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A B S T R A C T

By focusing on metabolic and morphological tissue properties respectively, FluoroDeoxyGlucose (FDG)-
Positron Emission Tomography (PET) and Computed Tomography (CT) modalities include complementary and
synergistic information for cancerous lesion delineation and characterization (e.g. for outcome prediction),
in addition to usual clinical variables. This is especially true in Head and Neck Cancer (HNC). The goal of
the HEad and neCK TumOR segmentation and outcome prediction (HECKTOR) challenge was to develop and
compare modern image analysis methods to best extract and leverage this information automatically. We
present here the post-analysis of HECKTOR 2nd edition, at the 24th International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI) 2021. The scope of the challenge was substantially
expanded compared to the first edition, by providing a larger population (adding patients from a new clinical
center) and proposing an additional task to the challengers, namely the prediction of Progression-Free Survival
(PFS). To this end, the participants were given access to a training set of 224 cases from 5 different centers,
each with a pre-treatment FDG-PET/CT scan and clinical variables. Their methods were subsequently evaluated
on a held-out test set of 101 cases from two centers. For the segmentation task (Task 1), the ranking was
based on a Borda counting of their ranks according to two metrics: mean Dice Similarity Coefficient (DSC)
and median Hausdorff Distance at 95th percentile (HD95). For the PFS prediction task, challengers could use
the tumor contours provided by experts (Task 3) or rely on their own (Task 2). The ranking was obtained
according to the Concordance index (C-index) calculated on the predicted risk scores. A total of 103 teams
registered for the challenge, for a total of 448 submissions and 29 papers. The best method in the segmentation
task obtained an average DSC of 0.759, and the best predictions of PFS obtained a C-index of 0.717 (without
relying on the provided contours) and 0.698 (using the expert contours). An interesting finding was that best
PFS predictions were reached by relying on DL approaches (with or without explicit tumor segmentation,
4 out of the 5 best ranked) compared to standard radiomics methods using handcrafted features extracted
from delineated tumors, and by exploiting alternative tumor contours (automated and/or larger volumes
encompassing surrounding tissues) rather than relying on the expert contours. This second edition of the
challenge confirmed the promising performance of fully automated primary tumor delineation in PET/CT
images of HNC patients, although there is still a margin for improvement in some difficult cases. For the first
time, the prediction of outcome was also addressed and the best methods reached relatively good performance
(C-index above 0.7). Both results constitute another step forward toward large-scale outcome prediction studies

in HNC.
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1. Introduction

Combined FluoroDeoxyGlucose (FDG)-Positron Emission Tomogra-
phy (PET) and Computed Tomography (CT) are now considered the
image modalities of choice for diagnosis, treatment planning, and
therapy response evaluation in a number of pathologies, including
Head and Neck Cancer (HNC). PET (with FDG or other radiotracers)
and CT provide complementary, synergistic and quantitative data, both
functional and anatomical. These data, combined with the usual clinical
variables (e.g. clinical stage, age, gender, etc.) have been shown to
be useful for patient management and to have an impact on cancer-
ous lesion delineation (e.g. for radiotherapy planning purposes) and
characterization (e.g. for diagnosis, therapy response evaluation or
outcome prediction). However, the PET/CT images remain exploited
mostly in a manual and visual fashion in the clinical routine practice,
despite the deployment of semi-automated tools in clinical stations. The
current efforts of the research community are therefore aimed at the
development of tools that are efficient, trustworthy (i.e. interpretable
and generalizable) and as automated as possible (without excluding
the clinicians from the loop) in order to better exploit the quantitative
content of the available images, a methodological approach which is
today termed radiomics (Lambin et al., 2012; Gillies et al., 2016).
Although the recognition (i.e. detection) and contouring (i.e. segmen-
tation) tasks have long been the focus of specific developments, for
example for radiotherapy treatment planning automation (Harrison
et al., 2022) or the help in diagnosis and tumor burden quantification,
they are also a crucial part of the usual radiomics pipeline. They are
exploited after image pre-processing and before the characterization of
the detected and delineated tumor volume through handcrafted image
features (e.g. shape, intensity, texture) that are subsequently used for
modeling (Lambin et al., 2017). In both fields of segmentation and
outcome prediction, the rise of approaches entirely or partly based on
deep learning (DL) has been particularly striking over the last few years.
On the one hand, for the detection and/or segmentation, most of the
algorithms proposed in the literature and in the context of medical im-
age challenges are now based on DL, especially the U-Net (Ronneberger
et al., 2015) architecture which has been very successful (Savjani et al.,
2022; Eisenmann et al., 2022). On the other hand, in the field of
outcome prediction (radiomics), DL has not yet entirely supplanted the
use of handcrafted features exploited through classical Machine Learn-
ing (ML) algorithms. In 2020, the HECKTOR challenge was organized
for the first time, in the context of the MICCAI conference. Its focus
and its unique task was the automated segmentation of the primary
Gross Tumor Volume (GTVp) in combined PET/CT images of HNC
patients. All challengers proposed solutions based on variants of U-Net
(Andrearczyk et al., 2020b). Because of the success of the challenge for
its first edition, it was decided to renew it in 2021. The scope of this
second edition has been substantially expanded, with the addition of
patients and centers as well as a second task, outcome prediction, which
could be addressed independently from the segmentation task. This
paper provides a post-challenge analysis and reports the most relevant
findings of HECKTOR 2021. Additionally to the raw presentation of
the data, participation and results in Andrearczyk et al. (2021b), we
largely extend the data description and analysis of the results, including
ranking stability, statistical tests, ensembles of predictions, comparison
with PET thresholding methods, influence of tumor size and SUV on
segmentation performance, inter-center performance, analysis of the
overfitting resulting from the best of 5 submissions per team, as well
as additional baseline results for the outcome prediction.

2. Prior work

2.1. Related tumor segmentation algorithms

Before the DL era, standard segmentation methods in computer vi-
sion and medical imaging included thresholding, region-based (e.g. re-
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gion growing), watershed and clustering (e.g. K-means) (Foster et al.,
2014). Tumor segmentation in PET images is still commonly performed
with Standardized Uptake Values (SUV) thresholding in clinical routine,
yet it is difficult to fully automatize due to the semi-quantitative
nature of SUVs that vary e.g. with the time between the injection and
acquisition, the scanner, the reconstruction algorithm, the tumor shape,
and individual normal physiological baseline (Wahl et al., 2009).

A major breakthrough in medical image segmentation, at the basis
of most current algorithms, came from the adaptation of deep Con-
volutional Neural Networks (CNN) to the field. U-Net (Ronneberger
et al., 2015) and its 3D variants (Çiçek et al., 2016) are designed as
fully-convolutional encoder–decoder networks with skip connections to
leverage contextual information and precise localization. Based on the
success of Squeeze and Excitation networks (SENets) (Hu et al., 2018),
a squeeze-and-excitation normalization layer was introduced in a U-Net
architecture by Iantsen et al. (2020) in HECKTOR 2020, reaching the
best performance for HNC primary tumor segmentation. nnU-Net (’’no
new net’’) (Isensee et al., 2021) has recently become a popular method
for various medical image segmentation tasks. Developed to deal with
dataset diversities, it automates key design choices for a successful
segmentation pipeline using standard 2D or 3D U-Nets.

Vision transformers (ViT) (Dosovitskiy et al., 2020) are self
-attention-based architectures inspired by natural language processing
transformer models (Vaswani et al., 2017). Images are split into a
sequence of patches, combined together with a position embedding
and fed to a transformer encoder. One major difference compared
with CNNs is the early aggregation of global information, as well
as a less constrained architecture that tends to perform better with
large amounts of data. A segmentation ViT (U-NeTr) was proposed
in Hatamizadeh et al. (2022), combining the strength of the encoder–
decoder and skip connections of the U-Net with the self-attention
mechanism of the ViT. This architecture was applied to PET/CT tumor
segmentation in Sobirov et al. (2022). This method did not reach the
highest performance of CNNs, yet further developments and adapta-
tions of ViTs may play an important role in PET/CT tumor segmentation
and other prediction tasks in the coming years, as suggested by their in-
creasing use in the medical imaging field and recent developments (Liu
et al., 2021).

2.2. Medical image segmentation challenges

The interest in medical imaging challenges has grown over the past
years. These challenges have enabled a fair comparison of algorithms
developed by various research teams across the world on large curated
datasets, as opposed to studies performed on non-public data, and/or
diverging data splits and evaluation protocols. The number of MICCAI
challenges between 2018 and 2022 has increased from 15 to 38 (25
of which feature a segmentation task in 2022), equally supported by a
growing participation. A similar trend is observed in other challenges
organized independently or at other venues including the International
Symposium on Biomedical Imaging (ISBI), the international confer-
ence on Medical Imaging with Deep Learning (MIDL), and the annual
meeting of the Radiological Society of North America (RSNA). Quality
of the data, as well as fairness and appropriateness of the evalua-
tion, have greatly benefited from initiatives such as challenge design
guidelines (Maier-Hein et al., 2018) and Biomedical Image Analysis
ChallengeS (BIAS) reporting guidelines (Maier-Hein et al., 2020). The
Brain Tumor Segmentation (BraTS) challenge (Menze et al., 2014) is
an exemplary successful challenge that has evolved in the past decade,
has proposed various tasks and data and has been the opportunity for
multiple key technical developments in the field of medical imaging.

Following the first PET tumor segmentation challenge (Hatt et al.,
2018), HECKTOR 2020 (Oreiller et al., 2022) was the first challenge
addressing the segmentation of cancer-related lesions in PET/CT. It
featured a single task of primary tumor segmentation (GTVp) in HNC
patients. In 2021, we increased the dataset size and added a second

task of patient outcome prediction (Andrearczyk et al., 2021b).
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2.3. Related outcome prediction algorithms

Radiomics (Gillies et al., 2016) is the quantitative analysis of radi-
ological and nuclear medicine images with high throughput extraction
to obtain a non-invasive diagnosis and prognosis support for pre-
cision medicine. Survival radiomics aims at predicting the elapsed
time between the diagnosis or the treatment date and some event
of interest. Commonly employed event types includes death (e.g. in
overall survival) and recurrence (e.g. in Progression Free Survival, PFS).
PFS, used in this challenge, considers progression of the disease, local
and regional recurrence, distant metastasis and death of any cause as
events. Only the end of follow-up is censored. The time is generally
considered from the end of treatment to the event.

Proportional hazards models (e.g. Cox proportional hazards model
Cox, 1972) are often used in survival analyses to predict the haz-
ard risk using one or more covariates such as clinical variables or
semantic/quantitative image biomarkers in radiomics studies (Burke
et al., 1997; Vallières et al., 2017). Supported by its success in various
machine vision tasks, CNNs have been applied to radiomics, although
standard radiomics approaches involving feature extraction from re-
gions of interest followed by ML models remain popular due to the
frequently limited amount of data and the low computational re-
quirements. Survival CNN models use survival losses such as the Cox
loss (Zhang et al., 2020; Andrearczyk et al., 2021a) to learn relevant
features directly from the data.

In HNC cancer, radiomics has been applied to prognosis prediction
from CT (Aerts et al., 2014), MRI (Dang et al., 2015) and, recently,
PET/CT (Diamant et al., 2019; Vallières et al., 2017; Andrearczyk
et al., 2020c) images. A valuable review of HNC radiomics is provided
in Wong et al. (2016). In Fontaine et al. (2021), it was shown that
delineations made for radiotherapy are not well suited for radiomics.
Re-delineating radiotherapy contours improved the prediction of ra-
diomics models for the prediction of DFS in HNC cancer. Together
with the low inter-observer agreement reported in Oreiller et al. (2022)
(0.61), these results motivated the definition of delineation guide-
lines (Section 3.2) and the curation of radiotherapy contours for the
HECKTOR data proposed in this paper. The fully automatic radiomics
task proposed in this challenge (Task 2, without ground truth test
contours given to the participants) was motivated by the preliminary
experiments in Fontaine et al. (2021) showing promising DFS pre-
diction results using automatically segmented tumors as Volumes of
Interest (VOIs) for the radiomics pipeline, as well as the multi-task CNN
proposed in Andrearczyk et al. (2021a) to guide the prediction of DFS
with an auxiliary tumor segmentation task.

2.4. Challenges addressing outcome prediction

Despite the numerous radiomics studies reported in the past 10
years, challenges on patient outcome prediction have been far less
popular than segmentation (e.g. lesion, organs), classification (e.g. di-
agnosis, staging) and registration challenges. The BraTS (Menze et al.,
2014) challenge proposed, among others, the task of OS and pseudo-
progression prediction of glioblastoma multiforme from brain MRI. The
OroPharynx Cancer (OPC) Radiomics Challenge2 proposed the task of
binary prediction of local recurrence from CT images, evaluated with
AUC. The 18-FDG-PET Radiomics Risk Stratifiers in Head and Neck
Cancer challenge, at MICCAI 20183 proposed the binary task of local
tumor control prediction.

2 https://www.kaggle.com/competitions/opc-recurrence/overview, as of
ay 2023.
3 https://www.kaggle.com/competitions/pet-radiomics-challenges/

verview, as of May 2023.
3
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3. HECKTOR 2021 challenge set-up

3.1. Dataset

Data source.
Compared to the dataset used in the first edition of the chal-

lenge (Oreiller et al., 2022), 71 patients collected in a sixth center
(CHUP) were added and distributed between the training (n = 23) and
the testing (n = 48) sets. As a result, the 2021 dataset consisted of
patient data and images collected from six centers as detailed in Ta-
ble 1 (Andrearczyk et al., 2021b). The data consist of PET/CT images of
patients with HNC located in the oropharynx region. Inclusion criteria
were head and neck cancer patients older than 18 years with primary
oropharyngeal lesions of any histologic type, TNM stage and HPV
status. Exclusion criteria was unavailable follow-up data. Additional
information about the image acquisition is provided in Appendix A.

Training and test case characteristics.
The training data comprise 224 cases from five centers (HGJ, HMR,4

CHUM, CHUS and CHUP). The data from the first four centers originate
from Vallières et al. (2017) which contained 298 cases, among which
we selected the cases with oropharynx cancer. The test data contain
101 cases from a sixth center (CHUV n = 53) and from CHUP (n = 48).
Examples of PET/CT images of each center are illustrated in Fig. 1. The
HGJ, HMR, CHUM, CHUS cohorts were already used in the training set
of HECKTOR 2020 and CHUV cohort was already used in the 2020
test set. The number of events in the training set is 56 out of 224
(25%). In the test set, it is 40 out of 101 events (39.6%). In terms
of severity of disease, the distribution of TNM stages in the training
set is TNM stages in the test set is I: 4%, II: 6.9%, III: 18.8%, IV:
70.3%. In the training set, it is I: 1.8%, II: 8.5%, III: 12.9%, IV: 76.8%.
These variations reflect the clinical reality and require good model
generalization to reach high prediction performance. Each case includes
aligned PET and CT volumes, a GTVp mask (for the training cases
only) in the Neuroimaging Informatics Technology Initiative (NIfTI)
format, as well as patient clinical information age, gender, center, T,
N and M stage and clinical staging edition (7th or 8th depending on
the center), as well as tobacco and alcohol consumption, performance
status, Human Papilloma Virus (HPV) infection status and therapy
modalities (i.e. radiotherapy only or chemoradiotherapy). Similarly to
the 2020 edition, a bounding-box of size 144 × 144 × 144 mm3 locating
the oropharynx region was also provided. Details of the semi-automatic
region detection can be found in Andrearczyk et al. (2020a). This is
an important point to emphasize because it helps the challengers focus
their algorithm development on the actual segmentation and outcome
prediction, rather than on a recognition/detection step.

3.2. Contours

We describe the delineation of primary tumors for all cases in the
dataset, used as ground truth for the segmentation and VOIs for one
of the outcome prediction tasks. As described below, some cases had
original delineations from radiotherapy which were re-contoured to
obtain target contours that are as close as possible to the true tumor
boundaries. Since no guidelines were available for contouring true HNC
tumoral volumes on PET/unenhanced CT, we defined them to reduce
inter-observer variability by reaching a consensus on the best approach
to adopt.

Definition 3.1 (GTVp Primary Tumor Delineation Guidelines). Oropha-
ryngeal lesions are contoured on PET/CT using information from PET
and unenhanced CT acquisitions. The contouring includes the entire

4 For simplicity and consistency, these centers were renamed CHGJ and
HMR during the challenge.

https://www.kaggle.com/competitions/opc-recurrence/overview
https://www.kaggle.com/competitions/pet-radiomics-challenges/overview
https://www.kaggle.com/competitions/pet-radiomics-challenges/overview
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Table 1
List of the hospital centers in Canada (CA), Switzerland (CH) and France (FR) and number of cases, with a total of 224
training and 101 test cases.

Center Split # cases

HGJ: Hôpital Général Juif, Montréal, CA Train 55
CHUS: Centre Hospitalier Universitaire de Sherbooke, Sherbrooke, CA Train 72
HMR: Hôpital Maisonneuve-Rosemont, Montréal, CA Train 18
CHUM: Centre Hospitalier de l’Université de Montréal, Montréal, CA Train 56
CHUP: Centre Hospitalier Universitaire Poitiers, FR Train 23

Total Train 224

CHUV: Centre Hospitalier Universitaire Vaudois, CH Test 53
CHUP: Centre Hospitalier Universitaire Poitiers, FR Test 48

Total Test 101
Fig. 1. Case examples of 2D sagittal slices of fused PET/CT images from each of the six centers. The CT (grayscale) window in Hounsfield units is [−140, 260]. The PET window
in SUV is [0, 12], represented in a ‘‘hot’’ colormap.
edges of the morphologic anomaly as depicted on unenhanced CT
(mainly visualized as a mass effect) and the corresponding hyperme-
tabolic volume, using PET acquisition, unenhanced CT and PET/CT
fusion visualizations based on automatic co-registration. The contour-
ing excludes the hypermetabolic activity projecting outside the physical
limits of the lesion (for example in the lumen of the airway or on
the bony structures with no morphologic evidence of local invasion).
For more specific situations, the clinical nodal category was verified
to ensure the exclusion of nearby FDG-avid and/or enlarged lymph
nodes (e.g. submandibular, high level II, and retropharyngeal). In the
case of tonsillar fossa or base of tongue fullness/enlargement without
corresponding FDG avidity, the clinical datasheet was reviewed to
exclude patients with pre-radiation tonsillectomy or extensive biopsy.

The contours for the CHUV center were drawn by an expert ra-
diation oncologist for radiomics purposes (Castelli et al., 2019). The
expert contoured the tumors on fused PET/CT scans. The cases from
HGJ, CHUS, HMR, and CHUM centers were originally contoured in
the context of radiotherapy (Vallières et al., 2017). All contours were
re-delineated for radiomics purposes according to the aforementioned
guidelines (Definition 3.1) for HECKTOR 2020 (Oreiller et al., 2022).
For the data added to the current HECKTOR 2021 edition (CHUP), the
delineations were obtained semi-automatically with a Fuzzy Locally
4

Adaptive Bayesian (FLAB) segmentation (Hatt et al., 2009) applied
to the PET image, and subsequently corrected by an expert radiation
oncologist based on the corresponding CT information for radiotherapy
planning. The re-delineation of true tumoral volume was performed by
three experts: one nuclear medicine physician, one radiation oncologist
and one who is both radiologist and nuclear medicine physician. The
71 cases were divided between the three experts and each delineation
was then cross-checked by all three of them. This re-delineation was
performed in a centralized fashion with the MIM software, and the
verification of the contours was made possible by the MIM Cloud
platform.5 Overall, although different strategies were used to create the
initial contours, these were controlled and corrected to strictly follow
the unified guidelines introduced in Definition 3.1.

3.3. Patient outcome

Clinical information regarding patients was collected in each clin-
ical center along with the PET/CT images. Such clinical variables
included age, gender, T, N and M stage and clinical staging (7th or

5 https://mim-cloud.appspot.com/ as of May 2023.

https://mim-cloud.appspot.com/
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8th edition depending on the center), as well as tobacco and alcohol
consumption, performance status, HPV status and therapy modalities
(i.e., radiotherapy only or chemoradiotherapy) when available. In-
formation regarding the chosen endpoint to predict (see the section
below), i.e., censoring and time-to-event between PET/CT scan and
event (in days) was provided as well (for the training data only).

3.4. Challenge tasks

Task 1 — primary tumor segmentation. The first task is similar to the
first edition with a larger dataset, namely the automatic segmenta-
tion of GTVp from the PET/CT images. To perform well in this task,
algorithms should accurately segment test primary tumors.

Task 2–3 — outcome prediction. The new task of outcome prediction
was added for this second edition of the challenge. It relied on the
same training and testing dataset as the segmentation (Task 1). This
design allowed challengers to exploit their segmentation results from
Task 1, although this was not mandatory. Outcome prediction was
divided into two different tasks and associated submissions and rank-
ings, depending on whether the reference expert contours (the ground
truth of Task 1) were exploited by the method or not. Task 2 was
therefore defined as predicting outcomes based only on PET/CT images
and the available clinical variables. In contrast, Task 3 had the same
goal, with the addition of expert contours made available. Exploiting
the clinical variables for predicting outcomes was not mandatory. To
avoid challengers willing to participate in Task 3 having direct access
to the ground truth of Task 1, we requested they encapsulate their
methods within Docker containers6 that we evaluated on the test data.

he prediction endpoint was chosen as PFS since this information was
vailable in the clinical data for all included patients. It is a clinically-
elevant endpoint that can be leveraged to support decision systems for
ersonalized patient management in such a HNC population. Progres-
ion was defined according to RECIST (Response Evaluation Criteria
n Solid Tumors): either a size increase of known lesions (i.e., change
f 𝑇 and or N), or the appearance of new lesions (i.e., change of N
nd/or M). We considered disease-specific death a progression event for
atients previously regarded as stable. In the training set, participants
ere provided with the event info (1 or 0), censoring, and time-to-
vent between PET/CT scan and event in days. The number of PFS
vents was 56 in the training set, 40 in the test set. To evaluate and
ank challengers, we relied on the Concordance index (C-index), an
stablished metric to quantify predicted risk scores. To perform well
n these tasks, algorithms should correctly rank the test cases based on
redicted scores of risk of progression.

.5. Rankings and assessment methods

ask 1 — primary tumor segmentation. Participants were given access to
he test cases without the ground truth delineations and were asked to
ubmit the results of their algorithms on these cases on the AIcrowd
latform.7 We only accepted binary segmentations in the NIfTI file
ormat.

Results were ranked using the 3D Dice Similarity Coefficient (DSC)
nd Hausdorff Distance at 95th percentile (HD95), both computed on
mages cropped using the provided bounding-boxes (see Section 3.1)
n the original CT resolution. The two metrics are defined for set 𝐴
ground truth volumes) and set 𝐵 (predicted volumes) as follows.

SC(𝐴,𝐵) = 2|𝐴 ∩ 𝐵|
|𝐴| + |𝐵|

, (1)

6 https://www.docker.com/ as of September 2022.
7 https://www.aicrowd.com/challenges/miccai-2021-hecktor, as of

eptember 2022.
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where | ⋅ | is the set cardinality and

HD95(𝐴,𝐵) = 𝑃95

{

sup
𝑎∈𝐴

inf
𝑏∈𝐵

d(𝑎, 𝑏), sup
𝑏∈𝐵

inf
𝑎∈𝐴

d(𝑎, 𝑏)
}

, (2)

where d(𝑎, 𝑏) is the Euclidean distance between points 𝑎 and 𝑏, sup and
inf are the supremum and infimum, respectively. 𝑃95 is the 95th per-
entile. We followed the recommendation of Maier-Hein et al. (2022)
o combine an overlap-based metric (i.e. DSC) with a boundary-based
etric (i.e. HD95), as the latter compensates bias toward larger struc-

ures. HD95 was used instead of HD thanks to its robustness to spatial
utliers.

Before the challenge opening, we decided to handle missing predic-
ions by attributing a DSC of 0 and a HD95 of +∞ to them. However,
his did not occur during the submission phase. If the submitted results
ere in a resolution different from the CT resolution, we applied
earest-neighbor interpolation before evaluation. We also computed
ther metrics for comparison, namely precision, recall and F1-score to
nvestigate whether the methods were rather providing a large false
ositive or false negative rate. The evaluation implementation can be
ound on our GitHub repository8 and was provided to the participants

to maximize transparency.
The ranking was computed from the average DSC and median HD95

across all cases. Since the HD95 is unbounded, i.e. it is infinity when
there is no prediction, we choose the median instead of the mean for
aggregation. The two metrics are ranked separately and the final rank
is obtained by Borda counting. This ranking method was used first to
determine the best submission of each participating team (ranking the
one to five submissions), then to obtain the final ranking (across all
participants). Each participating team had the opportunity to submit
up to five valid runs. In case of formatting errors, the participant was
informed by an error message and the run was not counted. These
errors did not count against their quota of 5 submissions. No immediate
feedback was displayed on how their run was performing to avoid
iterative overfit.

Tasks 2 and 3 — PFS prediction. Participants were given access to
the test cases without the PFS ground truth annotations and were
asked to submit the results of their algorithms on these cases on the
AIcrowd platform (Task 2) or to encapsulate their algorithms exploiting
ground truth expert contours in a Docker that was run by organizers
on the test data (Task 3). The expected output of the algorithm was
a CSV file containing the patient ID’s along with the predicted risk
scores, anti-concordant with the PFS in days. Results were ranked
according to the C-index values calculated by comparing the predicted
risk scores with the ground truth. This metric quantifies a model’s
ability in ranking the survival times based on the calculated individual
risk scores, generalizing the Area Under the ROC Curve (AUC). It can
account for censored data, i.e., when patients left the study after a given
amount of time and encountered no event. The implementation is based
on the Lifelines library9 and adapted to handle missing values that are
counted as non-concordant. It can be found on our GitHub repository10

and was provided to the participants for transparency.
The final ranking across all participants was obtained by selecting

for each team the best out of their possible five valid runs. In case of
formatting errors, the participant was informed by an error message
and the run was not counted. No immediate feedback was displayed
on how their run performed to avoid iterative overfitting.

8 https://github.com/voreille/hecktor/tree/hecktor2020/src/evaluation, as
f April 2022.

9 https://lifelines.readthedocs.io/en/latest/, as of September 2022.
10 https://github.com/voreille/hecktor/tree/hecktor2020/src/evaluation, as

f September 2022.

https://www.docker.com/
https://www.aicrowd.com/challenges/miccai-2021-hecktor
https://github.com/voreille/hecktor/tree/hecktor2020/src/evaluation
https://lifelines.readthedocs.io/en/latest/
https://github.com/voreille/hecktor/tree/hecktor2020/src/evaluation
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4. Results

This section presents results in all three tasks in terms of chal-
lenge participation, algorithms descriptions, algorithms’ performance,
as well as task-specific analyses. The challenge was organized as a one-
time event with fixed deadline (Sept. 14 2021). Only fully automatic
methods were evaluated. The results and ranking are available on the
AIcrowd platform. The Springer LNCS proceedings (Andrearczyk et al.,
2022a) of the challenge include the overview paper (Andrearczyk et al.,
2021b) and the 29 participants’ papers. Each paper was reviewed by a
minimum of two invited reviewers and one core organizer.

4.1. Task 1: Segmentation

For the segmentation task (Task 1), besides the standard partic-
ipation and results, we report additional analyses to gain a better
understanding of the algorithms’ performance, their clinical value, and
remaining challenges. In particular, we summarize and compare algo-
rithms based on key design choices, we report results from ensembling
the algorithms into a ‘‘super-algorithm’’, we evaluate simple automatic
and semi-automatic PET thresholding methods as a performance base-
line, the influence of tumor size and SUV on segmentation performance,
the stability of the ranking and alternative rankings with bootstrap
sampling, as well as the effect of reporting the best of 5 submissions
per participant (e.g. risk of overfitting).

Participation. As of Sept. 14 2021 (submission deadline), we received
a total of 181 submissions evaluated successfully for the first task.
A total of 41 teams participated and 22 of them submitted a paper
describing their methods and results. Only these teams that described
their contribution in a paper submission were considered for the official
ranking due to the limited scientific value of other results submissions.

Algorithms summary. Almost all models use ensembles of 3D U-Nets.
Attention modules were used by less than half of the participants with-
out a clear benefit in terms of performance. Most methods pre-process
the data with standard resampling, CT clipping and PET standardiza-
tion. Various data-augmentations are used including rotation, scaling,
flipping and noise addition. Some of the top-performing methods use
SE normalization (Iantsen et al., 2020). The Dice loss was the most
popular to train the models, combined with other losses such as cross-
entropy and focal loss. Among the top five, only one approach did
not use nnU-Net. Key elements of the top-performing algorithms are
simple design choices including appropriate preprocessing, normaliza-
tion, data augmentation and ensembling. The winning method (team
‘‘Pengy’’ Xie and Peng, 2022) used a well-tuned patch-based 3D nnU-
Net with Squeeze and Excitation (SE) normalization (Iantsen et al.,
2021). A standard pre-processing and training scheme was used and
the learning rate was adjusted dynamically using polyLR (Chen et al.,
2016). Five models were trained in a five-fold cross-validation with ran-
dom data augmentation including rotation, scaling, mirroring, Gaussian
noise and Gamma correction. The five test predictions are ensembled
via probability averaging for the final results.

A detailed categorization of the methods in terms of pre-processing,
data augmentation, model architecture, loss and training scheme can be
found in Appendix B, Table B.7. More details on the individual methods
can be found in the corresponding participants’ papers.

Segmentation performance. The results, including average DSC, HD95,
recision, recall, F1-score and challenge rank are summarized in
able 2.

The results from the participants range from an average DSC of
.633 to 0.779 and a median HD95 of 0.309 to 6.37. Note that SJTU
IEE 2-426Lab is ranked second due to the HD95 slightly better than
he third (HiLab), 3.0881603 vs 3.0881618, and the ranking strategy
escribed in Section 3.5. Statistical significance between pairs of teams
as assessed with a one-tailed Wilcoxon test corrected for multiple
6

s

hypotheses testing. For the DSC, no significant difference was found
in the top-six group (i.e. Pengy vs SJTU, HiLab, BCIOQurit, Aarhus
Oslo or Fuller MDA). The first statistically significant comparison was
found when comparing Pengy with the 7th position UMCG (𝑝 =
0.0.022). For the HD95, the first significance was found when comparing
engy with the 6th position Fuller MDA (𝑝 = 0.037). The precision
nd recall results, not used for the ranking, range from 0.6355 to
.8746 and 0.5935 to 0.8086, respectively. All methods presented a
imilar trade off between precision and recall, with the exception of
mmanuelle Bourigault, which obtained the highest precision while
eing ranked only 12th due to a relatively low recall. The distributions
f DSCs across patients and across participants are reported in Figs. 2
nd 3 respectively. The latter shows that some cases of both centers
re incorrectly segmented by almost all algorithms (e.g. CHUV036,
HUV001, CHUP076). For CHUV036, for instance, a large metastatic

ymph node is often incorrectly segmented as a primary tumor. For
HUV001, a metabolic volume at the level of the soft palate is incor-
ectly segmented by most algorithms, while the primary tumor situated
ower than the average is commonly missed. Besides, some cases are
orrectly segmented by most algorithms (e.g. CHUV020 and CHUP029),
hile other cases, mostly in the CHUV center, show a large variation

e.g. CHUV016) across participants.

anking robustness. The robustness of the ranking toward changes in
he test set was assessed with a bootstrap analysis (n = 1000). The
ethodology used here is inspired by the challengeR toolkit (Wiesen-

arth et al., 2021). The results are reported in Fig. 8. We computed the
endall rank coefficient between the actual rank and the ones obtained

or each bootstrap. The following coefficients were obtained. Official
ank (based on Borda count): 0.819 (0.744–0.885), average DSC: 0.843
0.642–0.916), median HD95: 0.793 (0.689–0.882), and aggregated
SC: 0.841 (0.724–0.924). The aggregated DSC is defined as

SCagg =
2
∑

𝑖 |𝐴𝑖 ∩ 𝐵𝑖|
∑

𝑖 |𝐴𝑖| + |𝐵𝑖|
, (3)

ith 𝐴𝑖 and 𝐵𝑖 respectively the ground truth and predicted segmen-
ation for image 𝑖, where 𝑖 spans the entire test set. This metric was
mployed in Andrearczyk et al. (2022b) and is used as the ranking
etric in HECKTOR 2022, for this reason we wanted to evaluate its

tability. Overall, the ranking variability corroborates the statistical test
hich showed no significance among the top-performing teams.

nsemble of participants. In this section, we create a ‘‘super-algorithm’’
s an ensemble of the different participants’ predictions. Such analyses
ften revealed superior performances to all submitted runs (Menze
t al., 2014), leveraging the diversity of distinct methods (Hastie et al.,
009). We ensemble the (binary) predictions of multiple participants
(i) all 20 participants with paper submissions, and (ii) top-5 ranking
articipants) using the Simultaneous Truth And Performance Level Es-
imation (STAPLE) algorithm (Warfield et al., 2004). A simpler ensem-
ling method is also computed by taking the average of the different
articipants’ predictions for each patient, and then thresholding at 0.5
o obtain a binary prediction. The results are reported in Table 3.

Most ensembles outperform the best participant result (pengy: DSC
.778, HD95 3.09). The best ensemble performance is obtained by the
verage of all 20 participants with a DSC of 0.780 and HD95 3.06.
ote that many participants already reported results obtained by an
nsemble of multiple independent network predictions (see Table B.7).

nter-center performance. We compared the performances separately on
he two centers subsets of the test set (CHUV and CHUP) for (i) the best
articipant (pengy), (ii) The STAPLE ensemble of the top-5 participants,
nd (iii) all 20 participants. The results are reported in Table 4. The
esults on the CHUV subset were lower than the CHUP one in the three

cenarios, as discussed in Section 5.
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Table 2
Summary of the segmentation results (Task 1). The official ranking is based on both DSC and HD95. Note that SJTU EIEE 2-426Lab is ranked
second due to the HD95 slightly better than the third (HiLab), 3.0881603 vs 3.0881618. The two participants at the bottom were disqualified
due to an excessive number of submissions on the 2020 data.
Team DSC ↑ HD95 ↓ Precision ↑ Recall ↑ F1 ↑

Pengy (Xie and Peng, 2022) 0.7785 3.088 0.8361 0.7751 0.8044
SJTU EIEE 2-426Lab (An et al., 2022) 0.7733 3.088 0.8037 0.7972 0.8004
HiLab (Lu et al., 2022) 0.7735 3.088 0.7877 0.8086 0.7980
BCIOQurit (Yousefirizi and Rahmim, 2021) 0.7709 3.088 0.7974 0.8067 0.8020
Aarhus Oslo (Ren et al., 2022) 0.7790 3.155 0.8032 0.8085 0.8058
Fuller MDA (Naser et al., 2022a) 0.7702 3.143 0.8037 0.7925 0.7981
UMCG (De Biase et al., 2022) 0.7621 3.143 0.7881 0.7865 0.7873
Siat Wang et al. (2022a) 0.7681 3.155 0.8211 0.7707 0.7951
Heck Uihak (Cho et al., 2022) 0.7656 3.155 0.7834 0.8036 0.7934
BMIT USYD (Meng et al., 2022) 0.7453 3.155 0.7980 0.7537 0.7752
DeepX (Yuan et al., 2022) 0.7602 3.270 0.7812 0.7996 0.7903
Emmanuelle Bourigault (Bourigault et al., 2022) 0.7595 3.270 0.8746 0.7133 0.7858
C235 (Liu et al., 2022) 0.7565 3.270 0.7774 0.7988 0.7880
Abdul Qayyum (Qayyum et al., 2022) 0.7487 3.270 0.7972 0.7586 0.7774
RedNeucon (Martinez-Larraz et al., 2022) 0.7400 3.270 0.7624 0.7877 0.7748
DMLang (Lang et al., 2022) 0.7046 4.026 0.8195 0.6647 0.7340
Xuefeng (Ghimire et al., 2022) 0.6851 4.193 0.7394 0.7199 0.7295
Qurit Tecvico (Salmanpour et al., 2022) 0.6771 5.421 0.6788 0.7318 0.7043
Vokyj (Juanco-Müller et al., 2022) 0.6331 6.127 0.7620 0.5935 0.6673
TECVICO Corp Family (Fatan et al., 2022) 0.6357 6.372 0.6355 0.7335 0.6810

BAMF health (Murugesan et al., 2022) 0.7795 3.057 0.8340 0.7706 0.8010
Wangjiao (Wang et al., 2022b) 0.7628 3.270 0.7977 0.7855 0.7916
Fig. 2. Box plots of the distribution of the 101 test DSCs for each participant, ordered by decreasing DSC (different from the rank that combines DSC and HD95).
Table 3
Segmentation results of different ensembling methods and Team pengy (Xie and Peng,
2021), the winner of Task 1.

top-5 STAPLE top-20 STAPLE top-5 average top-20 average pengy

DSC 0.779 0.758 0.779 0.780 0.778
HD95 3.06 3.27 3.06 3.06 3.0882

Table 4
Comparison of performance across test centers (CHUV and CHUP).

All test CHUV CHUP

DSC HD95 DSC HD95 DSC HD95

pengy (Xie and Peng, 2022) 0.778 3.09 0.766 3.27 0.792 3.00
STAPLE top-5 0.779 3.06 0.766 3.06 0.794 3.00
All participants (average) 0.738 3.30 0.714 3.52 0.765 3.30
7

PET thresholding. PET thresholding is de facto the most widely used
method for lesion segmentation in clinical routine, often computed
after an initial manual delineation of the field of interest. We compared
the participants’ results with simple automatic and semi-automatic PET
thresholding methods. The fully-automatic threshold is obtained by
thresholding the PET image at a given percentage of the maximum
SUV value within the bounding-box (we evaluate a range of values).
For the semi-automatic threshold, we mimic a manual indication of
the tumor by an expert, followed by a similar threshold of the PET
values. In practice, we first threshold the PET image, then extract the
(26-)connected components and retain those (generally a single volume
is retained) that overlap with the ground truth tumor volume. In Fig. 5,
we report the results of these methods on the test set for various
thresholds based on the percentage of the maximum SUV. Finally, we
also report the results of the same semi-automatic thresholding with an
additional threshold at −150 HU on the CT images to remove the air
from the predictions.



Medical Image Analysis 90 (2023) 102972

8

V. Andrearczyk et al.

Fig. 3. Box plots of the distribution of DSCs across the 20 participants for each of the 53 CHUV and 48 CHUP patients in the test set.

Fig. 4. Ranking robustness against changes in test data. The robustness is assessed by ranking 1000 bootstraps of the test set. The size of the circles is proportional to the number
of times a team obtained the corresponding rank for each bootstrap. The dashed lines represent the confidence intervals at 95% computed from the bootstrap analysis. The Kendall
tau is reported in brackets.
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Fig. 5. Segmentation test performance (average DSC and median HD95) of PET thresholding-based method at different percentages of maximum SUV. The results of three methods
are reported: the automatic PET threshold, the semi-automatic PET threshold (indicating the location of the ground truth GTVp), and the semi-automatic PET and CT (to remove
the air) threshold.
Fig. 6. Scatter plots of (a) DSC vs. tumor volume (voxel count in the VOI) and (b) DSC vs. SUVmax; for 20 participants. The corresponding Spearman rank correlations are 0.494,
0.428 respectively.
Influence of tumor size and SUV on segmentation performance. In this
section, we evaluate how the algorithms perform for different tumor
sizes. To this end, we explore the correlation of tumor size with the
performance of the algorithms. The tumor size is calculated as the voxel
count inside the ground truth GTVp multiplied by the voxel volume.
The Spearman rank correlation between the DSC and the tumor volume
across all 20 participants and all tumors is 0.494 (𝑝-value < 0.001). In
Fig. 6, we illustrate this correlation with a scatter plot of the DSCs as
a function of the tumor size. We also evaluate the correlation of the
DSC with the SUVmax (Spearman correlation 0.428). Fig. 7 relates the
performance for each of the 20 algorithms for five ranges of tumor size.
This figure was generated by grouping the 101 test cases into five bins
(i.e. intervals) containing 21, 20, 20, 20, and 20 cases. The average DSC
was then computed for each team in each bin.

Taking best of five submissions: Risk of overfitting? Each participant could
upload up to 5 submissions on the test set during the challenge and
the best result was used for the final ranking. The average number of
submissions was 4.15 on the segmentation task. Although this allows
participants to evaluate different designs, it also rises the risk of overfit-
ting the test data. We compared the average results of the participants
when taking the best, the median, or the worst score of the participants’
submissions. The average DSC across all best results of participants was
9

0.740, whereas it dropped to 0.721 and 0.681 when taking the median
and minimum values respectively.

Please note that this analysis does not account for the false discovery
rate inherent in scientific challenges, which may be influenced by the
number of participants involved.

4.2. Task 2–3: Outcome prediction

Participation. A total of 148 submissions were uploaded by 30 different
teams for Task 2. However, out of 30 teams, only 17 were eligible
for final ranking and prize by submitting a paper describing their
algorithm. Task 3 was more complex to handle for participants as they
had to encapsulate their algorithms in a Docker, which most probably
explains the lower participation of seven teams (27 valid submissions,
six papers). Of note, all these seven teams also participated in Task 2,
which was of value because it allowed for a comparison between the
use (or not) of reference contours.

Algorithms summary. A detailed categorization of the methods in terms
of pre-processing, segmentation step, image features, and model can be
found in Appendix C, Table C.8. More details on the individual methods
can be found in the corresponding participants’ papers.
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Fig. 7. Average DSC of each team’s algorithm as a function of the volume of the tumors. This figure was generated by distributing the 101 test volumes in five bins of 𝑛 = 21,
0, 20, 20, and 20 each and then computing the average DSC for each bin.
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The methods proposed by the challengers can be categorized into
hree main approaches. The first one is to rely on the clinical variables
nly, thus deriving predictive models as a combination of clinical
actors without exploiting the available PET/CT images. This was the
ase for two teams only. All the other teams exploited the PET/CT
mages to derive models. Amongst these, we could categorize two main
ethodological approaches. The first one is to rely on a ‘‘classical’’

adiomics approach, in which the tumor of interest is delineated,
hen engineered/handcrafted features are calculated to characterize
his delineated volume, and finally a model is built by selecting some
eatures to combine into a multiparametric model through one or
everal algorithms. Note that a simplified case of such an approach is
o calculate and use only one or a couple of features, e.g., the tumor
olume (and/or shape), which three teams chose to do. The last main
pproach relies on DL models, using either pre-trained convolutional
etworks to extract ‘‘deep features’’ that are subsequently used for
odeling through learning algorithms, or to train a deep network

pecifically in an end-to-end manner.
In both the standard radiomics and the DL approaches, PET/CT

mages can be exploited in different ways. For instance, four teams
hose to implement a fusion of the two modalities into a single resulting
mage to use as an input, whereas other teams chose to keep the
ET and the CT image as separate inputs of their pipelines. Only
ne team chose to exploit both the fusion and separate modalities.
ome challengers also chose to include the segmentation mask as an
dditional input. Only three teams did not rely on segmentation of the
umor at all, and most of them (12 teams) relied on the output of their
articipation in Task 1 to get a tumor segmentation mask, which also
llowed some of them participating in Task 3 to carry out a comparison
etween models obtained by relying on the expert reference contours
r an automatic segmentation.

Both approaches also require different strategies to include clini-
al variables. All challengers that developed models using radiomics
eatures or DL architectures chose to include, in one way or another,
he available clinical factors in their models. Some even implemented
mputation mechanisms in order to fill in missing values (e.g., the HPV
tatus). Only four teams relied on the ensembling of several models,
hree of them being in the top-ranked teams. This ensembling was
arried out by relying on a consensus or average of the networks’
utputs in the 10 folds of cross-validation (Naser et al., 2022b), a voting
f eight different models (trained through ML algorithms exploiting
10
andcrafted features) (Salmanpour et al., 2022), ensembling 10 net-
orks (five trained using a leave-one-center- out cross-validation and

ive trained using a 5-fold cross-validation) (Meng et al., 2022) or
veraging 18 trained networks, the best three of each of six folds of
ross-validation (Ma and Yang, 2021).

The winner of the challenge (team ‘‘BiomedIA’’) in Task 2 did not
articipate in Task 3. It first carried out a comparison of the prediction
erformance achievable by relying on either all clinical variables with
mputing missing values, or only on the ones with values available for
ll patients. They determined that better prediction was achieved using
nly variables with complete values. Then, they generated a new fused
ET/CT image for the input of their pipeline by averaging the PET and
T modalities. This new PET/CT fusion was further cropped in order to

ocus on the tumor area, testing two different sizes (50 × 50 × 50 and
80 × 80 × 80). Better results were obtained with the larger area. They
then trained a 3D CNN (Deep-CR) to extract ‘‘deep’’ features from either
the fused PET/CT (one path) or the PET, the CT and the fused PET/CT
(three separate paths). The authors exploited the OPTUNA (Akiba et al.,
2019) framework to determine the best hyperparameters such as the
kernel sizes and the number of layers. The resulting network consisted
of two blocks, each block containing two 3D convolutional, ReLU
activation and batch normalization layers. These 3D CNN blocks (kernel
sizes 3 and 5, 32, 64, 128 and 256 output channels) are followed by 3D
max pooling layers. The two feedforward layers contain 256 neurons
each. The batch size, learning rate, and dropout were experimentally
set to 16, 0.016, and 0.2 respectively for the training, for 100 epochs
using the Adam optimizer. The obtained ‘‘deep’’ features, along with the
clinical variables, were then fed into a Multi-Task Logistic Regression
(MTLR) algorithm. MTLR consists of a sequence of logistic regression
models created at various time points in order to evaluate the prob-
ability of an event. The authors integrated neural networks into the
MTLR process in order to achieve non-linearity. No cross-validation or
data augmentation was used. Of note, the results of 3D CNN and MTLR
(i.e., exploiting both images and clinical variables) were averaged with
the prediction of a Cox model using only clinical variables to obtain
the best result.

The team ‘‘Fuller MDA’’, ranked second in Task 2 and first in Task
3 also implemented a pipeline approach relying on DL. They elected
to choose only clinical variables without missing values and to encode
them into an image matrix, allowing to feed it along with the PET
and CT images (original bounding-boxes without further cropping) as
separate channels to a DenseNet121 CNN. This CNN contained 6, 12,
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Table 5
Summary of the outcome prediction results. ‘‘na" stands for ‘‘not available. All
participants of task 3 also participated in task 2.

Team C-index Task 2 C-index Task 3

BioMedIA (Saeed et al., 2022) 0.7196 na
Fuller MDA (Naser et al., 2022b) 0.6938 0.6978
Qurit Tecvico (Salmanpour et al., 2022) 0.6828 na
BMIT_USYD (Meng et al., 2022) 0.6710 na
DMLang (Lang et al., 2022) 0.6681 na
TECVICO_C. (Fatan et al., 2022) 0.6608 na
BAMF Health (Murugesan et al., 2022) 0.6602 0.6602
ia-h-ai (Starke et al., 2022) 0.6592 0.6592
Neurophet (Lee et al., 2022) 0.6495 na
UMCG (Ma et al., 2022) 0.6445 0.6373
Aarhus Oslo (Huynh et al., 2022) 0.6391 na
RedNeucon (Martinez-Larraz et al., 2022) 0.6280 na
Emmanuelle B. (Bourigault et al., 2022) 0.6223 na
BCIOQurit (Yousefirizi et al., 2022) 0.6116 0.4903
Vokyj (Juanco-Müller et al., 2022) 0.5937 na
Xuefeng (Ghimire et al., 2022) 0.5510 0.5089
DeepX (Yuan et al., 2022) 0.5290 na

24, and 16 repetitions of dense blocks, each dense block containing a
pre-activation batch normalization, ReLU, and a 3 × 3 × 3 convolution
followed by a batch-normalization, ReLU, and 1 × 1 × 1 convolution.
The model has two (PET, CT) or three (+clinical) input channels, each
of size 144 × 144 × 144 and 20 output channels, as the PFS was
discretized into 20 discrete intervals. It was trained through a 10-fold
cross-validation scheme (non-overlapping folds), with data augmenta-
tion (random horizontal flips of 50%, random affine transformations
with an axial rotation range of 12◦ and a scale range of 10%), for
800 iterations with a decreasing learning rate, the Adam optimizer and
a negative log-likelihood loss. The models obtained through the 10
folds were then ensembled with two different approaches, consensus
or averaging. For consensus, the mean conditional probability survival
vector was first estimated by getting the mean value for each time
interval, and then by computing the cumulative survival probability for
each interval to estimate the consensus PFS values from the 10 models.
For averaging, the PFS was estimated for each patient by each model
and the mean value of the 10 predicted PFS values was calculated.

Performance. The results of Tasks 2 and 3 are reported in Table 5. First
of all, it is important to emphasize that the best performance obtained
among the challengers using only the clinical variables was 0.649
(‘‘Neurophet’’). In comparison, we also performed baseline results ob-
tained with the tumor volumes and SUVmax, resulting in a C-index of
0.5683 and 0.5722, respectively. These results are significantly lower
than the top-performing teams results. Looking at the performances
obtained by the challengers, eight of them produced C-index values
close to or lower than this (between 0.529 and 0.644). Among these,
four did not rely (either fully or at all) on the PET/CT images. The
team ‘‘Aarhus Oslo’’ used only the clinical variables (C-index of 0.639).
The three other teams exploited the images only to calculate a tumor
volume, combined (‘‘Vokyj’’, 0.594 and ‘‘RedNeucon’’, 0.628) or not
(‘‘Xuefeng’’, 0.551) with clinical variables.

Of note, the team ‘‘BioMedIA’’ (who reached the first rank by
combining clinical variables with imaging information) also evaluated
a baseline model using only the clinical variables, which reached a
higher C-index of 0.66. All eight teams achieving a higher performance
exploited the quantitative content of both PET and CT images as input
(either relying on some kind of fusion of both modalities or exploiting
each image separately), and also included clinical variables, in one way
or another. Amongst these eight teams, the ones relying on DL ap-
proaches occupied four of the five first places of the final ranking. The
ones relying on a more classical radiomics approach (i.e., extraction
of handcrafted features from a delineated tumor volume, subsequently
selected and combined in a model through ML algorithms) were ranked
11

3rd and 6th–8th. Looking at the final ranking, it can be deduced that
the best results were obtained by pipelines relying on a DL approach
without using segmentation of the tumor (i.e., the initial input in the
pipeline is a bounding-box containing the tumor and its surroundings),
combined with clinical variables. The best performance in Task 2 was
achieved by the team ‘‘BiomedIA’’. Their proposed framework relying
on one path network (using only the fused PET/CT image as input)
led to the best performance of 0.720 whereas the version using 3 paths
(PET, CT and PET/CT) achieved a lower C-index of 0.67. Their baseline
MTLR framework relying on clinical variables only achieved a C-index
of 0.66. As their pipeline did not rely at all on provided segmentation
of the tumor, it was logical not to participate in Task 3. Statistical
significance between pairs of teams was assessed using the method
of Kang et al. (2015). No significant difference was found in the top-
five group (i.e. BioMedIA vs FullerMDA, Qurit Tecvico, BMIT USYD or
DMLang). The first statistically significant comparison was found when
comparing BioMedIA with the 6th position TECVICO_C (𝑝 = 0.004).

The best performance in Task 3 was obtained by the team ranked
second in Task 2, ‘‘FullerMDA’’. Their best result in Task 2 (0.694, rank
2nd) was obtained with a model exploiting both image and clinical,
with a consensus approach to aggregate the 10 models of the cross-
validation scheme. Using the average approach instead lowered the
C-index to 0.689, whereas not using the clinical information lowered
the performance even lower, with C-index of 0.645 and 0.651 with
average and consensus respectively. In Task 3, they used ground truth
masks as an additional input channel to the same network, achieving
a C-index of 0.696 and 0.698 (average and consensus respectively).
Using the test of Kang et al. (2015), no significant difference was found
in the top three group (i.e. FullerMDA vs BAMF Health or ia-h-ai).
The first statistically significant comparison was found when comparing
FullerMDA with UMCG (𝑝 = 0.001).

Inter-center performance. We evaluated the performance of the best
team (BioMedIA, with a C-index on the entire test set of 0.720) sep-
arately on the two centers subsets of the test set. The C-index on CHUV
was much lower (0.648) compared to the value of 0.727 obtained
on the CHUP test. This better prediction for CHUP patients can be
explained by the fact that some CHUP patients were included in the
training set, whereas all CHUV patients were held out for the test set.
This was observed even though the survival profiles of CHUP patients
were significantly different (a higher rate of events and shorter PFS
overall) compared to all five other centers (thus, also compared to the
CHUV set in the testing data). The lower generalization of performance
on the CHUV dataset is therefore more likely explained by differences
in PET/CT image properties than on survival profiles.

Ensembling. In order to evaluate the potential complementary power
of the different best predictions, we calculated a mean and median
ranking of patients based on the predicted scores of the five best results
ranging from 0.718 to 0.668 (BioMedIA, FullerMDA, QuritTecVico,
BMITUSYD, and DMLang). We chose these 5 results as they are those
with a C-index value at least above 0.665, compared to the predic-
tion performance obtained using a simple model relying on clinical
variables only (C-index 0.64–0.65). Of note, all these five results were
obtained through a DL based pipeline, except QuritTecVico. Such an
ensembling ranking only marginally improved the final prediction, with
C-index values of 0.724 and 0.728 for the mean and median of ranks
respectively.

Ranking robustness. Looking at the robustness of the results (Fig. 8),
even though it overall confirms the hierarchy between the challengers,
we observed quite a large variability in the ranking amongst the teams
according to the bootstraps of the test data, as assessed by an overall
Kendall rank coefficient for Task 2 of 0.742 (0.618–0.868) and for Task
3 of 0.739 (0.333–1.00). For instance, the team ‘‘BioMedIA’’ that won
Task 2 was ranked 1st only in half of the 1000 bootstraps, its ranking
going as low as 8th for a few of the bootstrapped instances (between
rank 1 and 5 for the 95% confidence interval). Another example:
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Fig. 8. Ranking robustness against changes in test data. The robustness is assessed by ranking 1000 bootstraps of the test set. The size of the circles is proportional to the number
of times a team obtained the corresponding rank for each bootstrap. The dashed lines represent the confidence intervals at 95% computed from the bootstrap analysis.
the team ‘‘Neurophet’’, ranked 8th in 200 out of 1000 bootstrapped
instances, was ranked between 2nd and 12th ranks (95% confidence
interval) with similar numbers of instances (≈50–200). These results
corroborate the statistical tests reported for tasks 2 and 3, without
significance between the top performing teams.

Taking best of five submissions: Risk of overfitting? Each participant could
upload up to five submissions on the test set during the challenge. The
average number of submissions was 4.82; 16 participants uploaded five
submissions and one uploaded only two. We thus compared the average
results of the participants when taking the best, the median, or the
minimum score of the participants’ submissions. The average C-index
across all best results of participants was 0.640, whereas it decreased
to 0.598 and 0.523 when taking the median and minimum values
respectively. These results are less relevant than for Task 1 (Section 4.1)
because some participants submitted concordant and anti-concordant
results of the same predictions (e.g. BCIOQurit, deepx). This is due
to the fact that these participants first submitted concordant results,
e.g. time to recurrence, then realized that anti-concordant results were
required and re-submitted inverted scores. The C-indexes for these
results are thus 𝐶𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 = 1 − 𝐶𝑎𝑛𝑡𝑖−𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡, which makes the above
analysis biased with small non-relevant values. We did not remove C-
indexes below 0.5 for this analysis because one cannot know for sure
when the participants’ predictions are voluntarily concordant or not.

One may also wonder whether the results are better than random
predictions due to this best algorithm selection with many submissions.
To answer this question, we approximated the sampling of the best C-
index under the null hypothesis H0: all 16 × 5 + 2 = 82 submissions
are independent and identically distributed random predictions. We
12
generated random predictions in the range [0, 1] for all 82 submissions,
and took the best C-index as the ‘‘winner’’ of these random predictions.
We repeated this process 1000 times to report the distribution of these
1000 random winners’ C-indices. The average was 0.617 (vs. 0.720
of the actual winner) ± 0.021 standard deviation. The probability of
a random winner obtaining a C-index above 0.720 (1st rank) was <
0.001. Note that the independence of the submissions assumed in the
null hypothesis overestimates the probability of the latter, i.e., the more
random submissions, the more likely the best random C-index will be
high. In practice, we observed various teams submitting concordant and
anti-concordant scores.

5. Discussions

Task 1 — segmentation. Task 1 on GTVp segmentation was conducted
for the second time after HECKTOR 2020. This year, data from a new
center (CHUP) was added. Some of the trends observed in the first
edition were confirmed with this larger dataset and increased partic-
ipation. The winner method (Xie and Peng, 2022) was similar to the
previous year’s winning approach (Iantsen et al., 2021). Following the
general trend in medical image segmentation, DL methods based on U-
Net models were mostly used in the challenge, as reported in Table B.7.
Model ensembling, as well as data preprocessing and augmentation,
seem to have played an important role in achieving top-ranking results.
Note that, as reported in Table 3, ensembles of participants’ results
outperformed the top-1 performance. Four of the top-5 teams used the
nnU-Net framework (Isensee et al., 2021), reflecting the high perfor-
mance obtained by this method in various segmentation challenges
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and tasks. We evaluated a vanilla nnU-Net trained on the training set.
The only preprocessing applied to the data was to crop the images
to the provided bounding-box. This model achieved a DSC of 0.770
and a HD95 of 3.27 mm and would have ranked 10th, proving a
strong starting point. The modifications made by the participants were
relevant and further improved its performance. Note that the vanilla
nnU-Net was mainly hindered by its poor HD95, a metric which was
not used in the elaboration of the nnU-Net framework.

The ranking relied on the Borda counting based on average DSC
and median (because not bounded) HD95. The results of the HD95
are mainly influenced by the voxel spacing in the inferior/superior
axis since it is larger than the voxel spacing in the axial plane. The
robustness of the HD95 ranking is therefore lower than the average
DSC, as shown in Fig. 4. The final ranking is, however, stable with a
Kendall tau coefficient > 0.8. The aggregated DSC is also a stable metric
and will be considered for HECKTOR 2022 since it is appropriate for
the future task of lymph node segmentation, with cases without target
volumes.

The inter-center performance difference was reported in Table 4,
with results in the CHUV cases lower than those in the CHUP cases.
Two main reasons may explain this large difference: (i) CHUP cases
are present in the training set and (ii) CHUP tumors are larger (and
slightly more metabolic), on average, which biases the DSC to higher
values. The median volumes of the CHUV and CHUP test cases are
7017 and 10879 mm3, respectively. The means are 13305 ± 13468
nd 13350 ± 10025 mm3. The mean SUVmax in the GTVp are 15.2
nd 15.6, respectively. The correlation of performance with the tumor
ize and SUVmax is reported in Figs. 6 and 7.

Automatic PET thresholding, commonly used in clinical routine, was
valuated in Fig. 5. The best results, with an average DSC of 0.749
nd HD95 8.37, are obtained with a semi-automatic PET/CT threshold
t 30% of the maximum SUV value, which is aligned with previous
indings, including in the context of the identification of predictive
iomarkers (Castelli et al., 2017). These non-fully automatic results
emain lower than most algorithms’ results.

Since the CHUV cohort was used both in HECKTOR 2020 and 2021,
risk of cheating existed even though we never disclosed the ground

ruth contours for these cases. A first risk lied in the possibility for 2020
articipants to manually annotate the CHUV cases, which could not be
ssessed. A second possibility to cheat was to submit several runs on
he leaderboard of HECKTOR 2020. This was carefully monitored, and
wo teams were subsequently disqualified (see bottom rows of Table 2).

Finally, we observed a minor overestimation of the participants’
erformance due to the process of reporting the best out of five possible
ubmissions. This selection resulted in a marginal performance increase
ver a median selection (DSC 0.740 vs 0.721).

asks 2 and 3: Outcome prediction. Tasks 2 and 3 on outcome prediction
ere first put in place for this 2021 HECKTOR edition. Current standard
f care for estimating outcome is often based on TNM staging. However,
he patients included in HECKTOR are quite homogeneous in terms
f stage as they were all treated with concomitant radiochemother-
py. Therefore it is particularly relevant to evaluate the prognostic
ower of image-based AI models in order to identify outcome beyond
NM, knowing that several image- and basic clinical-based prognostic
iomarkers were reported in the literature (Castelli et al., 2019; dit
eprez et al., 2022; Morand et al., 2018). It is worth noting that a
egative finding for SUVmax was also reported (Patel et al., 2021).

Tasks 2 and 3 attracted a promising number of submissions, with
aried pipeline and algorithm developments. One of the most inter-
sting findings was the comparison between the three main categories
f approaches, namely a first relying on clinical factors only, and two
elying on the available PET/CT images, with the use of either DL or
ore classical radiomics modeling approaches. Despite the relatively

imited training dataset size (224 patients) compared to other computer
13

ision tasks where DL has established itself as the state of the art thanks r
o the availability of thousands or even millions of images for training,
he challengers relying on DL methods tended to slightly outperform
he ones relying on radiomics approaches using handcrafted features
elected and combined through classical ML techniques. Indeed, DL
pproaches took four of the five first places in the ranking.

Another important finding is that, despite their best efforts, the chal-
engers failed to improve the predictive performance by a large margin
hanks to the use of the PET/CT images (C-indices ranging from 0.65
o 0.72), compared to a basic model relying on clinical factors alone
C-index of ≈0.64–66). Half of the challengers even achieved lower
erformance, hinting at a lack of generalizability of their trained model
hen applied to the test set. It remains to be investigated whether

urther improving the C-index is possible with more appropriate or
ovel methodological developments, and/or if this can be achieved
nly by making a larger training dataset available, which will be the
ase in the 2022 HECKTOR edition (489 patients for training instead
f 224).

A third important observation is that the dataset we used in HECK-
OR 2021 offered an important challenge, related to its multicentric
ature. Indeed, PET/CT images came from six different centers (five
n the training set, two in the test set, one of which was also present
n the training set) with five different scanner models from the three
ain vendors (Philips, GE, Siemens), associated with various acqui-

ition settings and reconstruction parameters. However, none of the
eams implemented explicit harmonization techniques (of the images
r the features) beyond classical algorithms such as image interpola-
ion, rescaling and normalization. Further harmonization (of images
nd/or features) might have helped get more generalizable models,
specially in the case of standard radiomics modeling relying on hand-
rafted features, for which the impact of imaging characteristics is
ow well documented. This could also contribute to explaining the
elative higher performance obtained by challengers using DL pipelines
here pre-processing steps (interpolation, normalization, etc.) are com-
only implemented and have a side-effect of filtering out some dif-

erences in images characteristics. By comparison, approaches relying
n handcrafted radiomic features that are notoriously sensitive to the
ulticentric nature of the images might be at a disadvantage without

xplicit harmonization procedures. Such statistical harmonization, for
xample using the ComBat approach (Johnson et al., 2007), could help
n improving the performance of models based on handcrafted radiomic
eatures as shown in Abdallah et al. (2022). This aspect will become
ven more important in the 2022 edition of HECKTOR, in which 489
ases from seven centers are available for training, and 339 cases from
wo additional centers will constitute the testing set.

Last but not least, it was observed by several challengers that using
lternative (mostly larger) volumes of interest led to better models
ompared to exploiting reference ground truth contours. This observa-
ion is in line with previously reported studies that used peri-tumoral
egions for outcome prediction (Leger et al., 2020). This can be seen
n the overall performance of challengers in Task 2 where they had
o rely on either their automatic segmentation results from Task 1 or
lternative inputs to the characterization pipeline (including, for the
est results, the entire bounding-box without segmentation), compared
o their performance in Task 3 where they had ground truth contours
vailable, and where they often reported better results using other
egmentation or inputs.

In terms of challenge design and ranking approach, a few important
oints can be noted and were taken into account for the organization
f the next installment in 2022.

First, a minor over estimation of the participants’ performance is
ssociated with the process of reporting the best out of five possible
ubmissions. Although this does not invalidate the results and we
pecifically asked the challengers to report the method of their best
esult in their paper, we might consider other strategies, such as

eporting the mean of the submissions in the future.
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Table A.6
List of scanners used in the six centers. Discovery scanners are from GE Healthcare,
Biograph from Siemens, and Gemini from Phillips.

Train Test Total

HGJ CHUS HMR CHUM CHUP CHUP CHUV

Discovery STE 18 56 74
Gemini GXL 16 72 72
Biograph 40 53 48 71
Discovery ST 55 55
Discovery 690 53 53

Second, the inter-center performance variation with lower per-
ormance observed on the data not represented in the training set
ompared to the ones of the shared center further emphasizes the
otential lack of generalizability of the developed models. It thus seems
uch predictive models still need far more work before being largely
sed in a real clinical setting. In the HECKTOR 2022 installment, all
ata in the testing set will be from several centers not present in the
raining set.

Third, the variability of rankings amongst the teams according
o bootstrapping of the test data emphasizes on the relatively small
ifferences of performance between the submitted pipelines, which is
lso highlighted by the lack of statistical significance among the top
ive teams for Task 2.

. Conclusion

This paper presented the HECKTOR 2021 challenge data, participa-
ion and ranking as well as an extensive analysis of the results. A strong
articipation was observed in the tasks of primary tumor segmentation
nd patient outcome prediction from PET/CT images and clinical data.

In the first task, the segmentation results were marginally improved
ompared to the first challenge edition (Oreiller et al., 2022). Simple
esigns based on nnU-Net obtained the best results (above the baseline
nU-Net). The participants’ algorithms largely outperformed simple
ET thresholding methods. The performance was strongly influenced
y the tumor size and, to a lower extent, by the SUVmax, i.e. higher
erformance related to larger and more metabolic tumors.

In the outcome prediction tasks, DL algorithms obtained the best
esults, leveraging information from the images and clinical data. With
C-index > 0.7 the algorithms showed potential capabilities to model

the progression of tumors in internal and external data. Surprisingly,
the best results were also obtained without the use of ground truth
tumor delineations, opening the door to large-scale studies without the
need for costly manual annotations.

As future work, the third edition of HECKTOR at MICCAI 2022
will feature a larger dataset with additional centers. In order to reach
fully-automatic pipelines, bounding-boxes locating the oropharyngeal
regions will no longer be provided. Besides, the segmentation task will
combine primary tumor and metastatic lymph nodes segmentation due
to their prognostic value for the final outcome prediction.
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Appendix A. Scanners and image acquisition information

The list of scanners used in the different centers is provided in
Table A.6

HGJ: For the PET portion of the FDG-PET/CT scan, a median of
584 MBq (range: 368–715) was injected intravenously. After a 90-min
uptake period of rest, patients were imaged with the PET/CT imaging
system. Imaging acquisition of the head and neck was performed using
multiple bed positions with a median of 300 s (range: 180–420) per
bed position. Attenuation corrected images were reconstructed using an
ordered subset expectation maximization (OSEM) iterative algorithm
and a span (axial mash) of 5. The FDG-PET slice thickness resolution
was 3.27 mm for all patients and the median in-plane resolution was
3.52 × 3.52 mm 2 (range: 3.52–4.69). For the CT portion of the FDG-
ET/CT scan, an energy of 140 kVp with an exposure of 12 mAs was
sed. The CT slice thickness resolution was 3.75 mm and the median
n-plane resolution was 0.98 × 0.98 mm 2 for all patients.

CHUS: For the PET portion of the FDG-PET/CT scan, a median of
25 MBq (range: 165–517) was injected intravenously. After a 90-min
ptake period of rest, patients were imaged with the PET/CT imaging
ystem. Imaging acquisition of the head and neck was performed using
ultiple bed positions with a median of 150 s (range: 120–151) per bed
osition. Attenuation corrected images were reconstructed using a LOR-
AMLA iterative algorithm. The FDG-PET slice thickness resolution was
mm and the median in-plane resolution was 4 × 4 mm 2 for all

atients. For the CT portion of the FDG-PET/CT scan, a median energy
f 140 kVp (range: 12–140) with a median exposure of 210 mAs (range:
3–250) was used. The median CT slice thickness resolution was 3 mm
range: 2–5) and the median in-plane resolution was 1.17 × 1.17 mm
(range: 0.68–1.17).

11 https://www.siemens-healthineers.com, as of September 2022.
12 https://www.aquilab.com/, as of September 2022.
13 https://bioemtech.com/, as of September 2022.
14
 https://www.mimsoftware.com/, as of September 2022.
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Table B.7
Synthetic comparison of segmentation methods and results. The number of used models is reported in the last column when ensembling was used. ‘‘na‘‘ stands for ‘‘not available’’.
Source: Table reproduced from Andrearczyk et al. (2021b)

Team Dice HD95 Prepro-
cess.

Data
augmen-
tation

Model
archit.

Loss Train-
ing/evaluation

iso-
resampling

CT
clipping

Min–
max
norm.

Stan-
dardiza-
tion

Rotation Scaling Flipping Noise
addition

Other U-Net Atten-
tion

Res.
connec-
tion

SE
norm.
(Iantsen
et al.,
2021)

Dice Cross-
entropy

Focal
(Lin
et al.,
2017)

Else Opti-
mizer

nnU-Net
(Isensee
et al.,
2021)

LR
decay

Cross-validation Ensem-
bling

Pengy 0.7785 3.0882 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ SGD ✓ ✓ ✓ 5

SJTU EIEE.a 0.7733 3.0882 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Adam ✓ ✓ ✓ 9

HiLab 0.7735 3.0882 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Adam ✓ ✓ 14

BCIOQurit 0.7709 3.0882 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Adam ✓ ✓ ✓ 10

Aarhus Oslo 0.7790 3.1549 ✓ ✓ ✓ ✓ ✓ ✓ Adam ✓ ✓ ✓ 3

Fuller MDA 0.7702 3.1432 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Adam ✓ ✓ 10

UMCG 0.7621 3.1432 ✓ ✓ ✓ ✓ ✓ ✓ Adam ✓ ✓ 5

Siat 0.7681 3.1549 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ na na ✓ 5

Heck Uihak 0.7656 3.1549 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Adam ✓ ✓ 5

BMIT USYD 0.7453 3.1549 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Adam ✓ ✓ 10

DeepX 0.7602 3.2700 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Adam ✓ ✓ 15

Emmanuelle B. 0.7595 3.2700 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Adam ✓ ✓ 5

C235 0.7565 3.2700 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Adam ✓ 5

Abdul Qayyum 0.7487 3.2700 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Adam ✓

RedNeucon 0.7400 3.2700 na na na na ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Adam ✓ 25

DMLang 0.7046 4.0265 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Adam

Xuefeng 0.6851 4.1932 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ SGD ✓ ✓

Qurit Tecvico 0.6771 5.4208 ✓ ✓ ✓ Adam

Vokyj 0.6331 6.1267 ✓ ✓ ✓ ✓ ✓ ✓ Adam ✓

TECVICO Corp
F.

0.6357 6.3718 na na na na ✓ ✓ ✓ Adam 2

BAMF health 0.7795 3.0571 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ SGD ✓ ✓ 10

Wangjiao 0.7628 3.2700 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Adam ✓ ✓ 6

a It is ranked second due to the HD95 slightly better than the third (HiLab), 3.088160269617 vs 3.088161777508, and the ranking strategy described in Section 3.5.
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Table C.8
Synthetic comparison of outcome prediction methods. All participants of task 3 also participated in task 2.
Source: Table reproduced from Andrearczyk et al. (2021b)

Team C-index
Task 2

Pre-processing Segment. Image
features

Modeling and
training
approach

Masks

Iso-
resampling

CT
clipping

Min–max

norm.

Standard-
ization

PET/CT
fusion

Further
cropping

Relies
on
Task 1

Addi-
tional
segm.

No
segmentation

Deep
features

Large
radiomics
set

Volume,
shape

IBSI
compliant

Ensem-
bling

Deep
model

Algo.
RF,
SVM...

Feature
selection

PET
as
input

CT
as
input

PET/CT
fusion

Use
clinical
var.

Imputed
missing

Cross-val. Augmen-
tation

C-index
Task 3

GT
masks

Task 1
masks

PET
thresh.
masks

BioMedIA 0.7196 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ na

Fuller MDA 0.6938 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.6978 ✓ ✓

Qurit Tecvico 0.6828 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ na

BMIT_USYD 0.6710 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ na

DMLang 0.6681 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ na

TECVICO_C. 0.6608 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ na

BAMF Health 0.6602 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.6602 ✓

ia-h-ai 0.6592 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.6592 ✓

Neurophet 0.6495 ✓ ✓ ✓ ✓ ✓ na

UMCG 0.6445 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.6373 ✓ ✓

Aarhus Oslo 0.6391 ✓ ✓ na

RedNeucon 0.6280 ✓ ✓ ✓ ✓ ✓ ✓ ✓ na

Emmanuelle B. 0.6223 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ na

BCIOQurit 0.6116 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.4903 ✓

Vokyj 0.5937 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ na

Xuefeng 0.5510 ✓ ✓ ✓ ✓ ✓ ✓ 0.5089 ✓

DeepX 0.5290 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ na
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HMR: For the PET portion of the FDG-PET/CT scan, a median of
475 MBq (range: 227–859) was injected intravenously. After a 90-min
uptake period of rest, patients were imaged with the PET/CT imaging
system. Imaging acquisition of the head and neck was performed using
multiple bed positions with a median of 360 s (range: 120–360) per
bed position. Attenuation corrected images were reconstructed using an
ordered subset expectation maximization (OSEM) iterative algorithm
and a median span (axial mash) of 5 (range: 3–5). The FDG-PET slice
thickness resolution was 3.27 mm for all patients and the median in-
plane resolution was 3.52 × 3.52 mm 2 (range: 3.52–5.47). For the CT
ortion of the FDG-PET/CT scan, a median energy of 140 kVp (range:
20–140) with a median exposure of 11 mAs (range: 5–16) was used.
he CT slice thickness resolution was 3.75 mm for all patients and the
edian in-plane resolution was 0.98 × 0.98 mm 2 (range: 0.98–1.37).

CHUM: For the PET portion of the FDG-PET/CT scan, a median of
15 MBq (range: 199–3182) was injected intravenously. After a 90-min
ptake period of rest, patients were imaged with the PET/CT imaging
ystem. Imaging acquisition of the head and neck was performed using
ultiple bed positions with a median of 300 s (range: 120–420) per

ed position. Attenuation corrected images were reconstructed using an
rdered subset expectation maximization (OSEM) iterative algorithm
nd a median span (axial mash) of 3 (range: 3–5). The median FDG-PET
lice thickness resolution was 4 mm (range: 3.27–4) and the median
n-plane resolution was 4 × 4 mm 2 (range: 3.52–5.47). For the CT
ortion of the FDG-PET/CT scan, a median energy of 120 kVp (range:
20–140) with a median exposure of 350 mAs (range: 5–350) was used.
he median CT slice thickness resolution was 1.5 mm (range: 1.5–3.75)
nd the median in-plane resolution was 0.98 × 0.98 mm 2 (range:
.98–1.37).

CHUV: The patients fasted at least 4 h before the injection of
Mbq/kg of(18F)-FDG (Flucis). Blood glucose levels were checked

efore the injection of (18F)-FDG. If not contra-indicated, intravenous
ontrast agents were administered before CT scanning. After a 60-min
ptake period of rest, patients were imaged with the PET/CT imaging
ystem. First, a CT (120 kV, 80 mA, 0.8-s rotation time, slice thickness
.75 mm) was performed from the base of the skull to the mid-thigh.
ET scanning was performed immediately after acquisition of the CT.
mages were acquired from the base of the skull to the mid-thigh (3
in/bed position). PET images were reconstructed by using an ordered-

ubset expectation maximization iterative reconstruction (OSEM) (two
terations, 28 subsets) and an iterative fully 3D (DiscoveryST). CT data
ere used for attenuation calculation.

CHUP: PET/CT acquisition began after 6 h of fasting and 60 ±5 min
after injection of 3 MBq/kg of 18F-FDG (421 ±98 MBq, range 220–
695 MBq). Non-contrast-enhanced, non-respiratory gated (free breath-
ing) CT images were acquired for attenuation correction (120 kVp,
Care Dose® current modulation system) with an in-plane resolution
of 0.853 × 0.853 mm2 and a 5 mm slice thickness. PET data were
acquired using 2.5 min per bed position routine protocol and images
were reconstructed using a CT-based attenuation correction and the
OSEM-TrueX-TOF algorithm (with time-of-flight and spatial resolution
modeling, 3 iterations and 21 subsets, 5 mm 3D Gaussian post-filtering,
voxel size 4 × 4 × 4 mm3).

Appendix B. Segmentation algorithms summary

Table B.7 provides a synthetic comparison of the methodological
choices and designs of the participants’ algorithms.

Appendix C. Outcome prediction algorithms summary

Table C.8 provides a synthetic comparison of the methodological
choices and designs of participants’ algorithms for tasks 2 and 3.
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