

¹Division of Clinical Pharmacology, Department of Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland. ²School of Pharmaceutical Sciences, University of Lausanne and Geneva, Geneva, Switzerland. ³Centre Hospitalier Universitaire de Bordeaux, Pharmacologie Clinique et Toxicologie, Bordeaux, France. ⁴Hématopoïèse Leucémique et Cible Thérapeutique, Inserm U1035, Université Victor Ségalen, Bordeaux, France

Probability of achieving optimal molecular response to imatinib treatment in chronic myeloid leukemia (CML) patients

Pharmacokinetic/Pharmacodynamic (PK/PD) relationships observed under field-conditions

Introduction

Background

Imatinib is a first-line drug for CML with considerable pharmacokinetic variability.

Therapeutic drug monitoring (TDM) has been increasingly proposed, as trough concentrations (C_{min}) have been correlated with improved response in prospective trials.^{1,2}

Objective

evaluate the impact of imatinib exposure on optimal molecular response (MR) rates in a large European cohort of patients followed by centralized TDM.

Methods

Study scope

Pharmacological Observational study: Monitoring Project of EUTOS (European Treatment & Outcome Study, 2006-2010)3.

PK/PD analysis

Sequential PK/PD analysis (NONMEM 7):

- 1. Population PK analysis (FOCE-interaction) individual Bayesian estimates of exposure (PK)
- 2. Mixed-effect logistic regression (ITS) PD (optimal MR) ~ PK + covariates + ŋ

Covariates considered

PK variables: log-normalized C_{min} (log- C_{min}) or clearance (CL), adjusted to initial dose

Others: Time on imatinib treatment (stratified at 3 years), sex, CML phase, age, potentially interacting comedication, TDM frequency.

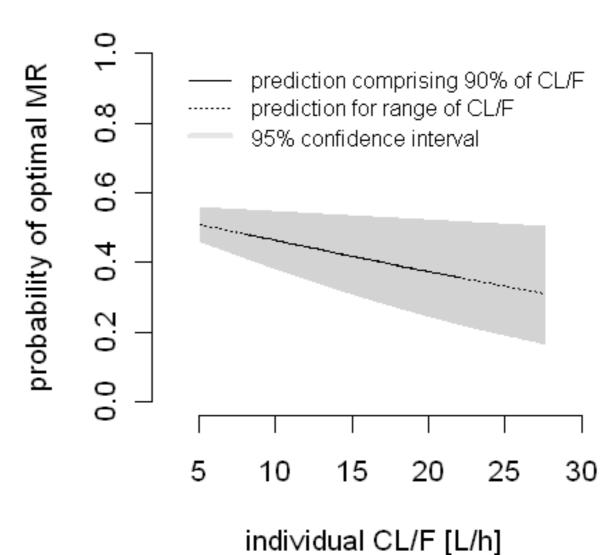
Table 1: Data - patient and sample characteristics				
Patients [n]		1299		
Gender [n]	male : female	728: 571		
Observations [n]		2230		
Estimated C _{min (adj)} [ng/ml]	median (range)	797 (231-4602)		
Estimated CL [L/h]	median (range)	14.4 (5-28)		
Age [years]	median (range)	56 (18-92)		
Daily dose [mg]	mean (sd)	462 (124)		
Months on imatinib	median (range)	45 (18-143)		
Comedication [n]	Present : unknown	1682 : 548		
C _{min(adi)} : trough concentration adjusted to standard (initial) dose of 400mg daily.				

Results

Population PK analysis

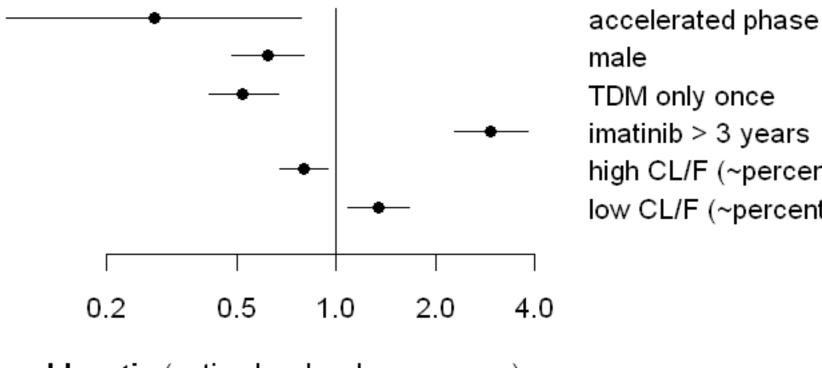
Table 2: Summary of population PK model	Point estimate	RSE %		
Structural parameters (1-compartment, 0-order absorption)				
Duration of absorption (D1) Clearance (CL/F) Volume of distribution (V/F)	3.2 h 17.3 L/h (male) 429 L	10.2% 9.6% 10.2%		
Between-subject variability				
$\begin{array}{c} \text{CV}\%_{\text{CL/F}} \\ \text{CV}\%_{\text{V/F}} \\ \text{Correlation}_{\text{CL/F-V/F}} \\ \text{CV}\%_{\sigma 1} \end{array}$	37.7% 51.1% 0.75 35.4%	12.1% 39.5% 27.6% 41.8%		
Intra-individual (residual) varial	oility			
Proportional part, σ_1 (CV%) Additive part, σ_2	29.1% 84.6 ng/ml	4.5% 22.8%		
Covariate-Model: TVCL = CL (1+ θ 1) (1+ θ 2 (age-40))				
female on CL/F: θ1 If age < 40 years: θ2 on CL/F If age > 40 years: θ2 on CL/F	-0.152 (-15.2%) 0.00403 -0.00568	12.3% 73.2% 12.9%		

RSE% relative standard error. CV: coefficient of variation.


Mixed-effect logistic regression

- Univariate analysis: CL, log-Cmin, time on treatment, TDM frequency, gender (all p<0.01) & CML phase (p=0.02) significant predictors of the PD outcome.
- Stepwise multivariate regression: all but log-Cmin (p=0.34) remained significant.

Table 3: Summary of PK/PD model	Estimate (SE)	BL π [95% CI]
« Baseline patient »: average CL of 16 L/h	0.105 (0.125)	52.6% [46.5-58.7%]
Time on imatinib > 3 years	+1.08 (0.130)	76.6% [71.7-80.8%]
TDM only once	-0.65 (0.128)	36.8% [31.2-42.8]
Male sex	-0.48 (0.127)	40.9% [35.0-47.0%]
Accelerated phase	-1.29 (0.534)	23.4% [9.7-46.5%]
Individual CL, increase by 1 L/h from 16 L/h 8.0 L/h: 22.2 L/h (percentile 5: 95)	-0.037 (0.014)	59.9% : 46.9%
η (BSV variability)	1.34 (0.6)	+/- η: 22.5-80.9% +/- 1.96η: 7.5-93.9%


SE: standard error. **BL** π : baseline probability, corresponding to an odds ratio of 1. CI: confidence interval. BSV: between-subject variability.

PK/PD relationships

molecular response (MR). Probability over CL/F, illustrated for a "baseline patient" changing CL/F.

Fig-2: Impact of exposure

male TDM only once imatinib > 3 years high CL/F (~percentile 95) low CL/F (~percentile 5)

odds ratio (optimal molecular response)

Fig-3: Impact of other patient-related factors on optimal molecular response (MR) and comparison with impact of CL/F. Estimated odds ratios with 95% confidence intervals (PK/PD model)

Derived exposure estimates

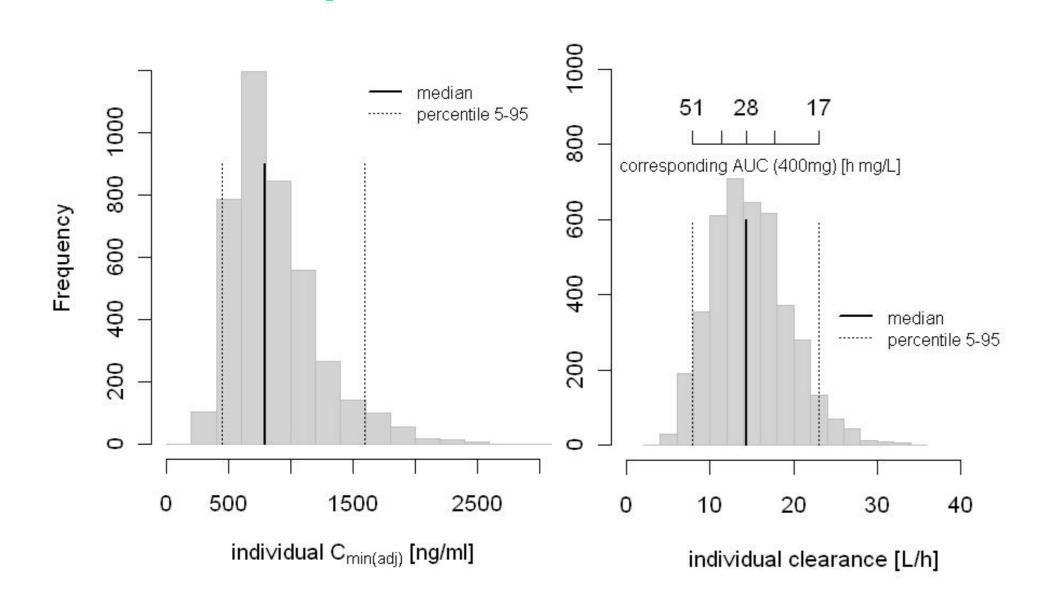


Fig-1: Individual Bayesian estimates of exposure derived from the population PK analysis. Left: Individual Cmin estimates, adjusted to daily standard dose of 400 mg ($C_{min(adj)}$), observations >3000 ng/ml not shown (n= 2). Right. Individual clearance estimates (CL/F) together with corresponding estimates of dose-adjusted area under the concentration-time curve (AUC₀₋₂₄).

References

[1] Picard, S., K. Titier, et al. (2007)

[2] Larson, R. A., B. J. Druker, et al. (2008)

Acknowledgements

The EUTOS project is a scientific collaboration between the European Leukemia Net (ELN) and Novartis. The authors thank especially Peter Schuld (Novartis Oncology Region Europe) for logistic support.

Conclusions

- Imatinib exposure at treatment initiation (CL~initial dose/AUC)
- Small impact confirmed on the probability of molecular response in observational setting
- CML phase and time on treatment
- Expectedly correlated to outcome
- Male patients: 1 increased risk of suboptimal response
- Compliance- or concentration related (18.5% higher CL)?
- Prospective study needed
- to confirm clinical importance of identified covariates to exclude biases possibly affecting this observational survey