
An Abstract Machine for Classes of Communicating
Agents Based on Deduction∗

Pierre Bonzon

HEC, University of Lausanne
1015 Lausanne, Switzerland

pierre.bonzon@hec.unil.ch

Abstract. We consider the problem of defining executable runs for classes of
communicating agents. We first define an abstract machine that generates runs
for individual agents with non-deterministic plans. We then introduce agent
classes whose communication primitives are based on deduction. Contrary to
other more theoretical work, their operational semantics are given by an abstract
machine that is defined purely in sequential terms. This machine readily offers
straightforward opportunities for implementing and experimenting prototypes of
collaborative agents.

1 Introduction

According to the theory of knowledge [4], communication can be viewed as the act of
upgrading the state of knowledge in a multi-agent system. At the low end of the
spectrum is distributed knowledge. This situation arises when the deduction of some
fact by a single agent requires information that is disseminated among the other
agents. At the high end, common knowledge implies publicity, i.e. full reciprocal
awareness of some fact by all agents. A system’s performance obviously depends on
its state of knowledge. Accordingly, in many applications, the focus is on trying to
upgrade the system’s state of knowledge through communication. Towards this end,
an approach is to rely on an external model of knowledge based on possible world
semantics. But in this solution there is “no notion of the agents computing their
knowledge and no requirements that the agents be able to answer questions based on
their knowledge”[4]. Agents should however be able to compute, and not just
communicate their knowledge.

Turning away from the theoretical approach just outlined, practical agent
communication models (such as those advocated by KQML and ACL of FIPA) are
generally based on speech act theory [11]. They thus rely on the mental attitudes of
agents. Ideally, these communication models should be coupled with comprehensive
core agent models enjoying a minimum “understanding” for these various attitudes.
Unfortunately, the current agent models that can be used as background theory are not
so expressive. They generally lack many of the required “mind components” (e.g.,
those corresponding to such actions as making an offer, a promise, a request, etc.).

 Revised version from Intelligent Agent VIII, LNAI vol. 2333, Springer Verlag 2002

mailto:pierre.bonzon@hec.unil.ch

Most current multi-agent models therefore integrate poorly expressive core agent
models with inadequate, overly expressive communication models. As a result, many
proposed communicative actions are difficult (if not impossible) to match with the
agent’s semantics. While balanced integration should be sought, we do not know of
any attempt to establish a formal correspondence between subsets of KQML or ACL,
on one hand, and an agent model comprising at least beliefs, desires and intentions,
such as AgentSpeak(L) [10]) or any other instance of the BDI model, on the other
hand. Current literature on rational agents [12] does not even mention the problem.

Recently, a completely new approach has been advocated by Hindricks and al. [6].
Their logical communicative primitives do not correspond to any speech act in
particular. They are defined as simple and “neutral” actions enjoying a well-defined
and clear semantics that can be used for many different purposes, including the
implementation of speech acts. Hindriks and al. further argue that speech act theory
should not be viewed as a repository for all kinds of different communicative acts.
Computational equivalents for speech acts do not necessarily have to be included in
an agent communicative language, as done in KQML or ACL. Speech act theory may
instead provide a set of abstract descriptions of communicative actions. These should
be used then to specify and verify the behaviours of agents. It would then be up to the
programmer to satisfy this specification using basic communicative actions.

An important feature in this new approach is the use of synchronised pairs: in order
for two agents to communicate, both parties must first agree to an exchange (e.g., by
independently using protocols based on these synchronised pairs). They will then wait
until the exchange is completed before proceeding with their remaining activities. As
an example (that will be developed later), this can be used in collaborative models to
synchronise successive negotiation rounds as well as the successive steps involved in
each round.

We shall follow and further simplify this logical approach. In short, Hindriks and
al. consider the exchange of two messages between a sender and a receiver as a way
for the receiver, either to use data provided by the sender to answer a query of his
own, or to use his data to answer a query from the sender. These two types of
messages are represented by two pairs i.e., tell/ask and req/offer respectively. In both
cases, no data is sent back to the sender, and the formal semantics captures the
processing done by the receiver (roles however may be switched, as we shall
illustrate). This processing requires either a deductive (for tell/ask) or abductive (for
req/offer) reasoning based on the receiver local state.

Deduction is a well understood task for which semi-decidable procedures can be
easily implemented (e.g. under the form of a meta-interpreter within a logic
programming framework). Abduction is a much more complex and difficult process.
In order to define and implement executable runs involving deductions only, we shall
give up the pair req/offer and define instead a simplified call/return pair that,
similarly to tell/ask, relies on deduction only. When used in combination with the tell/
ask pair, this new simplified pair will lack the full power of abduction. It still allows
for the implementation of various communication protocols.

As logical communicative primitives do not involve mental attitudes, the
corresponding core agent model can be kept simple. In the 3APL language of
Hindriks and al., individual agents are multi-threaded entities consisting of beliefs and
goals. This means that an agent may have multiple goals that are executed in parallel.

2

A multi-agent system itself is again a multi-threaded system of multi-threaded
entities. The corresponding operational semantics rely on concurrent programming
concepts that are left implicit and thus achieve a seamless integration of the
communication and the core agent models. But unless we first implement a true
concurrent programming language that in addition offers all the required
functionality (including deductive reasoning capabilities), we are left short of
executable specifications.

We believe however that is both possible and worthwhile to try and get executable
specifications by defining the complete model in purely sequential terms. The first
issue we face is the choice of a core agent model. As already mentioned above,
logical communication primitives do not require mental attitudes. One therefore does
not need to distinguish between goals and beliefs.

In order to plan an agent’s actions, at least two competing approaches are possible
i.e., static planning and reactive (or dynamic) planning. While static planning
involves explicit goals and means-end analysis, reactive planning is based on
conditions-action rules without explicit goals. The logical specification of an agent’s
primitive actions required by static planning is an unrealistic prerequisite. Agents are
not likely to reason about the effect of their actions on the environment. Furthermore,
they will generally not react to environmental changes by designing complex plans
from scratch. We therefore favour the reactive approach. In this framework, agents
select rules from sets of predefined plans. As agents must be ready to reconsider their
choices at any time, the issue is to enforce timely reactions leading to an appropriate
change of plans.

Towards this end, we propose to incorporate the concept of plan within an existing
model of reactive agents. Following Wooldridge & Lomuscio [13], a general model
of agent with sensing can be given in abstract functional terms. In order to get
concrete executable specifications, we shall first develop these functional definitions
into a set of procedures. These procedures will represent an abstract machine
generating runs for individual non-deterministic agents. The concept of plan is
introduced next. Given by logical implications similar to conditions-action rules, an
agent’s set of predefined plans can be looked at as a logical agent’s program. As in
other logical agent models, the agent must first deduce the action it intends to take.
But in contrast to other logical agent models e.g., such as Golog and/or ConGolog
that are based on the situation calculus [2] [8], our agents deduce only one action at a
time. We believe that this framework offers a valuable alternative to the approach just
mentioned, especially if reactivity and communication are at stake. To substantiate
this claim, we shall use our approach to implement our model of communicating
agents based on deduction.

We shall not concern ourselves with the corresponding declarative semantics, and
will be content with the operational semantics defined by the abstract machine. The
benefits that follow from this approach are:
− extensions can be built on top of this machine: as an example, we will define and

implement a model of multi-agent system as interleaving of individual agent runs
− the synchronisation operations for integrating this core system with the

communication part can be made explicit and put under the agent’s control

3

− using a step-wise refinement approach, this abstract machine may be implemented
on any platform and in any particular programming environment: this is illustrated
in the appendix outlining a Prolog implementation.
In summary, the extension of an agent model with sensing to include non-

deterministic plans, the reduction of communication primitives to deductive
reasoning, and their integration within a concrete multi-agent system are the main
contributions of this paper.

The rest of this paper is organised as follows: in section 2, we reproduce the
functional definition of an agent’s run with sensing. Section 3 proposes a
corresponding concrete model. Section 4 introduces agents with plans. Section 5
defines agent classes whose communication is based on deduction.

2 Abstract functional definitions

Following Wooldridge & Lomuscio [13], an environment Env is a tuple 〈E,vis,τe ,e0〉 ,
where
- E={e1, e 2,…} is a set of states for the environment
- vis:E→ 2E is a visibility function
- τe : E × Act → E is a state transformer function for the environment, with Act a

set of actions
- e0 ∈ E is the initial state of the environment
and an agent Ag is a tuple 〈L,Act,see,do,τa ,l0〉, where
- L={l1, l 2,…} is a set of local states for the agent
- Act={a1,a2, …} is a set of actions
- see: vis(E) → Perc is the perception function mapping visibility sets to percepts,
- τa : L × Perc → L is the state transformer function for the agent
- do: L → Act is the action selection function, mapping agent local states to actions
- l0 ∈ L is the initial state for the agent.
An agent system is a pair {Ag, Env} whose set of global states G is any subset of L× E
i.e., gi = 〈 li , ei 〉. A run of a agent system is a (possibly infinite) sequence of global
states (g1, g2, …) over G such that
- ∀ i, gi =〈τa(li-1 , see(vis(ei-1))), τe(ei-1 , do(li))〉

3 A concrete model of non-deterministic agents with sensing

Let S be the set of sentences of first order logic with arithmetic whose set of
predicates includes the predicate do/1, and let L= 2S and Perc=S. If we incorporate
the selection of actions and the mapping of visibility sets within the functions τe and
τa, then we get two new functions τe,do : E × L → E and τa,see,vis : L × E → L .
Equivalently, these new functions can be seen as procedures with side effects i.e.,

τa,see,vis : L × E → L ⇒ procedure sense(l,e) with side effects on l

4

τe,do : E × L → E ⇒ procedure react(e,l) with side effects on e

We can define these procedures as follows

procedure sense(l,e)
if “the environment produces percept p”
then l ← τa(l,p)

procedure react(e,l)
if l do(a)
then e ← τe(e,a)

We write l do(a) to mean that the formula do(a) can be proved from the
formula l, meaning in turn that a is an applicable action. An agent’s run is defined by

procedure run(e,l)
loop sense(l,e);
 react(e,l)

Although environments are supposed to evolve deterministically, the choice to be
made among possible actions, i.e. among all ai such that l do(ai), is left
unspecified. Consequently, the run procedure can be seen as a non-deterministic
abstract machine generating runs for logical agents. In short, it is a concrete model of
non-deterministic agents.

4 Non-deterministic agents with plans

Intuitively, an agent’s plan can be described as an ordered set of actions that may be
taken, in a given state, in order to meet a certain objective. As above, agents whose
choice among possible plans (i.e. those that are applicable in a given state) is left
unspecified are non-deterministic. Let us assume that the set of constant symbols and
predicates of S include a set P = {p1, p2, …} of non-deterministic plan names (nd-plan
in short) and three predicates plan/1, do/2 and switch/2. Let us further extend the
definition of an agent’s global state to include its current active nd-plan p. We finally
have the following new procedures:

procedure react(e,l,p)
if l do(p, a)
then e ← τe (e,a)
else if l switch(p, p′)
 then react(e,l,p′)

procedure run(e,l)
loop sense(l,e);
 if l plan(p0)

 then react(e,l,p0)

In each react call, the agent’s first priority is to carry out an action a from its
current plan p. Otherwise, it may switch from p to p′. When adopting a new plan, a

5

recursive call to react leads in turn to the same options. In run, the initial plan p0 is
chosen in each cycle. If the environment has not changed in between, then the agent is
bound to adopt its last active plan again. On the other hand, if the environment has
changed, and if the embedding of plans reflects a hierarchy of priorities (i.e., the
structure that can be associated with the switch/2 predicate is that of directed acyclic
graphs rooted at each initial plan) then it will select a plan that has the highest implicit
priority.

This achieves a simple way to instruct an agent to adopt a new plan whenever a
certain condition occurs, without having to tell it explicitly when to switch from its
current plan. The corresponding switching logic is thus easier to define than if the last
active plan was kept at each cycle: in this case, the run procedure would involve less
overhead, but explicit switching conditions should be given for each plan an agent
may switch to from its current plan (i.e., the structure associated with the switch/2
predicate would be that of directed cyclic graphs).

Example

Let us consider the mail delivery robot of Lespérance & al. [7]. Let start be its single
initial plan. Its first priority is to handle a new order. It will then unconditionally
switch to plan check to see if any order has to be cancelled. Depending on his current
state, it will then switch to either plan move (and go on moving without conditions) or
to plan motionControl (and search for a new customer). This second plan will lead in
turn to switch to either tryServe or tryToWrapUp. Should a new order or a cancellation
arise while it is attending other business, it will then automatically switch to the
corresponding plan even though there are no explicit switching conditions for doing
so. This set of plans is given by the following implications and facts:

 orderState(N,justIn) ⇒ do(start,handleNewOrder(N))

 switch(start,check)

 orderState(N,toPickUp) ∧sender(N,Sender) ∧ suspended(Sender)
 ⇒ do(check,cancelOrder(N))

 robotState(moving) ⇒ switch(check,move)

 do(move,noOp(moving))

 ¬ robotState(moving) ∧ (orderState(N,toPickUp) ∨ orderState(N,onBoard) ∨
 ¬ robotPlace(centralOffice)) ⇒ switch(check,motionControl)

 ¬ searchedCustomer ⇒ do(motionControl,searchCustomer),

 customerToServe(Customer) ⇒ switch(motionControl,tryServe(Customer)),

 ¬ customerToServe(_) ⇒ switch(motionControl,tryToWrapUp),

 robotState(idle) ⇒
do(tryServe(Customer),startGoto(mailbox(Customer)))

 robotState(stuck) ⇒ do(tryServe(Customer),resetRobot)

 robotState(reached) ⇒ do(tryServe(Customer),freezeRobot)

 robotState(frozen) ⇒ do(tryServe(Customer),dropOffShipmentsTo(Customer))∧
do(tryServe(Customer),pickUpShipmentsFrom(Customer)) ∧

6

do(tryServe(Customer), resetRobot)

 robotState(idle) ⇒ do(tryToWrapUp,startGoto(centralOffice))

 etc…

A particular case: priority processes

When nd-plans form equivalence classes that can be linearly ordered, these classes
can be identified with plans of equal priority. If priorities are represented by positive
integers n, then we get a new reaction scheme without explicit switching conditions,
where plans define priority processes 1,2,..,n . This leads the new procedure

procedure process(e,l,n)
if l do(n, a)
then e ← τe(e,a)
else if n > 0
 then process(e,l,n-1)

If procedure process is called repeatedly with the highest priority, then the
execution of a process n will proceed unless the conditions for a process with a higher
priority become satisfied. Since we have l do(n, a), it can be assumed that once
a process n is selected, then at least one of its action will be executed. Priority
processes and plans can be interleaved in many ways. As an example let us consider
the following run+ procedure relying on a new predicate priority/1 delivering the
current highest priority n0:

procedure run+(e,l)
loop sense(l,e);
 if l priority(n0)
 then process (e,l,n0);
 if l plan(p0)
 then react(e,l,p0)

and let use it to implement the mail delivery robot in a way that is very similar to the
solution given by Lespérance & al. using ConGolog [7]. The top plans (up to but not
including plans tryServe and tryToWrapUp) can be expressed as priority processes:

 orderState(N,justIn) ⇒ do(3,handleNewOrder(N))

 orderState(N,toPickUp) ∧ sender(N,Sender) ∧ suspended(Sender)
⇒ do(2,cancelOrder(N))

 ¬ robotState(moving) ∧ (orderState(N,toPickUp) ∨ orderState(N,onBoard) ∨
 ¬ robotPlace(centralOffice))⇒ do(2,robotMotionControl)

 robotState(moving) ⇒ do(1,noOp)

In order to activate one the remaining plans, the robotMotionControl action must
allow for the assertion, within l, of either plan(tryServe(Customer)) or
plan(tryToWrapUp). A comparison with the ConGolog solution reveals that:
- in our solution, the entire control mechanism is given in terms of nd-plans and/or

processes, whose execution steps are explicitly interleaved with sensing: as a

7

result, autonomous agents whose independent, asynchronous actions must be co-
ordinated and/or synchronised may be easily implemented

- in the ConGolog solution, the mainControl procedure concurrently executes four
ConGolog interrupts that corresponds to our four priority processes, but robot
motion control relies on sequential procedures that run asynchronously with the
rest of the architecture; the environment is thus implicitly monitored.

5 Communicating agents based on deduction

As an example of autonomous agents whose independent actions must be
synchronised, let us now define and implement a model of communicating agents. As
indicated in the introduction, we shall use and simplify the proposal made by Hindriks
and al. [6]. Following a purely logical approach, they introduce two pairs of neutral
communication primitives i.e., tell/ask and req/offer, that correspond to data
exchanges enjoying a well-defined semantics and can be used for many different
purposes.

In each pair, r is designated as the receiver and s as the sender. In the first
exchange, message tell(r,ϕ) from sender s provides r with data ϕ, and message
ask(s,ψ) from receiver r expresses his willingness to solve his own query ψ using any
data sent by s. Both messages are sent asynchronously, without reciprocal knowledge
of what the other agent wants or does. In particular, the data ϕ volunteered by s is not
given in response to r’s asking. If these two messages are put together through some
kind of a handshake or synchronisation, then by using both his own knowledge and
the data ϕ told by s, receiver r will try and answer his query ψ. Formally, receiver r
will deductively compute the most general substitution θ such that

lr ∪ ϕ ψθ .

According to Hindriks & al., ψ in ask(s,ψ) can contain free variables but ϕ in
tell(r,ϕ) must be closed; furthermore, ls ϕ is not required (i.e., s is not required to
be truthful or honest). We shall illustrate this type of exchange through a simple
example. Let the local state lr of r be such that

lr father(abram,isaac) ∧ father(isaac,jacob)

and let us consider the following pair of messages
message sent by s: tell(r,∀XYZ father(X,Y) ∧ father(Y,Z) ⇒ grandfather(X,Z))
message sent by r: ask(s, grandfather(X,jacob)).

In this first scenario, s tells r a closed implication, and r asks s for some data that
could allow him to find out who is the grandfather of jacob. Using the data sent by s,
r is then able to deduce the substitution X=abram.

In contrast, message req(r,ϕ) from sender s requests r to solve query ϕ, and
message offer(s,ψ) from receiver r expresses his willingness to use his own data ψ for
solving any query submitted by s. When put together, these two messages will allow
the receiver r to find the possible instantiations of his free variables in ψ that allow

8

him to deduce ϕ. Formally, receiver r will abductively compute the most general
substitution θ such that

lr ∪ ψθ ϕ .

According to Hindriks & al., ϕ in req(r,ϕ) must be closed but ψ in offer(s,ψ) can
contain free variables; furthermore, lr ψ is not required, but lr ¬ψ is not
allowed. To illustrate this second type of exchange, let us consider the following pair
of messages

message sent by s: req(r, ∃X grandfather(X,jacob))
message sent by r: offer(s, father(X,Y) ∧ father(Y,Z) ⇒ grandfather(X,Z)).
In this second scenario, s requests r to find out if there is a known grandfather for

jacob. Independently, r offers s to abduce a substitution for the free variables in his ψ
that would allow him to answer. In this case, using his knowledge contained in lr and
the implication he offers, r can abduce the same substitution as before.

In both of the above exchanges, no data is sent back to s, and the corresponding
formal semantics captures the processing done by r only. In other words, the sender
will not be aware of the results of the receiver’s computation. For the sender to get
this results, a subsequent reversed exchange (e.g. ask/tell) is needed. While this is
perfectly appropriate for the first type of exchange (after-all, the sender who
volunteers data is not necessarily interested the receiver’s computations), we feel that
the sender who, in the second case, expresses a need for data should automatically
benefit from the receiver’s computations. Furthermore, as abductions are difficult to
achieve and implement, we favour exchanges that do not rely on abduction. Giving
up the req/offer pair, we shall thus define and implement instead a simplified
call/return pair that relies on deduction only. By doing so, we will end up with a less
powerful model. It is interesting to note however that all req/offer examples given b
Hindriks & al. 99 can be expressed as call/return invocations. In particular, if the
receiver’s local state includes closed forms of his offer ψ, then a req(r,ϕ)/offer(s,ψ)
pair reduces to a call/return pair (this will also be illustrated at the end of this section).

In the new call(r,ϕ)/return (s,ψ) pair, both ϕ and ψ can contain free variables. This
exchange is then interpreted as the sender s calling on r to instantiate the free variable
in his query ϕ. Independently, the receiver r is willing to match his query ψ with the
sender’s ϕ and to return the instantiations that hold in his own local state. Formally,
receiver r will deductively compute the substitutions θ such that

ϕθ = ψθ and lr ψθ.

To illustrate this, let us suppose that we now have

lr father(abram,isaac)∧father(isaac,jacob)∧
 ∀XYZ father(X,Y) ∧ father(Y,Z) ⇒ grandfather(X,Z)

message sent by s: call(r, grandfather(X,jacob))
message sent by r: return(s, grandfather(X,Y)).

This exchange is to be interpreted as s calling on r to find out the grandfather of
jacob i.e., to instantiate the free variable in his query. Independently, r is willing to
match the sender’s call and to return the substitutions that hold in his local state. Once

9

again the substitution X=abram will be found. In contrast to the previous exchanges
however, this information will be sent back to the sender.

A concrete model and its implementation

The core model we shall adopt consists of classes of identical agents, as defined in
section 4. Similarly to classical object theory we shall distinguish the class itself,
considered as an object of type “agent class”, and its class members i.e., the objects of
type “agent instance”. The class itself will be used both as a repository for the
common properties of its members and as a blackboard for agent communication.

Messages exchanged between class members must use a data transport system. We
shall abstract this transport system as follows: any message sent by an agent (this
message being necessarily half of an exchange as defined above) will be first posted
in the class. The class itself will then interpret the message’s contents, wait for the
second half of the exchange (thus achieving synchronisation), and finally perform the
computation on behalf of the receiver. As an assumption, each message will be
blocking until the exchange’s completion i.e., no other exchange of the same type will
be allowed between the sender and the receiver before the exchange is completed.

In order to further simplify our presentation, we shall consider purely
communicating agents i.e., agents that do not carry out any action other than the
exchange of messages. The environment per se will thus be ignored. Formally, the
local state of a class of agents seen as a whole i.e., including its members, will be
defined by a vector l = [lClass,l1…l n], where the components lClass and li are the local
state of the class itself and of its members identified by an integer i=1…n,
respectively. We will use a new predicate agent/1 and assume that lClass agent(i)
whenever agent i belongs to the class.

As communicative actions do not affect the environment, the state transformer
function τe: E×Act → E should be replaced by a function τa: L×Act → L. Actually, in
order to take into account the originator of a communicative action, we shall consider
a set of such transformer functions, each function being associated with a given class
Class or member i. We will thus consider the function τClass: L × ActClass

 → L to be
used in procedure processClass, on one hand, and the functions τi : L × Acti

 → L , i=1,
…,n, to be used in procedure reacti, on the other.

The abstract machine that defines the run of a class of agents as interleavings of
individual runs is then defined by the following procedure:

procedure runClass(l)
loop for all i such that lClass agent(i) do

 if li plan(p0
i)

 then reacti(l,p0
i);

 if l Class priority(n0)
 then processClass(l,n0)

In this particular definition, messages are first processed (via the calls to reacti) and
then possibly synchronised without delay (via the subsequent call to processClass). In
this framework, the reacti and processClass procedures are defined as follows:

10

procedure reacti(l,pi)
if li do(pi, a)
then l ← τi(l,a)
else if li switch(pi, pi′)
 then reacti(l,pi′)

procedure processClass(l,n)
if l Class do(n, a)
then l ← τClass(l,a)
else if n > 0
 then processClass(l,n-1)

The state transformer function τs required to process the message tell(r,ϕ) is:

τs([lClass,…ls,…], tell(r,ϕ)) = if busy(tell(r,ϕ)) ∉ ls

then [lClass∪ {ack(s,tell(r,ϕ))},…
 ls∪ {busy(tell(r,ϕ))},…]

 else [lClass,… ls,…]

The functions for messages ask(s,ψ), call(r,ϕ) and return(s,ψ) are similarly
defined. Each message is thus first “acknowledged” by the class, a blocking flag (i.e.,
busy) is raised, and the message waits to be synchronised. Synchronisation occurs
when two messages belonging to the same pair have been acknowledged. This
synchronisation is triggered by two priority processes defined as:

ack(s,tell(r,ϕ)) ∧ ack(r,ask(s,ψ))) ⇒ do(2, tellAsk(s,r,ϕ,ψ))
ack(s,call(r,ϕ)) ∧ ack(r,return(s,ψ)) ⇒ do(1, callReturn(s,r,ϕ,ψ))

The state transformer function τClass achieving synchronisation by the class is:

τClass([lClass,…ls,…lr,…],tellAsk(s,r,ϕ,ψ)) =
 if lr ∪ ϕ ψθ
 then [lClass - {ack(s,tell(r,ϕ)), ack(r,ask(s,ψ))},…

 ls-{busy(tell(r,ϕ)), sync(_)}∪{sync(tell(r,ϕ))},…
 lr-{busy(ask(s,ψ)), sync(_)}∪{sync(ask(s,ψθ))},…]

 else [lClass,… ls,…lr,…]

τClass([lClass,…ls,…lr,…],callReturn(s,r,ϕ,ψ)) =
 if ϕθ=ψθ and lr ψθ
 then [lClass - {ack(s,call(r,ϕ)), ack(r,return(s,ψ))},…
 ls-{busy(call(r,ϕ)), sync(_)}∪{sync(call(r,ϕθ))},…
 lr-{busy(return(s,ψ)),sync(_)}∪{sync(return(s,ψθ))},…]
 else [lClass,… ls,…lr,…]

Old flags are removed and a new sync flag carrying the computation result is
raised. To ensure simple sequential execution, a single such synchronisation flag is
available at any time for each agent. Thus there will be no trace of successive
exchanges, and agent’s nd-plans must be designed to use this flag accordingly.

11

Example: two-agent meeting scheduling

In this simplified version of the two-agent scheduling example of Hindriks and al. [6],
one agent is designated as the host and the other one as the invitee. Both agents have
free time slots to meet e.g.,

lhost meet(13) ∧ meet(15) ∧ meet(17) ∧ meet(18)
linvitee meet(14) ∧ meet(16) ∧ meet(17) ∧ meet(18)

and they must find their earliest common free slot (in this case, 17). The host has the
responsibility of starting each round of negotiation with a given lower time bound T.
A round of negotiation comprises three steps, each step involving in turn an exchange
of messages.

In the first step (corresponding to the first line of both invite and reply), the host
initialises a call/return exchange, calling on the invitee to find out his earliest free
spot T1 after T. In the second step (corresponding to the second line), the roles are
swapped: the invitee initialises a call/return calling on the host to find out his earliest
free spot T2 after T1. In the final step the host either confirms an agreement on time
T2 (if T1=T2) by initialising a tell/ask exchange, or starts a new round with T2.

The corresponding host and invitee plans i.e., invite(Invitee,T) and reply(Host), are
 sync(dialog(invite(Invitee,T)))

⇒ do(invite(Invitee,T),call(Invitee,epmeet(T1,T)))

 sync(call(Invitee,epmeet(T1,T)))
⇒ do(invite(Invitee,T),return(Invitee,epmeet(T2,T1)))

 sync(return(Invitee,epmeet(T2,T1)))∧T1=T2
⇒ do(invite(Invitee,T),tell(Invitee,confirm(T2)))

 sync(return(Invitee,epmeet(T2,T1)))∧ ¬(T1=T2)
⇒ do(invite(Invitee,T),resume(invite(Invitee,T2)))

 sync(dialog(reply(Host)))
⇒ do(reply(Host),return(Host,epmeet(T1,T)))

 sync(return(Host,epmeet(T1,T)))
⇒ do(reply(Host),call(Host,epmeet(T2,T1)))

 sync(call(Host,epmeet(T2,T1)))∧ T1=T2
⇒ do(reply(Host),ask(Host,confirm(T2)))

 sync(call(Host,epmeet(T2,T1)))∧ ¬(T1=T2)
⇒ do(reply(Host),resume(reply(Host)))

where the flags sync(dialog(invite(Invitee,T))) and sync(dialog(reply(Host))) are used to
initialise the exchange. Message resume (used by an agent to restart a plan) and
predicate epmeet(T1,T) meaning “T1 is the earliest possible meeting time after T ” are
defined as

τi([lClass,… li,…], resume(p)) = [lClass, …li - {sync(_),plan(_)}∪{plan(p),sync(dialog(p))},…].

meet(T1)∧(T1>=T) ∧ ¬(meet(T0)∧(T0>=T)∧(T0<T1)) ⇒ epmeet(T1,T).

In comparison, Hindriks and al. alternate exchanges req(Invitee, ∃ T1 epmeet(T1,T)) /
offer(Host,meet(T2)) and offer(Invitee,meet(T4)) / req(Host, ∃ T3 epmeet(T3,T2)) that
involve abductive tasks. As ground instances (i.e., meet(13), meet(14), etc.) of the

12

receivers offers are available in their respective local states, we can alternate instead
call/return and return/call exchanges leading to the same result through simpler
deductive tasks. As discussed in the introduction, 3APL synchronisation operations
are left implicit. Therefore, the two 3APL “practical reasoning rules” that correspond
to our invite(Invitee,T) and reply(Host) plans do not require any flag. They are
however not directly executable by a sequential machine, whereas nd-plans are (see
the appendix for the outline of a Prolog implementation). In our further work [1],
plans are rewritten as dialogs with an implicit synchronisation. As these dialogs can
be compiled back into nd-plans, they also represent executable specifications.

6 Related work

A popular choice to specify executable agent models is to rely on the situation
calculus. This extension of the first order calculus was designed to allow reasoning
about the effect of actions. In the Golog system [7], which is based on this approach,
an interpreter verifies if predefined programs are applicable to a given goal. If
successful, it then delivers the execution trace corresponding to a sequence of actions
that will fulfil this goal. The result is a situation that is considered a final state in a
system of state transitions. ConGolog [2] represents a development of Golog in the
direction of concurrent agent programming. In order to allow plans “to be suspended
or terminated and new plans devised to deal with exceptional event or condition”[2],
this extension introduces concurrent processes with priorities as well as interrupts. If
an interrupt gets control from a higher priority process, this interrupt may trigger and
its body is then executed (possibly repeatedly i.e., as long as its guard is satisfied).
This computational model corresponds in many ways to our runs based either on nd-
plans or priority processes. In particular, a ConGolog interrupt <ϕ→σ> associated
with a process of priority n could be represented in our framework by an implication
ϕ ⇒ do(n,σ). However as ConGolog processes need not be linearly ordered, it may
not be obvious how to assign them an explicit priority n. Since the basic
computational mechanism of Golog/ConGolog is embedded in logic, it is possible to
use a model of the action theory to assign semantics to programs. Being essentially at
a meta-level, our approach does not allow this.

ConGolog original specifications as an offline interpreter did do not provide
facilities for either agent sensing or agent communications, whereas our approach
does. Our own framework being an online interpreter based on a reactive agent
model, the comparison may thus be misleading in this respect. Recent proposals [3] to
allow agents with sensing seem however to close the gap between these two
approaches, as the on-line execution model of [3] no longer requires searching for a
final state.

We have already sketched in the introduction alternative ways to model
communication. We also indicated why we turned to the approach of Hindriks and al.
We refer to them for a thorough discussion of the relationship between their proposal
and current agent communication models.

13

7 Conclusion and future work

Most current communication models are overly expressive with respect to the
available agent models that can be used as background theory. As a result, many
proposed communicative actions are difficult (if not impossible) to match with a
given agent’s core semantics. Communicating agents based on simple deductive and/
or abductive exchanges, as introduced by Hindriks and al. [6], achieve one of a few
existing balanced integration we know of. These exchanges were further simplified in
section 5 in order to rely on deduction only, and will apply in cases where the
receiver’s local state includes closed forms of his offers. Contrary to other more
theoretical work, based for example on the π-calculus [5],[9], their operational
semantics were given here by an abstract machine that is defined purely in sequential
terms. It thus readily offers straightforward opportunities for implementing prototypes
of collaborative agents. As an example, we have run a solution of the n-agent meeting
problem (also discussed in [6]). This solution is given under the form of dialogs that
can be simply sequentially executed by updating the single current synchronisation
flag for each agent at each step. In order to achieve this result, dialogs expressed in a
higher level language with implicit synchronisation must be first compiled into nd-
plans.

At the same time, this framework will accommodate the extensions and/or
refinements needed to develop full-fledged agents interfaced with real communication
software.

Acknowledgement

The author wishes to thank the anonymous referees for their valuable comments.
Indeed most of these comments found their way into this revised version.

References

 1. P. Bonzon, Compiling Agent Dialogs for Simple Sequential Execution, submitted
 2. G. de Giacomo, Y.Lespérance and H. Levesque, ConGolog, a Concurrent Programming

Language Based on the Situation Calculus, Artificial Intelligence, vol. 121 (2000)
 3. G. de Giacomo and H. Levesque, An Incremental Interpreter for High-Level Programs with

Sensing, in: H. Levesque & F. Pirri (eds), Logical Foundations for Cognitive Agents,
Springer (2000)

 4. R. Fagin, J. Halpern, Y Moses & M. Vardi, Reasoning About Knowledge, MIT Press (1995)
 5. Ferber & O. Gutknecht, Operational Semantics of Multi-agent Organizations, in: N.R.

Jennings and Y. Lespérance (eds), Intelligent Agents VI, LNAI, vol. 1757 , Springer (2000)
 6. K.V. Hindricks, F.S. de Boer, W.van der Hoek and J.-J. Meyer, Semantics of Communicating

Agents Based on Deduction and Abduction, Proceedings IJCAI99 Workshop on ACL (1999)
 7. Y. Lespérance, K. Tam and M. Jenkin, Reactivity in a Logic-Based Robot Programming

Framework, in: N.R. Jennings and Y. Lespérance (eds), Intelligent Agents VI, LNAI, vol.
1757, Springer (2000)

 8. H.J.Levesque, R.Reiter, Y.Lespérance, F.Lin & R.Scherl, GOLOG: A Logic Programming
Language for Dynamic Domains, Journal of Logic Programming, vol. 31 (1997)

14

 9. R. Milner, Communicating and Mobile Systems; the π-Calculus, Cambridge Univ. Press
(1999)

10. A.S. Rao, AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language, in:
W. Van der Velde and J.W. Perram (eds.), Agents Breaking Away (MAAMAW ’96), LNAI
vol. 1038, Springer (1996)

11. R. Searle, Speech Acts, Cambridge University Press (1969)
12. M. Wooldridge, Reasoning about Rational Agents, MIT Press (2000)
13. M. Wooldridge & A. Lomuscdio, Reasoning about Visibility, Perception and Knowledge, in:

N.R. Jennings and Y. Lespérance (eds), Intelligent Agents VI, LNAI ,vol. 1757, Springer
(2000)

Appendix: towards a Prolog implementation

Both an agent class and its members are represented by objects identified as Class and
Class(I), respectively. The formulas P contained in an object are asserted as unit
clauses instance(Object,P). Operations on objects are defined by the primitive
procedures

new(Object) :- retractall(instance(Object,_)).
insert(Object,P) :- assert(instance(Object,P)).
remove(Object,P) :- retractall(instance(Object,P)).
insertList(Object,L) :- forall((L:List,member(P,List)),
 insert(Object,P)).

As individual agents inherit the properties of their class, each agent’s local state
encompasses both the private formulas that are contained in the agent itself, as well as
the public formulas that are contained in its class. The state(Object,P) predicate
meaning “formula P is contained in the local state of Object” is then defined as
state(Object,P) :- private(Object,P);

 public(Object,P).

private(Object,P) :- instance(Object,P).

public(Object,P) :- Object=Class(I),
 instance(Class,P).

A meta-interpreter ist(Object,P) for simple deductions implementing a restricted form
of Object P is defined as
ist(Object,P) :- state(Object,P).

ist(Object,Q) :- state(Object,P=>Q),
 ist(Object,P).

ist(Object,(P,Q)) :- ist(Object,P),
 ist(Object,Q).

Methods representing class or agent actions are contained in the agent’s class.
Methods are terms method(Object.Call,Body), where Call is the name of a method
followed by its parameters within parentheses and Body contains primitive procedure
calls and/or messages. Messages sent to an Object have again the form Object.Call,
where Object is either Class or Class(I). Messages are interpreted by

Object.Call :-state(Object, method(Object.Call,Body)),
 call(Body).

where Call(Body) represents a call to Prolog itself. According to this implementation,
class actions are activated by messages sent to the class itself with Object=Class (e.g.,

15

in order to achieve synchronisation between agents), and agent actions are activated
by messages sent to individual agents with Object=Class(I) .

Agent classes and class members are created with predefined messages inserting
the required methods and the initial state into the corresponding objects. All
procedures defining the sequential abstract machine are implemented as class
methods. The run of an individual agent is then obtained by sending the message
Class(I).run.

16

