
Linear Game Automata:
Decidable Hierarchy Problems for Stripped-Down

Alternating Tree Automata

Jacques Duparc1, Alessandro Facchini1,2?, and Filip Murlak3??

1 University of Lausanne
2 University of Bordeaux 1
3 University of Edinburgh

{jacques.duparc, alessandro.facchini}@unil.ch,
fmurlak@inf.ed.ac.uk

Abstract. For deterministic tree automata, classical hierarchies, like Mostowski-
Rabin (or index) hierarchy, Borel hierarchy, or Wadge hierarchy, are known to
be decidable. However, when it comes to non-deterministic tree automata, none
of these hierarchies is even close to be understood. Here we make an attempt in
paving the way towards a clear understanding of tree automata. We concentrate on
the class of linear game automata (LGA), and prove within this new context, that
all corresponding hierarchies mentioned above—Mostowski-Rabin, Borel, and
Wadge—are decidable. The class LGA is obtained by taking linear tree automata
with alternation restricted to the choice of path in the input tree. Despite their
simplicity, LGA recognize sets of arbitrary high Borel rank. The actual richness
of LGA is revealed by the height of their Wadge hierarchy: (ωω)ω .

1 Introduction

The Mostowski–Rabin hierarchy, the Borel hierarchy, and the Wadge hierarchy are the
most common measures of complexity of recognizable ω-languages.

The first one, also known as the index hierarchy, orders languages according to
the nesting of positive and negative conditions checked by the recognizing automaton.
It has two main versions: weak, relying on finitary conditions (e.g., “a does occur”);
and strong, referring to infinitary conditions (e.g., “b occurs infinitely often”). It is be-
lieved to reflect the inherent computational complexity of the language, and therefore
has attracted a lot of attention encouraged by the expectations of the verification com-
munity [3,4,10,17,18,19,20].

The classical Borel hierarchy is based on the nesting of countable unions and nega-
tions in the set theoretic definition of the language, starting from the simplest (open)
sets. It drew attention of automata theorists as early as 1960s [12], and has continued

? Research supported by a grant from the Swiss National Science Foundation, n. 100011-
116508: Project “Topological Complexity, Games, Logic and Automata”.

?? On leave from the University of Warsaw; partially supported by the Polish government grant
no. N206 008 32/0810.

2

to inspire research efforts ever since, mainly because of its intimate relations with the
index hierarchy [9,19,23].

The Wadge hierarchy is an almost ultimate refinement of the Borel hierarchy, de-
fined by the preorder induced on languages by simple (continuous) reductions. It en-
ables precise comparison of different models of computation. What is more powerful:
deterministic or weak automata on trees? It is known that there are deterministic lan-
guages that are not weakly recognizable and vice versa. How to compare, if not by
inclusion? An even more exotic case: deterministic tree languages versus deterministic
context free word languages. How to compare trees with words? The Wadge hierarchy
makes it possible. The sole heights (huge ordinals) of the Wadge hierarchy restricted to
the classes under comparison provide, literally, infinitely more information then other
logical techniques [6,8,15,22].

Measuring hardness of recognizable languages of infinite trees is a long standing
open problem. Unlike for infinite words, where the understanding is almost complete
since Wagner’s 1977 paper [25], for trees the only satisfyingly examined case is that of
deterministic automata [14,15,16,19,20]. But the deterministic and non-deterministic
case differ immensely for trees. The only results obtained for non-deterministic or al-
ternating automata are strictness theorems for various classes [3,4,13,17], and lower
bounds for the heights of the hierarchies [7,23]. To the best of our knowledge, the
only nontrivial decidability result is that on emptiness [21]. As the empty set and the
whole space are the only two sets on the lowest level of the Wadge hierarchy (or the
Mostowski–Rabin hierarchy), using emptiness test and the complementation procedure
[21] we can decide if a given language is on the first level of the hierarchy or not.
Obviously this does not say much about the complexity of the language in question.

This paper intents to change this situation, even if only very slightly for a start.
We propose a class of automata having all three hierarchies decidable and capturing a
reasonable amount of non-determinism. The class we advocate, linear game automata
(LGA), is obtained by taking linear automata (a.k.a. very weak automata), that emerged
in the verification community, and restricting the alternation to the choice of a path in
the input tree. Linear automata capture CTL [11], which is expressive enough for many
applications. Though linear game automata are weaker, they retain most alternation
related to the branching structure. Evidence for their expressivity is topological: they
recognize sets of arbitrarily high finite Borel rank, and their Wadge hierarchy has the
height (ωω)ω , much larger than (ωω)3 + 3 for deterministic automata.

As we have already pointed out, these automata are far from capturing the full ex-
pressivity of non-deterministic automata, but still, computing the Wadge degree for a
given LGA is much more involved than for an ω-word automaton and even a deter-
ministic tree automaton. The structural simplicity of LGA might seem to reduce the
computation to the decomposition of nested chains, but in fact the alternation (even
very weak) makes it much harder. We believe that the notion of game automata is well
suited to take us further. Indeed, the next step is to consider weak and then strong game
automata. This last class is already quite expressive, as it contains inhabitants of every
level of the (strong) index hierarchy and subsumes deterministic languages. Extend-
ing decidability to this class would be an important result, though possibly the last one
accessible with the tools we are using.

3

2 Preliminaries

2.1 Weak automata

Let W be a non empty set. A tree over Σ is a partial function t : W ∗ → Σ with a
prefix closed domain. A tree is called full if dom(t) = W ∗, and it is called binary if
W = {0, 1}. Let TΣ denote the set of full binary trees over Σ. In the sequel we only
consider full binary trees. Given v ∈ dom(t), by t.v we denote the subtree of t rooted
in v. We write d to denote the other direction: 0 = 1, 1 = 0.

A weak alternating tree automatonA = 〈Σ,Q, qI , δ, rank〉 consists of a finite input
alphabet Σ, a finite set of states Q partitioned into the existential states Q∃ and the
universal states Q∀, an initial state qI , a transition relation δ ⊆ Q×Σ × {ε, 1, 0} ×Q
and a bounded priority function rank : Q → ω. Sometimes we write q

σ,d−−→ q′ when
q′ ∈ δ(q, σ, d). The acceptance is defined in terms of a (weak) parity game.

A weak parity game is a two-player game given by 〈V, V0, V1, E, rank〉, where V =
V0 ·∪V1 is the set of vertices, E ⊆ V × V is the edge relation, and rank : V → ω is
the priority function with bounded image. A vertex v′ is a successor of a vertex v if
(v, v′) ∈ E. A play from a vertex v0 is a path v0v1v2 . . . visited by a token moving
along the edges of the graph. If the token is in v ∈ Vi, player i chooses the next location
of the token among the successors of v. We say that player 0 wins a (finite or infinite)
play if and only if the greatest priority ever occurring in the play is even.

Consider a weak alternating automaton A and an tree t ∈ TΣ . The automaton A
accepts t iff Player 0 has a winning strategy in the weak parity game GA,t defined as:

– V0 = {0, 1}∗ ×Q∃, V1 = {0, 1}∗ ×Q∀,
– the relation E = {((v, p), (vd, q)) : v ∈ dom(t), (p, t(v), d, q) ∈ δ},
– rank((v, q)) = rank(q), for every vertex (v, q).

A path in A is a sequence of states and transitions q0
σ0,d0−−−→ q1

σ1,d1−−−→ q2 · · ·
· · · qn

σn,dn−−−−→ qn+1. If there is such a path with q = q0 and q′ = qn+1, we say that q′

is reachable from q. A path is a loop if qn+1 = q0. If there is a loop from a state q, we
say that this state is looping. If q is looping and rank(q) is even (resp. odd) we say that
the loop in q is positive (resp. negative). Finally, we say that a state p is replicated by q

if there is a path q
σ0,d0−−−→ q1 · · · qn

σn,dn−−−−→ p and a transition q
σ0,d̄0−−−→ q.

2.2 Borel classes and Wadge reductions

Consider the space TΣ equipped with the standard Cantor topology (see eg. [19]). Re-
call that the class of Borel sets of a topological space X is the closure of the class
of open sets of X by countable unions and complementation. Given X , the initial
finite levels of the Borel hierarchy are defined as follows with Σ0

0(X) = {∅} and
Π0

0 (X) = {X}.

– Σ0
1(X) is the class of open subsets of X ,

– Π0
n(X) contains complements of sets from Σ0

n(X),
– Σ0

n+1(X) contains countable unions of sets from Π0
n(X).

4

The classes defined above are closed under inverse images of continuous functions.
Given a classe C, a set U is called C-hard if each set in C is an inverse image of U under
some continuous function. If additionally U ∈ C, U is said to be C-complete. It is well
known that every weakly recognizable tree language is a member of a Borel class of
finite rank ([7,13]). The rank of a language is the rank of the minimal Borel class the
language belongs to. It can be seen as a coarse measure of complexity of languages.

A much finer measure of the topological complexity is the Wadge degree. If T,U ⊆
TΣ , we say that T is continuously (or Wadge) reducible toU , if there exists a continuous
function f such that T = f−1(U). We write T ≤w U iff T is continuously reducible
to U . Thus, given a certain Borel class C, T is C-hard if U ≤w T for every U ∈ C.
This particular ordering is called the Wadge ordering. If T ≤w U and U ≤w T , then
we write T ≡w U . If T ≤w U but not U ≤w T , then we write T <w U . The Wadge
hierarchy is the partial order induced by <w on the equivalence classes given by ≡w.

Let T and U be two arbitrary sets of full binary trees. The Wadge game W(T,U)
is a two-player game (player I and player II). During a play, each player builds a tree,
say tI and tII . In each round both players add children to some terminal nodes of their
corresponding tree. Player I plays first and Player II is allowed to skip his turn but not
forever. Player II wins the game iff tI ∈ T ⇔ tII ∈ U . Bill Wadge designed this game
precisely in order to obtain a characterisation of continuous reducibility.

Lemma 1 ([24]). Let T,U ⊆ TΣ . Then T ≤w U iff Player II has a winning strategy in
the gameW(T,U).

A language L is called self dual if it is equivalent to its complement, otherwise it is
called non self dual. From Borel determinacy, if T,U ⊆ TΣ are Borel, thenW(T,U)
is determined. As a consequence, a variant of Martin-Monk’s result shows that <w is
well-founded. The Wadge degree for sets of finite Borel rank is inductively defined by:

– dw(∅) = dw(∅{) = 1,
– dw(L) = sup{dw(K) + 1: K non self dual,K <w L} for L >w ∅.

2.3 Linear game automata

A linear game automaton (LGA) is a weak alternating automatonA = 〈Σ,Q, qI , δ, rank〉
satisfying two special restrictions:

– (game alternation) the transition relation is a total function δ : Q×Σ → Q×Q;
– (linearity) for every loop q

σ0,d0−−−→ q1
σ1,d1−−−→ q2 · · · qn

σn,dn−−−−→ q it holds that qi = q,
for all 1 ≤ i ≤ n.

In the remaining of the paper, we often write q σ−→ q0, q1 if δ(q, σ) = (q0, q1). Let Aq
denote the automaton obtained from A by changing the initial state to q. Without loss
of generality, we make the following assumptions:

– there is no trivial state, i.e., if q ∈ Q is such that Aq ≡ > (resp. Aq ≡ ⊥), then
q = > (resp. q = ⊥),

– there is no trivial transition, i.e., if p ∈ Q∀, and p σ−→ q,⊥, then q = ⊥ (dually for
p ∈ Q∃).

5

By convention, > is a looping state of even rank, and ⊥ is a looping state of odd rank.
LGA are closed under complementation. The usual complementation procedure, that

increases the ranks by one and swaps existential and universal states turns LGA into
LGA. However, LGA are not closed under union nor intersection. Given σ ∈ Σ, the
language Lσ = {t ∈ TΣ : t(0) = t(1) = σ} is LGA-recognizable, but Lσ ∪ Lσ′ is not.

2.4 A normal form

We now provide a useful normal form of LGA. First let us define three operations on
tree languages (and tree automata). Let L, M be tree languages over Σ containing at
least two letters, a and b. Define alternative (∨), disjunctive product (�), and conjunctive
product (�) as

L ∨M = {t : t(ε) = a , t.0 ∈ L or t(ε) 6= a , t.0 ∈M} ,
L �M = {t : t.0 ∈ L or t.1 ∈M} ,
L�M = {t : t.0 ∈ L and t.0 ∈M} .

The family of languages recognized by LGAs is closed under these three operations.
In particular, the operations have natural counterparts on automata. We write A ∨ B to
denote the automaton recognizing L(A) ∨ L(B), and similarly for � and � . Multifold
alternatives are performed from left to right, e.g., A1 ∨ A2 ∨ A3 ∨ A4 = (((A1 ∨
A2) ∨ A3) ∨ A4). It is easy to see that these three operations define associative and
commutative operations on Wadge equivalence classes.

Lemma 2. Each LGA is Wadge equivalent to an LGA over the alphabet {a, b}.

Proof. We proceed by induction on the number of states. Let C be an LGA. If C
has only one state, the claim follows trivially. Suppose C has several states. We may
assume w.l.o.g. that its initial state of C, q0, is existential. Suppose that the transi-

tions of C starting in q0 are q0
ai−→ pi, p

′
i , q0

bj−→ q0, ri and q0
ck−→ q0, q0 with

Σ = {a1, . . . , a`; b1, . . . , bm; c1, . . . , cn}. Then C is Wadge equivalent to

〈q0〉
ck,∗

,,
bj ,0

rr

ai,0
��~~

~~
~~

~~

ai,1))RRRRRRRRRRRRRRR bj ,1
// Cr1 ∨ · · · ∨ Crm

⊥ (Cp1 � Cp′1
) ∨ · · · ∨ (Cp` � Cp′

`
)

By induction hypothesis, there exist automata Ai, A′i, Bj over {a, b}, such that Ai ≡w
Cpi , A

′
i ≡w Cp′i , and Bj ≡w Crj . Let A = (A1 � A′1) ∨ · · · ∨ (A` � A′`) and B =

B1 ∨ · · · ∨Bm. Further, we see that if A∨B ≡w >, then C is Wadge equivalent to the
automaton on the left below and otherwise to the one on the right:

〈q0〉
b,0

,,

a,0
~~||

||
||

||

a,1
 B

BB
BB

BB
B b,1

// ⊥

> >

〈q0〉
b,0

,,

a,0
~~||

||
||

||

a,1
##G

GG
GG

GG
GG b,1

// B ∨A

⊥ A

ut

6

From now on we work with automata over {a, b}, unless explicitly stated otherwise.
A looping state q of an LGA A is

– restrained if it is an existential positive state or a universal negative state,
– unrestrained if it is an existential negative state or a universal positive state.

Examining the proof of Lemma 2, we see that in fact, each nontrivial looping state falls
into exactly one of the categories shown below (+ means even rank,−means odd rank).

Restrained Unrestrained

〈+〉
a,0

,,

b,0}}{{
{{

{{
{{

b,1 !!C
CC

CC
CC

C
a,1 // A

B0 B1

〈−〉
a,0

,,

b,0}}{{
{{

{{
{{

b,1 !!C
CC

CC
CC

C
a,1 // A

B0 B1

[−]

a,0

--

b,0~~||
||

||
||

b,1 B
BB

BB
BB

B
a,1 // A

B0 B1

[+]

a,0

--

b,0~~||
||

||
||

b,1 B
BB

BB
BB

B
a,1 // A

B0 B1

A node q of each of the above kinds may be seen as an action over triples of LGAs;
we denote by q(A,B0, B1) the automaton being the result of the action q on A, B0,
B1, e.g., [+](A,B0, B1) or 〈−〉(A,B0, B1). Often we use a shorthand [µ](A,B) =
[µ](A,B,>), 〈µ〉(A,B) = 〈µ〉(A,B,⊥) for µ = + or µ = −.

3 Deciding the Borel hierarchy

3.1 Patterns menagerie

The basis for the procedure computing the Borel rank of a given LGA-recognizable
language is a characterization in terms of difficult patterns. We define (0, n)-pattern,
and (1, n+ 1)-pattern by induction on n:

– a (0, 1)-pattern is a negative loop reachable from a positive loop,
– a (1, 2)-pattern is a positive loop reachable from a negative loop,
– a (0, n+ 1)-pattern is a (1, n+ 1)-pattern replicated by a universal positive node,
– a (1, n+ 2)-pattern is a (0, n)-pattern replicated by an existential negative node.

We also define canonical automata, KΣ
n and KΠ

n , corresponding to the patterns:

KΠ
1 = [+](>,⊥,⊥), KΠ

n+1 = [+](KΣ
n ,⊥,⊥),

KΣ
1 = 〈−〉(⊥,>,>), KΣ

n+1 = 〈−〉(KΠ
n ,>,>).

The tree languages recognized by the above canonical automata coincide with the
sets used by Skurczyński to prove the existence of weakly recognizable languages of
each finite Borel rank.

7

Proposition 1 ([23]). For every n > 0,
L(KΣ

n) is Σ0
n-complete and L(KΠ

n) is Π0
n-complete.

Skurczyński’s result follows by straightforward induction from the following easy
lemma. For v ∈ {0, 1}∗ and U ⊆ TΣ , let vU = {t ∈ TΣ : t.v ∈ U}.

Lemma 3. For each n > 0

1. if Ui is Σ0
n-hard for i < ω,

⋂
i∈ω 0i1Ui is Π0

n+1-hard;
2. if Vi is Π0

n-hard for i < ω,
⋃
i∈ω 0i1Vi is Σ0

n+1-hard.

3.2 Effective characterization

Since any Borel class is closed under finite unions and finite intersections, we have:

Proposition 2. Let K be a complete set for some class from
⋃

1≤i<ω{Σ0
i , Π

0
i }.

For every k, if Ui ≤w K for 0 ≤ i ≤ k, then

(1)
⋃k
i=0 0i1Ui ≤w K, (2)

⋂k
i=0 0i1Ui ≤w K,

and if Vi <w K for 0 ≤ i ≤ k, then

(3)
⋃k
i=0 0i1Vi <w K, (4)

⋂k
i=0 0i1Vi <w K.

Analogously, sinceΣ0
n is closed under countable unions, andΠ0

n is closed under count-
able intersections, we obtain the following result.

Proposition 3.

1. Let K be a Σ0
n-complete set. If for every i ∈ ω it holds that Ui ≤w K, then⋃

i∈ω 0i1Ui ≤w K.
2. Let K be a Π0

n-complete set. If for every i ∈ ω it holds that Ui ≤w K, then⋂
i∈ω 0i1Ui ≤w K.

We now apply these properties to characterize the topological power of looping
nodes in an LGA.

Lemma 4. LetA,B0, B1, C be LGA such thatC = q(A,B0, B1), and q is a restrained
looping node. For n ≥ 2

1. if L(A), L(Bi) <w L(KΣ
n), then L(C) <w L(KΣ

n);
2. if L(A), L(Bi) <w L(KΠ

n), then L(C) <w L(KΠ
n).

Proof. It is enough to prove the first claim, the second follows by duality. Suppose that
q = 〈+〉. Let us describe a winning strategy for Player II in W(L(C), L(KΣ

n)). If
Player I plays a on the leftmost branch, Player II plays accepting in the subtrees rooted
in nodes 0i1. If Player I finally plays a b in the kth round, Player II switches to playing
rejecting in every subtree rooted in 0i1 for i < k, and in the subtree rooted in 0k applies
the winning strategy given by Proposition 2 (1). Hence, L(C) ≤w L(KΣ

n).
To obtain strictness of the inequality, we describe a winning strategy for Player I in

W(L(KΣ
n), L(C)). As long as Player II skips or plays a on the leftmost branch, Player

I plays rejecting in the subtrees rooted in 0i1. If in the kth round Player II finally plays

8

b on the leftmost branch, Player I continues playing rejecting in every subtree rooted in
0i1 for i ≤ n, and in the subtree rooted in 0n+1 applies the winning strategy given by
Proposition 2 (3).

For q = [−] the proof is analogous, only uses Proposition 2 (2) and (4). ut
Lemma 5. Let A,B0, B1, C be LGA such that C = q(A,B0, B1), and q is an unre-
strained looping node. Let n ≥ 2. If q = 〈−〉, then

1. if L(A) ≤w L(KΣ
n−1), and L(Bi) <w L(KΣ

n), then L(C) <w L(KΣ
n);

2. if L(A) ≥w L(KΠ
n−1), then L(C) ≥w L(KΣ

n);

and if q = [+], then

3. if L(A) ≤w L(KΠ
n−1), and L(Bi) < L(KΠ

n), then L(C) <w L(KΠ
n);

4. if L(A) ≥w L(KΣ
n−1), then L(C) ≥w L(KΠ

n).

Proof. Use an argument similar to the proof of Lemma 4 to infer (1) and (3) from
Proposition 3, and (2) and (4) from Lemma 3. ut
The main theorem of this part follows from Lemma 4 and Lemma 5 by induction on the
structure of the automaton. And as a corollary, we obtain the first decidability result.

Theorem 1. For every n and every LGA A

1. L(A) is Σ0
n-hard iff A contains a (1, n+ 1)-pattern;

2. L(A) is Π0
n-hard iff A contains a (0, n)-pattern.

Corollary 1. The problem of calculating the exact position in the Borel hierarchy of a
language recognized by a linear game tree automaton is decidable (in polynomial time
if the productive states are given).

4 The weak index hierarchy

4.1 Introducing the hierarchy
The (Mostowski–Rabin) index of an automaton A is given by (i, j) ∈ ω × ω, where i
is the minimal and j is the maximal value of the priority function rank. Scaling down
the priorities if necessary, we can assume that i ∈ {0, 1} and that for every n ∈ {i, i+
1, . . . , j}, there is a state q such that rank(q) = n. Thus, the indices are elements of
({0, 1} × ω) \ (1, 0). Given an index (0, j) (resp. (1, j)), its dual index is (1, j + 1)
(resp. (0, j − 1)).

Consider the partial order on indices of automata given by

(i, j) v (i′, j′) iff j − i < j′ − i′ .

Note that this implies that dual indices are incomparable. The hierarchy induced by the
partial order v is called the hierarchy of Mostowski–Rabin indices (or simply the index
hierarchy) of the considered class of automata.

For a given class, the hierarchy is said to be strict if there is an automaton at each
level that cannot be simulated by any automaton from the same class of lower level. By a
result of Bradfield [3,4], we know that the index hierarchy of alternating tree automata,
and therefore the fixpoint hierarchy of the modal µ-calculus, is strict. Arnold’s proof of
the same result [1] can be adapted to show that the index hierarchy of weak alternating
tree automata is also strict. In the latter case we speak of the weak index hierarchy.

9

4.2 The conjecture

In [16] it was conjectured that for weakly recognizable tree languages the weak index
hierarchy and the Borel hierarchy coincide, i.e., that a weakly recognizable tree lan-
guage is in Σ0

n (resp. Π0
n) iff it can be recognized by a weak alternating automaton of

index (1, n+ 1) (resp. (0, n)). It has long been known that one implication holds.

Proposition 4 ([13]). For every weak alternating automaton with index (0, n) (resp.
(1, n+ 1)), it holds that L(A) ∈ Π0

n (resp. L(A) ∈ Σ0
n).

It was also proved recently that the conjecture holds when restricted to languages which
are in addition deterministically recognizable [16]. We refine this result by showing that
the conjecture also holds for languages recognizable by LGA.

4.3 Weak index of LGA-recognizable sets

Theorem 2. For languages recognizable by LGA, the Borel hierarchy and the weak
index hierarchy coincide.

Proof. For simplicity we assume that all automata are in the normal form. Extending
the proof to the general case is easy.

By duality it is enough to consider Π0
n classes. By Proposition 4 it is suffices to

show that for each LGA C with L(C) ∈ Π0
n there exists an equivalent weak alternating

automaton of index (0, n). We proceed by induction on the structure of the automaton.
The case n = 0 is trivial. Suppose that n = 1. By Theorem 1, C does not contain

an accepting loop reachable from a rejecting loop. It is enough to set the rank of all
states reachable from odd looping states to 1 and the rank of the remaining states to 0
to obtain an equivalent automaton of index (0, 1).

Suppose that n ≥ 2. If the initial state of C is not looping, the claim follows easily
from the induction hypothesis. Suppose that q0 is a looping node, and C is of the form

(i)

a,0

++ a,1 //

b,0

~~}}
}}

}}
}} b,1

 A
AA

AA
AA

A A

B0 B1

We can treat C as a weak alternating automaton and transform it into an equivalent one
of index (0, n). Clearly, it must hold that L(A), L(B) ∈ Π0

n and by induction hypothe-
sis we may assume thatA,B0,B1 have index (0, n). If i = 0, the claim follows trivially.
For (i) = [1], the equivalent weak automaton of index (0, n) is shown in Fig. 1(a). To
prove the equivalence, observe that the left-hand component checks that finally b occurs
on the leftmost branch, and the right-hand component checks the condition A until the
first b occurs, and after that checks the conditions B0 and B1.

Finally, suppose that (i) = 〈1〉. By Theorem 1, C contains (1, n+1)-pattern, which
implies that A contains no (0, n− 1)-pattern. By induction hypothesis we may assume
that A has index (1, n). Recall that B0 and B1 have index (0, n). The corresponding

10

[0]

ε

 @
@@

@@
@@

ε

��~~
~~

~~
~

[1]

a,0

++ a,1 //

b,∗

��

> [0]

a,0

��

a,1
//

b,0

�� b,1 A
AA

AA
AA

A A

> B0 B1

(a)

[0]

ε

 @
@@

@@
@@

ε

~~~~
~~

~~
~

〈1〉

a,0

++ a,1 //

b,∗

��

A 〈0〉

a,0

��

a,1
//

b,0

�� b,1   B
BB

BB
BB

B A

> B0 B1

(b)

Fig. 1. The equivalent weak automata.

equivalent weak alternating automaton is shown in Fig. 1(b). The left-hand component
takes care of the situation, when b never occurs on the leftmost path. If b does occur, this
component is trivially accepting, but the right-hand component provides the appropriate
semantics. ut

Combining Theorem 1 and Theorem 2 we obtain the second decidability result.

Corollary 2. The problem of calculating the exact position in the weak index hierarchy
of a language recognized by a LGA is decidable (in polynomial time if the productive
states are given).

5 The Wadge hierarchy

5.1 The difference hierarchy
For a Borel class Σ0

n, the finite Hausdorff-Kuratowski, or difference, hierarchy is de-
fined as Diff1(Σn) = Σn and Diffk(Σn) = {U \ V : U ∈ Σn , V ∈ Diffk−1(Σn)}.
Let Diffk(Σn) denote the dual class. Recall that this is not the same as Diffk(Πn).
Indeed, Diff2k+1(Πn) = Diff2k+1(Σn) and Diff2k(Πn) = Diff2k(Σn). We have

Diff2k(Σn) = {U1 ∩ V {1 ∪ · · · ∪ Uk ∩ V {k } ,

Diff2k+1(Σn) = {U1 ∩ V {1 ∪ · · · ∪ Uk ∩ V {k ∪ U} ,

Diff2k(Σn) = {U1 ∩ V {1 ∪ · · · ∪ Uk−1 ∩ V {k−1 ∪ U ∪ V {} ,

Diff2k+1(Σn) = {U1 ∩ V {1 ∪ · · · ∪ Uk ∩ V {k ∪ V {} ,

where the sets U, V, Ui, Vi range over Σn. From this characterization one easily obtains
the following table of the operation �. For n > 0 let Sn(k) be a Diffk(Σn)-complete
set, and let Pn(k) be a Diffk(Σn)-complete set.

Lemma 6. For each n > 0, i > 0, j ≥ 0

• Sn(2i) � Sn(2j) ≡ Sn(2i+2j) , Sn(2i) � Pn(2j) ≡ Pn(2i+2j)
Pn(2i) � Sn(2j) ≡ Sn(2i+2j) , Pn(2i) � Pn(2j) ≡ Pn(2i+2j−2)
• Sn(2i+1) � Sn(2j) ≡ Sn(2i+2j+1) , Sn(2i+1) � Pn(2j) ≡ Pn(2i+2j)
Pn(2i+1) � Sn(2j) ≡ Pn(2i+2j+1) , Pn(2i+1) � Pn(2j) ≡ Pn(2i+2j)
• Sn(2i+1) � Sn(2j+1) ≡ Sn(2i+2j+1) , Sn(2i+1) � Pn(2j+1) ≡ Pn(2i+2j+2)
Pn(2i+1) � Sn(2j+1) ≡ Pn(2i+2j+2) , Pn(2i+1) � Pn(2j+1) ≡ Pn(2i+2j+1) .



11

The equivalences above, together with closure by �, immediately provide complete
LGA-recognizable languages for Diffk(Σn) for each k, n. Building upon this we pro-
duce the whole Wadge hierarchy of LGA-recognizable languages.

5.2 Bestiarum vocabulum

For an ordinal α let exp(α) = ωα1 . Hence,

expk+1(α) = exp(expk(α)) = ω
ω·
··
ωα1

1
1︸ ︷︷ ︸

k+1 times ω1

.

Before describing the hierarchy, recall the Wadge degrees of Diffk(Σn)-complete sets.

Proposition 5 ([5]). For each k > 0, dw(Sn(k)) = dw(Pn(k)) = expn(k).

Theorem 3. The family of LGA-recognizable languages contains L with dw(L) = β

for every β =
∑0
i=n βi, where each βi is of the form

βi = expi(ω)η +
1∑
p=j

expi(p)kp

with η < ωω , k2q ∈ {0, 1}, and j, k2q+1 < ω.

Proof. By induction on such ordinals, we provide an automaton Aβ , such that L(Aβ)
is non self dual, and dw(L(Aβ)) = β. To make the notation more readable, we use
bracketed ordinal [β] to denote the automaton Aβ . Since LGA are closed under comple-
mentation, when we construct an automaton recognizing a non self dual set of degree
β, we also immediately get the automaton [β]{. We write [β]± for [β] ∨ [β]{.

Let us start with the basic building bricks of our construction: the automata [1],
[ωm], [expi(1)], and [expi(ω)ωp]. Together with these automata we show how to make
a step with those ordinals, i.e., how to define the automaton for [α+γ], once we already
have the automaton [α] and γ is one of the above. Let

[1] = ⊥ , [α+ 1] = 〈+〉(⊥, [α]±) .

Note that [2] = KΣ
1 , and [2]{ = KΠ

1 . For m > 1 let

[ω] = 〈+〉([3],⊥) , [α+ ω] = 〈+〉([3], [α]±) ,

[ωm] = 〈+〉([ωm−1 + 1],⊥) , [α+ ωm] = 〈+〉([ωm−1 + 1], [α]±) .

For i > 1 let

[exp(1)] = 〈−〉([2]{,⊥) , [α+ exp(1)] = 〈−〉([2]{, [α]±) ,

[expi(1)] = 〈−〉([expi−1(1)]{,⊥) , [α+ expi(1)] = 〈−〉([expi−1(1)]{, [α]±) .



12

Note that [expi(1)] = KΣ
i+1, [expi(1)]{ ≡ KΠ

i+1. For p > 0 let

[expi(ω)] = 〈+〉([expi(2)],⊥) ,

[α+ expi(ω)] = 〈+〉([expi(2)], [α]±) ,

[expi(ω)ωp] = 〈+〉([expi(ω)ωp−1 + 1],⊥) ,

[α+ expi(ω)ωp] = 〈+〉([expi(ω)ωp−1 + 1], [α]±) .

Using the basic building blocks and basic steps defined above we can inductively
define automata [

∑1
i=n γi], such that each δi is of the form expi(ω)η + expi(1)p with

η < ωω and p < ω.
To define automata for all β described in the statement of the theorem, we need one

more kind of bricks and two more kinds of steps. For η < ωω , 1 ≤ i < ω, we have:

[expi(2)] = [expi(1)] � [expi(1)]{

[α+ expi(ω)η +
1∑

p=m

expi(p+ 2)kp] = [α+ expi(ω)η +
1∑

p=m

expi(p)kp] � [expi(2)]

[α+expi(ω)η+
1∑

p=m

expi(p+2)kp+expi(2)] = [α+expi(ω)η+
∑̀
p=m

expi(p)kp+1]�[expi(2)] .

Using Lemma 6 and standard Wadge game arguments one can prove that for every
ordinal α from the statement of the theorem, [α] has Wadge degree α. ut

As a corollary we obtain a lower bound on the height of the hierarchy.

Corollary 3. The LGA hierarchy has height at least (ωω)ω = ωω
2
.

In the remaining of the paper we prove that the height of the LGA hierarchy is exactly
(ωω)ω and that we can compute the Wadge degree of a language LGA-recognizable.

5.3 Two simple operations on sets of trees

Let us define two more operations on sets of trees. Let L,M ⊆ TΣ , a, b ∈ Σ. We define
the set L→M as the set of trees t ∈ TΣ , satisfying any of the following conditions:

– t.1 ∈ L and a = t(0n) for all n,
– 00n is the first node on the branch 00∗ such that a 6= t(00n) and t.00n1 ∈M .

A player in charge of L → M is like a player in charge of L endowed with an extra
move, which can be used only once, that erases everything played before. Then he can
restart the play being in charge of M .

The second operation is a generalization of ∨. Let Ln ⊆ TΣ for n < ω. Define
sup−n<ωLn as the set of trees t ∈ TΣ satisfying the following conditions for some k:

– 0k is the first node on 0∗ labeled with b,
– t.0k1 ∈ Lk.



13

Intuitively, a player in charge of sup−n<ω Ln is given the choice between the Ln’s. The
decision is determined by the number of a’s played on the leftmost branch of the tree
before the first b. If the player keeps playing a’s forever on the leftmost branch, the tree
will be rejected.

Define also sup+
n Ln as sup−n Ln ∪ {t : ∀n t(0n) = a}. The difference from the

previous operation is that now, when the player plays a’s forever on the leftmost branch,
the obtained tree is accepted. Note that the operations are dual:(

+
sup
n
Ln

){
=
−

sup
n

(
L{n

)

5.4 Computing Wadge degrees

Let Ω denote the set of Wadge equivalence classes of languages recognized by the
automata [β], [β]{, [β]± defined in the proof of Theorem 3. Slightly abusing the notation
we write [β]− for the Wadge equivalence class of L([β]), [β]+ for the class of L([β]{),
and [β]± for the class of L([β]±).

The technical difficulty of the decidability result lies in the following effective clo-
sure property (its proof can be found in the appendix).

Theorem 4. For each U, V ∈ Ω it holds that U �V , U ∨V , and sup+
k U

〈k〉 �V belong
to Ω and can be effectively computed. The same holds for U → V , if U = [expi(1)]µ

for some i < ω and µ ∈ {+,−}.

Theorem 5. For each LGA we can calculate effectively the signed degree of the recog-
nized language.

Proof. We proceed by induction on the number of states. Let C be an LGA. If C has
only one state, it is either totally accepting or totally rejecting. In the first case the signed
degree is [1]+, in the second case it is [1]−. Suppose that C has more states. By duality
we may assume that the initial state q0 is existential: if it is universal, compute the
signed degree for the complement of C, and return the degree negated. Suppose that q0

is not looping. By linearity, C can be represented as in Fig. 2(a) for some automata A0,
A1, B0, B1, each having less states than C. Clearly L(C) ≡ L(A0) �L(A1)∨L(B0) �
L(B1). Hence, we can use the induction hypothesis to get the degrees of L(Cqi), and
then Theorem 4 to compute d(C) = d(Cq1) � d(Cq2) ∨ d(Cq3) � d(Cq4).

A0 〈1〉
a,0oo a,1 //

b,0

~~||
||

||
|| b,1

  B
BB

BB
BB

B A1

B0 B1

(a) C when q0 is not looping

〈i〉

a,0

++ a,1 //

b,0

~~}}
}}

}}
}} b,1

  A
AA

AA
AA

A A

B0 B1

(b) C when q0 is looping

〈1〉

a,0

++ a,1 //

b,∗

��

A

⊥
(c) The automaton C′

Fig. 2. The automata C and C′

If q0 is looping, we can assume w.l.o.g. that C is of the form shown in Fig. 2(b)
with i = 0, 1. If i = 1, there exists n ∈ ω such that L(A) is either Σ0

n-complete,



14

or in ∆0
n+1 \ Σ0

n. If L(A) is Σn-complete, by Lemma 5, the language recognized by
C ′, defined in Fig. 2(c) is also Σ0

n-complete. Since d(A) = d(C ′) = [expn(1)]−

and ([expn(1)]−)〈k〉 = [expn(1)]− for each k > 0, we have d(C) = [expn(1)]− →
d(B1) � (B2) � [expn(1)]−. On the other hand, if L(A) ∈ ∆0

n+1 \ Σ0
n, by Theorem 1

and Theorem 2, the language recognized by C ′ is Σ0
n+1-complete, and it is easy to see

that d(C) = [expn+1(1)]− → d(B1)�d(B2). We conclude by the inductive hypothesis
and Theorem 4.

If i = 0, it is straightforward to check that d(C) = sup+
k d(A)〈k〉 � d(B), and again

the claim follows from Theorem 4 and the induction hypothesis. ut

6 Conclusion

Alternating tree automata are notorious for the lack of decision procedures for classical
hierarchies like the Mostowski-Rabin hierarchy, the Borel hierarchy, or the Wadge hi-
erarchy. The reason for this is that when we move from infinite words to infinite trees,
deterministic and non-deterministic modes of computation highly diverge.

We have proposed a novel class of automata capturing an interesting aspect of alter-
nation, and for this class we have proved that all corresponding hierarchies mentioned
above are decidable. Moreover we have shown that the weak index and the Borel rank
coincide over LGA-recognizable languages.

We have seen that, despite their apparent simplicity, LGA yield a class of languages
surprisingly complex from the topological point of view: the height of their Wadge
hierarchy is (ωω)ω . Admittedly, this is much less than the height of the hierarchy for
weak alternating automata, which is known to be at least ε0 [7], but this was to be
expected, as LGA form a very restricted subclass of weak alternating automata. What
is surprising however, is that the height of the Wadge hierarchy for LGA is much larger
than that for deterministic automata, which was shown in [15] to be (ωω)3 + 3, and the
same as for deterministic push-down automata on infinite words [6].

Acknowledgment. We thank David Janin for initiating this research by showing the
interest in the topological complexity of weak alternating automata, Sławek Lasota for
bringing linear automata into our attention, Igor Walukiewicz for helpful comments and
inspiring discussions, Claire David for space-saving tricks, and the anonymous referees
for their suggestions.

References

1. A. Arnold. The µ-Calculus Alternation-Depth Hierarchy is Strict on Binary Trees. ITA
33(4/5): 329–340 (1999).

2. A. Arnold, D. Niwiński. Continuous Separation of Game Languages. Fundamenta Informat-
icae, 81(1–3): 19–28 (2008).

3. J. Bradfield. The Modal µ-Calculus Alternation Hierarchy is Strict. Theor. Comput. Sci.
195(2): 133–153 (1998).

4. J. Bradfield. Simplifying the Modal µ-Calculus Alternation Hierarchy. STACS 1998: 39–49
(1998).



15

5. J. Duparc. Wadge Hierarchy and Veblen Hierarchy Part 1: Borel Sets of Finite Rank. J. Symb.
Log. 66(1): 56–86 (2001).

6. J. Duparc. A Hierarchy of Deterministic Context-Free ω-Languages. Theoret. Comput. Sci.
290:1253–1300 (2003).

7. J. Duparc, F. Murlak. On the Topological Complexity of Weakly Recognizable Tree Lan-
guages. FCT 2007, LNCS 4639: 261–273 (2007).

8. O. Finkel. Borel Ranks and Wadge Degrees of ω-Context Free Languages. Mathematical
Structures in Computer Science 16: 813–840 (2006).

9. S. Hummel, H. Michalewski, D. Niwiński. On the Borel Inseparability of Game Tree Lan-
guages. Proc. of STACS ’09: 565–576 (2009).

10. O. Kupferman, S. Safra, M. Vardi. Relating Word and Tree Automata. LICS 1996: 322–332
(1996).

11. O. Kupferman, M. Vardi, P. Wolper. An Automata-Theoretic Approach to Branching-Time
Model Checking. Journal of the ACM 47(2): 142–155 (1994).

12. L. H. Landweber. Decision Problems for ω-Automata. Math. Systems Theory 3: 376–384
(1969).

13. A. W. Mostowski. Hierarchies of Weak Automata and Weak Monadic Formulas. Theoret.
Comput. Sci. 83: 323–335 (1991)

14. F. Murlak. On Deciding Topological Classes of Deterministic Tree Languages. In Proc. CSL
’05, LNCS 3634: 573–584 (2005)

15. F. Murlak. The Wadge Hierarchy of Deterministic Tree Languages. Logical Methods in Com-
put. Sci., 4(4), Paper 15.

16. F. Murlak. Weak Index vs Borel Rank. In Proc. STACS ’08: 573–584 (2008).
17. D. Niwiński. On Fixed Point Clones. In Proc. ICALP ’86, LNCS 226: 464–473 (1986).
18. D. Niwiński, I. Walukiewicz. Relating Hierarchies of Word and Tree Automata. In Proc.

STACS ’98, LNCS 1373: 320–331 (1998).
19. D. Niwiński, I. Walukiewicz. A Gap Property of Deterministic Tree Languages. Theor. Com-

put. Sci. 303: 215–231 (2003).
20. D. Niwiński, I. Walukiewicz. Deciding Nondeterministic Hierarchy of Deterministic Tree

Automata. Electr. Notes Theor. Comput. Sci. 123: 195–208 (2005).
21. M. O. Rabin. Decidability of second-order theories and automata on infinite trees. Trans.

Amer. Soc. 141 (1969) 1–35.
22. V. Selivanov. Wadge Degrees of ω-Languages of Deterministic Turing Machines. Theoret.

Informatics Appl., 37: 67–83 (2003).
23. J. Skurczyński. The Borel Hierarchy is Infinite in the Class of Regular Sets of Trees. Theoret.

Comput. Sci. 112: 413–418 (1993).
24. W. W. Wadge. Reducibility and Determinateness on the Baire Space. Ph.D. Thesis, Berkeley

(1984).
25. K. Wagner. Eine topolgische Charackterisierung einiger Klassen regulärer Folgenmengen. J.

Inf. Process. Cybern. EIK 13: 473–487 (1977).
26. K. Wagner. On ω-Regular Sets. Inform. and Control 43: 123–177 (1979).


