2021 ) suggest that CESS op / N > = 0.99 provides a suitably smooth
equence. A deri v ation of eqs ( 8 ) and ( 11 ) can be found in Zhou
t al. ( 2016 ). 

In the K MCMC steps used for each considered power posterior,
he proposed models obtained, if using symmetric proposal distri-
utions, are accepted or rejected according to the Metropolis rule
Metropolis et al. 1953 ). It states that the probability to accept the
roposed candidate model θ p over the current one θ c is: 

( θ p , θ c ) = min 

(
1 , 

π ( θ p ) p( y | θ p ) 

π ( θ c ) p( y | θ c ) 

)
. (12) 

We consider candidate particle states θ p that are generated by
dding zero-mean and uncorrelated random Gaussian perturbations
o the current state θ c . The standard deviation of the proposal dis-
ribution is chosen to be proportional to the standard deviation of
he prior, with the constant of proportionality φ determining the
roposal scale. Compared with MCMC algorithms, an important
dvantage of ASMC is that φ can be tuned throughout the run to
nsure that the acceptance rate AR is kept within a suitable range
hile still ensuring unbiased estimates. This is a consequence of the

act that the K MCMC steps are only used to improve the quality of
he importance sampling distribution. 

.3 ASMC with surrogate updates 

his section focuses on the novel contribution of this work, which is
 multifidelity framew ork allo wing the inclusion of surrogate mod-
lling in ASMC. The aim is to significantly reduce computational
imes compared to ASMC using high-fidelity solvers only while
till obtaining approximations that are close to the results obtained
n that case. If simply replacing a high-fidelity forward solver with
 low-fidelity solver, the resulting posterior PDF is different from
he original problem. 

As the inverse temperature reduces the influence of the likelihood
erm, errors induced by a low-fidelity forward model are less signif-
cant at the early stages of the ASMC algorithm, implying that a less
ccurate surrogate can be sufficient. We propose to build a sequence
f power posteriors that combines inverse temperature increments
ith updates of increasingly more accurate surrogate models as
eeded when the inverse temperature rises, while al wa ys including
n estimation of the associated model error. By gradually improving
he surrogate and ultimately transfer to the high-fidelity solver, we
im to decrease the difference between the posterior PDF-estimates
btained with those of using the high-fidelity forward solver only.
e follow (Meles et al. 2022 ) and use PCE surrogate models (see
ppendix A). 
If we consider a sequence of surrogate solver updates s j , with j

 [1, J ] and J the number of total surrogate updates, for a power
osterior γ

s j 
t , the likelihood is computed using the surrogate solver

ˆ 
 

s j ( θ ) and the covariance accounting for the three error sources
n eq. ( A6 ) (Appendix A). The covariances associated with the data
oise C y and the PCA projection C PCA are then constant throughout
he inversion, while the covariance associated to the PCE C PCE is
ecalculated for each update of the surrogate model. Each time the
urrogate is updated, we introduce an IS step to account for the
ransition between surrogates. It is performed to account for the
hange in the forward operator and C PCE . If the surrogate s j with
ovariance C 

s j 
PCE is replaced with the updated surrogate s j + 1 with

ovariance C 

s j+ 1 
PCE , then the incremental weight resulting from the IS

tep will be: 

[ s j , s j+ 1 ] i t = 

γ
s j+ 1 
t ( θ i 

t−1 | y ) 
γ

s j 
t−1 ( θ

i 
t−1 | y ) 

. (13) 

Similarly to before, the αt of the following power posterior in the
equence γ

s j+ 1 
t can be optimized based on the CESS . The algorithm

elects from a range of αt = F αt − 1 with F ∈ [0.1, 2], the one that
rovides the highest CESS . The incremental weights in eq. ( 13 )
ontribute to the particle importance weights and evidence in the
ame way as the standard ASMC incremental weights in eq. ( 6 ). In
ontrast to those IS steps, we find that the optimal αt is smaller than

t − 1 , because there is generally a reduction of the modelling errors
hen updating the surrogate. 
To gain intuition about the impact of these different IS steps, it is

seful to consider the multiplication of the incremental weights fol-
owing Neal ( 2001 , their eq. 5). If we consider an ASMC inversion
n which the surrogate s 0 is unchanged, the sequence of incremental

art/ggae040_f1.eps
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Figure 2. Modified schematic diagram of ASMC (Fig. 1 ) with surrogate updating (ASMC–SURR). The black-dashed lines represent a retraining of the 
surro gate to gether with the corresponding importance sampling step to transition from one surrogate to the following one. The change in the colour denotes a 
change of surrogate, whereas the change of the colour tone denotes a change of temperature when keeping the surrogate solver fixed. 
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weight ratios (eq. 6 ) for a particle is: 

T ∏ 

t= 1 
w t = 

γ
s 0 
1 ( θ0 | y ) 

γ
s 0 
0 ( θ0 | y ) 

γ
s 0 
2 ( θ1 | y ) 

γ
s 0 
1 ( θ1 | y ) 

γ
s 0 
3 ( θ2 | y ) 

γ
s 0 
2 ( θ2 | y ) 

γ
s 0 
4 ( θ3 | y ) 

γ
s 0 
3 ( θ3 | y ) 

γ
s 0 
5 ( θ4 | y ) 

γ
s 0 
4 ( θ4 | y ) 

γ
s 0 
6 ( θ5 | y ) 

γ
s 0 
5 ( θ5 | y ) 

... 
γ

s 0 
T ( θT −1 | y ) 

γ
s 0 
T −1 ( θT −1 | y ) , (14) 

where we hav e remov ed the particle index i to simplify the notation. 
Eq. ( 14 ) illustrates the bridge created by the IS steps; the sequence 
starts with the prior γ 0 as an importance distribution and ends 
with the posterior γ T as the target distribution. When considering 
surrogate updates, the sequence will also include the corresponding 
IS steps, for example: 

T ∏ 

t= 1 
w t = 

γ
s 0 
1 ( θ0 | y ) 

γ
s 0 
0 ( θ0 | y ) 

γ
s 0 
2 ( θ1 | y ) 

γ
s 0 
1 ( θ1 | y ) 

γ
s 1 
3 ( θ2 | y ) 

γ
s 0 
2 ( θ2 | y ) 

γ
s 1 
4 ( θ3 | y ) 

γ
s 1 
3 ( θ4 | y ) 

γ
s 1 
5 ( θ4 | y ) 

γ
s 1 
4 ( θ4 | y ) 

γ
s 2 
6 ( θ5 | y ) 

γ
s 1 
5 ( θ5 | y ) 

... 
γ

s J 
T ( θT −1 | y ) 

γ
s J 
T −1 ( θT −1 | y ) , (15) 

where the third and sixth ratio are associated with the transition be- 
tween different surrogates (eq. 13 ). To update the surrogate, we 
collect samples of the high-fidelity response as the ASMC se- 
quence progresses. These samples are used to retrain the PCE 

surrogate after a pre-defined number of inverse temperature up- 
dates T up . The training set grows as the samples are added to the 
previous training set. As ASMC targets power posteriors that grad- 
ually approach the posterior PDF, the sampling gets more focused 
in high-likelihood regions of the parameter space. Consequently, 
the surrogate will not only perform better due to the increased 
size of the training set, but it will also become more accurate in 
regions of the parameter space having significant posterior prob- 
abilities. A schematic representation of ASMC incorporating sur- 
rogate updates can be found in Fig. 2 ; we refer to this method as 
ASMC–SURR. 

2.3.1 Multifidelity modelling by transitioning to the high-fidelity 
solver 

The ASMC–SURR algorithm progresses while improving the sur- 
rogate until αt = 1. At this point, it provides an approximation of the 
posterior PDF and the evidence associated with the last surrogate 
used in the sequence. One can finish the inversion with these ap- 
proximations (that is, the ASMC–SURR method), or go further by 
considering a switch to the original high-fidelity solver (indicated 
in the following by HF). The incremental weight resulting from this 
step considering one particle is: 

w[ s J , H F ] i t = 

γ HF 
t ( θ t−1 | y ) 

γ
s J 
t−1 ( θ t−1 | y ) , (16) 

where s J is the last surrogate of the sequence. In this step the inverse 
temperature αt − 1 , corresponding to the power posterior in the de- 
nominator γ s J 

t−1 is equal to 1. The inverse temperature αt associated 
to γ HF 

t can again be optimized. We seek an optimal value from αt 

= F HF αt − 1 with F HF ∈ [0.1, 1], such that it provides the highest 
possible CESS . We refer to F HF as the α-correction. Subsequently, 
the ASMC algorithm proceeds with high-fidelity updates until αt = 

1 is reached. We refer to this algorithm as ASMC–SURR–HF. This 
is a multifidelity inversion method in the sense of Peherstorfer et al. 
( 2018 ), in that it targets the same posterior and evidence as if one 
would al wa ys use the high-fidelity solver. A flow chart describing 
the basics of both ASMC–SURR and ASMC–SURR–HF are found 
in Fig. 3 . A detailed description of the two algorithms is given in 
Appendix B. 

2.3.2 Performance assessment 

In our test cases, performing one of the K MCMC steps using sur- 
rogate solvers compared to using the high-fidelity solver implies a 
gain in computational time of 10–1000 times. To assess the compu- 
tational demand of the ASMC–SURR inversions, we assume that 
the dominant parameter is the required number of simulations using 
the high-fidelity solver ( HF sim ) and that the computational cost of 
the surrogate solver is negligible. We consider also the relative num- 
ber of HF sim required for ASMC–SURR compared to the number 
of HF sim required when al wa ys using the high-fidelity solver ( HF 

sim relative ). 
To e v aluate the accuracy of the posterior estimates, we rel y on the 

logarithmic scoring rule (Good 1992 ; Kr üger et al. 2021 ). For each 
estimated parameter, the logarithmic score is the ne gativ e logarithm 

of the estimated posterior PDF e v aluated at a reference (true) value. 
When comparing two posterior estimates, the one with the lower 
score is preferred. A kernel density estimate of the posterior sam- 
ples is used to approximate the posterior uni v ariate distributions; 
we use a Gaussian kernel with a bandwidth smoothing window 

calculated using the Scott’s rule (Scott 2015 ). We consider as a 
performance metric the average logarithmic score of the model pa- 
rameters ( Mean log-score ). We also present the structural similarity 
index measure ( SSIM , Wang et al. 2004 ), that quantifies the sim- 
ilarity between two images (it can vary between −1 to 1, with 1 
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Figure 3. Simplified flow chart representing the main steps to perform ASMC inversion with surrogate updates with (ASMC–SURR–HF) and without 
(ASMC–SURR) transitioning to the high-fidelity solver. After the initialization, the sampling of the adaptive sequence of power posteriors at gradually 
increasing αs starts, with importance sampling steps performed between consecutive power posteriors (see Section 2.2.3 ). The surrogate can be updated 
followed by an importance sampling step to transition between surrogates (see Section 2.3 ). If the ESS falls below the threshold ESS ∗, resampling is performed 
(see Section 2.2.1 ). The particle normalized weights and evidence (see Section 2.2.2 ) are updated after the importance sampling steps. When α = 1, we can 
chose between finishing the run (ASMC–SURR) or transitioning to the high-fidelity solver (ASMC–SURR–HF, see Section 2.3.1 ). 
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eing the highest similarity). We consider the SSIM with respect to
he posterior mean model of the full high-fidelity inversion. On the
utput domain, we compute the weighted mean root-mean-squared-
rror between the data and the output of the final particle states
 RMSE output ). 
w  
 R E S U LT S  

.1 Test case 

o e v aluate the ASMC–SURR and the ASMC–SURR–HF methods,
e consider a synthetic GPR crosshole tomography problem similar
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Figure 4. (a) Reference model and (b) its 100-PCA representation back- 
projected into the relati ve permitti vity domain. The GPR sources are repre- 
sented in (a) with black stars and the receivers with black circles. 
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to Meles et al. ( 2022 ) with subsurface relative dielectric permittivity 
εr variations and constant electrical conductivity (Fig. 4 a). The 
dimension of the εr models is 125 × 250 with a cell discretization 
of d x = d z = 0.04 m, which results in 5 × 10 m models. The 
simulated GPR first-arri v al traveltimes are obtained using 9 sources 
and 9 receivers spaced 4.6 m apart in the x -direction and 0.6 m in the 
z -direction. Onl y observ ations for which the angle between sources 
and receivers is lower than 45 ◦ are considered (Peterson 2001 ) such 
that the data set is composed of 69 first-arri v al traveltimes. The 
covariance structure is based on the 2-D Mat érn geostatistical model 
(Dietrich & Newsam 1997 ; Laloy et al. 2015 ) with a mean of 15, a 
standard deviation of 2.45, an anisotropy ratio of 0.3, an anisotropy 
angle of 85 ◦, an integral scale of the major axis of 10 m and a shape 
parameter of 1.15. 

3.1.1 PCA r epr esentation 

Following Meles et al. ( 2022 ), the PCA decomposition is learned 
from a set of 1000 samples drawn from the generative prior model. 
Figs 5 (a)–(d) show random realizations of the generative model. 
The number of principal components defines the resolution and 
the maximum achie v able le vel of reconstruction of the original 
features. The dimension of the inverse problem is reduced as the 
inversion is performed in the PCA domain. We rely on 100 principal 
components to parametrize the input domain; these type of models 
are in what follows indicated as 100-PCA. The back-projection 
of the 100-PCA representation of the reference model is shown 
in Fig. 4 (b). Figs 5 (e)–(h) show the resulting 100-PCA projection 
of the model realizations in Figs 5 (a)–(d), back projected into the 
relati ve permitti vity domain. 

3.2 Inversion 

3.2.1 ASMC setting 

We perform ASMC inversions using N = 50 particles, K = 500 
MCMC steps to approximate each power posterior and an optimal 
conditional ef fecti ve sample size of CESS op / N = 0.99. When the 
acceptance rate gets lower than AR min = 15 per cent at αt − 1 , the 
proposal scale φ is reduced a factor of f = 20 per cent for αt . 
Resampling is performed when ESS / N < 0.3 (Del Moral et al. 
2006 ; Amaya et al. 2022 ). 

To e v aluate the performance of ASMC–SURR and ASMC–
SURR–HF, we first explore cases for which the high-fidelity solver 
is an eikonal forward solver. This choice is made as it is then com- 
putationally feasible to estimate the posterior PDF and the evidence 
using the high-fidelity solver onl y, thereb y, allowing for compar- 
isons with a reference solution. This reference solution is termed 
ASMC eikonal and it uses the time2d algorithm by Podvin & Lecomte 
( 1991 ) for forward computations; a finite-difference approxima- 
tion of the eikonal equation. We then consider the case when we 
train a surrogate solver using e xclusiv ely model realizations drawn 
from the prior and their corresponding high-fidelity eikonal simula- 
tions (ASMC eikonal –SURR prior ). This configuration is also e v aluated 
in the multifidelity setting (ASMC eikonal –SURR prior –HF). We com- 
pare these results to those obtained when four retraining steps of 
the surrogate are performed (ASMC eikonal –SURR update ) and with 
a subsequent transition to the high-fidelity solver (ASMC eikonal –
SURR update –HF). To allow for a fair comparison, we consider an 
equal total budget of high-fidelity simulations for training regard- 
less if prior training only or retraining is allowed. The final number 
of high-fidelity simulations needed for ASMC eikonal –SURR prior –HF 

and ASMC eikonal –SURR update –HF after switching to the high-fidelity 
solver depends on the resulting optimized α-correction F HF (see 
Section 2.3.1 ). Finally, we consider results obtained when the high- 
fidelity forward solver is made up of a computationally much more 
e xpensiv e finite-difference time-domain solver (the simulations take 
1000 times more time than for the PCE). Table 1 shows the resulting 
number of power posteriors, high-fidelity and surrogate evaluations 
for each test. 

3.2.2 PCE surrogate training 

The PCE surrogates are trained to learn the relationships between 
the PCA coefficients and the high-fidelity first-arri v al traveltimes. 
The inversion is performed over the 100 principal components used 
to parametrize the input domain. Hence, the training set for the 
PCEs is composed of input models in the 100-PCA space and 
the corresponding eikonal first-arri v al traveltimes computed on the 
100-PCA back-projected relati ve permitti vity models as output. In 
ASMC eikonal –SURR prior , a set of 1000 prior input–output pairs are 
used to train the surrogate. In ASMC eikonal –SURR updates , the same 
total budget of 1000 high-fidelity simulations is used. From these 
1000, a set of τ 0 = 200 prior input–output pairs are used to train the 
initial surrogate s 0 . We consider four surrogate updates ( s 1 , s 2 , s 3 , 
s 4 ) retrained at regular intervals of T up = 35 inverse temperatures. 
To reach the 1000 high-fidelity budget, 200 new high-fidelity input–
output pairs are gathered and appended to the training set matrices 
during each interval, such that the increasing training set sizes of the 
four surrogate updates are τ k = 400, 600, 800, 1000 (see Appendix B 

for details on the implementation). 

3.2.3 Error covariance matrices 

The data used for the various inversions are obtained by simulating 
the high-fidelity first-arri v al traveltimes of the full reference model 
(Fig. 4 a), and then contaminating them with uncorrelated Gaus- 
sian noise with a standard deviation of σ = 0.5 ns. We consider a 
Gaussian likelihood function (eq. A4 ) with a covariance matrix that 
incorporates the different error sources (see Appendix A, eq. A5 ). 
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Figure 5. (a)–(d) Random samples obtained with the generative prior model and (e)–(h) their 100-PCA representation back-projected into the relative 
permittivity domain. 

Table 1. Lengths of the ASMC runs and their performance metrics. The total number of MCMC steps per particle is given by the number of 
power posteriors ( L , number of inverse temperatures) arising from the adaptive nature of the algorithm (Section 2.2.3 ) multiplied by the K MCMC 

steps used to approximate each power posterior. All runs are performed using N = 50, CESS op / N = 0.99 and K = 500 (except for the reduction 
to K = 50 in the high-fidelity stage of ASMC FDTD –SURR updates –HF). 

ASMC eikonal ASMC eikonal – ASMC eikonal – ASMC eikonal – ASMC eikonal– ASMC FDTD – ASMC FDTD –
SURR prior SURR prior –HF SURR updates SURR updates –HF SURR updates SURR updates –HF 

L 192 173 251 180 203 178 191 
HF sim [ × 10 3 ] 4800 1 1950 1 576 1 33.5 
HF sim relative 100 per cent 0.02 per cent 40.63 per cent 0.02 per cent 12 per cent - - 
PCE sim [ × 10 3 ] 0 4325 4325 4500 4500 4450 4450 
Resampling 2 2 4 2 3 2 3 
SSIM 1 0.84 0.92 0.91 0.93 - - 
Mean σ 0.82 0.83 0.82 0.81 0.78 0.86 0.68 
Mean log-score 1.46 1.73 1.50 1.60 1.52 1.23 1.09 
RMSE output 0.52 ns 0.84 ns 0.48 ns 0.65 ns 0.49 ns 0.72 ns 0.55 ns 
Log-evidence −110.8 −121.3 −123.7 −114.3 −116.5 −122.7 −132.1 
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igs 6 (a) and (b) show the data error covariance matrix C y and the
CA projection error covariance matrix C PCA , respectively. The co-
ariance matrix used in the likelihood calculation is the sum of the
ontributions C y and C PCA in the cases cases when the forward sim-
lations are performed using the high-fidelity solver (ASMC eikonal ).
ig. 6 (c) shows the covariance matrix of the PCE errors C PCE for the
urrogate used in AMSC eikonal –SURR prior . When performing simu-
ations using the PCE surrogate, we assume the covariance matrix
n the likelihood function to be the sum of the three contributions
 y , C PCA and C PCE . The diagonals of the covariance matrices for

his case are shown in Fig. 6 (d). The lower the number of princi-
al components used, the higher the errors associated to the PCA
rojection. The choice of 100 principal components was made to
nsure that the influence of the PCA projection errors in the like-
ihood function is negligible compared to the data and surrogate

odelling error (see Fig. 6 a). 

.2.4 High-fidelity r efer ence solution with eikonal solver 

he inversion using the high-fidelity forward solver (ASMC eikonal )
esulted in L = 192 power posteriors, a total number of 4.8 mil-
ion high-fidelity forward simulations and two resampling steps
Tab le 1 ). F igs 7 (a) and (h) show the corresponding weighted poste-
ior mean and standard de viation, respecti vel y, w hile F ig. 8 (a) shows
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Figure 6. (a) Data error covariance matrix, (b) PCA projection error covariance matrix, (c) PCE surrogate modelling error covariance matrix for a surrogate 
trained using 1000 prior samples and (d) their diagonal elements. 
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the logarithmic score values on the relative permittivity domain. Ta- 
ble 1 provides the performance metrics: the SSIM equals one as we 
consider this posterior mean as the reference for the following tests, 
the mean of the standard deviation Mean σ , the Mean log-score , the 
RMSE output and the Log-evidence estimation. The RMSE output 
is 0.516 ns, which is close to the 0.5 ns data noise level (Fig. 6 ). 
The evidence estimate is −110.81. 

3.2.5 Surrogate-based ASMC solutions with eikonal high-fidelity 
solver 

Figs 7 (b)–(e) and (g)–(j) show the posterior means and standard 
deviations for the considered ASMC–SURR and ASMC–SURR–
HF runs. The logarithmic score values are shown in Figs 8 (b)–
(e). The resemblance among the mean images and with respect to 
the reference solution suggest that the posterior mean approxima- 
tions are overall of similar quality. By focusing on the performance 
metrics given in Table 1 , we see for the surro gate-onl y inversions 
(ASMC–SURR) that updating the surrogates during the inversion 
(ASMC eikonal –SURR update ) outperforms the case when the surrogate 
is based on prior realizations only (ASMC eikonal –SURR prior ). Com- 
paring these two cases, it is seen that the SSIM is 0.91 versus 0.84, 
the Mean log-score 1.6 versus 1.73 and the RMSE output 0.65 ns 
versus 0.84 ns. Both runs underestimate the evidence when com- 
pared to the high-fidelity inversion, but the ASMC eikonal –SURR update 

approximation is closer to the reference ( −114.3 versus 121.3). For 
an equal budget, this suggests that when high-fidelity simulations 
are only used to train the surrogate, there is a notable improve- 
ment of fered b y retraining the surro gate as the ASMC inversion 
progresses instead of only performing training using samples from 

the prior. 
When considering the multifidelity approach involving a transi- 

tion to the high-fidelity solver (ASMC–SURR–HF), Table 1 shows 
that there are significant improvements in the values of SSIM , Mean 
log-score and RMSE output compared to the ASMC–SURR re- 
sults (e.g. the RMSE output decreases from 0.84 ns to 0.48 ns, 
and from 0.65 ns to 0.49 ns). On the other hand, the metrics in 
Table 1 suggest that ASMC eikonal –SURR prior –HF and ASMC eikonal –
SURR update –HF results provide very similar results. The main differ- 
ence between the two inversions is that the α-correction factor is F HF 

= 0.53 for ASMC eikonal –SURR update –HF compared to F HF = 0.15 
for ASMC eikonal –SURR prior –HF. This implies that the high-fidelity 
stage of the inversion starts at α = 0.53 and α = 0.15, respecti vel y. 
This translates in a computing cost of the high-fidelity stage that 
is more than three times higher for ASMC eikonal –SURR prior –HF, as 
many more high-fidelity solutions are needed to reach α = 1. This 
clearly shows that the price to pay for transitioning to the high- 
fidelity forward solver with a poor surrogate is reflected in a low 

cor responding α-cor rection factor F HF . Hence, updating the sur ro- 
gate sequence results in a smoother transition to the high-fidelity 
solver and, hence, lower computing times. 

Figs 9 (a)–(c) show the evolution of CESS / N (eq. 11 ) 
for ASMC eikonal , ASMC eikonal –SURR prior –HF and ASMC eikonal –
SURR update –HF, respecti vel y. The v alues are close to the optimal 
CESS op = 0.99 except for the IS steps used to transition between 
forward solvers when the CESS / N is much lower. The diagonal ele- 
ments of the modelling error covariance matrix C PCE are shown in 
Fig. 10 (a). As the training set grows in ASMC eikonal –SURR update –
HF, the mean error level in the C PCE diagonals decreases. After 
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Figure 7. Posterior weighted mean model and standard deviation in, respectively, (a) and (f) ASMC eikonal , (b) and (g) ASMC eikonal –SURR prior , (c) and (h) 
ASMC eikonal –SURR prior –HF, (d) and (i) ASMC eikonal –SURR update , (e) and (j) ASMC eikonal –SURR updates –HF. Note that the standard deviations only consider 
those associated with the first 100 PCA components that are considered in the inversions (see Meles et al. 2022 ). 

Figure 8. Logarithmic score values for (a) ASMC eikonal , (b) ASMC eikonal –SURR prior , (c) ASMC eikonal –SURR prior –HF, (d) ASMC eikonal –SURR updates , (e) and 
(l) ASMC eikonal –SURR updates –HF. 
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he third update, the surrogate presents a lower error level than the
urrogate trained using prior samples. 

.2.6 Surrogate-based ASMC solutions with FDTD high-fidelity 
olver 

o demonstrate the gain offered when considering more realistic and
omputationally more e xpensiv e high-fidelity forward solvers than
he eikonal solver, we consider now a high-fidelity two-dimensional
nite-dif ference time-domain (FDTD) forw ard solver simulating
ropagation in the transverse-electric mode (Irving & Knight 2006 ).
ollowing Meles et al. ( 2022 ), automatic determination of trav-
ltimes is performed by applying a threshold based on the rel-
tive maximum amplitude of each source-receiver pair. Running
he ASMC inversion using only this e xpensiv e solv er would require
everal months of computing (one parallelized simulation of 50 par-
icles takes around 3.5–5 min); see also (Hunziker et al. 2019 ). We
est our proposed method using FDTD as the high-fidelity solver
ASMC FDTD –SURR update ) while keeping the same ASMC inver-
ion setting as for the ASMC eikonal –SURR update case. The inversion
eeded 178 power posteriors and two resampling steps (Table 1 ).
he correction F HF for the transition to the high-fidelity stage is 0.73,
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Figure 9. Conditional ef fecti v e sample size ov er the number of particles ( CESS / N ) v ersus inv erse temperature inde x for (a) ASMC eikonal , (b) ASMC eikonal –
SURR prior –HF, (c) ASMC eikonal –SURR update –HF and (d) ASMC FDTD –SURR update –HF. The low values correspond to CESS -decreases occurring when updating 
the surrogate model or when transitioning to the high-fidelity forward solver. 

Figure 10. Evolution of the diagonal of the covariance modelling error matrix C PCE for the four surrogate updates in (a) ASMC eikonal –SURR update and (b) 
ASMC FDTD –SURR update . The initial surrogate s 0 is trained using 200 samples, and 200 more are added to the training set in each update, such that the 
fourth surrogate update s 4 is trained using 1000 samples. The blue horizontal line corresponds to the diagonal of the data error covariance matrix C y , and the 
black-dashed line in (a) is the C PCE diagonal of the eikonal surrogate trained with 1000 prior samples used in ASMC eikonal –SURR prior . 
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Figure 11. Posterior weighted mean model for (a) ASMC FDTD –SURR update and (d) ASMC FDTD –SURR update –HF, posterior standard deviation for (b) 
ASMC FDTD –SURR update and (e) ASMC FDTD –SURR update –HF, and logarithmic score value for (c) ASMC FDTD –SURR update and (f) ASMC FDTD –SURR update –
HF. Note that the standard deviations only consider those associated with the first 100 PCA components (see Meles et al. 2022 ). 
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hich resulted in only 13 extra inverse temperatures (ASMC FDTD –
URR update –HF). Performing K = 500 Markov steps to approximate

he 13 power posteriors is still very computationally demanding. In
SMC it is possible to decrease the K , with the consequence of hav-

ng a less appropriate importance distribution. By choosing K = 50
or the steps involving HF makes it feasible to run the high-fidelity
tage of the inversion. Fig. 11 shows the posterior weighted mean,
tandard deviation and logarithmic score values for ASMC FDTD –
URR update and ASMC FDTD –SURR update –HF. Fig. 10 (b) shows the
volution of the covariance matrices in the PCE updates and Fig. 11
hows the CESS / N values with the low values corresponding to
ransitions between forward solv ers, respectiv ely. The performance
etrics in Table 1 show the improvement achieved by adding the

igh-fidelity stage. For example, the Mean log-score decreases from
.23 to 1.09, and the RMSE output from 0.72 to 0.55 ns. Even if
he results are not completely comparable with the eikonal cases,
s we are using different data and forward solver, the metrics are
lose and even better than for the eikonal reference test (e.g. the
SIM for ASMC FDTD –SURR update –HF is 0.638 compared to 0.62
or ASMC eikonal and the Mean log-score is 1.09 compared to 1.46).
he evidence estimations are different than for the eikonal case, but

his is expected as the high-fidelity forward solvers used to create
he observed data are different. In the FDTD case, it is difficult to
ay anything conclusive as we do not have a reference value of the
vidence using the high-fidelity solver only. 
m  
 D I S C U S S I O N  

ver the past 20 yr, surrogate modelling has emerged as a prominent
omputational paradigm due to the massive reduction in computa-
ional costs achieved by approximating complex forward models
ith simple and easy-to-estimate functions. The accuracy of surro-
ate modelling critically depends on the training set used to learn
he input–output relationship, and should ideally be lower than the
ata noise level. The construction of a globally accurate surrogate
pplicable to any prior realization can be challenging. Ho wever ,
urrogate accuracy can be refined in regions of high posterior prob-
bility that can be identified by low-fidelity models, whose inac-
uracies are accounted for by their corresponding modelling error
ovariance (Li & Marzouk 2014 ; Hansen et al. 2014 ; Wagner et al.
021 ; Rossat et al. 2022 ). We show that the quality of the results
btained by combining ASMC with surrogate solvers in the ASMC–
URR method is enhanced when updating the surrogate compared

o training the surrogate from the prior only. With ASMC–SURR
here is an outstanding speed-up compared to inversion based on
he high-fidelity solver. By accounting for the modelling error in
he likelihood function, we obtain less informative, but still reliable
esults that recover the main features of the reference model. The
SMC–SURR algorithm can thus be used to obtain posterior esti-
ations for applications that do not require the highest degree of

ccuracy or for poorl y informati ve acquisition configurations. The
ultifidelity inversion ASMC–SURR–HF provides more accurate
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results, while still achieving a substantial decrease of the computa- 
tional effort. If the application requires an accurate estimation of the 
posterior PDF, it is recommended to incorporate this transition to 
high-fidelity. In our multifidelity setting, we have demonstrated the 
importance of having a high quality surrogate when performing the 
transition, such that less time is spent on the resulting high-fidelity 
stage. In our example, the resulting computational gain due to the 
surrogate updates exceeds a factor of three with respect to surrogate 
training with prior samples only. 

We have assessed the computational gain b y onl y considering the 
number of high-fidelity simulations as the e v aluation of the high- 
fidelity solver represents the main source of computational demand. 
Nevertheless, training costs must also be taken into account, which 
will vary according to the desired accuracy (and thus, the truncation 
scheme used), the dimensionality of the input and output domains, 
and the size of the training set. For our examples (100-D input and 
69 output parameters), the training cost for 1000 and 200 training 
sets was approximately one hour and 30 minutes, respectively. Each 
output (in this contribution the traveltime for an y gi ven source–
receiver pair) requires its own PCE model, with the training cost 
for each PCE depending non-linearly on the sample size. Note 
that PCA can also be applied in the output domain, thus reducing 
the number of PCEs to be trained and, hence, alleviate the overall 
computational burden (Meles et al. 2022 ). The rele v ance of the 
PCE training cost as compared to the whole inversion depends on 
the length of the ASMC process and the computational burden of 
high-fidelity modelling. In our ASMC–SURR–HF examples, the 
training represented less than 10 per cent of the total time of the 
run. 

The ASMC parameters were chosen based on manual testing. It is 
challenging to provide recommendations for choosing appropriate 
parameter values as they depend on the problem and the computa- 
tional resources available. Unlike K , the impact of CESS op on the 
total number of forward simulations is non-linear and challenging 
to predict in advance. For this reason, it is recommended to initially 
select a suf ficientl y large CESS op and then adjust the value of K , 
with CESS op exceeding 0.99 N (Amaya et al. 2021 ). In this study 
we started with this minimum recommended CESS op and increased 
K in order to increase the quality of the resulting power posterior 
approximations. On the other hand, the more complex the posterior 
distribution, the more particles are needed. The total number N of 
particles ef fecti vel y used, howe ver, can be limited by the number 
of cores available for parallel computation. In this study we use 
a relati vel y small number of N = 50 particles, but the posterior 
approximation can be improved by increasing N if enough cores 
are available. In this algorithm we have parallelized the N -forward 
simulations corresponding to one MCMC step when using the high- 
fidelity solver. The simulations of the trained PCEs are vectorized, 
meaning that regardless of the number of particles the PCE sim- 
ulation time will be almost the same. Therefore, the advantage of 
using PCEs within ASMC inversions is not only the computing time 
reduction compared to the high-fidelity solvers, but also that less 
resources are needed, as the high-fidelity solvers (ideally) should 
run in parallel with as many cores as the number of particles. A fu- 
ture consideration to enhance algorithm efficiency is to use a higher 
number of particles in the surrogate phase of the in version, follo wed 
by a reduction by resampling in the transition to the high-fidelity 
phase. 

Our regularly spaced surrogate updates during the ASMC in- 
version led to improvements compared to training based on 
prior samples only. The design of alternative and more elaborate 
surrogate retraining schemes is a topic for future research. In gen- 
eral terms, the better the surrogate emulates the high-fidelity re- 
sponse, the more accurate the inversion estimations are and the 
lower the price to pay (in computing time) when transitioning to 
the high-fidelity solver. We considered samples gathered in a cu- 
mulati ve w ay yielding a training set that grows with each update. 
This approach was chosen for two reasons. First, it makes use of 
the information given by all high-fidelity simulations created for 
training purposes. Secondly, maintaining the previous samples in 
the training reduces the difference in the estimated PCE error co- 
variance matrices between surrogate updates, thereby, lowering the 
variance of the incremental weights in the IS-based surrogate tran- 
sitions of the ASMC algorithm. In the future, ASMC schemes with 
surrogate updates could be considered for monitoring scenarios 
where the physical geometries remain relati vel y constant. In these 
cases, the last trained surrogate of the inversion could be used 
as the starting solver for the data acquired in the following time 
lapse. 

The quality of ASMC results are sensitive to the quality of the in- 
ter mediate impor tance-sampling steps as reflected in the variance of 
the importance weights. When the importance sampling steps are of 
poor quality, few particles contribute effectively to the estimations. 
The quality of the importance sampling steps, when transitioning 
between forward solvers, is less controlled compared to the gradual 
increments of the inverse temperatures. The importance sampling 
distribution should be ideally more disperse than the target and 
centred on the same values (Geweke 1989 ). Ho wever , when tran- 
sitioning between solvers, enough overlap between the importance 
and target distribution is difficult to ensure. Moreover, it is chal- 
lenging to accurately estimate the model errors associated with the 
surrogates as we do not know with certainty how a surrogate will 
perform in a different region of the parameter space than the one 
used for training. The errors in the intermediate normalizing ratios 
used to update the evidence accumulate throughout the run and 
this can explain why the evidences are underestimated. To quantify 
the uncertainty associated with the evidence estimations in ASMC, 
repeated runs or a single-run estimator can be used (Amaya et al. 
2021 ). 

Even if adaptive SMC schemes have shown to be advantageous 
and convenient, there is concern regarding bias (decreasing asymp- 
totically with the number of particles) that arises from the adaptive 
selection of temperatures (Beskos et al. 2016 ; Latz et al. 2018 ). 
When the computational resources are available and the study re- 
quires ascertained unbiased evidence estimations, one alternative 
is to perform a second non-adaptive SMC run using the tempera- 
ture sequence obtained in a first ASMC run (Dai et al. 2022 ). In 
Appendix C, we provide the metrics obtained when rerunning the 
eikonal tests with the pre viousl y optimized tempering schedule. For 
our considered cases, there appear to be no significant bias caused 
by the adaptive selection of temperatures ( cf . Tables 1 and C1 ). 

In this study, we focus on the relative improvement and compu- 
tational gain of the proposed method using multiple surrogates and 
multifidelity, compared to standard approaches where either only 
the high-fidelity solver is used, or surrogates are trained only with 
prior samples. We tested the method on a GPR traveltime tomog- 
raphy problem relying on surrogates obtained through polynomial 
chaos expansion and with parameter dimensionality-reduction of- 
fered by PCA. Nevertheless, the proposed method is not limited to 
these choices and it can be extended to other types of problems (e.g. 
interferometric seismic noise tomography (Nicolson et al. 2012 ) 
and alternative surrogate models [e.g. Gaussian process regression 
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Santner et al. 2003 ; Rasmussen 2004 ) or deep learning (Jin et al.
020 )]. 

 C O N C LU S I O N  

sing a GPR crosshole tomography example, we demonstrate that
urrogate modelling can accelerate the ASMC inversion by orders
f magnitude while still providing results that are similar to those
btained when using the high-fidelity solver only. We demonstrate
hat a multifidelity approach combining surrogate modelling with
 transition to a final high-fidelity stage improves the accuracy of
he posterior estimates further while still achieving a substantial
eduction of computational cost. The choice of including the high-
delity stage or not, for a given problem, will in practice depend
n the computing budget and the demands in terms of estimation
ccuracy. When using surrogates only and considering the same
igh-fidelity budget for training, we find that retraining the surro-
ate as the ASMC inversion progresses provides better estimates
han training from the prior only. When incorporating the transition
o the high-fidelity stage, the advantage of retraining the surrogate
eads to a substantial reduction of the computational cost. The ev-
dences estimated with surrogate updating were found to be more
ccurate than the ones obtained when training only with prior sam-
les. We emphasize that the method is not limited to PCE-based
urrogate models, PCA parametrizations or GPR examples, but that
t can be adapted to other surrogates, model parametrizations and
eophysical problem settings. 
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A P P E N D I X  A :  S U R RO G AT E  

M O D E L L I N G  W I T H  P O LY N O M I A L  

C H A O S  E X PA N S I O N  

Surrogate models ˆ M ( θ ) are typically analytical functions that emu- 
late selected quantities of interest (QoI) of e xpensiv e forward solvers 
with much lower computational demand, based on a relati vel y small 
size set of training data (the experimental design ): 

ˆ M ( θ ) ≈ M ( θ ) . (A1) 

Polynomial chaos expansion (PCE) is a stochastic spectral expan- 
sion method that projects a forward operator M ( θ ) onto a suitable 
or thonor mal polynomial basis. PCE surrogate models have shown 
to be both flexible and efficient (L üthen et al. 2021 ; L üthen et al. 
2022 ). If θ is a random vector of independent parameters with joint 
probability density function f θ , and H a stochastic Hilbert space, 
then any map M ( θ ) of finite variance on H can be expanded as a 
sum of polynomial basis elements ψ b ( θ) (Xiu & Karniadakis 2002 ): 

M ( θ ) = 

∑ 

b∈ N M 

a b ψ b ( θ ) , (A2) 
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here a b are the coefficients and ψ b ( θ ) the multi v ariate pol yno-
ials or thonor mal with respect to f θ . In practice, the surrogate

odel ˆ M ( θ ) is obtained by truncating the series at a maximum al-
owed polynomial degree and the coefficients a b are calculated using
asis-adaptiv e sparse re gression techniques (L üthen et al. 2022 ). In
his study, the surrogate solvers are trained to learn a direct map-
ing between the PCA-reduced set of parameters and the output
esponse (Meles et al. 2022 ). The forward problem when using a
CE approximation on a truncated PCA set of coordinates can be
ormulated as: 

 = 

ˆ M ( θ ) + εy + εPCA + εPCE , (A3) 

here εPCE is the error associated with the surrogate modelling. 
To train a PCE surrogate, a set of model realizations together

ith their high-fidelity forward responses are required. These input–
utput pairs compose the PCE training set. We consider herein the
nput in the reduced PCA domain, and the output to be the simulated
esponse of the PCA models projected onto the physical domain
( g( θ )) . The forward solver used to compute the responses is a

igh-fidelity solver with modelling error assumed to be zero. In
his paper, we rely on PCE surrogates trained using the Matlab-
ased package UQLab (Marelli & Sudret 2014 ); details on the
mplementation of PCE can be found in Marelli et al. ( 2022 ). The
arginal distributions of the input parameters are approximated by
ernel density estimation (Torre et al. 2019 ). 
A Bayesian inversion that incorporates dimensionality-reduction

nd surrogate modelling needs to consider the errors induced by
hese simplifications. If we assume the various error sources to
e normally distributed, the corresponding likelihood function ( cf .,
q. 1 ) can be expressed as (Tarantola 2005 ): 

p( y | θ ) = 

(
1 

2 π

) n 
2 

| C | − 1 
2 exp 

(
− 1 

2 
( ˆ M ( θ ) − d d − y ) T C 

−1 ( ˆ M ( θ) − d d − y ) 

)
, 

(A4

here n is the number of data points, y the observed data, C the
ovariance matrix and | C | its determinant. The d d variable accounts
or the modelling bias (Hansen et al. 2014 ). The covariance matrix
an be designed to account not only for the data errors, but for the
rrors associated with the dimensionality reduction and surrogate
odelling as well: 

 = C y + C PCA + C PCE , (A5) 

here C y is the data covariance matrix, C PCA the covariance of
he PCA projection error and C PCE the covariance of the surrogate

odelling error. Both C PCA and C PCE can be computed as: 

 PCA / PCE = 

1 
D m 

D 

T 
m 

, (A6) 

N 
here D m is a misfit matrix. In the case of C PCA , D m contains
he difference between the high-fidelity solver output for the full

odels and the models resulting from the PCA projection com-
uted on a set of samples. For C PCE , it is convenient in practice
o derive D m from the PCE training set using cross-validation,
o a void ha ving to compute additional e xpensiv e high-fidelity re-
ponses. The j th D m column can be estimated with the output of a
urrogate that is trained on all the input parameters excepted the j th
Blatman 2009 ), we refer to this C PCE as the leave-one-out ( L OO )
ovariance. 

P P E N D I X  B :  F U L L  A S M C – S U R R – H F  

L G O R I T H M  

lgorithm 1 describes our proposed method for estimating the pos-
erior PDF and the evidence. To update the PCE surrogate, the
igh-fidelity solver responses for the N particles states are com-
uted after every T fp inverse temperatures, and the models together
ith the responses are saved. The PCE surrogate is retrained at regu-

ar intervals of T up inverse temperatures. During an interval between
urrogate updates, a total amount of τ 0 = N � T up / T fp 	 are collected.
he initial surrogate s 0 is trained using τ 0 prior samples and their
igh-fidelity solver responses. The training set for the surrogate se-
uence is cumulative, that is, to train the s j surrogate, the training
et size will be τ j = ( j + 1) τ (includes τ 0 ). In this way, the algorithm
akes advantage of all the available high-fidelity evaluations, while
he new samples enlarge the training set by focusing progressively
n parameter regions of significant posterior probability mass. The
eave-one-out modelling error covariance matrix C PCE is obtained
rom the calculated coefficients and the training set, and is updated
n the inversion together with the surrogate. After the transition to
he high-fidelity solver, C PCE is set to zero, as no modelling errors
re assumed. 

P P E N D I X  C :  R E RU N S  W I T H  F I X E D  

N V E R S E  T E M P E R AT U R E  S E Q U E N C E  

s the adaptivity of the temperature sequence can not ensure un-
iadness on the evidence estimations, we provide a set of reruns
Table C1 ) in which we keep fixed the adapti vel y-determined se-
uence of αs of the eikonal runs of Table 1 . Comparing the metrics
n the two tables, there are no significant differences in the perfor-
ance metrics suggesting that bias due to the adaptivity is small

ompared to the inherent variability in the results due to the stochas-
ic nature of the algorithm. 
 N
ovem

ber 2024
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Algorithm 1: ASMC–SURR 

The part concerning the ASMC section is adapted from Zhou et al. ( 2016 ) (their algorithm 4). 

Variables to pre-define: 
Number of particles ( N ), optimal CESS ( CESS op ), ESS threshold ( ESS ∗), 
number of MCMC steps for each intermediate distribution ( K ), minimal acceptance rate ( AR min ), 
percentage of change ( f ) of the proposal scale φ, 
period for e v aluating and saving high-fidelity forward simulations for surrogate update ( T fp ), 
period of surrogate retraining ( T up ). 

Initialization: Set t = 0 
Train initial surrogate s j = s 0 
Set α = 0 
Sample θ0 from the prior π ( θ) N times 
Set the N -dimensional vector of normalized weights W 0 = [ 1 N ; 

1 
N ; ... ; 

1 
N ] 

Set evidence π ( y ) = 1 
Set t fp = 0 
Set t up = 0 

Iteration : Set t = t + 1 
t fp = t fp + 1, 
t up = t up + 1. 

Do K MCMC steps for each of the N particles (chains) : 
Propose moves θ p and accept or reject based on acceptance criterion (eq. 12 ). 

Tune proposal scale 
If acceptance rate AR < AR min then decrease proposal scale factor: φ = φ × (1 − f 

100 ) 
If φ < φmin then φ = φmin . 

Search for next power posterior 
If t up < T up do binary search for the increment �α that gives the CESS (eq. 11 ) that is the closest to CESS op 

Update α = min(1, α + �α) and define the following power posterior. 
Perform the IS step: compute the weight increments w t (eq. 6 ), 
update and save the normalized weights W 

i 
t (eq. 7 ) and the evidence π ( y ) (eq. 10 ) 

Evaluate high-fidelity - Update surrogate 
If t fp = T fp compute the N current high-fidelity forward responses and save them for training, set t fp = 0. 
If t up = T up , retrain surrogate and replace, update covariance matrix (eqs A5 and A6 ), set t up = 0. 

Search for the α that yields the highest CESS . 
Perform IS step to transition to the updated surrogate solver, compute the weight increments w[ s j , s j+ 1 ] i t (eq. 13 ), 
update and save the normalized weights W 

i 
t (eq. 7 ) and the evidence π ( y ) (equation 10 ). 

Resampling 
Calculate ESS (eq. 8 ), if ESS < ESS ∗ do resampling: re-organize the particle states and update W t = [ 1 N ; 

1 
N ; ... ; 

1 
N ] 

Repeat until α = 1 

Algorithm 1 extension: ASMC–SURR–HF 

Transition to the high-fidelity solver 
Search for the α that yields the highest CESS . 
Perform IS step to transition to the high-fidelity forward solver, compute weight increments w[ s j , H F ] i t (eq. 16 ). 
Update and save the normalized weights W 

i 
t (eq. 7 ) and the evidence π ( y ) (eq. 10 ). 

Update covariance matrix. 
Continue-Iteration-loop using the high-fidelity solver without Evaluate high-fidelity - Update surrogate step, until α = 1. 

Table C1. Resulting length of the ASMC runs and performance metrics of the reruns using the eikonal solver as high-fidelity. In 
these runs the sequence of temperatures is not calculated adapti vel y, but fixed from the first round of runs (Table 1 ). 

ASMC eikonal ASMC eikonal - ASMC eikonal - ASMC eikonal - ASMC eikonal - 
SURR prior SURR prior –HF SURR updates SURR updates –HF 

L 192 173 251 180 203 
HF sim [ × 10 3 ] 4800 1 1950 1 576 
HF sim relative 100 per cent 0.02 per cent 40.63 per cent 0.02 per cent 12 per cent 
PCE sim [ × 10 3 ] 0 4325 4325 4500 4500 
Resampling 1 1 3 3 4 
SSIM 1 0.84 0.93 0.89 0.91 
Mean σ 0.83 0.83 0.80 0.84 0.80 
Mean log-score 1.43 1.76 1.52 1.58 1.45 
RMSE output 0.50 ns 0.84 ns 0.49 ns 0.65 ns 0.49 ns 
Log-evidence −111.2 −121.6 −121.6 −113.4 −114.5 

C © The Author(s) 2024. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access 
article distributed under the terms of the Creative Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/ ), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 
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