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ABSTRACT: Sediment fingerprinting methods aim to determine the relative contribution of different source areas in detrital
sediments based on natural properties – fingerprints – of the source areas. Here, we use U/Th–Pb age signatures as fingerprints,
assuming that the age signal is not altered during erosion–transportation–deposition events, and given that recent technological
advances enable precise dating of large amounts of grains. We introduce a formal inversion method that allows to disentangle
the amalgamation of source contributions in detrital zircon data and enables to convert this information into an erosion rate map
starting from the spatial distribution of zircon age signatures. Relying on the least‐squares method and using prior and
covariance information to deal with non‐uniqueness, we show, using synthetic and natural examples, that we are able to retrieve
erosion rate patterns of a catchment when the age distribution and zircon fertility for each source area are well known.
Moreover, we show that not only zircon age fingerprints but also other tracers such as mineral content can be used. Furthermore,
we found that adding data from samples taken at the outlet of tributaries improves the estimation of erosion rate patterns. We
conclude that the least squares inverse model applied to detrital data has great potential for investigating erosion rates. © 2020 John
Wiley & Sons, Ltd.
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Introduction

Erosion and sedimentation processes entail the removal, trans-
port and deposition of sediments. During transport, grains from
different source areas are mixed, and sediments reflect the rel-
ative contributions from these source areas (Sorby, 1849;
Haddadchi et al., 2013). Sediment fingerprinting or provenance
analysis methods aim to identify the origin of individual grains
by analysing natural properties (fingerprints) that reflect the
grains’ source (Wall and Wilding, 1976; Wood, 1978; Oldfield
et al., 1979). Common fingerprints are grain size (e.g. Kurashige
and Fusejima, 1997; Weltje, 2012), magnetism of minerals
(e.g. Yu and Oldfield, 1993; Hatfield and Maher, 2009), colour
of grains (e.g. Grimshaw and Lewin, 1980; Barthod et al.,
2015), stable isotopes (e.g. Fox and Papanicolaou, 2008; Yang
et al., 2008), cosmogenic radionuclides (Perg et al., 2003), geo-
chemical components (Collins and Walling, 2002), carbona-
ceous matter (e.g. Herman et al., 2015; Nibourel et al., 2015)
and mineralogical properties (e.g. Eberl, 2004; Gingele and
De Deckker, 2005). Here, we use zircon age distributions,
which are frequent provenance analyses tools (e.g. Grauert
et al., 1973; Pell et al., 1997; Fedo, 2003; Gehrels, 2014;
Guo et al., 2018), as fingerprints to infer the spatial variation
in erosion rates.
Zircons, minerals that are omnipresent in Earth’s crust, con-

tain information about the time since (re)crystallization – for

Gyr to kyr timescales – in their U/Th–Pb ratio (Tilton et al.,
1955). This information is preserved during the rock cycle so,
often, lithologies with a specific magmato‐tectonic and sedi-
mentary history have unique age distributions (Tilton et al.,
1955; Vermeesch, 2012). However, recycling can result in
identical age distributions for rocks with different histories
(Dickinson et al., 2009). In the case of granitic rocks, this distri-
bution may be relatively narrow, but it can be complex for sed-
imentary rocks. With the advent of SIMS and LA‐ICP‐MS
technologies, single‐grain U/Th–Pb dating of zircon crystals
became very efficient and cost effective, allowing characteriza-
tion of multiple source areas in a short period of time (Keller
et al., 2017). Here, we define source areas as geological units
that each have unique and known U/Th–Pb‐age distributions,
but the methodology introduced here can be generalized to
any other tracer or source area set.

Assuming that every source area is characterized by a differ-
ent zircon age distribution, the zircon age data of the detrital
sediments can be unmixed to quantify the contribution of
the different sediment sources (e.g. Amidon et al., 2005;
Garzanti, 2016; Saylor et al., 2019). Contrary to sediment flux
studies or point measurements (e.g. van Andel, 1950; Collins
and Walling, 2002), one can convert the source contributions
to spatially varying erosion rates, given that the source area is
known. Zircon age distributions are particularly suitable finger-
prints since (1) they are omnipresent in igneous, metamorphic
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and sedimentary rocks, (2) it is now possible to analyse large
quantities of zircons (Vermeesch, 2012) and (3) zircons are
durable minerals (Vermeesch, 2012). These advantages have
led to a rapid increase in the use of detrital zircon data as fin-
gerprints in recent years (Vermeesch, 2012).
However, sometimes winnowing effects occur when age–

grain size relationships exist, distorting the source distribution
image as same‐source samples can appear to originate from
very different source areas in this situation (Carson et al.,
2002; Augustsson et al., 2018; Ibañez‐Mejia et al., 2018). This
challenge can be overcome by sampling sediments from a wide
range of grain sizes (Ibañez‐Mejia et al., 2018). Furthermore, Pb
loss may occur during subsequent geological events or
long‐term Pb mobilization (Mezger and Krogstad, 1997).
Regardless, such effects can contribute to the development of
a unique signature of ages that is characteristic of rocks that
evolved together (Shaanan et al., 2019).
The objective here is to infer how erosion rates vary in space

within a catchment or drainage basin by formally inverting
detrital U/Th–Pb age distributions. This approach requires an
estimation of the mean erosion rate of the catchment and zir-
con age data representative for the different source areas (litho-
logical units or catchments). Mean erosion rates can, for
example, be estimated using the sediment load or cosmogenic
nuclide concentration data (Nishiizumi et al., 1986; Guillon
et al., 2015).
The formal method that we use here is the least‐squares

method (Legendre, 1805) including a priori information
(Jackson, 1979; Tarantola, 2005), which is a well‐established
approach to deal with the non‐uniqueness of the solution to
an inverse problem. The least‐squares method has the advan-
tage that it is relatively easy to compute and it enables uncer-
tainties to be propagated from the data to the inferred solution
(Jackson, 1979; Tarantola, 2005). This type of inversion is com-
mon in geophysics (e.g. Aster and Thurber, 2013; Everett, 2013)
and has been applied to geomorphic problems (Herman et al.,

2013; Fox et al., 2014, 2015), but its application for the deter-
mination of spatially varying erosion rates from detrital data is
new. Braun et al. (2018) recently used age distributions to
determine erosion rates but, contrary to their study, we use
the least‐squares method with an a priori knowledge of the spa-
tial distribution of age clusters.

We start with a description of the forward problem and then
explain the inversion approach. We then apply the inversion
scheme to synthetic examples, where we highlight the most
important parameters and their influence on the estimated ero-
sion pattern. Finally, we present the application of the method
to a natural example: the Rio Mendoza catchment, Argentina.
With a second natural example of the Marsyandi catchment
(Central Nepal Himalayas), we illustrate the versatility of our
inversion scheme by using mineralogical tracer data and by
redefining source areas as tributary catchments.

Theory

Forward problem

Before inverting data, one must formulate the forward
problem, in which data are computed starting from a known
model. We assume a catchment in which tracers contained in
the bedrock are eroded and subsequently transported to the
outlet of the catchment. The model is an erosion rate map
and the data are tracer concentrations found in the sediments
at the outlet.

In this study, tracers are specific age intervals, or bins, of
known age distributions (Figure 1b), which are transported as
passive tracers. Note that this approach can only be used when
zircon fertility data are available and when sufficient zircon
grains are collected and analysed (Vermeesch, 2004). Since
each lithological unit has a unique signature of tracer

Figure 1. Schematic representation of the forward model: (a) model: erosion map displaying the bedrock erosion rate for every grid cell of the catch-
ment; (b) quantitative model: geological map displaying information about the spatial distribution of zircon concentrations with known age distribu-
tions (note that tracers correspond to age intervals); (c) catchment with a sediment sampler at the outlet; (d) concentration of the different tracers found
in the sediments. [Colour figure can be viewed at wileyonlinelibrary.com]
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concentrations, after erosion, grains of certain ages can be
found in different concentration at the outlet of the catchment.
This is the basic principle on which the method relies. The
tracer concentration in each source area depends on (1) the
mineral zircon concentration in the source rock (often referred
to as zircon fertility; Moecher and Samson, 2006), essential for
grasping the sediment fluxes in a catchment (e.g. Malusà et al.,
2016; Vezzoli et al., 2016) and (2) the relative frequency of zir-
cons within each age interval. These two factors change from
one unit to the other, generating independent sets of finger-
prints. To construct the tracer concentration maps, one needs
to date the zircons of samples representative for every source
area. Afterwards, we build an age–frequency histogram for
each unit, displaying the frequency by which a grain with a cer-
tain age is found. Conveniently, each bin of this histogram can
be seen as an individual tracer, and can then be converted into
a concentration, using the zircon fertility data (Figure 1b).
The data (Figure 1d) can be seen as the weighted average of

the tracer concentrations (Figure 1b), the weights being the dif-
ferent erosion rates (Figure 1a) of the catchment (Figure 1c),
which, for a given age interval n, can be stated as

dn ¼ ∫AėðAÞGnðAÞdA
∫AėðAÞ

¼ ∫AėðAÞGnðAÞdA
Qs

(1)

where dn is the data for tracer n, A is the domain area for
which we want to calculate d, ėðAiÞ is the erosion rate
(m yr�1) for a given position Ai, Gn(Ai) is the concentration
of zircons of age bin n at position Ai and Qs is the total
volume of eroded sediments per year. Discretization of this
equation gives

dn ¼ 1
Qs

∑
m

i¼1
ėðiÞGnðiÞΔA (2)

wherem is the number of pixels for which dn is calculated, ėðiÞ
is the erosion rate at pixel i and Gn(i) is the concentration of zir-
cons of age bin n at pixel i and ΔA is the area of each pixel.

Now that the catchment is discretized in cells with a known
area ΔA, the model can be represented as the millimetres of
bedrock removed each year at each grid cell of the catchment.
The spatial information of fingerprint concentrations – the
matrix containing this information is called the forward opera-
tor – forms the link between the data one wants to compute
in the forward problem and the model. One can imagine the
forward operator (G) as a stack of maps, where every map dis-
plays the concentration of a certain tracer. The number of maps
in this stack is equal to the number of age intervals, which is
equal to the number of tracers. Hence, for every grid cell, we
know the concentration of every tracer.

Assuming the data will follow a distribution with a given
mean and error, the forward problem can be stated as

d þ ϵ ¼ G · e

d1

d2

:

:

dn

2
666666664

3
777777775
þ ϵ ¼

g1;1 g1;2 g1;m

g2;1 : :

: : :

gn; 1: : gn;m

2
666664

3
777775 ·

ė1

ė2

:

:

:

ėm

2
6666666666664

3
7777777777775

(3)

where d is the data displaying the concentrations for tracer 1 to
n in the outlet sediments, ϵ denotes the error on the data, G is
an n x m forward operator containing tracer concentrations

Figure 2. Schematic representation of the inverse model: (a)erosion map displaying the bedrock erosion rate for every grid cell of the catchment; (b)
tracer concentration maps; note that the tracer concentration patterns follow the geological patches; (c) catchment with a sediment sampler at the
outlet; (d) concentration for every tracer found in the eroded sediments that were collected at the catchment outlet. [Colour figure can be viewed
at wileyonlinelibrary.com]
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for every pixel (m is the number of pixels and n is the number of
tracers) and _e is the erosion rate model.

Inverse model

Problem statement
The inverse problem is the computation of the model parame-
ters from given data. This means that an erosion map (Figure
2a) is calculated starting from tracer concentration maps (Figure
2b) and from detrital tracer concentration data (Figure 2d) sam-
pled at the outlet of the catchment (Figure 2c). Within one lith-
ological unit, we assume the tracer concentration variability to
be zero (Figure 2b).
Looking at Equation (3), one can see that the inverse problem

is under‐determined: the number of unknowns (m, number of
pixels for which the erosion rate needs to be predicted) is larger
than the number of data (n, number of tracers or discrete age
intervals). To constrain the erosion rates, two different strategies
are applied at the same time: (1) using a prior estimation of the
erosion rates – for example, equal to the mean erosion rate
derived from sediment discharge data; and (2) smoothing, in
the form of a spatial covariance matrix, describing the
expected correlation between pixels, controlling the expected
variance around the prior erosion rates (Jackson, 1979;
Tarantola, 2005). These two strategies make the inverse
problem Bayesian. Hence prior assumptions that are otherwise
implicitly present to regularize the problem are now made
explicit (Jackson, 1979).
To solve the inverse problem we follow Tarantola (2005), so

_e ¼ _eprior þ CmGT ðGCmGT þ CdÞ�1ðd � GėpriorÞ (4)

where _e is the posterior erosion rate, _eprior is a prior erosion rate,
Cm is the model covariance and Cd is the data covariance. Here
we define the prior erosion rate using sediment load data. Note
that the above equation is a closed form, meaning that no iter-
ations are required to find the optimal solution that minimizes
the misfit between the observed and predicted data.
The model covariance is calculated using

Cði; jÞ ¼ σ2mexp �d2
i; j

λ2

 !
(5)

where σ2m is the prior variance, di, j is the Euclidean distance
between point i and point j and λ is the smoothing distance
which characterizes smoothing.
The data covariance is

Cd ¼ σ2d I (6)

where σ2d is the data variance, I is the identity matrix and Cd is a
diagonal matrix that contains the data uncertainty.
This means that we can estimate an erosion pattern starting

from (1) a prior estimate of the erosion rate, (2) information
about the spatial distribution of tracer concentrations, which
is estimated from a geological map and U/Th–Pb‐dated repre-
sentative samples, and (3) detrital zircon age data.
The posterior covariance can be approximated by

CM; post ¼ ðGTCdGþ C�1
m Þ�1 (7)

where diagonal elements give an estimate of the posterior var-
iance, which can be interpreted as the uncertainty on the

model. Divided by the prior model variance, computed as the
diagonal of Cm, this gives the normalized variance.

To check whether the model parameters (the erosion rate of
every pixel) can be predicted independently, the resolution
matrix R can be analysed. The resolution corresponds to

R ¼ HG ¼ CmGT GCmGT þ Cm
� ��1

h i
G (8)

where R is the m×m resolution matrix and H is the generalized
inverse.

Assuming that a true set of model parameters _etrue exists, the
forward model can be expressed asG _etrue ¼ dobs, where dobs is
the set of observed data. The inverse model predicts a set of
estimated parameters ( _eest) for _eest ¼ _eprior þHðdobs � G _epriorÞ
(see Equations (4) and (8)). This means that the expression for
_eest can be rewritten as

_eest � _eprior ¼ HðG _etrue � G _epriorÞ ¼ Rð _etrue � _epriorÞ (9)

The n×n model resolution matrix R is equal to I when the
erosion rate estimation for each pixel is uniquely determined.
If not, then the outcome of the inverse model must be
interpreted as weighted averages of the true erosion map.
Hence the relative importance of off‐diagonal elements indi-
cates how much the erosion rates at these locations result from
a weighted averaging of etrue at other locations. There is a
well‐known trade‐off between resolution and variance of the
posterior solution (Menke, 1989), as high spatial averaging
reduces the errors but also reduces the resolution capacity of
the model. To test the goodness of resolution, we compute
the difference between the resolution matrix and the identity
matrix, which is multiplied by the distance di, j between point
i and point j for which resolution Ri, j has been calculated.
In this way, we obtain the Gilbert–Backus (Backus and
Gilbert, 1968) spread function:

spreadðRÞ ¼ ∑
m

i¼1
∑
m

j¼1
di; jðRi; j � δi; jÞ2 ¼ ∑

n

i¼1
∑
n

j¼1
di; jR

2
i; j (10)

where δi, j is the element at position i, j in I, so every pixel has an
associated spread function value. The smaller the latter, the less
the spread of the resolution and the smaller the averaging of the
true solution. High spread function values indicate a highly ‘fil-
tered’ version of the true model.

To test how the inverse model behaves, first synthetic data
are created by running a forward model, having as input a
matrix containing information about the spatial distribution of
the tracers of interest, and an erosion map. In a second step,
this newly created dataset is used as the input of the inverse
model, together with the tracer concentration matrix. Third,
the output of the inverse model is compared to the true erosion
pattern of the forward model. A summary of this approach is
illustrated in Figure 3.

Synthetic examples

To test the sensitivity of the inversion method, we analyse the
difference between the true and posterior erosion map, explor-
ing the importance of (1) the number and configuration of geo-
logical units; (2) the number of tracers; (3) the error on the data;
(4) the model covariance; and (5) incorporating data collected
on subcatchments within the larger catchment. We start with
a reference example and use it for comparison. In a second
part, we will analyse the uncertainty of the inferred solution
by means of the resolution, posterior covariance and spread.
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Sensitivity tests

Reference model
We create synthetic data with the forward model using a step
model as ‘true’ erosion rate pattern and a set randomly gener-
ated, unimodal age signatures for every lithological unit as
input (for a test with multimodal distributions, see Supporting
Information and ‘Natural example’ section, below). These U–
Pb signatures are then split into individual bins to establish
tracer concentration maps (Figure 1b).
Keller et al. (2017) showed that the mineral fertility of zircons

in granitic rocks is between 10 and 300 μgg�1. Hence every
lithological unit is randomly assigned a zircon fertility between
10 and 300 μgg�1.
We selected a 30×50 km wide catchment from the output of

a landscape evolution model, discretized by square cells of 1×
1 km. We assume that all the eroded material reaches the outlet
of the catchment within a short time period and that the catch-
ment is well connected (e.g. no dams).
We start with 10 distinct geological units (Figure 4d) and 15

age intervals, to generate 15 tracer concentration maps. To fill
G, we multiply the tracer concentration in each cell with the
zircon fertility at that location and the cell size (m2); e is in
mmyr�1 and d is in m3yr�1. The smoothing distance is set
equal to 2 km, and the prior is equal to the mean erosion rate
of the ‘true model’. We use a data error of 10% and a σm of
10�2 myr�1.
Using these parameters, the posterior erosion map (Figure

4b) corresponds well to the true erosion map (Figure 4a), with
differences around the centre of the catchment (Figure 4c).
The sum of the absolute difference between the true and poste-
rior erosion map, in other words, the sum of the absolute values
of the difference map, is 0.35 myr�1. The influence of the spa-
tial distribution of geological units is visible, with boundaries
represented by higher posterior variances and the centre of
the units by lower values (Figure 4e). Note that for a larger geo-
logical unit the posterior covariance at the centre of the unit is
higher than for a small unit, expressing the need for spatial var-
iability in tracer concentrations to find a solution close to the
true erosion rate. In Figure 4f the resolution values for the blue
dot location also show a clear demarcation of the different geo-
logical units. The higher values around the point indicate how
much the adjacent geological data play a role in finding a solu-
tion for this point. On the spread function map (Figure 4g),
where low values indicate locations for which less filtering of

data was needed to obtain a solution, the geological patches
and borders are also visible. The data created with the posterior
erosion map (model data) correspond well to the data created
with the true erosion map (Figure 4h); the error bars represent
the data error. Inside the data plot, a histogram shows the differ-
ence between the true erosion rates and the posterior erosion
rates. The residual distribution is close to normal and centred
around zero. The right tail indicates a slight bias caused by
the smoothing across the sharp boundary.

Sensitivity to the geological model
The inversion approach relies on a good description of the
geology of the catchment that is being eroded. To assess the
extent to which the geological setting affects the results, we
now run the inversion for different geological maps by varying
the number of geological units within the catchment from two
to eight, keeping all other parameters constant.

With fewer geological units, less spatial variability is gener-
ated in the tracer concentration maps and it will be more diffi-
cult to recover the true erosion map, as illustrated in Figure 5,
where the sum of the absolute difference gradually decreases
from 0.7 to 0.25 myr�1 as more units are added, compared to
0.35 myr�1 for the reference example. It becomes clear that
the form of lithological patches also plays a role; when the form
of the patches differs strongly from the erosion pattern, it is
more difficult to obtain a result close to the true solution. Note
that even if the number of tracers were to be increased substan-
tially, without sufficient geological variations we cannot
recover the true solution.

Sensitivity to the number of tracers
Another important aspect of the inversion is the number of
available tracers, corresponding to the number of discrete age
intervals. Instead of using 15 tracers, we decrease the numbers
of tracers here to 10, seven and five to see how the posterior
solution responds to this, showing that the true pattern cannot
be recovered if only a limited of number tracers is used (Figure
6a). For example, for five tracers, the sum of the absolute differ-
ences is as high as 0.45 myr�1 (compared to 0.35 myr�1 for the
reference example) and the erosion rates in the southern part of
the catchment are close to the prior erosion rates.

Sensitivity to the data covariance
The data error influences the posterior solution through the data
covariance matrix. We calculate σ2d as the product between the

Figure 3. Schematic representation of the forward and inversion procedure. Synthetic data (d) are created in the forward problem using (a) knowl-
edge about the spatial distribution of tracers and (b) a known erosion map. The same data (d) is used as input for the inverse problem together with (a)
the tracer information. The result of the inverse problem gives (e), which is then compared to (b). [Colour figure can be viewed at wileyonlinelibrary.
com]
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data and the error on the data, the latter of which is increased to
30%, 60% and 90%, keeping all parameters identical. A higher
data error smooths the posterior solution since confidence in
the data has decreased, which increases the difference between
the true and posterior solution (Figure 6b). The posterior solu-
tion for a data error of 90% approximates the prior erosion rate,
so the true solution cannot be recovered.

Sensitivity to the model covariance
The model covariance describes the variability around the prior
erosion, which is controlled by the smoothing distance λ and
the prior variance σ2m . First, we tested the impact of σm, for
which a small value forces the model to approximate the prior
erosion rate and therefore only small variations from the prior
are permitted. In Figure 6c, we showed the results of an

Figure 4. Inversion results for the reference run. (a) True erosion map ( _e , mmyr�1); (b) posterior erosion map (~_e , mmyr�1); (c) residuals between
predicted and inferred erosion rates (Δ, mmyr�1) (underestimations – where the inverse solution is smaller than the true map – are indicated in blue;
overestimations are indicated in red); (d) geological map of the catchment; at the right, the unique zircon age signatures are shown for every geolog-
ical unit (with age in Ma on the x‐axis and frequency on the y‐axis); (e) uncertainty on the inverse solution, in the form of the posterior variance. Below
the map, the reduced variance is given; (f) resolution values for the dot indicated in blue; (g) spread function values; values closer to 1 indicate loca-
tions where less filtering occurs; and (h) inverted data and predicted data using the posterior erosion rate; grey bars represent the relative frequency of
etrue – eposterior. Ten distinct geological units and 15 tracers are used. See text for all other parameters. [Colour figure can be viewed at
wileyonlinelibrary.com]
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inversion where σm is increased to 100 and 10�1 and decreased
to 10�3 m2yr�2, illustrating that for low prior variances the pos-
terior solution remains close to the prior erosion rate.
Second, we evaluated the influence of the smoothing

distance λ on the posterior solution. If λ is increased, more
smoothing is imposed. We set λ to 4, 10 and 50 km respec-
tively, showing that for a higher λ the difference between
the true and the posterior model actually decreases (down to
a total of 0.28 myr�1 for a smoothing distance of 50 km).
Remarkably, the solution is similar even for a smoothing

distance of an order of magnitude larger that spans the whole
domain width (Figure 6d).

Adding subcatchment data to infer more complex erosion
patterns
In the experiments above, the data vector d was filled only with
U–Pb data from sands sampled at the outlet of the catchment.
Now, we add additional zircon age data of sands sampled in
different subcatchments of the investigated catchment. These
supplementary data can be appended to the existing matrices:

Figure 5. Sensitivity to the number of distinguishable geological units. The number of distinct geological units is varied: 2, 4, 6 and 8, from top to
bottom (we used 10 geological units in the reference example). The left‐hand panels are the geological units; the middle panels are the inferred ero-
sion patterns; and the panels on the right show the difference between the true and the posterior erosion map, with the sum of the absolute difference
on the right. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 6. Impact of (a) the number of tracers (number of discrete age bins) (reference: 15 tracers), (b) the error on the data (σ2d ) (reference: 10%), (c)

the prior standard deviation (σm) (reference: 10
�2) and (d) the smoothing distance (L) (reference: 2 km) on the posterior solution (left‐hand panels, ~_e ,

mmyr�1) and the difference between the true and posterior model (right panels, Δ, mmyr�1) with the sum of the absolute difference below. [Colour
figure can be viewed at wileyonlinelibrary.com]
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d þϵ ¼ G e

d1

d2

:

:

dn

2
666666664

3
777777775
þ ϵ ¼

g1;1 : g1;m

g2;1 : :

: : :

gn; 1 : gn;m

2
666664

3
777775

e1

e2

:

:

:

em

2
6666666666664

3
7777777777775

d sample1;1

d sample1;2

:

:

dsample1; n

2
666666664

3
777777775

0 g1;2 g1;m

0 : :

: : :

0 : gn;m

2
666664

3
777775

: :
d samplex; 1

d samplex; 2

:

:

d samplex; n

2
666666664

3
777777775

g1;1 0 g1;m

g2;1 : :

: : :

gn; 1 : gn;m

2
666664

3
777775
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where the new sample 1 is taken at the outlet of subcatchment
1. In the newly appended part of matrix G for sample 1, only
pixels that lie within subcatchment 1 have the value of the cor-
responding tracer concentration. Pixels outside of the
subcatchment are assigned a value of zero. Note that more than
one subcatchment sample dataset can be appended. To test
whether these added data help to recover a more complex ero-
sion rate pattern, we use a true erosion map with a
chequerboard pattern (Figure 7). The other parameters and
the geological map are those of the reference model. First, we

evaluate the case where no subcatchment data are appended,
i.e. only the tracer concentrations of the sediments at the outlet
of the catchment are used in the inversion (grey circle in Figure
7). The resulting posterior pattern is close to the true model, but
the sharp boundaries are not well represented. However,
already with two additional samples, the sharp borders are bet-
ter preserved and the total difference between the true and pos-
terior model decreases from 0.68 to 0.46 myr�1 and with four
additional samples even to 0.43 myr�1.

Until now, we have assumed a perfect connectivity through-
out the whole catchment. To simulate the case where some
eroded material does not reach the outlet within a short
timespan, we multiply the erosion rate map by a mask with a
value of 0.7 at locations with fewer than two neighbouring
water‐donor pixels and ones for other pixels (Figure 8). Like
this, locations with small discharges deliver 70% of the actual
eroded volume to the outlet.

In this case, when no samples are added, the posterior map is
smooth and underestimations occur mainly in the upper part of
the catchment where the drainage network is less dense (Figure
8). The total difference between the true and posterior solution
is 0.75 myr�1 and only decreases to 0.72 myr�1 for four added
samples. Note how the added samples result in an erosion rate
pattern that is overfitted; the influence of the southernmost sam-
ples is clearly visible in the patch of higher erosion rates in the
south of the catchment. To remove this overfitting effect, we
increase the smoothing distance to 8 km, which decreases the
total difference to 0.70 myr�1. This shows that adding samples
helps to alleviate connectivity issues, albeit partly and requiring
a larger smoothing distance to avoid overfitting.

Uncertainty analysis: posterior covariance,
resolution and spread

In this section, we analyse the influence of the varying param-
eters on posterior variance, resolution and spread function. We

Figure 7. Sensitivity to adding data. The upper right figure displays where the samples have been taken; in the case with two added samples, green
circles represent the location of these added samples, and green dotted lines represent their catchment delineations; in the case of four added sam-
ples, the location of these added samples is represented by red circles, and red dotted lines represent their catchment delineations. Note that in every
case the data of the outlet of the catchment are used, which is represented by a grey circle. In every panel, the left‐hand figure represents the posterior
solution and the right‐hand panel illustrates the difference between the true and posterior erosion rates. [Colour figure can be viewed at
wileyonlinelibrary.com]
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plot the normalized posterior standard deviation by mappingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðCM; postÞ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p . The normalized variance
σ2M; post
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 !
repre-

sents how much the model has evolved away from the prior
estimate; values close to one indicate that the inclusion of data
did not improve the solution; in other words, a normalized var-
iance close to one indicates low information content of the data
(Menke, 1989; Fox et al., 2014). We map the R‐row corre-
sponding to the blue dot location; high values represent loca-
tions with data that were needed to constrain the solution for
the blue dot location. For a perfect solution, the resolution at
the blue dot would be one and all the other pixels would be
zero. To assess the diagonality of the resolution matrix, we cal-
culate the sample correlation index (rxy); a perfectly diagonal
matrix corresponds to rxy ¼ 1. We also map the spread, which,
for a perfect solution where R = I would be zero everywhere.
A trade‐off exists between the model variance and the resolu-

tion, as a high resolution allows detection of small features,
while a low variance spatially averages errors but no longer
enables discernment of sharp boundaries (Menke, 1989).

We follow the same structure as for the sensitivity tests, so we
start by reducing the number of geological units, which
decreases the reduced variance and decreases the sample cor-
relation coefficient. For fewer geological units, the spread func-
tion values are lower than for more geological units. The
shapes of the geological patches are clearly visible in the reso-
lution maps, as maxima on the posterior variance maps and as
minima on the spread function maps. Figure 9 illustrates the
trade‐off between variance and resolution at these sharp unit
boundaries.

We saw that decreasing the number of tracers makes it more
difficult to obtain a solution that is close to the true model.
Decreasing the number of tracers increases the reduced vari-
ance and decreases the sample correlation coefficient,

indicating that every location depends more on the data of
other locations because of the lack of data caused by the lower
number of tracers (Figure 10a). For five tracers, the patterns
change due to a shift in data sparseness, as we simply removed
the last 10 age bins. This means that some geological units no
longer contain any tracer information, since their relevant age
bins have been removed.

Increasing the data error leads to greater differences between
the posterior model and known erosion rate map (Figure 10b),
since the model remains close to the prior estimate, fitting the
data poorly. This leads to a higher reduced variance (even
though the effect is small), a slightly lower sample correlation
index, lower resolution values and lower spread function
values in the south of the catchment.

Together with the smoothing distance, the prior variance (σ2m)
governs the model covariance. Increasing the prior variance
allows the posterior erosion rate map to deviate more strongly
from the prior estimation, while a low σm forces the model to
approximate the prior erosion rate distribution (Figure 10c).
For higher σm values, the model fits the data well, the reduced
variance is lower and the diagonality of the resolution matrix is
higher (indicated by a higher rxy value). As for a lower σm more
smoothing occurs, more geological units play a role in the res-
olution map than for a high σm. The increased spread function
values and increased posterior variance for higher σm values
can again be framed in terms of trade‐off between variance
and resolution, illustrated in Figure 11 with the normalized var-
iance plotted against the spread of the resolution (calculated as
the sum of the spread values). Lower model variances coincide
with higher spread function values as this corresponds to higher
averaging – to obtain a smaller variance – which leads to a
worse resolution. The colours in the plot indicate the total dif-
ference between the true and the inverse model and show that
a reduction in posterior variance leads to solutions closer to the
true model, even though the resolution is slightly worse.

Figure 8. Sensitivity to adding data in a connectivity‐limited context. The upper right figure displays where the samples have been taken; in the case
with two added samples, green circles represent the location of these added samples, and green dotted lines represent their catchment delineations; in
the case of four added samples, the location of these added samples is represented by red circles, and red dotted lines represent their catchment delin-
eations. Note that in every case the data of the outlet of the catchment are used, which is represented by a grey circle. The connectivity mask with
which the true erosion model was multiplied to compute the data is shown at the right‐hand side. In every panel, the left‐hand figure represents
the posterior solution and the right‐hand panel illustrates the difference between the true and posterior erosion rates. [Colour figure can be viewed
at wileyonlinelibrary.com]
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A higher smoothing distance (λ) leads to a smooth posterior
solution where noise is effectively removed due to high spatial
averaging. As a downside, using large smoothing distances, we
fail to recover sharp boundaries and small and local variations
in erosion rates. In the posterior variance plot, the geological
patches have become almost invisible for a high smoothing dis-
tance and the reduced variance is very low (Figure 10d). The
low‐resolution values indicate that the posterior solution at
the blue dot depends strongly on information of other, distant
locations. In the same way, the spread function values have
increased and the shapes of the geological borders have faded,
as the smoothing distance is as large as the full domain length.
In the same way as for the σm experiments, the smoothing

distance experiments illustrate the trade‐off between variance

and resolution as, for more spatial averaging, the resolution gets
worse (Figure 12).

With added subcatchment data, the posterior solution
becomes closer to the true erosion rate map, which is espe-
cially useful when solving for more complex erosion rate
patterns (Figure 13). At the new sample locations, posterior
variances are low and the reduced variance decreases
when more samples are added. The posterior solution of
the blue dot is controlled by a very small range of other
locations as the resolution values have increased – because
of better data – and are only important in the near vicinity
of the blue dot, illustrating the overfitting risk. The spread
function values have increased due to the high resolution
values (Figure 13).

Figure 9. Impact of number of geological units on uncertainty. The left‐hand panels show the geological configuration; the middle left‐hand panel
shows the diagonal of the posterior variance and the normalized variance; the middle right‐hand panel shows the resolution for the blue dot location
and the sample correlation coefficient; and the right‐hand panel shows the spread function values. [Colour figure can be viewed at wileyonlinelibrary.
com]
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Figure 10. Impact of (a) the number of tracers (discrete age bins) (reference: 15), (b) the error on the data (σ2d) (reference: 10%), (c) the prior standard
deviation (σm) (reference: 10

�2), and (d) the smoothing distance (L) (reference: 2 km) on the posterior and normalized variance (left‐hand panels), the
resolution for the blue dot location and the sample correlation coefficient (middle panels) and the spread function (right‐hand panels). [Colour figure
can be viewed at wileyonlinelibrary.com]

3890 DE DONCKER ET AL.

© 2020 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms, Vol. 45, 3879–3901 (2020)

http://wileyonlinelibrary.com


Summary of sensitivity tests

Our inverse scheme relies on the detection of source‐area‐
specific zircon age fingerprints in the detrital data, with suffi-
cient variation between the source areas as a primary requisite.
First, we tested the impact of the number of distinct source
areas. Smaller geological units increase the resemblance
between the posterior erosion map and the true erosion map.
The opposite is the case for fewer units, especially when the
orientation of the source areas is parallel to the true erosion rate
gradient. This is also reflected in smaller resolution values and
higher normalized variances, since fewer model parameters
have been solved independently from other locations. Second,
we showed that with more discrete age intervals (tracers) the
posterior solution (posterior erosion rate map) is closer to the
true solution. However, even for a small number of tracers, an
accurate solution can be obtained. As fewer data are available,

more locations depend on information of other locations to
constrain their posterior erosion rate, which is reflected in
lower resolution values, a higher normalized variance and a
lower sample correlation coefficient. Third, we showed that
the impact of data uncertainty on the posterior solution is small.
Higher data uncertainty leads to a smoothed solution as, in that
case, the posterior erosion rate map is less overfitted on the
data. The same smoothing occurs for a lower prior variance,
which leads to lower resolution values, a higher normalized
variance and a lower sample resolution coefficient. The robust-
ness of the model is illustrated with results for a large smoothing
distance remaining close to the true solution. A large smoothing
distance lowers the resolution, as almost all locations depend
on other locations for their posterior solution, which is also
reflected in higher spread function values. Finally, we found
that appending subcatchment data greatly improves the recov-
ery of more complex erosion rate patterns. To conclude, the
method allows us to recover the true model well, when the
source areas’ signals differ sufficiently. The accuracy of the pos-
terior solution increases mainly with a larger number of distinct
source areas, and to a lesser extent with more tracers and by
appending subcatchment data.

Natural Example

Mendoza catchment, Argentina

Now we will invert natural detrital zircon age data using our
inversion scheme. The requirements for a suitable study area
areas follows: (1) zircon age data are available for the different
lithological units; (2) detrital zircon age data exist for sands
sampled at (the outlet of the) river; (3) mineral zircon fertility
data are available for the different lithological units; (4) sedi-
ment discharge data are available; (5) the catchment is well
connected. We could not find any area that fulfils all these
requirements, but we decided to use the Mendoza catchment
as it offers a suitable dataset (Capaldi et al., 2017), although zir-
con fertility data remain incomplete.

The Mendoza catchment is situated in the southern central
Andes, Argentina, with the western part of the catchment
in the Principal Cordillera, the central part in the Frontal
Cordillera and the eastern part in the Precordillera. The Princi-
pal Cordillera consists of a magmatic arc, geologically charac-
terized by Neogene volcanic and volcaniclastic rocks as well
as Neogene fluvial clastic and volcaniclastic rocks (Figure
14), which are the foreland deposits. The Jurassic–Cretaceous
clastic and volcaniclastic rocks in the Principal Cordillera are
related to deformation due to Mesozoic rifting. The Frontal Cor-
dillera, stemming from a thick‐skinned block uplift, includes a
Permian–Triassic igneous basement (the Choiyoi group), Neo-
gene volcanic and volcaniclastic rocks, and Carboniferous–
Permian marine and fluvial clastic rocks. The available datasets
for the Mendoza catchment are (1) zircon age data for the geo-
logical units (Casquet et al., 2001; Vujovich et al., 2004;
Mulcahy et al., 2011; Mackaman‐Lofland et al., 2015;
McKenzie et al., 2016; Capaldi et al., 2017), (2) detrital zircon
age data of multiple points of the Mendoza river (Capaldi et al.,
2017), (3) mineral fertility data for two units (Strazzere et al.,
2006; Kleiman and Japas, 2009; Maydagán et al., 2011), and
(4) sediment discharge data from the infill rate of the Potrerillos
reservoir, derived from satellite imagery (Michoud et al., 2016).
Furthermore, except for the Potrerillos dam, no large dams exist
in the study area.

One can expect high erosion rates in the Principal Cordillera
because of its high number of glaciers and high mountain
peaks. Furthermore, mean monthly temperatures in the

Figure 11. Trade‐off between the normalized model variance (sum of
diagonal of Cm,post divided by the sum of the diagonal of Cm) and the
spread of the resolution (sum of the spread matrix) for different values
of σm. The colours indicate the total difference between the true and
posterior model for the different σm values. [Colour figure can be
viewed at wileyonlinelibrary.com]

Figure 12. Trade‐off between the normalized model variance (sum of
diagonal of Cm,post divided by the sum of the diagonal of Cm) and the
spread of the resolution (sum of the spread matrix) for different smooth-
ing distances. Colours indicate the total difference between the true and
posterior model for the different smoothing distances. [Colour figure
can be viewed at wileyonlinelibrary.com]
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Figure 13. Impact of adding samples on uncertainty variables. The left‐hand panel shows the diagonal of the posterior variance and the normalized
variance; the middle panel shows the resolution for the blue dot location and the sample correlation coefficient; and the right‐hand panel shows the
spread function values. Black dots on the spread function maps indicate the location of the added samples. [Colour figure can be viewed at
wileyonlinelibrary.com]
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catchment fluctuate strongly throughout the year, between
�7°C and 4°C (3800 m a.s.l.) and between 20°C and 4°C
(1200 m a.s.l.), causing freeze–thaw action to produce loose
material that can be transported by glaciers, rivers or mass
movements (Michoud et al., 2016). Since the catchment’s cli-
mate is arid to semi‐arid (with a mean annual rainfall of 140–
360 mm (Crespo et al., 2017)), wind erosion plays an
important role too. However, the soil erodibility for wind ero-
sion is very low in the Mendoza catchment, except for the
north‐north‐east of the catchment (Figure 15a) (Cremades
et al., 2017). Using the universal soil loss equation (USLE
Wischmeier, 1960), estimated hydrological erosion is high:

up to 30 tha�1yr�1 (actual) and 500 tha�1yr�1 (potential)
in the west and down to 1 and 15 tha�1yr�1 in the east
(Figure 15b) (Gaitan et al., 2017). Moreover, the tectonic
activity of the area and the glacial debuttressing of valley
slopes trigger landslides (Michoud et al., 2016). Large debris
flows and rock falls occur throughout the whole catchment,
often triggered by heavy rainfall or snowmelt events
(Michoud et al., 2016). Baumann et al. (2011) mapped the
debris flow hazard along the N7 road, which traverses the
catchment from east to west, with high hazards on the north-
ern shores upstream of Uspallata and the east‐facing slopes
between Uspallata and Potrerillos (Figure 15c).

Figure 14. Geology of the Mendoza catchment. At the right, the catchment location is represented by a red square on the overview map. The age
signature of each geological unit is indicated at the bottom of the figure and the detrital zircon data are displayed at the right. [Colour figure can be
viewed at wileyonlinelibrary.com]
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Detrital zircon analysis of Holocene aeolian sand dunes and
modern sand samples in the region show that fluvial sediment
mixing occurs along a southward (downstream) gradient during
wet interglacial periods, while aeolian sediment mixing occurs
along a northward gradient during glacial periods (Capaldi
et al., 2019). In the Mendoza catchment, analyses using ionic
and stable isotopic signatures for the different water sources
of the catchment upstream of Potrerillos indicate a larger con-
tribution of the Principal Cordillera than the Frontal Cordillera
(Crespo et al., 2017). We can expect to see these findings
reflected in our erosion map.

First, we will apply the method to the data from the single
detrital sand sample collected downstream of Potrerillos;
subsequently, we will include the subcatchment data from
sands sampled at Uspallata and Las Cuevas. We will then
compare the results to the above‐mentioned erosion rate
estimates that exist for the different modalities of erosion in
the region.

We compute relative frequencies for the river outlet sample
by dividing the number of zircons of each age bin by the total
number of dated zircons, using an age–bin size of 100 Ma.
Using Equation (1), we multiply the relative frequency of the
river outlet sample by the yearly sediment discharge Qs (m

3

yr�1) at this location divided by the pixel size (m2). We derive
Qs from the infill rate of the Potrerillos reservoir, resulting in a
sediment discharge of 14.8×106 m3yr�1, and the pixel size is
3000×3000 m. As a prior erosion rate estimate, we divide Qs

by the total catchment area (7824×106 m2), resulting in a mean
erosion rate of 1.9 mmyr�1. We use the same G and parameter
values as for the synthetic tests (λ = 15 km, a forward error of
1% and a σm of 10�2 myr�1). The posterior erosion rates show
a band of high erosion rates in the Principal Cordillera,
surrounded by very low erosion rates, medium to low erosion
rates in the Frontal Cordillera and high erosion rates around
the Potrerillos reservoir (Figure 16). The normalized posterior
variance values are high, with a few exceptions for small geo-
logical polygons in the north‐east and east of the catchment.
The resolution is very small for the blue dot, indicating that
the posterior erosion rate predicted at this point depends
heavily on the information of surrounding points. This is also
reflected in the high spread values over the entire domain.

The mean of the posterior erosion rates is 1.5 mmyr�1, close
to the mean erosion rate derived from the infill rate of the
Potrerillos reservoir. Two possible explanations exist for the
band of high erosion rates in the Principal Cordillera. The first
hypothesis is that the high erosion rates are caused by glacial
erosion, as this region contains many glaciers. The second
hypothesis is based on the geological similarity between this
part of the Principal Cordillera and the Potrerillos region: both
regions are characterized by Neogene fluvial (volcanic)clastic
rocks. High erosion rates around Potrerillos – for example,
due to the known hillslope instability (Michoud et al., 2016)
here – would lead to a larger amount of these Neogene finger-
prints in the detrital data, which are redistributed by the inverse
model and (mistakenly) interpreted as high posterior erosion
rates in the Principal Cordillera. However, from the synthetic
examples (see Supporting Information for more details) we
know that adding subcatchment data can help distinguish
between these two hypotheses as it decouples the erosion rates
of these two regions with the same geological unit. The inter-
mediate erosion rates of the Frontal Cordillera correspond well
to the predicted actual hydrological erosion of about 30 tha�1

yr�1 (taking a sediment density of 1700–2650 kgm�3, this cor-
responds to erosion rates of 1.76–1.13 mmyr�1). The high ero-
sion rates around the reservoir probably result from mass
movements in this area, with observed land sliding velocities
up to 6.5 myr�1 (Michoud et al., 2016).

Figure 15. Erosion and erodibility estimates for the Mendoza catch-
ment. (a) Wind erosion soil erodibility maps created using different data
sources, after Cremades et al. (2017). (b) Hydrological erosion (actual
and potential) based on USLE, after Gaitan et al. (2017). (c) Debris flow
hazard map, after Baumann et al. (2011). [Colour figure can be viewed
at wileyonlinelibrary.com]
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Now, we add detrital zircon age data of sands sampled near
Las Cuevas and Uspallata (Figure 14). The mean erosion rates
have now decreased to 1.2 mmy�1 and the erosion hotspot
has entirely shifted to the surroundings of the Potrerillos reser-
voir (Figure 17), thereby supporting the second hypothesis that
the high erosion rates in the Principal Cordillera in Figure 16a
were due to the lithological similarity to the Potrerillos region.
Since the erosion rates in the Principal Cordillera are near zero,
the region around the Potrerillos reservoir has to account for all
of the tracer concentrations of the Neogene fluvial unit in the
detrital data, which explains the very high erosion rates in this
part of the catchment. The normalized variance map is nearly
the same as in Figure 16b, except for the north‐western part,
where slightly lower values represent the influence of the
added data. The sample correlation coefficient has now
increased to 0.83, but the resolution remains very low, indicat-
ing the weighted averaging that occurs at the location of the
blue dot to constrain the posterior erosion rates. In the spread
function map, the locations of the S2 sample and the S1
subcatchment are indicated by higher values.
Caution should be paid when interpreting the posterior ero-

sion rates of the central region of the study area, as the insuffi-
cient geological variability of this region results in spatially

averaged erosion rates, rather than reflecting the spatial vari-
ability that could occur here. Furthermore, the fact that fertility
data were only available for two of the eight geological units
might have distorted the posterior estimates. Moreover, due to
the high hillslope instability of the catchment, perfect source‐
to‐sink connectivity cannot be guaranteed. These possible stor-
age effects can disturb the fingerprint distribution in the detrital
data and therefore also our posterior erosion rate map. Addi-
tionally, since the effective scales of (dis)connectivity are
strongly variable in time and space (Fryirs, 2013), the unconsol-
idated sands that were collected by Capaldi et al. (2017) may
result from erosion and deposition processes that acted on dif-
ferent timescales, so careful interpretation of the posterior
results is needed. Also, single‐mineral approaches are more
sensitive to durability, winnowing and fertility effects, but
multi‐proxy approaches can help overcome these issues
(e.g. Gaschnig, 2019), which will be illustrated by the next nat-
ural example.

Remarkably, although the S2 subcatchment only coincides
with the Neogene volcanic unit, which is characterized by
one peak in the 0–100 Ma age bin, the detrital zircon ages of
the S2 sample show peaks in the 400–500 Ma and the 800–
1100 Ma age bins (Figure 14). These older ages are likely from

Figure 16. Result of the inverse scheme with detrital zircon data and zircon age spectra for the different geological units. (a) Posterior erosion rates
(note that a quantile colour scheme was used); a transect following the main river trunk is given at the right‐hand side, following the blue line from
point A to point B. (b) Normalized variance. (c) Resolution for the blue dot. (d) Spread function values. The white area is characterized by Quaternary
sediments for which no fingerprints were available, so we did not compute erosion rates for this area. [Colour figure can be viewed at
wileyonlinelibrary.com]
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the fluvial–clastic rocks that also appear within this catchment.
This internal variability within the catchments is unavoidable;
however, if this variability can be exploited by collecting more
detrital samples, this could further improve the resolution of the
inferred rates. An alternative explanation is that aeolian trans-
port has delivered sediments from the Triassic fluvial unit to
the west‐south‐west. This is supported by zircon ages of Holo-
cene sediments of the Andean foreland that show the influence
of north‐north‐eastward palaeowinds that were active during
dry, glacial periods in this area (Capaldi et al., 2019). These
sorts of complexities could be incorporated into future inverse
methods if the dataset requires it.

Marsyandi catchment, Nepal

In this section we will show how petrological and mineralogi-
cal data can be inverted to compute spatially variable erosion
rates. The requirements for a suitable study area are: (1) tracer
concentration data are available for the different source areas;
(2) detrital tracer data exists for sediments sampled at (the outlet
of the) river; (3) sediment discharge data are available; (4) the
catchment is well connected. We decided to use the Marsyandi

catchment as all the requirements are fulfilled for this study
area and mineralogical data are made available by Garzanti
et al. (2007).

Geologically, the Marsyandi catchment comprises the
Tethyan series in the north, the Greater Himalayan units in
the centre, delineated by the Main Central Thrust in the south,
and the Lesser Himalayan units south of this thrust (Figure 18a).
Fluvial denudation rates in the Lesser Himalayan units are esti-
mated to be moderate (±1 mmyr�1) (Lavé and Avouac, 2001;
Bollinger et al., 2004; Pratt‐Sitaula et al., 2004), increasing to
3–6 mmyr�1 for the steeper and precipitation‐rich Greater
Himalayan units (Lavé and Avouac, 2001; Blythe et al.,
2007), which gradually decrease northward to ≤1 mmyr�1 for
the northernmost part of the catchment (Lavé and
Avouac, 2001; Gabet et al., 2008). Monsoon cycles have a
strong impact on sediment storage and transport, as 80% of
the precipitation falls between May and October
(Bookhagen, 2010). Estimated from the dilution of the fluvial
10Be signal (Figure 18b), glacial denudation rates are on aver-
age 4.6±0.3 mmyr�1, with minima of ≤2 mmyr�1 in the north-
ernmost Nar tributary catchment and maxima of 4–10 mmyr�1

in the north‐western Dudh tributary catchment (Figure 18c).
Garzanti et al. (2007) have interpreted their data (that we use

Figure 17. Result of the inverse scheme with detrital zircon data and zircon age spectra for the different geological units and added subcatchment
data. (a) Posterior erosion rates (note that a quantile colour scheme was used); subcatchment limits are indicated by grey lines; a transect following the
main river trunk is given at the right‐hand side, following the blue line from point A to point B. (b) Normalized variance. (c) Resolution for the blue dot.
(d) Spread function values. The white area is characterized by Quaternary sediments for which no fingerprints were available, so we did not compute
erosion rates for this area. [Colour figure can be viewed at wileyonlinelibrary.com]
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here) as low erosion rates in the north (0.9 mmyr�1 for the
Chame and Nar subcatchments), intermediate erosion rates in
the north‐east (2.7 mmyr�1 for the Dudh subcatchment), high
erosion rates in the central‐eastern part of the catchment
(4.5 mmyr�1 for the Nyadi, Dordi and Chepe subcatchments)
and low erosion rates in the south‐west of the catchment
(1.5 mmyr�1 for the Paudi and Chudi subcatchments).
We follow two approaches to illustrate the diversity of set-

tings that are suited for our inversion approach: first we use
the geological units as source areas and then we use tributary
catchments as source areas. In the first case, source data consist
of mineralogical end members computed by Garzanti
et al. (2007). In the second case, we use raw mineralogical data
of samples of the outlets of the different tributaries, also pro-
vided by Garzanti et al. (2007). The detrital data remain the
same in both cases, being mineralogical data of sediments of
the outlet of the Marsyandi catchment, which were sampled
in the monsoon season of 2005.
The resulting posterior erosion rates are in line with the 10Be‐

derived apparent glacial denudation rates from Godard
et al. (2012). Generally, the result also matches the gradient of
low erosion rates in the north, a peak in the centre region and a
decrease towards the south. Comparing the result of the two
approaches, the approach based on geological end members
(Figure 18d) corresponds to a spatial averaging of the tributary
approach (Figure 18e) since there are more distinct tributaries
than there are geological units. This is reflected in lower spread
values and higher normalized posterior variance values. With

this example we have shown that (1) source areas can be
defined as geological units or catchments, and (2) our method
works not only for zircon age signatures, but also for a wide
variety of other tracers, such as mineralogical data.

Discussion

We introduced an inverse approach to estimate the spatial var-
iability of erosion rates. The method requires zircon age spectra
of the different source areas, knowledge about the zircon fertil-
ity of each source area, detrital zircon age data for the catch-
ment outlet and the total yearly sediment export. First, we
applied the method to synthetic data and then to detrital zircon
age data for the Mendoza catchment, Argentina. With the
Marsyandi catchment (Central Nepal Himalayas) example, we
showed that the method can be generalized to other tracers
and source areas.

The innovation of our method lies in the fact that it requires
common and often already existing data. Many traditional
methods for erosion rate assessments rely on point measurement
data or on steady‐state assumptions (Collins andWalling, 2004)
–which is often not the case – all of which we do not use in this
study. Rather, we solve the under‐determined inverse problem
that relates the fingerprints found at the outlet of the catchment
to the signatures of the different source areas by imposing a spa-
tial correlation between points within the defined smoothing
distance. The spread function, resolutionmatrix and normalized

Figure 18. Result of the inverse scheme with detrital mineral data and mineralogical fingerprints for the different source areas of the Marsyandi
catchment (data from Garzanti et al., 2007). (a) Location of the study area. (b) Estimated fluvial denudation rates from 10Be data after Godard
et al. (2012). (c) Estimated glacial denudation rates from 10Be data after Godard et al. (2012). (d) Posterior erosion rates calculated from mineralogical
end members for the different geological units of the catchment (outlined in grey); mapped below are the normalized variance and spread function for
this configuration. (e) Posterior erosion rates calculated from detrital mineralogical data sampled at the outlet of the different tributaries of the catch-
ment (outlined in grey); mapped below are the normalized variance and spread function for this configuration. [Colour figure can be viewed at
wileyonlinelibrary.com]
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variance help to indicate the points where high spatial averaging
occurs.
With a prior estimate (equal to the mean erosion rate of the

catchment) and the variance we expect around this (governed
by the model covariance matrix controlled by the expected
model variance σm and the smoothing distance λ, and the data
covariance), we deal with the non‐uniqueness of the
under‐determined problem. There is a trade‐off between the
reduction of noise in the data (through spatial averaging and
smoothing) and the resolution of the model, so the prior vari-
ance, smoothing distance and data variance must be chosen
carefully.
Moreover, our inversion scheme assumes that the forward

model d ¼ G _e is linear. If this is not the case, the posterior solu-
tion may deviate strongly from reality. However, we anticipate
only small nonlinear effects that can be linearized or treated as
a weakly nonlinear problem (e.g. Tarantola, 2005).
With synthetic data that were generated with a forward

model, we tested the impact of different variables of the inverse
model on the posterior solution, indicating that the number of
distinct source areas and the number of tracers have the largest
impact. Overall, when the signal of the source areas differs suf-
ficiently, we recovered the true erosion pattern well. We have
shown that adding detrital zircon age data from sand sampled
within the investigated catchment greatly improves the recov-
ery of more complex erosion rate patterns.
Limitations of the required datasets can distort the posterior

erosion rate map. The first limitation entails the connectivity
of the catchment, which is often poor due to lakes, dams or
other factors impacting the source–sink connection. Neverthe-
less, our method is useful for the estimation of ‘dam corrected
erosion rates’, taking into account the volume of sediments
being held back by obstructions in the streams.
In the Mendoza catchment, frequent mass movements may

block the river and the large river terraces indicate sedimenta-
tion (Michoud et al., 2016). Multiple remnant and contempo-
rary moraines exist, which may also block the transfer of
sediments from source areas to the outlet. The detrital sample
has been taken downstream of the Potrerillos reservoir, so sed-
iments originating from far‐away source areas possibly do not
reach the sample location because they settle upstream. How-
ever, should this be the case, adding subcatchment samples
could partly alleviate this problem.
The second limitation is centred around residence times,

because erosion rates are expressed in volumes per year. Here,
we assume little to no storage, or storage generating sediment
mixing that corresponds to present‐day sediment mixing.
The third limitation comes in when data are multiplied by the

total sediment load to obtain absolute – contrary to relative –
erosion rates. It is difficult to acquire high‐confidence sediment
load values, since themonitoring of bedload is a lengthy process
and is complicated by strong spatial variability (Hinderer et al.,
2013). Here, we use the infill rate of the Potrerillos reservoir to
obtain the sediment load, based on storage differences of the
lake, which possibly also generates a source of error.
The fourth limitation involves the zircon age data. First, selec-

tive entrainment may favour the fluvial transport of smaller
grains and, if a relationship between age and grain size exists,
of certain tracers (e.g. Garzanti et al., 2009). Suspended load is
transported more rapidly downstream than sediments travelling
near the bed, creating a lag time and possibly a distorted zircon
age signal (Granet et al., 2010; Malusà et al., 2013). Dating zir-
cons of widely varying grain sizes can help reconstruct more
reliable zircon age distributions of the sampled sands
(Ibañez‐Mejia et al., 2018). Unfortunately, no grain size data
were available for the samples that we use here, so we did not
verify whether an age–grain size link exists for the Mendoza

catchment. Second, zircon fertilities can vary by three orders
of magnitude in the same region, having a large impact on the
downstream zircon age spectra (Malusà et al., 2016).We consid-
ered the spatial variability of zircon fertilities by applying a scal-
ing factor. The strong resemblance between the synthetic data of
Capaldi et al. (2017) and the observed detrital zircon ages of the
Mendoza river indicates that spatial variability in zircon fertility
is low. However, we have shown with the Marsyandi example
that also other tracers such as mineral content can be used to
obtain erosion rate maps. Using a multi‐proxy approach, many
of the aforementioned single‐mineral problems disappear.

The inversion scheme that we presented here is versatile and
can be used for a wide range of provenance studies, as the zir-
con age data can simply be replaced by other tracers such as
magnetism of minerals, colour of grains, stable isotopes, geo-
chemical components, organic matter concentration and min-
eralogical properties that are commonly used in provenance
studies (Collins et al., 2017). Moreover, the source areas do
not need to be defined as geological units: one can, for exam-
ple, use tributaries for which different fingerprint measurements
are available.

Conclusions

We present an inversion method to calculate spatially variable
erosion rates from provenance data, with a focus on U–Pb data,
starting from a prior erosion estimation, a yearly exported sed-
iment load estimation and source area data. The method relies
on the recognition of zircon age signatures of source areas in
the zircon age spectrum of modern sands sampled at the outlet
of the investigated catchment. Therefore, the importance of
having different zircon age signatures for each source area must
be stressed.

With synthetic data, we have shown that the ‘true’ solution
can be recovered well, using varying parameters; the method
is robust and does not depend on one parameter specifically.
We also illustrate the use of covariance and resolution to assess
the quality of the inferred erosion patterns. The experiments
imply that the method is more suited for a well‐connected
drainage catchment.

Using existing zircon ages of modern sands sampled in the
Mendoza catchment, we obtained erosion rates that are in
the range of USLE‐modelled hydrological erosion rates and
the studies on mass movements that have been carried out in
the region. The example of the Marsyandi catchment illustrated
how the method can be extended to other provenance studies,
by replacing the zircon age data by other fingerprint properties
and by replacing the geological units with other source areas
such as sub‐catchments.
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