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Abstract. Over recent years there have been concomitant advances in the development of stratosphere-resolving
numerical models, our understanding of stratosphere—troposphere interaction, and the extension of long-range
forecasts to explicitly include the stratosphere. These advances are now allowing for new and improved capa-
bility in long-range prediction. We present an overview of this development and show how the inclusion of the
stratosphere in forecast systems aids monthly, seasonal, and annual-to-decadal climate predictions and multi-
decadal projections. We end with an outlook towards the future and identify areas of improvement that could
further benefit these rapidly evolving predictions.
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1 Introduction

Daily weather fluctuations are thought to have a deterministic
predictability horizon of around 2 weeks due to the sensitiv-
ity of the evolution of the atmospheric state to small errors
in initial conditions (Lorenz, 1969) — the so-called “butter-
fly effect”. Recent estimates (Leung et al., 2020; Domeisen
et al., 2018) as well as tests of the predictability of midlat-
itude daily weather using the latest global prediction mod-
els (Zhang et al., 2019; Son et al., 2020) produce similar es-
timates for this predictability limit. However, this does not
preclude skilful forecasts of the statistics (most notably the
average) of conditions at long range beyond this timescale
(e.g. Shukla, 1981). This predictability owes its existence to
slowly varying predictable components of the climate system
in the ocean and in some cases the atmosphere, as well as ex-
ternally forced changes such as volcanic or solar variability
effects (e.g. Kushnir et al., 2019). Some of the more promi-
nent examples of stratospheric variability such as sudden
stratospheric warmings and their subsequent impact on the
stratosphere and the troposphere (Baldwin et al., 2021) or the
quasi-biennial oscillation and its associated teleconnections
(Scaife et al., 2014a) have been shown to be predictable out
to timescales well beyond the traditional 2-week predictabil-
ity horizon from initial tropospheric conditions alone. Other
examples involve stratospheric pathways for teleconnections
originating in the troposphere or ocean (e.g. Schwartz and
Garfinkel, 2017; Byrne et al., 2019) and are shown in Fig. 1.
On longer timescales, boundary forcing, for example from
composition changes such as ozone depletion and recovery,
allows the stratosphere to provide relatively slowly varying
conditions to guide the turbulent troposphere and hence pro-
vide long-range predictability (e.g. Thompson et al., 2011).
The relative importance of stratospheric initial conditions to
boundary conditions decreases with lead time as shown in
the schematic in Fig. 1.

The extension of long-range prediction systems to explic-
itly include the representation of the stratosphere follows
many years of development of stratosphere-resolving general
circulation models (GCMs). By the late 20th century many
leading centres for climate research had started to include
the stratosphere in versions of their GCMs (Pawson et al.,
2000; Gerber et al., 2012). Much of the early model devel-
opment was motivated by the discovery of the ozone hole in
the 1980s (Farman et al., 1985) and the need for simulations
of ozone depletion and potential recovery of the ozone hole
following the 1987 Montreal Protocol, which required atmo-
spheric models that represented both the atmospheric dynam-
ics and chemistry of stratospheric ozone depletion (Molina
and Rowland, 1974; Crutzen, 1974). In most cases this was
achieved by adding further quasi-horizontal layers to the do-
main of existing climate models to extend their representa-
tion of the atmosphere to the stratopause or beyond (e.g. Rind
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etal., 1988; Beagley et al., 1997; Swinbank et al., 1998; Sassi
et al., 2002) while also incorporating key radiative (e.g. Fels
et al., 1985), chemical (e.g. Steil et al., 1998), and dynamical
(e.g. Scaife et al., 2000) processes.

The early development of so-called “high-top” climate
models, which represent the whole depth of the stratosphere,
in general preceded the discovery of the main body of evi-
dence that the variability of the stratosphere is not only af-
fected by but also interacts with the lower atmosphere and
surface climate. Pioneering early studies suggested that the
stratosphere might have direct effects on the troposphere and
surface climate (e.g. Labitzke, 1965; Boville, 1984; Kodera
et al., 1990, 1995; Haynes et al., 1991; Perlwitz and Graf,
1995). In subsequent years, as reliable observational records
lengthened and large enough samples of stratospheric vari-
ability were amassed, it was unequivocally demonstrated
that stratospheric variability precedes important tropospheric
changes in the extratropics (Baldwin and Dunkerton, 1999,
2001). There was debate about causality and whether the
stratosphere really does affect the atmosphere below (e.g.
Plumb and Semeniuk, 2003). However, experiments where
the stratosphere is perturbed in numerical models show
changes in surface climate and reproduce similar patterns of
response at the surface to those found in real-world observa-
tions (e.g. Polvani and Kushner, 2002; Norton et al., 2003;
Scaife et al., 2005; Joshi et al., 2006; Scaife and Knight,
2008; Douville, 2009; Hitchcock and Haynes, 2016; White
et al., 2020). These involve changes to planetary-scale waves
and also baroclinic eddies in the troposphere that are consis-
tent with changes in baroclinicity near the tropopause (Kush-
ner and Polvani, 2004; Song and Robinson, 2004; Wittman
et al., 2004, 2007; Scaife et al., 2012; Domeisen et al., 2013;
Hitchcock and Simpson, 2014; White et al., 2020). Impor-
tantly, as we discuss below, the same mechanisms also appear
to be at work across a broad range of timescales (Kidston et
al., 2015).

In recent years, motivated by the evidence of surface ef-
fects of stratospheric variability in the midlatitudes, the high-
top model configurations used for stratospheric research
were incorporated into leading prediction systems. Improved
vertical resolution was already known to improve the atmo-
spheric data assimilation of satellite instrument observations
whose sensitivity was often heavily weighted towards strato-
spheric altitudes. This also provided initial stratospheric con-
ditions for sets of retrospective forecasts, some of which
were internationally coordinated (e.g. Butler et al., 2016;
Tompkins et al., 2017). A growing number of operational
systems are now producing regular ensembles of predic-
tions at lead times of months or years with coupled ocean—
atmosphere models that extend to the stratopause or beyond,
for example at Environment Canada (Merryfield et al., 2013),
the Met Office in the UK (MacLachlan et al., 2015), the Ger-
man Weather Service (DWD; Baehr et al., 2015), the Japan
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Figure 1. Schematic representation of the role of the stratosphere in long-range prediction showing the transition from initial-condition
predictability in the atmosphere (blue) and the ocean (green) to boundary-condition predictability at longer timescales (orange). Individual
mechanisms involving the stratosphere are labelled in black. The width of the ellipses in the timescale direction shows the approximate range
over which each phenomenon provides predictability. The width of the ellipses in the variance direction shows their relative contributions to

forecast variance.

Meteorological Agency (Takaya et al., 2017), and the Eu-
ropean Centre for Medium-Range Weather Forecasts (John-
son et al., 2019). In the following sections we document the
emerging impacts and benefits of this new capability for sur-
face climate predictions at monthly, seasonal, and annual-
to-decadal lead times starting with the shorter-range initial-
condition cases and ending with the longer-range boundary-
condition cases.

2 The stratosphere and monthly prediction

The best-established phenomenon that gives rise to the pre-
dictability of surface climate from the stratosphere is the tro-
pospheric circulation changes that follow strong and weak
conditions in the stratospheric polar vortex (Baldwin and
Dunkerton, 1999, 2001). For example, weak vortex condi-
tions such as those found in a sudden stratospheric warm-
ing (SSW; Baldwin et al., 2021) are typically followed by a
weakening and southward shift of the tropospheric midlati-
tude jet stream (see e.g. Kidston et al., 2015, and references
therein) and thus the negative polarity of the North Atlantic
Oscillation (NAQO), Arctic Oscillation (AO), and Northern
Annular Mode (NAM). These fluctuations also show a ten-
dency to vacillate between strong westerly and weak (SSW)
states on subseasonal timescales (Kuroda and Kodera, 2001;
Hardiman et al., 2020a). The changes in the troposphere per-
sist roughly as long as those in the lower stratosphere and last
for around 2 months (Baldwin and Dunkerton, 2001; Bald-
win et al., 2003; Hitchcock et al., 2013; Son et al., 2020;
Domeisen, 2019). The impacts on surface climate also in-
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clude changes in the frequency of extremes of temperature
and rainfall (Scaife et al., 2008; King et al., 2019; Cai et al.,
2016; Domeisen et al., 2020b).

Although major SSW events, involving a complete rever-
sal of the zonal flow in the mid stratosphere, are rare in the
Southern Hemisphere (Wang et al., 2020; Jucker et al., 2021),
variations of the Antarctic polar vortex are likewise followed
by similar signatures in the underlying tropospheric flow, in
this case via the Southern Annular Mode (SAM). Weaken-
ing of the vortex is typically followed by a negative shift in
the SAM and associated changes in rainfall and near-surface
temperature (Thompson et al., 2005; Lim et al., 2018, 2019a,
2021; Rao et al., 2020d). These changes in Southern Hemi-
sphere circulation typically take longer to reach the surface
than their Northern Hemisphere counterparts (Graverson and
Christiansen, 2003), perhaps due to the stronger stratospheric
polar vortex and weaker wave driving in the Southern Hemi-
sphere, but they are nonetheless better predicted by improv-
ing stratospheric resolution of forecast models (Roff et al.,
2011). The timescale of weeks for the predictability of sud-
den warmings is limited by the predictability of weather pat-
terns in the troposphere which might trigger SSW events
(e.g. Mukougawa et al., 2005; Taguchi, 2016; Garfinkel and
Schwarz, 2017; Jucker and Reichler, 2018; Lee et al., 2020a).
However, if we add this timescale to the timescale of a month
or more for the persistence of lower-stratospheric anomalies
and their surface effects (e.g. Baldwin et al., 2003; Butler
et al., 2019a), we arrive at the conclusion that on these occa-
sions at least, initial conditions in the atmosphere can provide

Atmos. Chem. Phys., 22, 2601-2623, 2022



2604

predictability well beyond the usual 2-week horizon for daily
weather in either hemisphere.

Predictability of the atmosphere at monthly lead times is
also known to originate in part from the Madden—Julian os-
cillation (MJO) in the troposphere and its teleconnection to
the extratropics (e.g. Vitart, 2017). The circulation pattern as-
sociated with the MJO resembles a poleward- and eastward-
propagating Rossby wave with centres of action over the Pa-
cific and extending into the Atlantic sector where it also maps
strongly onto the North Atlantic Oscillation. The lead time of
around 10d for the impact of a change in the MJO to appear
in the extratropical flow (e.g. Cassou, 2008; Lin et al., 2009)
is also consistent with the timescale for the poleward prop-
agation of Rossby waves (e.g. Scaife et al., 2017). It turns
out that this tropospheric MJO teleconnection on monthly
timescales also interacts with the stratosphere (Garfinkel and
Schwartz, 2017). The MJO teleconnection to the North Pa-
cific affects the region most strongly associated with tropo-
spheric precursors to SSW events, and consistent with this,
SSWs in the observational record have tended to follow cer-
tain MJO phases. The subsequent weak vortex anomaly then
propagates down to the troposphere (Garfinkel et al., 2012b),
where it may strengthen and prolong any existing negative
NAO signal that is directly linked to the MJO via the tropo-
sphere (Schwartz and Garfinkel, 2017, 2020; Barnes et al.,
2019).

In addition to the interaction of the MJO with the extrat-
ropical stratosphere, a further, completely different link be-
tween the stratosphere and the MJO has recently been un-
covered which modulates MJO amplitude and persistence in
the troposphere via the phase of the quasi-biennial oscillation
(QBO) in the tropical lower stratosphere (Liu et al., 2014;
Yoo and Son, 2016; Martin et al., 2021). In this case, easterly
phases of the QBO appear to energize the MJO compared
to westerly QBO phases, likely due to changes in tempera-
ture and hence static stability close to the tropopause (Hen-
don and Abhik, 2018; Martin et al., 2019) with a potential
contribution of cloud-radiation feedbacks (Son et al., 2017;
see Martin et al., 2021, for a review). This modulation of the
MIJO is in turn important for predictability, as it gives rise
to higher monthly prediction skill of the MJO and its sur-
face teleconnections during the easterly phase of the QBO
(Marshall et al., 2017; Abhik and Hendon, 2019; Lim et al.,
2019b).

The traditional view of stratosphere—troposphere interac-
tion involves upward propagation of planetary-scale Rossby
waves (Charney and Drazin, 1961), but this linear theory
applies equally well to downward propagation. Harnik and
Lindzen (2001) and Perlwitz and Harnik (2003) identified a
possible source of downward-propagating planetary waves
in the form of reflecting surfaces in the winter stratosphere.
Examples of specific reflection events, showing upward and
then downward propagation have since been observed (e.g.
Kodera et al., 2008; Harnik, 2009; Kodera and Mukougawa,
2017; Mukougawa et al., 2017; Matthias and Kretschmer,
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2020). These results suggest that the details of the strato-
spheric circulation such as regions of negative vertical wind
shear could be important for the formation of reflecting con-
ditions (Shaw and Perlwitz, 2013) and may yet provide a fur-
ther mechanism by which the stratosphere can affect the tro-
posphere (Domeisen et al., 2019; Butler et al., 2019b).

Following studies demonstrating enhanced tropospheric
predictability after SSW events in individual climate mod-
els (e.g. Kuroda, 2008; Mukougawa et al., 2009; Mar-
shall and Scaife, 2010; Sigmond et al., 2013), subseasonal-
forecast systems which explicitly represent the stratosphere
in the climate system were developed and implemented at
operational-prediction centres worldwide. It is often diffi-
cult to demonstrate significant increases in overall skill (e.g.
Richter et al., 2020a), but routinely produced ensembles of
subseasonal predictions show that both stratospheric vari-
ability and its subsequent tropospheric signature are pre-
dictable at monthly lead times (Domeisen et al., 2020a, b).
The strongest surface impacts occur if the polar vortex in
the lower stratosphere is in a weakened state at the time of
the SSW (Karpechko et al., 2017), and there appears to be
a roughly linear relationship between the strength of these
lower-stratospheric anomalies and the tropospheric response
(e.g. Runde et al., 2016; White et al., 2020; see Baldwin et
al., 2019, for a review). We should note however that there
is no one-to-one correspondence between stratospheric vari-
ability and tropospheric events, and some prominent exam-
ples of sudden stratospheric warmings are followed by differ-
ing tropospheric anomalies (e.g. Charlton-Perez et al., 2018;
Knight et al., 2020; Butler et al., 2020; Rao et al., 2020a).
Nevertheless, the canonical response is seen in the majority
(~70 %) of cases, and periods of intense wintertime strato-
spheric variability are important windows of opportunity to
provide skilful monthly forecasts (Mariotti et al., 2020; Tri-
pathi et al., 2015a).

These forecast systems are now important tools for na-
tional meteorological and hydrological services to moni-
tor impending stratospheric variability and associated sur-
face impacts in real time. Recent extreme examples illus-
trate the importance of this activity. In February 2018 a ma-
jor SSW occurred and was followed by a strong negative
NAO-like pattern at the surface with easterly wind anoma-
lies over Europe and multiple cold-air outbreaks over the
following weeks, including extreme snowfall across north-
ern Europe (Fig. 2; Karpechko et al., 2018; Knight et al.,
2020; Rao et al., 2020a) and an abrupt end to Iberian drought
in southern Europe (Ayarzaguefia et al., 2018b). Studies of
monthly ensemble predictions of this event with operational
stratosphere-resolving systems showed that the stratospheric
event was predictable at least 2 weeks in advance (Fig. 2)
and that the ensemble forecasts indicated an increased like-
lihood of cold surface conditions for several weeks after the
event (Karpechko, 2018; Butler et al., 2020; Statnaia et al.,
2020; Rao et al., 2020a). Again, as in the analysis of previous
events, there was also a strong association with the MJO en-
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tering phase 7 with increased convection in the West Pacific
(cf. Garfinkel and Schwartz, 2017) in the 2018 event. Finally,
we should also note that cases of monthly forecasts where
the stratosphere plays an important role are not restricted to
winters with sudden stratospheric warmings; periods when
the stratospheric polar vortex is above normal strength also
provide opportunities for skilful monthly forecasts (Tripathi
et al., 2015b; Scaife et al., 2016). In this case an opposite
but symmetric surface response results, with a strong posi-
tive NAO. A very recent example occurred in February 2020,
when, following an extremely strong polar vortex (Hardiman
et al., 2020b; Lee et al., 2020b; Lawrence et al., 2020; Rao
and Garfinkel, 2021), the tropospheric jet in the Atlantic sec-
tor strengthened, and the associated increased storminess and
rainfall in this case resulted in UK monthly rainfall reaching
a new record high (Davies et al., 2021).

3 The stratosphere and seasonal prediction

Prior to the advent of dynamical forecast systems which
explicitly represent the stratosphere, seasonal forecasts us-
ing empirical relationships and statistical methods were pro-
posed. These relied on the prior state of the polar vortex and
other predictable factors such as the QBO that are known to
have links to surface climate (Thompson et al., 2002; Charl-
ton et al., 2003; Christiansen, 2005; Boer and Hamilton,
2008). In some cases they indicated additional predictability
that was absent in existing operational forecast systems, pro-
viding further evidence of predictability involving the strato-
sphere and further motivating the extension of dynamical
forecast systems to properly represent the stratosphere. Sim-
ilar empirical forecast studies continue, and although they
cannot provide evidence of predictability that is as strong as
from GCM experiments based on fundamental physical prin-
ciples, they do continue to be useful to indicate sources of
predictability that need to be properly represented in com-
prehensive forecast systems (e.g. Folland et al., 2012; Wang
et al.,, 2017; Hall et al., 2017; Byrne and Shepherd, 2018).
Following the introduction of dynamical seasonal-forecast
systems with a good representation of the stratosphere, clear
links between successful seasonal prediction of the North At-
lantic Oscillation, the closely related Arctic Oscillation, and
the state of the stratospheric polar vortex have been identi-
fied in forecast output (e.g. Scaife et al., 2014b; Stockdale
et al., 2015; Jia et al., 2017). Similar signals are also seen
in the Southern Hemisphere in relation to predictability of
the Southern Annular Mode (Seviour et al., 2014; Byrne
et al.,, 2019; Lim et al., 2021). Statistically significant in-
creases in overall skill directly attributable to the inclusion
of the stratosphere in prediction systems is sometimes diffi-
cult to demonstrate (e.g. Butler et al., 2016), especially given
that other factors such as horizontal resolution and physical
parametrizations are often simultaneously changed. Never-
theless, the body of evidence now weighs heavily in favour
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of predictability of the NAO and SAM from the stratospheric
polar vortex and from analyses showing reduced surface pre-
diction skill in the absence of stratospheric variability (e.g.
Hardiman et al., 2011; Sigmond et al., 2013; Scaife et al.,
2016).

A second clear example of seasonal predictability orig-
inating in the stratosphere is the quasi-biennial oscillation
(QBO). The QBO has such inherently long timescales that
it persists for several months in seasonal forecasts from ini-
tial atmospheric conditions alone, and its regularity means
that it can be predicted from simple composites of earlier
cycles. Nevertheless, a growing number of numerical mod-
els used in seasonal-forecast systems can now simulate and
predict the oscillation within climate forecasts (Garfinkel et
al., 2018; Richter et al., 2020b; Stockdale et al., 2021) with
the aid of forcing from parametrized non-orographic gravity
waves, and there is skill in predicting QBO phase changes at
lead times of a few months (e.g. Pohlman et al., 2013; Scaife
et al., 2014a). The surface impact of the QBO is also well
established and has stood the test of time since it was first
identified in the 1970s (Ebdon, 1975; Thompson et al., 2002;
Anstey and Shepherd, 2014; Gray et al., 2018). Yet again
this response projects closely onto the North Atlantic Oscil-
lation (and hence the Arctic Oscillation—Northern Annular
Mode) and the Southern Annular Mode. The favoured mech-
anism involves refraction of vertically propagating Rossby
waves in the lower stratosphere (Holton and Tan, 1980), al-
though other pathways may also be involved (e.g. Inoue et
al., 2011; Yamazaki et al., 2020; Rao et al., 2020b, 2021).
The observed magnitude of the QBO teleconnection is also
large enough to provide seasonal predictability of surface cli-
mate (Boer and Hamilton, 2008), but its modelled ampli-
tude at the surface appears to be underrepresented in cur-
rent operational-prediction systems and models (Scaife et al.,
2014b; Garfinkel et al., 2018; O’Reilly et al., 2019; Rao et al.,
2020b; Anstey et al., 2021).

In addition to the stratosphere acting as a source of pre-
dictability, other mechanisms by which the stratosphere plays
a role in seasonal predictions involve a pathway for global-
scale teleconnections. These often originate in the tropics
where the longer timescales of coupled ocean—atmosphere
variability such as the El Nifio—Southern Oscillation (ENSO;
L’Heureux et al., 2020) provide a predictable source of low-
frequency variability. Effects on the extratropics can occur by
tropical excitation of anomalous Rossby waves which propa-
gate not only poleward but also upward into the stratosphere,
as in the case of ENSO (Manzini et al., 2006; Domeisen et
al., 2019), giving two pathways for extratropical influence
(Butler et al., 2014; Kretschmer et al., 2021). These highly
predictable tropical sources of climate variability alter the
strength and position of the stratospheric polar vortex in the
extratropics as well as the frequency of SSWs (Polvani et
al., 2017), and these are followed by changes in the sea-
sonal westerly jets in the troposphere and surface climate
via the North Atlantic Oscillation (Ineson and Scaife, 2009;
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Figure 2. Monthly forecasts prior to the 2018 sudden stratospheric warming and severe cold event over northern Europe. Forecast polar
cap index (a) and February sea level pressure anomalies (b). Ensemble mean anomalies are shown for the average of forecasts initialized
between 8 and 22 January 2018 relative to hindcasts over the 1993-2016 period using the Met Office Hadley Centre GloSea (global seasonal)
prediction system (MacLachlan et al., 2015). Sea level pressure is measured in hectopascals (hPa), and the polar cap index is the geopotential

height anomaly (m) averaged over 65° N to the North Pole.

Cagnazzo and Manzini, 2009) or the Southern Annular Mode
(Byrne et al., 2019). As might be expected, both the QBO
and ENSO teleconnections are best represented in seasonal-
forecast systems which contain a well-resolved stratosphere
(Butler et al., 2016). We note that new examples of the strato-
sphere acting as a conduit for seasonal teleconnections are
still being uncovered (Hurwitz et al., 2012; Woo et al., 2015).
For example, the Indian Ocean Dipole (IOD) received lit-
tle attention in this context until the recent record event of
late 2019, when it appears to have driven an extreme win-
ter strengthening of the Northern Hemisphere stratospheric
polar vortex. This strengthening took many weeks to decay,
giving rise to extreme yet highly predictable conditions in
the stratosphere and around the Atlantic sector in late boreal
winter (Hardiman et al., 2020b; Lee et al., 2020b). The same
event was also implicated in extreme changes in the polar
vortex and the near SSW in the Southern Hemisphere (Rao
et al., 2020d), an event that itself likely helped to drive the
extreme summer conditions and wildfires over Australia that
year (Lim et al., 2021).

Apparent links between Arctic sea ice and seasonal winter
climate in the midlatitudes have also been suggested to be
mediated by the stratosphere, with increased Rossby wave
activity and a weakening of the stratospheric polar vortex
in response to reduced sea ice, especially in the Barents—
Kara Sea (Honda et al., 2009; Jaiser et al., 2013; Kim et
al., 2014; King et al., 2016; Kretschmer et al., 2016). Some
studies also reproduced surface signals in response to sea ice
anomalies in seasonal forecasts of particular years that are in
apparent agreement with observational estimates (e.g. Bal-
maseda et al., 2010; Orsolini et al., 2012). However, recent
updates to observational records show a weakening of these
apparent effects (Blackport and Screen, 2020) and signifi-
cant non-stationarity (Kolstad and Screen, 2019). Subsequent
modelling studies with larger samples of simulations have
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provided mixed results (Zhang et al., 2018; Dai and Song,
2020), and some have argued that the atmospheric response
to sea ice is weak (Smith et al., 2022) and that while the sen-
sitivity to Barents—Kara sea ice may be stronger, the strato-
spheric response in particular is highly variable (McKenna
et al., 2018). While there may well be a longer-term effect
via the stratosphere from sea ice decline (Sun et al., 2015;
Screen and Blackport, 2019; Kretschmer et al., 2020), sen-
sitivity of the response to the background state complicates
the issue (Labe et al., 2019; Smith et al., 2017), as do possi-
ble confounding influences from the tropics (Warner et al.,
2020), and to date there is no clear consensus for strong
enough year-to-year effects to provide significant seasonal
predictability.

Other proposed teleconnections acting via the stratosphere
have been found in observations but remain to be confirmed
with successful reproduction in physically based climate
models. A prominent example involves a proposed link be-
tween Eurasian snow amounts and the stratosphere, followed
by a return influence on the NAO and surface climate. In
this case, enhanced snow cover or depth is associated with
high pressure over northern Eurasia, an increase in the flux of
Rossby wave activity into the stratosphere, and a subsequent
weakening of the stratospheric polar vortex, followed by the
expected negative shift in the NAO and AO (Cohen and En-
tekhabi, 1999; Cohen and Jones, 2011; Cohen et al., 2014;
Furtado et al., 2015). However, the strength of this link in
climate models and seasonal predictions is modest (Fletcher
etal., 2009; Riddle et al., 2013; Tyrrell et al., 2018, 2019) and
does not agree with apparent links to the AO in observations
(Kretschmer et al., 2016; Garfinkel et al., 2020) even when
model mean state biases are corrected (Tyrrell et al., 2020).
It has also been suggested that teleconnections to snow are
non-stationary or non-causal, and there is continued debate
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about its long-term robustness (Peings et al., 2013; Hender-
son et al., 2018).

In summary, a number of mechanisms by which the strato-
sphere acts to provide seasonal predictability by acting di-
rectly either as a source of predictable variability (e.g. the
QBO and SSWs) or as a conduit for teleconnections (e.g.
ENSO, MJO, and IOD) have now been established in obser-
vations and have been confirmed using climate model simu-
lations based on first principles. These operate in seasonal-
forecast systems, albeit with remaining errors such as the
weakness of the QBO connection to surface climate. Mean-
while, other mechanisms involving the stratosphere (for ex-
ample the response to snow cover variations) have been pro-
posed based on apparent observed relationships, but until
we have agreement between these observations and theory
(model simulations), scientists remain sceptical of whether
they represent actual sources of seasonal predictability, and
these remain topics of current research.

4 The stratosphere and annual-to-decadal
prediction

In recent years, initialized predictions on longer timescales
were developed on the premise of multiyear memory in
the ocean (e.g. Smith et al., 2007), and following the de-
velopment pathway mapped out by seasonal forecasts in
the past, these are now being run operationally to produce
real time multimodel forecasts (Smith et al., 2013). Kush-
nir et al. (2019) mapped out this operational development of
annual-to-decadal predictions and highlighted a number of
sources of predictability, some of which involve the strato-
sphere (Fig. 3) but not all of which are fully represented in
climate prediction systems.

Despite common misconceptions, not all annual-to-
decadal predictability stems from the ocean. Indeed, it has
been clearly demonstrated that multiyear predictability of the
QBO exists in current decadal predictions systems out to lead
times of several years (Pohlman et al., 2013; Scaife et al.,
2014a). This offers the prospect of a stratospheric contribu-
tion to multiyear predictability of the extratropics through the
teleconnection with the Arctic Oscillation (Anstey and Shep-
herd 2014; Gray et al., 2018) and to tropical predictability
through links to the MJO (e.g. Martin et al., 2021) and wider
tropical climate variability (Haynes et al., 2021).

Although it is more important on multidecadal timescales
(see below), external forcing of the stratosphere can also act
as a source of decadal predictability. Forced climate signals
from changes in greenhouse gases or stratospheric effects
such as ozone depletion occur on a much longer timescale
than the lead time of decadal forecasts, but their contribution
to the skill of predictions is not trivial. For example, it is not
immediately obvious whether the slow changes from multi-
decadal forced signals would simply be swamped by unpre-
dictable internal variability on decadal timescales, rendering
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long-term external forcing changes useless for decadal pre-
dictions. However, this is not the case and long-term forcing
is now known to be an important source of decadal prediction
skill (Smith et al., 2019, 2020).

External forcing involving the stratosphere on shorter
timescales is also important for annual-to-decadal predic-
tions. The stratosphere has long been known to be influenced
by volcanic eruptions, particularly in the case of tropical vol-
canic eruptions which are powerful enough to inject signifi-
cant quantities of sulfur dioxide into the atmosphere. Here it
reacts with water to form sulfuric acid and persists in aerosol
form, leading to predictable multiyear global surface cool-
ing, tropical stratospheric warming, and an intensification
of the westerly stratospheric polar vortex in the extratropics
(Robock and Mao, 1992). Although the sample of observed
events is limited, modelling studies have reproduced an ob-
served post-eruption intensification of the westerly winds in
the stratosphere and some impacts on the surface Arctic Os-
cillation. However, generations of models have struggled to
reproduce the 2-year persistence of volcanic effects seen in
observations and the observed magnitude of the effect on the
winter AO (e.g. Stenchikov et al., 2006; Marshall et al., 2009;
Charlton-Perez et al., 2013; Bittner et al., 2016). In addi-
tion to these changes in the atmosphere, the intensification
of stratospheric westerlies and hence Arctic Oscillation also
combines with surface cooling of the ocean to generate pre-
dictable changes in the Atlantic meridional overturning cir-
culation (Reichler et al., 2012) which can extend the volcanic
influence to decadal timescales (Swingedouw et al., 2015).
Finally, although the mechanism is debated, there is also ev-
idence of a multiyear effect of tropical volcanic eruptions on
ENSO, presumably requiring the persistent radiative forcing
that arises through the long residence time of volcanic prod-
ucts, particularly sulfate aerosols, in the stratosphere. This
reportedly increases the frequency of El Nifio events by a
factor of 2 in the years following volcanic eruptions (Adams
et al., 2003), again suggesting an important source of multi-
annual predictability via the stratosphere.

A second source of multiannual predictability from exter-
nal forcing originates from solar variability and in particular
the 11-year solar activity cycle. Although a number of al-
ternative mechanisms have been proposed (see Gray et al.,
2010, for a review), the established mechanism for surface
effects via the stratosphere is the change in the polar vortex
that results from changes in upper-stratospheric heating over
the course of each cycle between solar minimum and solar
maximum. Interactions of atmospheric waves and mean flow
amplify the initial radiatively driven change and drive its de-
scent to the troposphere (Kodera and Kuroda, 2002; Marsh
et al., 2007; Ineson et al., 2011; Givon et al., 2021), where
changes in the extratropical jets result in a negative (positive)
Arctic Oscillation pattern following solar minimum (maxi-
mum). There is also evidence that it contributes to interan-
nual prediction skill (Dunstone et al., 2016), and an interest-
ing aspect that has emerged in recent years is the integrat-
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Elements of near-term predictability
of the climate system

Solar
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Volcanic
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GHG emissions
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carbon uptake

Figure 3. Sources of annual-to-decadal predictability, some of which involve the stratosphere through the response to external forcing,
internal atmospheric dynamics, or ozone chemistry changes. After Kushnir et al. (2019).

ing effect of the ocean on solar-induced changes in the NAO
via interannual persistence of ocean heat content anomalies
which lead to a lag of around 3 years (;r /2 cycles) in the peak
response, as would be expected if the ocean is integrating the
effects of a periodic solar forcing (Scaife et al., 2013; Gray
et al., 2013; Andrews et al., 2015; Thiéblemont et al., 2015).
However, debate continues as to whether the solar signal is
indeed large enough to be detectable in observations in the
presence of large internal tropospheric variability (Chiodo et
al., 2019).

Perhaps the longest known timescale for predictability
from initial conditions, which also involves the stratosphere,
is the interaction of Atlantic multidecadal variability (AMV)
with the stratospheric circulation. The Atlantic has followed
pronounced multidecadal variations over the last century
(Mann et al., 1995), and these variations are predictable out
to years ahead (Hermanson et al., 2014). Some studies link
these variations to the stratosphere and the NAO-AO (Reich-
ler et al., 2012; Omrani et al., 2014). Indeed, the pronounced
multidecadal increase in the surface NAO between the 1960s
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and 1990s is strongly coupled to changes in the strength
of the stratospheric polar night jet (Scaife et al., 2005). Al-
though current models simulate weak coupling between the
AMV and the free atmosphere, this coupling appears to in-
crease with model resolution (Lai et al., 2021), suggesting
that the links between AMYV, the stratosphere, and the NAO
offer potential for improved decadal-scale prediction involv-
ing the stratosphere.

The currently recognized role of the stratosphere in
decadal forecasts of surface climate again appears mainly
via the impact on annular modes and, in the Northern Hemi-
sphere, the North Atlantic Oscillation. Indeed, while current
decadal prediction systems are now able to produce skilful
predictions of variations in the NAO on multiyear lead times
(Smith et al., 2019, 2020; Athanassiadis et al., 2020), much
work is still needed to attribute these variations to external
forcing or internal variability and to understand the interac-
tion between boundary and initial conditions, which blurs
the simple distinction between the two. These new results
are important because they indicate newfound decadal pre-
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dictability of events like the high NAO of the 1990s which
yielded a run of mild but wet and stormy winters in north-
ern Europe and the eastern USA. These winters are well
known to have caused significant impact for example on
the insurance sector (Leckebusch et al., 2007) and coincided
with the longest observed absence of SSW events (Pawson
and Naujokat, 1999; Domeisen, 2019). Given the indications
of coupled stratosphere—troposphere variations on decadal
timescales (Scaife et al., 2005; Omrani et al., 2014; Garfinkel
et al., 2017; Woo et al., 2015), understanding the role of the
stratosphere in extratropical decadal predictions needs fur-
ther investigation.

5 The stratosphere and multidecadal projection

The importance of the stratosphere for climate projections
on multidecadal timescales was generally recognized before
its role in predictions on shorter timescales. This is in part a
legacy of the early development of stratosphere—troposphere
models for ozone depletion studies described in the Introduc-
tion. On these longer timescales, coupling between strato-
spheric composition, thermal structure, and atmospheric cir-
culation gives rise to improved climate projections.

Perhaps the best-known case for the stratosphere affect-
ing multidecadal projections of surface climate is the in-
fluence of ozone depletion on the Southern Annular Mode
(SAM; Thompson and Solomon, 2002; Thompson et al.,
2005; McLandress et al., 2011; Polvani et al., 2011; Son et
al., 2008, 2018), where decreasing ozone in the late 20th cen-
tury led to a strengthened pole-to-Equator temperature gradi-
ent, a stronger stratospheric polar vortex, and a shift to strong
positive SAM phases at the surface. In this case, studies again
show the importance of stratospheric resolution to generate
the full response, consistent with a genuine downward in-
fluence (Karpechko et al., 2008). The associated poleward
shift in the tropospheric jet is connected to a delay in the
spring breakdown of the stratospheric polar vortex (Byrne et
al., 2017) and delivered significant and prolonged changes
in rainfall across many regions of the Southern Hemisphere
(Kang et al., 2011b; Purich and Son, 2012). Implementation
of the Montreal Protocol in 1987 and subsequent reductions
in the rate of ozone depletion mean that recovery of the ozone
layer is now expected over the coming decades, and the re-
versible effects of this on the surface climate form an impor-
tant element of current multidecadal projections (Thompson
et al., 2011; Previdi and Polvani, 2014; Solomon et al., 2016;
Banarjee et al., 2020; Zambri et al., 2021), where they are
expected to play an important role alongside other changes
in the southern stratosphere due to continuing increases in
greenhouse gases (Son et al., 2009; Barnes et al., 2014), some
of which occur via the stratospheric polar vortex in a similar
way to those from ozone depletion and recovery (Ceppi and
Shepherd, 2019).
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The more limited effects of ozone depletion in the North-
ern Hemisphere meant that the role of the stratosphere in
multidecadal projections took longer to become established.
Some early studies found potential amplification of posi-
tive Arctic Oscillation trends under climate change when the
stratosphere was included (Shindell et al., 2001). However,
this was not borne out in later studies as simulations with
other fully coupled ocean—troposphere—stratosphere models,
suggesting weakening of the stratospheric polar vortex (e.g.
Huebener et al., 2007). Subsequent studies with multiple
models also indicated a southward shift in the polar night jet
with weakening high-latitude winds and strengthening sub-
tropical winds (Scaife et al., 2012; Manzini et al., 2014).
These changes result from increased atmospheric wave driv-
ing of the winds which can overwhelm the cooling effect of
greenhouse gases (Karpechko and Manzini, 2012) and can
lead to important differences in future surface climate, for
example in regional rainfall in areas typically affected by
the stratosphere via the Arctic Oscillation and NAO (Scaife
et al., 2012). There is still significant uncertainty due to the
diversity of modelled stratospheric responses to greenhouse
gas increases (Manzini et al., 2014; Simpson et al., 2018;
Zappa and Shepherd, 2017), and it has proved difficult to
identify any clear change in the frequency of sudden strato-
spheric warmings (Ayarzagiiena et al., 2018a, 2020; Rao and
Garfinkel, 2020). This is perhaps due to the competition be-
tween strengthening latitudinal temperature gradients near
the tropopause and enhanced meridional overturning in the
mid stratosphere. There is also strong inherent unpredictable
variability from decade to decade in the frequency of SSW
occurrence (Butchart et al., 2000; McLandress and Shepherd,
2009).

Other aspects of future climate change where the strato-
sphere plays a role have also been identified, for example,
in the debate over the response to future levels of Arctic sea
ice. In this case it seems that the response of the midlatitude
circulation involves a negative shift in the Arctic Oscilla-
tion (Screen et al., 2018; Zappa et al., 2018; McKenna et al.,
2018). This could again be amplified by interaction with the
stratosphere, as some studies suggest that the stratospheric
response is necessary for a large surface response (Kim et
al., 2014), while others highlight that the stratospheric inter-
action is sensitive to the regional pattern of sea ice decline
(McKenna et al., 2018), and still others show evidence of
nonlinear stratospheric and stratosphere-mediated surface re-
sponse (Manzini et al., 2018), coincident with the time when
the Barents and Kara seas become ice-free (Kretschmer et
al., 2020). Furthermore, studies also indicate that the surface
climate response to sea ice decline depends systematically on
the phase of the stratospheric QBO (Labe et al., 2019).

Although it is much less certain than anthropogenic cli-
mate change, there have also been suggestions of a multi-
decadal decline of external solar irradiance which can impact
multidecadal climate projections via the stratosphere. Previ-
ous multidecadal solar minima, so-called “grand minima”,
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have occurred in sunspot records and have been connected
to the Little Ice Age period around the end of the 17th cen-
tury using proxy and other data (Owens et al., 2017). Given
recent weak-amplitude 11-year solar cycles, there are now
suggestions of a future solar “grand minimum”, where the
11-year cycle described above could become muted or even
absent for a prolonged period (Lockwood et al., 2010). In
this case, the upper-stratospheric cooling in the tropics and
summer hemisphere can change the meridional temperature
gradient in a similar fashion to the 11-year cycle (Maycock
et al., 2015) and leads to a negative shift in the AO and the
NAO and hence affects regional climate (Ineson et al., 2015).
However, in this case it appears that while regional changes
could be significant, they are generally much smaller than the
surface warming due to anticipated levels of anthropogenic
greenhouse gases (Anet et al., 2003; Ineson et al., 2015; May-
cock et al., 2015).

Finally, we note that although low-frequency variability
in teleconnections is observed (e.g. Garfinkel et al., 2019),
it is often unclear whether this is a systematic variation or
simply due to sampling variability of an underlying station-
ary process (Jain et al., 2019). Nevertheless, there is growing
evidence for systematic climate change in some of the tele-
connections by which the stratosphere enables surface pre-
dictability. Under future climate change it appears that some
of the teleconnections discussed above may strengthen in
amplitude. For example, the strengthening of ENSO-induced
anomalies in the extratropical Atlantic—European sector in-
creases in future climate projections (Miiller and Roeck-
ner, 2006; Fereday et al., 2020). Similarly, recent analyses
suggest that the MJO teleconnection to the extratropics in-
creases in amplitude under climate change (Samarasinghe et
al., 2021). The same is also true of the extratropical effects
of the stratospheric QBO, where in this case, the amplitude
of the teleconnection in composite anomalies doubles under
future climate change (Rao et al., 2020c) despite the QBO
itself becoming weaker (Richter et al., 2020c).

6 Outlook

Long-range prediction has evolved quickly in recent years
(Merryfield et al., 2017, 2020; Butler et al., 2019b; Meehl
et al., 2021), and this rapid development is due in part to
the improved representation of stratospheric processes and
stratospheric initial conditions in ensemble prediction sys-
tems. The long-range forecast community originally focused
on predictability from initial ocean conditions, and this re-
mains the primary source of long-range predictability, for ex-
ample from ENSO, but some of these long-range prediction
systems contained poor representations of the stratosphere.
In the meantime, those working in parallel on climate mod-
elling of the stratosphere were rarely involved in initialized
long-range prediction, instead being driven primarily by the
ozone depletion problem. Knowledge exchange across fields
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is important in science and precursors to a new paradigm of-
ten occur when a topic is investigated by researchers from
outside the field (Kuhn, 1970). The crossover and collab-
oration between long-range prediction and stratospheric re-
search communities is no exception, and the interaction be-
tween these communities has yielded rapid progress and new
insights. Examples where initial atmospheric conditions can
provide predictability beyond the usually assumed limit have
been demonstrated, not only for the extratropics but also for
the tropics, and we now know that in some situations, for ex-
ample when sudden stratospheric warmings occur, the initial
conditions in the stratosphere can have more impact than ini-
tial conditions in the ocean (Thompson et al., 2002; Scaife
and Knight, 2008; Polvani et al., 2017). This suggests that
initial atmospheric conditions in the stratosphere are likely
to be more important for long-range forecasts than previ-
ously assumed (Mukougawa et al., 2005, 2009; Stockdale
et al., 2015; Noguchi et al., 2016, 2020a; Choi and Son,
2019; O’Reilly et al., 2019; Nie et al., 2019), not least be-
cause the overturning and breaking of Rossby waves in the
stratosphere is followed by long-lived atmospheric anoma-
lies due to synoptic-scale eddy feedbacks that prolong the
effects in the troposphere (Kunz and Greatbatch, 2013; Kang
et al., 2011a; White et al., 2020). More research on the initial
conditions in the stratosphere might therefore help to reveal
potential for further improvements in prediction skill.

A notable simplification to understanding the role of
the stratosphere, at least in extratropical long-range pre-
dictions, is its apparently seamless mechanism across dif-
ferent timescales and different phenomena. Following the
early ground-breaking studies showing surface impacts of
stratospheric variability (e.g. Labitzke, 1965; Boville, 1984)
and a multitude of studies on individual teleconnections be-
tween the stratosphere and surface climate, the projection
of stratospheric variability onto the Arctic Oscillation—North
Atlantic Oscillation—Northern Annular Mode circulation pat-
terns across timescales and hemispheres is now well estab-
lished (see the review by Kidston et al., 2015). This suggests
that similar coupling processes occur between the strato-
sphere and troposphere from months to decades, and these
processes lead to some of the most intense extratropical cli-
mate extremes, in winter in the Northern Hemisphere and
in late spring—early summer in the Southern Hemisphere
(Karpechko et al., 2018; Fereday et al., 2012; Kautz et al.,
2019; Domeisen and Butler, 2020). While studies point to
changes in upper-tropospheric baroclinicity and tropospheric
eddy feedbacks as crucial in these teleconnections, a full
mechanistic understanding of how this occurs is still lacking.

Some, but not all, leading forecast systems now include
a well-resolved stratosphere with a reasonable representa-
tion of relevant processes such as the body force from sub-
grid orographic and non-orographic gravity waves. However,
many outstanding problems remain. Although their number
is increasing, only a subset of current GCMs have the ability
to simulate a realistic QBO beyond its decay from initial con-
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ditions, and it seems that all GCMs have problems with the
fidelity of modelled QBO teleconnections, which are either
too weak or absent altogether (Scaife et al., 2014a; Kim et al.,
2020; Anstey et al., 2021). Even the relatively well-studied
ENSO teleconnection via the stratosphere to the extratropics
still has outstanding questions, such as whether the Northern
Hemisphere stratosphere exhibits more SSW events during
the La Nifia phase (Butler and Polvani, 2011; Song and Son,
2018). This is not generally reproduced in modelling systems
(Garfinkel et al., 2012a) but occurred in the recent La Nifa
winter of 2020/21. Similarly, while the increased monthly
predictability from the MJO during the easterly phase of the
QBO has been detected in monthly forecast experiments, the
QBO-MJO connection does not persist in longer predictions
and simulations with current models (Kim et al., 2020). Re-
search and model development on stratosphere—troposphere
interaction, including tropical effects (Noguchi et al., 2020b),
will no doubt lead to further progress in resolving this issue
(Haynes et al., 2021).

Errors in the modelled climatological mean climate are in-
evitably present to varying degrees in even the latest climate
models. The common protocol of running a set of retrospec-
tive predictions to allow these mean biases to be estimated
and hence subtracted from real-time predictions may well
correct for much of this error. However, the degree to which
biases have a nonlinear, state-dependent impact on the pre-
dictions is not fully understood. In some contexts, the non-
linear impacts of biases may be minimal (Karpechko et al.,
2021), while others show sensitivity (Sigmond et al., 2008,
2010) and increases of prediction skill occur under certain
background conditions, for example during easterly QBO
phases (Taguchi, 2018). Other processes generally omitted
from long-range predictions include interactive variations
of ozone and other trace gases. Although reports of im-
pacts and benefits have varied, it is thought that surface sig-
nals on interannual timescales come mainly from dynamical
rather than chemical changes (Seviour et al., 2014; Harari
et al., 2019). Nevertheless, some studies suggest detectable
effects from interannual variability of ozone, and it may be
that ozone fluctuations could help to amplify surface signals
(Karpechko et al., 2014; Son et al., 2013; Smith and Polvani,
2014; Oehrlein et al., 2020; Hendon et al., 2020), providing a
further area for future development. Given that the cost of full
atmospheric chemistry schemes remains computationally ex-
pensive, it seems likely that simple parametrizations of ozone
chemistry (e.g. Monge-Sanz et al., 2021) would be valuable
in this context.

We end with a pointer to an issue that has now been found
to affect long-range predictions from monthly to seasonal
to decadal and multidecadal timescales, particularly in the
extratropics. So-called “perfect model studies”, which test
the ability of models to predict their own ensemble mem-
bers, are now known to underestimate the true predictability
of climate in some regions, particularly around the Atlantic
basin, and so models are better at predicting real-world vari-
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ations than they are at predicting themselves. This so-called
“signal-to-noise paradox” (Scaife and Smith, 2018) is at first
surprising, because perfect model prediction scores are often
assumed to represent an upper (rather than lower) limit for
prediction skill of the real world. The problem can be under-
stood in terms of unrealistically weak ensemble mean pre-
dictions (e.g. Eade et al., 2014), but whether the stratosphere
is involved directly in the cause of this problem remains to
be seen (Saito et al., 2017; Stockdale et al., 2015), as it ini-
tially appears in the troposphere rather than the stratosphere
in long-range forecasts (Domeisen et al., 2020a). Neverthe-
less, the unrealistically weak amplitude of ensemble mean
predictions may well have the same root cause as the weaker-
than-observed amplitude of modelled teleconnections to the
stratosphere discussed in this review, including, for example,
the underrepresentation of the surface impact of the QBO.
Resolving this problem will therefore likely amplify these
signals, provide greater levels of prediction skill, and further
strengthen the role of the stratosphere in long-range predic-
tions of surface climate.
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