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Genetic variation in cis-regulatory domains
suggests cell type-specific regulatory
mechanisms in immunity
Diana Avalos 1,2,3,4,5, Guillaume Rey1,2,3,5, Diogo M. Ribeiro 2,4, Anna Ramisch1,2,3,

Emmanouil T. Dermitzakis1,2,3 & Olivier Delaneau 2,4✉

Studying the interplay between genetic variation, epigenetic changes, and regulation of gene

expression is crucial to understand the modification of cellular states in various conditions,

including immune diseases. In this study, we characterize the cell-specificity in three key cells

of the human immune system by building cis maps of regulatory regions with coordinated

activity (CRDs) from ChIP-seq peaks and methylation data. We find that only 33% of CRD-

gene associations are shared between cell types, revealing how similarly located regulatory

regions provide cell-specific modulation of gene activity. We emphasize important biological

mechanisms, as most of our associations are enriched in cell-specific transcription factor

binding sites, blood-traits, and immune disease-associated loci. Notably, we show that CRD-

QTLs aid in interpreting GWAS findings and help prioritize variants for testing functional

hypotheses within human complex diseases. Additionally, we map trans CRD regulatory

associations, and among 207 trans-eQTLs discovered, 46 overlap with the QTLGen Con-

sortium meta-analysis in whole blood, showing that mapping functional regulatory units using

population genomics allows discovering important mechanisms in the regulation of gene

expression in immune cells. Finally, we constitute a comprehensive resource describing multi-

omics changes to gain a greater understanding of cell-type specific regulatory mechanisms of

immunity.
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Genome-wide association studies (GWAS) have identified a
large number of genetic variants—mostly located in the
non-coding regions of the genome—that are associated

with common diseases and complex traits1. In addition, extensive
collections of genetic variants affecting the transcriptome (i.e.,
expression quantitative trait loci, eQTLs) across many cell types
and conditions are now accessible2–4. Several studies4–6 have
established the biological mechanisms of eQTLs, describing how
non-coding genetic variants alter the activity of regulatory ele-
ments, such as through modifications in transcription factor
regulation. All these changes present in cis, also propagate along
the genome through chromatin interactions, which bring distal
elements in close physical proximity7–10. However, there is still
much to learn about how genetic variants modulate the reg-
ulatory machinery of the cells. Dysregulation of immune and
inflammatory activity is present in many complex human dis-
eases. Therefore, analyzing the biological processes of immunity
will enable us to understand disease biology and etiology, guiding
therapeutic progress. This led us to study the three main primary
blood cells of the immune system: neutrophils (key actors of the
innate and inflammatory response system), monocytes (which
can differentiate into macrophages and dendritic cells to trigger
an immune response), and T cells (essential part of the adaptive
immune system).

To understand gene expression regulatory machinery and
eQTLs upstream mechanisms, studies have analyzed the inter-
individual variation of histone modifications, using ChIP-seq
data11,12 to discover the existence of coordinated activity of sets of
regulatory elements, called Cis-Regulatory Domains (CRDs).
Others have leveraged population variation of chromatin acces-
sibility using ATAC-seq libraries13–16, as it explains 70% of gene
expression variance. Since DNA methylation is thought to
influence chromatin structure17 and gene expression when loca-
ted in regulatory regions18, the study of DNA methylation
variability across a population19 also provides tools to infer the
mechanisms underlying transcriptional regulation. In addition,
many studies highlighted the role of transcription factors (TFs) in
regulating gene expression20.

In order to gain further insight into the molecular processes at
play, and shed light on the cell-specificity of such regulatory
mechanisms, we leveraged multiple omics data from the BLUE-
PRINT Consortium21, for the three key primary immune cell
types mentioned above. This dataset includes whole-genome
sequencing, chromatin immunoprecipitation sequencing (ChIP-
seq) for two histone modification marks associated with active
enhancers and promoters (H3K4me1 and H3K27ac), DNA
methylation (Illumina 450K arrays) as well as transcriptional
profiles (RNA-sequencing) for more than 197 individuals. In
addition, we exploit promoter capture Hi-C (PCHiC) datasets for
the same cell types22. This extensive dataset enables the study of
population-wide perturbations which modifies the transcriptomic
dynamics at play.

In this paper, we mapped CRDs in 3 primary immune cell
lines, to investigate the cell-type specificity of such regulatory
structures and their role in the modulation of gene expression.
We discovered a large amount of CRD-gene associations reveal-
ing the dynamic nature of regulatory interactions and how
similarly located regulatory regions modulate the activity of dif-
ferent genes on different cell types. Additionally, we highlighted
the role of genetic variation in the coordination of cellular reg-
ulatory programs, and consolidated the functional interactions
discovered by integrating PCHi-C and showing that these asso-
ciations take place in close physical proximity. Notably, we
showed that CRD-QTLs aid the interpretation of GWAS findings
and allow us to gather novel information into the genetic archi-
tecture of disease loci. Finally, we leveraged the trans-CRD

networks and Trans Regulatory Hubs (TRHs, i.e., clusters of
interchromosomal associations between CRDs) discovered to
infer inter-chromosomal interactions and show that this could be
used to discover trans-eQTLs. Overall, we show that mapping
functional regulatory units using population genomics data allows
discovery important mechanisms in the regulation of gene
expression in immune cells.

Results
A map of cis-regulatory domains in 3 primary immune cell
types. We subsampled histone peaks from 250 ChIP-seq assays
(for three histone modifications and 3 cell types) (see Methods),
to create a consensus set of peak coordinates. Then, to define the
map of cis-regulatory domains (CRDs) in primary immune cells,
we used a previously published method12, which relies on the
hierarchical clustering of molecular phenotype data across a
population of individuals, and creates groups of peaks exhibiting
high correlation (see Methods). The subsequent tree was cut into
areas of high correlation and covered at least two different
chromatin regions. Applying this framework to histone ChIP-Seq
data, we discovered 9287, 7666, 5701 histone CRDs (hCRDs) in
monocytes, neutrophils, and T-cells, respectively [Fig. 1 and
Supplementary Table 1a, Supplementary Figures 1, 2]. Since the
histone marks (H3K4me1 and H3K27ac) are associated with
active enhancers and promoters, these histone CRDs capture the
correlated activity of these regulatory elements. We extended this
method to another type of epigenomic data: DNA methylation,
obtained through Illumina 450K arrays, and found 6053, 6112,
5701 methyl CRDs (mCRDs) in monocytes, neutrophils, and
T-cells, respectively [Supplementary Table 1a]. As CpG islands
are preferentially located within promoter regions, mCRDs cor-
respond to the synchronized activity of promoters.

As expected, the different resolution of DNA methylation data
compared to histone ChIP-Seq (single base pairs vs kilobases)
affects the size distribution of CRDs. We found that hCRDs
exhibited a unimodal distribution centered ~40 kb, whereas
mCRDs displayed a bi-modal distribution, peaking at 300 bp
and 40 kb [Supplementary Figure 3]. To correct for this, we
modeled the distribution using a mixture gaussians for small (0.2
to a few kb) and large (a few kb to 1–2Mb) domains. As CRDs
involve at least two distinct, non-overlapping regulatory
regions12, we discarded the mode centered on 300 bp likely
representing CpG sites located in the same regulatory region.
Therefore, we chose a threshold corresponding to the 0.95
percentile of the distribution of small domains, to define a set of
methyl CRDs we selected for downstream analysis.

Given that sample size could be an important factor in the
discovery of CRDs, we subsampled our dataset to the lowest
sample size available (N= 94) for the discovery of CRDs, and also
integrated the SySGenetix LCL dataset11 as a baseline. In
agreement with previous analysis showing that about 100
individuals are sufficient to map more than 90% of CRDs in
LCLs12, we found that the difference in the number of CRDs
discovered across cell types was maintained before and after
subsampling for hCRDs (89% of hCRDs discovered with
94 samples) but less for mCRDs (67% of mCRDs discovered
with 94 samples) [Supplementary Tables 1a, b].

To investigate the patterns of sharing of CRDs between cell
types, we labeled a CRD as shared between two cell types if at
least 50% of its histone peaks (hCRDs) or CpG islands (mCRDs)
in the query cell type were also present within a CRD in the
reference cell-type. We integrated the SysGenetiX LCL dataset
into our analysis (subsampled to 94 samples) and analyzed CRD
sharing in a pairwise fashion for all cell types [Supplementary
Table 1a, Supplementary Figure 4]. We found that T-cells and
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LCLs shared the most CRDs, with a mean of 32% among hCRDs,
which was expected as they both descend from a common
lymphoid progenitor. Similarly, neutrophils and monocytes
shared 24% of their CRDs, and these cells descend from a
common myeloid progenitor. These results are therefore
consistent with the hematopoietic lineage. Of note, we confirmed
these results by analysing individual epigenomic marks within
CRDs (histone peaks or CpG sites) instead of CRDs and by
measuring their overlap between cell types [Supplementary
Fig. 5]. Indeed, neutrophils and monocytes are both formed
from myeloblasts and are part of the innate immune system
whereas T-cells and LCLs (immortalized cell lines descending
from B-cells) belong to the adaptive immune system. In addition,
LCLs hCRDs displayed an important overlap with primary
immune cells (24, 27, and 32% in neutrophils, monocytes, and T-
cells), due to the number of CRDs discovered, substantially more
important than any other cell type (10497, 5480, 7660,6831
hCRDs discovered in LCLs, T-cells, monocytes and neutrophils,
respectively, when subsampling the dataset to the lowest sample
size across cell types (N= 94), or 12583, 5480, 9287 and 7666
otherwise) [Supplementary Table 1a]. Notably, we reached
similar results in terms of lineage and overlap for mCRD sharing
among cell types, with 34% of mCRDs shared between
neutrophils and monocytes, and 18 to 25% of mCRD sharing
between T-cells and the other cell types. Overall, mCRDs

displayed a greater amount of tissue sharing than hCRDs,
indicating that they may be less tissue-specific than the histone
CRDs [Supplementary Figure 5]. This is consistent with the
previous finding that promoter activity is less cell type-specific
than enhancer activity23. Overall, our results demonstrate that
hCRDs are highly cell-specific as they capture coordinated
activity of enhancers and promoters, mCRD are less cell-
specific as they only capture this for promoters, and the amount
of sharing between cells recapitulates the hematopoietic lineage.

Regulatory interaction dynamics across immune cell types.
CRDs represent areas of high correlation between epigenomic
marks within a population. We computed hCRD activity, by
averaging the activity of the chromatin peaks within an hCRD per
individual, and therefore obtaining a quantification vector per
CRD. We applied a similar process to CpG sites within mCRDs to
obtain their respective activity. To investigate the role of CRDs in
the regulation of gene expression in immune cells, we correlated
CRD activity with gene expression. We performed the analysis in
cis, considering genes within 1Mb of the CRD in each cell type to
investigate their role in the regulation of gene expression. We
discovered a large amount of CRD-gene associations, with
respectively 6300, 6755, 2239 hCRD-gene associations and 2027,
2300, 1858 mCRD-gene associations in neutrophils, monocytes,
and T cells at 5% FDR [Figs. 1, 2, Supplementary Data 1].

Fig. 1 CRDs emerging from the inter-individual correlation between chromatin peaks for Monocytes, Neutrophils and T-cells. CRDs represent the
coordinated activity between nearby regulatory elements (promoters and enhancers). Chromosome 5 is represented with a zoom of a region spanning
1000 chromatin peaks. hCRDs are outlined by black triangles, and the hematopoietic lineage is represented on the left. Significant gene-CRD associations
(5% FDR) are represented in red. For each cell- type, expressed genes are colored in grey and significantly associated genes are colored in yellow.
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Next, we investigated the cell specificity of the regulatory
machinery on the transcriptome. To compare CRD-gene
associations between two cell types, we quantified CRDs cell-
type-specific activities by considering the activity of the same
exact set of peaks across the three cell types. The fraction of
significant CRD-gene associations in common between the 2 cell
types was then calculated over the total number of significant
CRD-gene associations of the reference cell (FDR 5%). We found
that neutrophils and monocytes shared between 33% and 37% of
their hCRD-gene and mCRD-gene associations [Supplementary
Figure 6]. Conversely, the fractions of significant CRD-gene
associations of monocytes and neutrophils with T-cells were
smaller (from 10 to 31%), again consistent with the hematopoietic
lineage. Furthermore, these findings reveal the dynamic nature of
regulatory interactions across cell types, and how similarly located
regulatory regions modulate the activity of different genes in
different cell types.

As a previous study23 showed that chromatin modification
profiles in enhancers are highly cell-type specific whereas most
genes expressed are shared between these cells, we compare the
cell-specificity of CRD-gene associations and genes expressed
between cell types. We extracted the genes significantly associated
with CRDs in each cell type, and looked at the intersection of
these gene sets. We found up to 47% of genes in these gene-CRD
associations were shared with at least one other cell type

[Supplementary Figure 6]. As less CRD-gene associations than
genes are shared between cell types, this indicates that gene-CRD
associations are more tissue-specific than the sets of genes
expressed between cell types in those associations, highlighting
the reprogramming of gene regulation through chromatin
organization in the hematopoietic lineage.

We subsequently investigated the complexity of connectivity
between genes and CRDs across cell types and found that 32.1%
of hCRDs associated with at least one gene in a given cell type,
and 13.7% of hCRDs were associated with two or more genes
[Supplementary Figure 7]. Conversely, we found 23.3% of genes
associated with at least one hCRDs and up to 6% with at least two
hCRDs. Similarly, we found around 16.2% of mCRD associated
with at least one gene, and 9.4% of genes associated with at least
one mCRD. These results highlight the complexity of regulatory
relationships among genes and CRDs.

As Ribeiro et al.24 integrated ChIP-seq and Hi-C to interpret
the molecular mechanisms driving gene co-expression, we further
characterized the impact of CRDs on the complexity of gene
regulation, and aimed to quantify how much of gene co-
expression is driven by shared CRD regulation. We looked into
the 29940, 46146, and 13737 cis co-expressed gene pairs we found
(i.e., genes whose expression is correlated among individuals)
(FDR 1%) respectively for neutrophils, monocytes, and T-cells
[Supplementary Table 2]. We then asked how their position

Fig. 2 Associations of CRDs and hCRD-QTLs enrichment in autoimmune diseases and blood traits. a Schematic of CRD associations, including CRD-QTLs,
CRD-gene, and CRD-CRD, with the number of associations found within the maximum sample size available for each cell type and epigenomic mark.
b Quantile-quantile (Q-Q) plots and genomic inflation factor (λ metric) for hCRD-QTLs across 3 autoimmune diseases: Type 1 diabetes (DT1), rheumatoid
arthritis (RA), multiple sclerosis (MS) and Type 2 diabetes (DT2) as negative control. cOdds ratios and standard errors of the effect size for the enrichment in
hCRD-QTLs in monocytes(MON), neutrophils (NEU), T-cells (TCL) for eight blood cell count traits: Basophil count (BC), Eosinophil count (EC), Lymphocyte
count (LC), Monocyte count (MC), Neutrophil count (NC), Platelet count (PC), Red blood cell count (RBC), and White blood cell count (WBC).
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relative to associated CRDs affected their pattern of association
and we found that the fraction of co-expressed genes associated
with the same CRD was strongly enriched at long distances(100
to 1000 kb) [Supplementary Figure 8], suggesting that interaction
with a given CRD is an important mechanism for the distal
coordination of gene expression. Furthermore, we notice that
most genes are located within the CRD they are regulated by.
Gene pairs odds ratios of belonging to the same CRD while being
co-expressed are quite high (ranging from 11 to 286), comforting
the fact that CRDs are major regulators of co-expression.

CRDs are under genetic control. To investigate how genetic
variation affects the regulatory machinery, we tested whether CRDs
are under genetic control. For this, we mapped CRD-QTLs finding
that around 60% of hCRDs and 70% of mCRDs were genetically
controlled with respect to their overall activity [Fig. 2a, Supple-
mentary Data 2]. Overall, mCRDs are more genetically controlled
than hCRDs, which could be explained by the proximity of
methylation CpG marks to promoter regions, where the genetic
signal may be stronger. Furthermore, CpG marks are obtained
through Illumina arrays which only sample selected areas for
methylation marks. The patterns of CRD-QTLs sharing among
tissues were also estimated using the π1 estimate (the proportion of
true positives25), extracting the significant CRD-QTLs identified in
one cell type and then tested for replication in another cell type
(median hist π1= 0.66, median methyl π1= 0.51) [Supplementary
Figures 9, 10]. These results reveal that a great part of genetic
variants controlling the activity of the CRDs are cell-type specific.
We wondered whether cell-type specific CRD-QTLs were con-
trolled by cell-type specific transcription factors (TFs). We incor-
porated knowledge from external databases such as Motifmap26

and Remap27, and extracted the 50 TFBSs that overlapped the most
with ChIP-seq peaks located within CRDs. Computing enrichment
for the significant CRD-QTLs found within these 50 most repre-
sented TFs, and subsequently calculating Fisher’s test odds ratios,
we found significant enrichment for 18 different TFBSs (FDR 1%)
[Supplementary Table 3, Supplementary Figure 11]. We found that
monocytes and neutrophils CRD-QTLs were enriched in the
transcription factor binding sites of SPI1, STAT3, RFX1, SOX4,
ATF3, with odd ratios higher than for T-cells. All of these TFs are
enriched in monocytes and neutrophils, according to the Human
Protein Atlas28. Conversely, TCF4 and BCL11A elicited stronger
odd ratios within T-cells and monocytes, again in line with the
Human Protein Atlas which labels these TFs as group-enriched in
lymphocytes and dendritic cells (descending frommonocytes in the
hematopoietic lineage). These findings suggest that CRD activity
changes are driven by genetic modification in transcription factor
binding sites.

Next, we investigated whether CRD-QTLs are strongly
associated with 7 blood traits (Basophil count [BC], Eosinophil
count [EC], Red blood cell count [RBC], White blood cell count
[WBC], Lymphocyte count [LC], Neutrophil count [NC] and
Monocyte count [MC]) and 7 autoimmune diseases (celiac
disease [CE], inflammatory bowel disease [IBD], Crohn’s disease
[CD], ulcerative colitis [UC], multiple sclerosis [MS], Type 1
diabetes [DT1] and rheumatoid arthritis [RA]) for which we
retrieved publicly available genome-wide summary statistics29–33.
We also used Type 2 diabetes [DT2]34 as a negative control. We
compared the probability distributions of all variants prior to any
p-value filtering. We found that mCRD-QTLs and hCRD-QTLs
are more likely than other variants to display strong associations
(i.e., lower association p-value), as observed in quantile-quantile
plots (Q–Q plots) and measured by the genomic inflation factor
(λmetric) [Fig. 2b and Supplementary Figures 12a, b]. To look for
evidence of a functional relationship between our CRD-QTLs and

selected traits, we also used GARFIELD35 to test for enrichment
of our CRD-QTLs (p value < 10−5). We detected enrichment in
basophil, neutrophil, and white blood cells count within
neutrophil hCRD-QTLs, which is expected as neutrophils are
white blood cells, along with basophils and eosinophils. We also
noticed that T-cells and monocyte hCRD-QTLs are respectively
enriched in lymphocyte and monocyte count [Fig. 2c]. Together,
these results indicate that CRD-QTLs play an important role in
complex traits and autoimmune diseases, and they can help
interpret associations between variants and complex trait
phenotypes.

CRD structure and connectivity reflect functional 3D chro-
matin organization. As our previous work12 indicated that CRDs
are associated with functional 3D interactions, we investigated
how CRDs in primary immune cells are related to 3D genome
structure using promoter capture Hi-C data from Javierre et al.22.

CHiCAGO algorithms perform normalization and multiple
testing specifically adapted to CHi-C experiments36 and consider
PCHi-C interactions significant if the interactions detected by
CHiCAGO have a score superior or equal to 5. We found that the
fraction of correlated chromatin peak pairs (per chromosome
pair-wise association testing, FDR 1%) increased with the PCHi-C
interaction score (PCHi-C interactions are considered significant
if the CHiCAGO score ≥ 5)36 [Supplementary Figure 13a].
Moreover, correlated histone peak pairs were more likely to be in
close 3D physical proximity (CHiCAGO score ≥ 5) than
uncorrelated peaks, with the effect maximizing for pairs separated
by 50–500 kb [Fig. 3a and Supplementary 13b,c] (for distances
<20 kb, we expect genomic distance noise to affect short-range
PCHi-C interactions37, therefore we do not consider this distance
interval in the analysis).

Then, we explored how cis gene-CRD associations may reflect
long-range physical interactions between regulatory elements and
gene promoters. We observed ~30–40% of gene-CRD associa-
tions were supported by PCHi-C (CHiCAGO score ≥ 5),
indicating a strong enrichment compared to correlated peak
pairs [Fig. 3b]. In addition, we notice that mCRD-gene
associations are less supported by PCHi-C than hCRD-gene
associations (~15% less PCHi-C support). We observe an increase
in PCHi-C support when gene-CRD distance is between
50–200 kb, especially for T-cells associations, indicating that
gene-CRD associations at large genomic distances tend to happen
between genomic regions in close spatial proximity.

As shown before, nearby genes are often co-expressed, and
these associations have been mapped across 49 human tissues24.
To get a better understanding of these molecular mechanisms, we
mapped pairs of co-expressed genes associated with the same
CRD and we found that these associations showed increasing
PCHi-C support with increasing genomic distance between genes
[Fig. 3c]. For genes inside a CRD, 20% and 36% of co-expressed
gene associated to a hCRD and mCRD were supported by PCHi-
C. For distances between 50 kb and 1Mb between co-expressed
gene pairs, the fraction of pairs supported by PCHi-C increases,
supporting once more that associations at large genomics distance
is therefore compensated by spatial proximity.

Trans CRD networks highlight cell-type specific biological
functions in immune cells. Given that regulation of gene
expression in trans is an important component to the overall
variance in gene expression38, we mapped CRD trans networks in
immune cells.

We first computed inter-chromosomal pairwise CRD trans
associations in each cell type to discover respectively 159,422,
84,690, and 116,658 significant hCRD-hCRD trans-associations
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(FDR 1%) and 12,525, 11,719, and 14,022 significant mCRD-
mCRD trans-associations (FDR 1%) in neutrophils, monocytes
and T cells [Fig. 2, Supplementary Data 3]. We repeated the same
analysis using a fixed sample size (n= 94) for all cell types and
found that even though the number of significant associations
depended strongly on sample size, important differences between
cell types were maintained [Supplementary Figure 14].

We then built trans CRD networks using the discovered
associations as edges between CRDs (nodes)39 to define Trans
Regulatory Hubs (i.e., communities) within those networks.
Using this approach, we found between 31 to 308 TRHs in
hCRDs, and over 200 TRH per cell type in mCRDs, depending on
the cell type [Sup. Table 1b, Supplementary Figure 15]. We
further observed that each cell type had a few TRHs with more
than 1000 CRDs [Supplementary Figure 16a], while most of the
individual hCRDs had only a small number of associations each
to other CRDs [Supplementary Figure 16b] indicating regulatory
networks of very large complexity. The patterns of trans CRD-
CRD association sharing were also estimated by extracting the
significant trans CRD associations identified in one cell-type and
then tested for replication in another cell type [Supplementary
Figures 17, 18]. (median π1= 0.35 for trans hCRD sharing, and
0.92 for trans mCRD sharing). The subsequent results showing
35% of trans hCRD-hCRD sharing between cell types comfort
our findings of highly cell-type specific maps of gene regulation.
On the contrary, trans mCRD associations are highly shared
between the three cell types studied, which can be explained by
the relatively low variation of CpG methylation in human blood
samples40.

Since we established that trans CRD associations identify
functional chromatin interactions and CRDs coordinate distal
gene expression, we investigated whether genes belonging to the

same Trans-Regulatory Hubs (TRHs) (which represent cluster of
inter-chromosomal associations between CRDs) have similar
biological properties, i.e., participate in the same biological
processes, perform similar molecular functions, or their protein
products colocalize in the same cell region. To this end, we
researched if some TRHs showed an enrichment in immune
processes. We performed gene set enrichment analysis of the
genes associated with TRHs of hCRDs, using the GOrilla
algorithm41 and REVIGO42 visualization platform to determine
over-represented gene categories. We defined as background gene
sets, all the genes expressed for each cell type, and the target gene
sets were defined as all the genes significantly associated with the
CRDs of the TRH studied. Out of 122 TRHs with genes
associations (84 for neutrophils, 6 for macrophages, 22 for T-
cells), we selected the 25 largest TRHs from which 10 showed
significant gene ontology (GO) term enrichment at 1% FDR (13
TRHs at 5% FDR). We discovered 2 TRHs, one in neutrophils
and one in T-cells, which are linked to immune response
associated GO terms (31 terms at 1% FDR and 64 at 5% FDR)
[Supplementary Figure 19, Supplementary Table 4]. These
include the regulation of T-cell differentiation, lymphocyte
differentiation, regulation of adaptive immune response, and
regulation of leukocyte cell-cell adhesion. The strongest signal
was associated with the regulation of adaptive immune response
in T-cells (29 GO terms at 1%FDR). We noticed that the majority
(9 out of 13, FDR 5%) of TRHs have their genes performing
similar molecular functions, supporting the fact that genes linked
to the same TRH participate in correlated biological processes.
Specifically, we observed a T-cell TRH consisting of genes
involved in the regulation of cell communication, regulation of
cell-cell adhesion, cell surface receptor signaling pathway, and
colocalization of gene products in the plasma membrane and cell

Fig. 3 PCHi-C analysis shows that significant associations involving large genomic distances take place in close physical proximity. a Fraction of
neutrophil chromatin peak pairs on the same chromosome supported by PCHi-C data (CHiCAGO score ≥ 5) at significantly associated (pink) and non-
associated (blue) pairs of chromatin peaks within bins of increasing distance between peaks. b Fraction of hCRD-gene and mCRD-gene associations
supported by PCHi-C data (CHiCAGO score ≥ 5) at increasing CRD-gene distances. c Fraction of hCRD-gene associations and mCRD-gene associations
supported by PCHi-C data (mean CHiCAGO score ≥ 5) for pairs of co-expressed genes (5%FDR) that associate with the same CRD. The fraction is
measured at bins of increasing distance between co-expressed genes.
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surface. These findings underscore the cell-cell signaling pathway
in T-cells as the underlying biological mechanistic process. Once
the T-cell receptors bind an antigen, the cell will activate a series
of internal signaling pathways that allow for the antigen
recognition to be verified, leading to the proliferation of T-cells
specific to this antigen43. These results show that trans CRD
networks and TRHs are key factors in the regulation of gene
expression and provide a mechanistic explanation for biological
pathways.

Mapping trans eQTLs through histone Trans CRD networks
unravel new trans eQTLs. We previously showed that integration
of trans CRD-CRD associations with eQTL analysis and CRD-
gene associations could successfully indicate candidate trans SNP-
gene pairs with higher prior probability of being positive in trans-
eQTL mapping12. Expanding on this approach, we studied the
propagation of trans-eQTL effects in three primary immune cells,
and selected the two most likely trans-eQTL causal models
[Supplementary Figure 20] out of the 18 tested ones in the study
of Delaneau et al.12. The first scenario consists of a QTL variant
associated with a CRD in cis, which is associated to another CRD
in trans, and the latter CRD is associated to a gene in cis. The
second scenario involves a cis association between the gene of a
cis-eQTL and a CRD, which in turn is trans associated to another
CRD cis-associated to a gene. Out of 265k, 176k and 46k tested
associations of scenario 1 in neutrophils, monocytes and T-cells
we found 55,16 and 5 significant associations (5% FDR). We
found an enrichment of small p-values for the combinations we
evaluated. In particular, we found that neutrophils had the largest
number of hits with 55 and 62 trans-eQTLs using respectively an
hCRD-QTL (scenario 1) and an eGene (scenario 2) [Supple-
mentary Table 5a, Supplementary Data 4].

Overlapping our hits with the trans eQTLs from a meta-
analysis in whole blood (eQTLGen Consortium)44 revealed an
important number of signals shared between the two studies.
Indeed, we found 117, 81 and 9 unique trans-eQTLs in
neutrophils, monocytes and T-cells. A third of the trans-eQTLs
discovered in neutrophils overlapped with the eQTLGen trans-
eQTLs, while monocytes and T-cells had only one association in
common, involving the same gene and a variant in linkage
disequilibrium (LD) with our variant (LD > 0.9) [Supplemen-
tary 5b]. As neutrophils are the most abundant cell type in whole
blood after red blood cells, they might be prone to contributing
the most to whole blood gene expression patterns45. These results
therefore indicate that our data integration strategy is able to
discover trans-eQTLs overlapping with existing datasets.

Discussion
From our investigation of the BLUEPRINT dataset, we produced
a comprehensive resource for the scientific community in which
we explored the cell-specificity of the regulation of gene expres-
sion in immune cells, by studying population-wide perturbations
to those gene networks and inferring their global structure and
patterns. Chen et al.4 investigated first the genetic and epigenetic
effects on RNA transcription and splicing on this dataset. In this
study, we explore the regulation of the transcriptome at another
scale, looking at high-level regulatory networks, highlighting the
cell-specificity of the biological pathways at play. Our study shows
the value of analyzing the data at the cis-regulatory-domain level,
which emphasize important biological mechanisms, as most of
our associations are enriched in cell-specific transcription factor
biding sites, blood-traits and disease-associated loci. These find-
ings enable the identification of targets for future research into
dysregulated biological processes in immune diseases and treat-
ment prospects.

Furthermore, extending the CRD framework12 to methylation
data enables the discovery of mCRD networks, which facilitates
the analysis of large datasets in which histone modifications are
not available. In this context, mapping of CRDs and TRHs from
epigenomics data (histone modifications and DNA methylation
marks) enable the partition of the genome in a given cell type in
cis and trans functional regulatory units. Additionally, we repli-
cated 46 trans-eQTLs from the eQTLGen Consortium meta-
analysis in whole blood, showing that our data integration
strategy is able to discover trans-eQTLs overlapping with existing
datasets and that mapping functional regulatory units using
population genomics data allows discovering important
mechanisms in the regulation of gene expression in immune cells.

Applying this framework to immune cells revealed that those
structures are present in high numbers and show high tissue
specificity. Furthermore, the cell-specificity of the observed
dynamics are in accordance with the hematopoietic lineage,
which displays more resemblance between neutrophils and
monocytes than with T-cells, as they both derive from myeloid
progenitor.

In particular, we detected a large number of trans-associations
and TRHs, which allowed inferring inter-chromosomal interac-
tions and discovering cell-type specific trans-eQTLs. We observed
that almost a third of the trans-eQTLs discovered in neutrophils
overlapped with the eQTLGen trans-eQTLs, while monocytes
and T cells had only one association in common. This result is
consistent with neutrophils being the most abundant cell type in
whole blood (excluding red blood cells), thereby likely con-
tributing the most to whole blood gene expression patterns.

Association of CRD activity with expression of genes in cis
revealed that CRDs play an important role in tissue-specific gene
expression, with an effect especially strong at long distances. The
observation that, in neutrophils, the majority of co-expressed genes
separated by 100 kb to 1Mb are linked to the same CRD is an
important example of the functional role of CRDs in gene expres-
sion. Moreover, the fact that a substantial fraction of CRD-gene
associations is involved in 3D contacts supports the hypothesis that
CRDs reflect functional regulatory interactions in the 3D genome.

Taken together, our results highlight the power of generating
cell-type specific maps of regions of coordinated activity to dis-
cover important biological mechanisms. It indeed reduces the
search space by several orders of magnitude, so that the discovery
of relevant interactions becomes accessible to standard statistical
association testing. We therefore surmise that the use of popu-
lation genomics data will be key to define functional regulatory
units in a tissue-specific manner and will allow for more relevant
and targeted analysis of the regulatory potential of the human
genome. In this respect, the methodology presented in this paper
could be applied to the widely available population DNA
methylation data in order to rapidly create CRD and TRH maps
in a large number of tissues and conditions. Although our
approach is strictly computational and further experimental
validation is required (such a massively parallel reporter assays -
MPRAs46 and CRISPR/Cas9 based technologies47) to link non-
coding variants and regulatory elements to genes involved in the
dysregulation of immune processes, we provide a way to improve
our understanding of the cell-specific mechanisms of the reg-
ulatory machinery, to reveal the disrupted biological mechanisms
in disease and pave the way for new therapies.

Methods
Subject details. Human Subjects Blood was obtained from donors who were
members of the NIHR Cambridge BioResource (http://www.cambridgebioresource.
org.uk/) with informed consent (REC 12/EE/0040) at the NHS Blood and Trans-
plant, Cambridge.
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Sample collection. Genotyping, DNA methylation, RNA-Seq, and two ChIP-seq
experiments, H3K4me1 and H3K27ac, have been performed in neutrophils,
monocytes and T cells in the scope of the Blueprint Epigenome Consortium. The
data have been downloaded from the European Genome-Phenome Archive.

We used the LCL data from the SysGenetix consortium12.
We integrated PCHi-C data from Javierre et al.22. Their PCHi-C libraries were

sequenced on the Illumina HiSeq2500 platform, then reads were processed using
the HiCUP pipeline48, which maps the positions of di-tags against the human
genome (GRCh37), filters out experimental artifacts, such as circularized reads and
re-ligations, and removes all duplicate reads. Interaction confidence scores were
computed using the CHiCAGO pipeline36. Briefly, CHiCAGO calls interactions
based on a convolution background model reflecting both ‘Brownian’ (real, but
expected interactions) and ‘technical’ (assay and sequencing artifacts) components.
The resulting p values are adjusted using a weighted false discovery control
procedure that specifically accommodates the fact that increasingly larger numbers
of tests are performed at regions where progressively smaller numbers of
interactions are expected. The weights were learned based on the decrease of the
reproducibility of interaction calls between the individual replicates of macrophage
samples with distance. Interaction scores were then computed for each fragment
pair as −log-transformed, soft-thresholded, weighted p values. Interactions with a
CHiCAGO score ≥ 5 in at least one cell type were considered as high-confidence
interactions.

The list of significant trans-eQTLs (FDR ≤ 0.05) from the eQTLGen consortium
was downloaded from the eqtlgen.org website.

Data preparation: ChIP-seq data and methylation data. One of the require-
ments of this study is to get a population scale call set of chromatin peaks. This
implies that the coordinates of chromatin peaks need to be similar and comparable
across samples and cells. We first determined the peak coordinates and then
quantified each individual according to the peak coordinates. To build a population
call set of peaks, we first build for each ChIP-seq assay (H3K4me1 and H3K4me1)
a ‘consensual individual’ by aggregating 1e6 randomly sampled ChIP-seq reads
from 50 neutrophils, 50 monocytes and 50 T-cells, together in a unique BAM file
(therefore containing 150e6 ChIP-seq reads). Then, we carried out the actual peak
calling onto this ‘meta’ BAM file in order to get a consensus set of peaks across
multiple individuals and cell types (leading to the identification of 66770 H3K27ac
peaks and 91528 H3K4me1 peaks). This particular step has been done using the
program findPeaks from the software package HOMER v4.9 (webpage: http://
homer.ucsd.edu/homer/ngs/peaks.html), parameterized with options adapted for
histone marks: -style histone -o auto. We repeated the procedure for each ChIP-
seq assay.

Once all chromatin peaks coordinates are known, we proceeded with the per-
sample quantification. To do so, we used the script annotatePeaks.pl from the
software package HOMER v4.949 in combination with the peak coordinates we
determined. This script counts the number of ChIP-seq reads falling within the
peak coordinates. We run this script using the following options: - noann -nogene
-size given independently for each individual and each ChIP-seq assay and
obtained per-peak read counts that were subsequently normalized over the reads
per sample/assay pair. We then assembled the data into six quantification matrices:
the normalized read counts across the 2 ChIP-seq assays and the three cell types.

For the integrated analysis of the BLUEPRINT and SGX datasets using the same
sample size (n= 94), we randomly selected 94 individuals for each cell type and
perform Molecular phenotype data preparation in a similar way and identified
71009 H3K27ac peaks and 106067 H3K4me1 peaks.

Data preparation: RNA-seq data. The read mapping of the Blueprint data set was
carried out using GRCh37/hg19. Gene expression was quantified from BAM files
using Qtltools quan function. We then filtered out genes that were poorly quan-
tified across samples by removing all genes with more than 10% null RPKM values
across samples. Finally, we only kept the genes in downstream analyses that are
either protein coding or long non-coding RNAs given the GENCODE v15 anno-
tation. We computed the co-expression of genes by calculating their correlation in
expression across the samples at 1% FDR.

Covariate correction and normalization of molecular phenotypes. The varia-
bility in molecular phenotypes (RNA-seq, ChIP-seq and DNA methylation data)
can be from either technical or biological origin. The idea here is to correct for
technical variability only while retaining as much as possible of the biological
variability. In other words, the goal is to maximize the signal-to-noise ratio.
Covariate correction of molecular phenotype data was performed in a similar way
to Delaneau et al. 2019. Briefly, we residualized the molecular phenotype data for
two types of covariates described below: Firstly, we accounted for sex by utilizing
the provided metadata from EGA. Secondly, we conducted PCA on each quanti-
fication matrix and employed the individual coordinates from the first principal
components as covariates to address experimental variation. We progressively
corrected the molecular phenotype data with 2 to 50 PCs and selected the number
of PCs that yielded the maximum number of QTLs identified.

Finally, quantification matrices were rank-normalized on a per phenotype basis
across all individuals so that quantifications match a normal distribution.

We selected 10 PCs to correct our ChIP-seq quantification matrices using
QTLtools correct and then merged the ChIP-seq quantifications matrices to have 1
matrix per cell type. We also selected 10 PCs for the expression arrays and 12PCs
for the methylation arrays.

Building correlation and CRD maps. CRD were called with the method developed
by Delaneau et al., published in Science in 201912.

First, we built correlation maps by measuring interindividual correlation
between ChIP-seq peaks located in the same chromosome with a 250 peaks sliding
window (and retrieving the Pearson correlation coefficients using corrected and
rank-normal transformed data matrix). Then, an agglomerative hierarchical
clustering algorithm is applied per chromosome, in which ChIP-seq peaks are
assigned to clusters and iteratively the clusters are merged as we move up in the
hierarchy. This strategy resulted in a binary tree that regrouped all ChIP-seq peaks
from the same chromosome in which each node delimited a set of highly correlated
ChIP-seq peaks.

CRDs were called by identifying the minimal set of internal nodes that captured
most of the overall correlation mass (i.e., cumulative sum of squared correlation).
To retain an internal node as a CRD, three criteria needed to be fulfilled: i) CRDs
regrouped only highly correlated ChIP-seq peaks: the mean absolute correlation
between all possible pairs of ChIP-seq peaks within a CRD had to be at least twice
as high as the mean correlation between all ChIP-seq peaks in the chromosome; ii)
CRDs had well-defined boundaries: the mean absolute correlation between all pairs
of ChIP-seq peaks involving either the first or the last ChIP-seq peak (on the basis
of their genomic location) had to be at least twice as high as the same value derived
for the first and last peaks on the chromosome; iii) CRDs captured distal
coordination between at least two regulatory elements (REs): ChIP-seq peaks had
to cover at least two non-overlapping regulatory regions. These three criteria were
implemented into an algorithm that processed each binary tree starting from the
root node (node regrouping all peaks of a chromosome) and recursively traversed
the internal nodes of the tree until an internal node fulfilled all three criteria. Then,
declared the internal node and all the peaks downstream as a CRD, stopped to go
deeper by ignoring the children of this node and carried on with other internal
nodes in the tree.

This pipeline was applied to histone peaks as well to CpG islands. Therefore, we
obtained histone CRDs (hCRDs) and methyl CRDs (mCRDs).

We found that hCRDs exhibited a unimodal distribution centered around 40
kb, whereas mCRDs displayed a bi-modal distribution, peaking around 300bp and
40 kb. We thus modeled the distribution using a mixture gaussian model of small
domains (0.2 to a few kb) and large domains (a few kb to 1-2Mb). As CRDs were
defined as domains involving at least two distinct non-overlapping regulatory
regions, we discarded the mode of 300bps likely representing CpG sites located in
the same regulatory region. We set a threshold corresponding to the 0.95 percentile
of the distribution of small domains, to define a set of size-selected methyl CRDs.

CRD specificity across cell types. For determining hCRD and mCRD sharing
between different cells, we compared ChIP-seq peak correlation maps and CpG
sites correlation maps between cells. A CRD is shared between 2 cells if 50% of the
peaks belonging to a CRD in the reference cell are part of a CRD in the query cell.

CRD activity quantification. For CRD activity quantification (aCRD), we applied
a dimensionality reduction approach, i.e., we enumerated all ChIP-seq peaks or
methylation marks per CRD, and took the mean of all single peak quantifications
per individual to retrieve a single quantification value for each individual. When
computing CRD associations we can take the CRD activity quantification vector
rather than individual chromatin peaks belonging to the CRD.

Computing CRD-gene associations. We enumerated all the gene TSS within +/-
1 Mb from the CRD boundaries and tested each one of these genes for association
with the CRD activity. Associations are measured with linear regressions, similar to
the R/lm function, using QTLtools software. We retained the best adjusted nominal
p-value for the number of genes being tested with 1000 permutations. To correct
for the number of genes being tested, we used a false discovery rate (FDR) cor-
rection approach and declared phenotype-variant pairs at FDR 5% threshold as
significant. These steps were carried out with QTLtools cis mode (https://qtltools.
github.io/qtltools/)50. To discover multiple genes with independent effects on a
given CRD, we used the conditional analysis approach implemented in QTLtools .
Briefly, this approach is based on a forward-backward scan of the cis-window
around the phenotypes to automatically find multiple independent gene-CRD
associations, while controlling for a given FDR.

CRD-gene associations specificity across cell types. We quantified CRD-gene
cell type specific activities by considering the activity of the same exact set of peaks
across the three cell types. The fraction of significant CRD-gene associations in
common between the 2 cell types was then calculated by the number of significant
CRD-gene associations in the query cell over the total number of significant CRD-
gene associations of the reference cell (FDR 5%). Associations between gene
expression and CRD activity are measured with linear regressions, similar to the R/
lm function, using QTLtools software.
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CRD-Quantitative Trait Loci (CRD-QTL) mapping. For each CRD activity, we
first enumerated all genetic variants within +/- 1 Mb to the CRD boundaries and
then tested each one of these variants for association with the phenotype and only
retained the best hit (i.e., with the smallest nominal p-value). Associations between
genotype dosages and phenotype quantifications (here CRD activities) are mea-
sured with linear regressions, similar to the R/lm function, using QTLtools soft-
ware. Secondly, we adjusted the best nominal p-value for the number of variants
being tested by permutations. Specifically, we randomly shuffled the phenotype
quantifications 1000 times and retained the best association p-values for each
permuted data set, which effectively gave 1000 null p-values of associations. Third,
to correct for the number of molecular phenotypes being tested throughout the
genome we used a false discovery rate (FDR) correction approach and declared
phenotype-variant pairs at FDR 5% threshold as significant. These steps were
carried out with QTLtools cis mode (https://qtltools.github.io/qtltools/)50. To
discover multiple QTLs with independent effects on a given molecular phenotype,
we used the conditional analysis approach implemented in QTLtools . Briefly, this
approach is based on a forwardbackward scan of the cis-window around the
phenotypes to automatically learn the number of independent QTLs and to identify
the most likely candidate variants, while controlling for a given FDR.

CRD-Quantitative Trait Loci (CRD-QTL) specificity between cell types. To
compare CRD-QTLs between cells, we considered the activity of the same exact set
of peaks across the three cell types. We computed the significant CRD-QTL
associations at 5% FDR is the reference cell type, and extracted these associations
among all the CRD-QTL associations in the reference cell. From the adjusted
p-values we computed the π1 estimate25.

TFBSs enrichment in CRD-QTLs. We incorporated knowledge from external
databases such as Motifmap26 and Remap27. We computed enrichment for the
significant CRD-QTLs within TFs using QTLtools fenrich with 1000 permutations,
and subsequently calculating Fisher’s test odds ratios at 1% FDR. We then
extracted the 50 TFBSs that overlapped the most with ChIP-seq peaks located
within CRDs.

PCHi-C support for molecular phenotype associations. Javierre used the PCHi-
C Blueprint data in 201622. The PCHi-C data comes from 53 samples of the same
cohort. We used the PCHi-C data from Javierre instead of the Blueprint platform
directly because they already computed interaction confidence scores using the
CHiCAGO pipeline36. CHiCAGO algorithms perform normalization and multiple
testing specifically adapted to CHi-C experiments36 and consider PCHi-C inter-
actions significant if the interactions detected by CHiCAGO have a score superior
or equal to 5. We integrate to our analysis the CHiCAGO score to PCHiC inter-
action matrices available for each cell type. We compute the number of associations
supported by PCHi-C (with a CHiCAGO score ≥ 5) over the total number of
associations, to obtain the fraction of associations supported by PCHi-C.

CRD trans associations and Trans Regulatory Hubs. To map inter-
chromosomal CRD-CRD associations, we performed association testing of all pairs
of CRDs belonging to distinct autosomal chromosomes. We corrected for the
number of tests by using the R/qvalue package and used a cutoff of 1% FDR
threshold for downstream analyses. To call Trans Regulatory Hubs in a network of
CRD-CRD associations, we used the sets of CRD-CRD associations at 1% FDR and
detected communities using the R network package R/igraph with the greedy
algorithm.

Gene set enrichment analysis of genes associated to TRHs. To identify gene set
enrichment in the TRHs, we extracted the genes associated to the CRDs involved in
each TRH. We ran the GOrilla algorithm [1] for each TRH separately, on the 25
largest TRHs ranging from 8 to 3727 genes. We provided the algorithm with the
target gene set (genes associated to the TRH) and a background gene set (all the
genes expressed in each cell type). The GO enrichment terms analysis was per-
formed using the default hypergeometric test after Benjamini–Hochberg false
discovery rate correction for multiple testing set at 1% FDR, which led to 10 TRH
remaining.

QTL enrichment in GWAS Annotations. We downloaded the full summary
statistics of selected seven autoimmune diseases: celiac disease (CEL)29, inflam-
matory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis
(UC)30, multiple sclerosis (MS)31, Type 1 diabetes (DT1)32, and rheumatoid
arthritis (RA)33). We also used Type 2 diabetes (DT2)34 as a negative control.
Coordinates of genetic variants of DT2 were lifted over from hg36 to hg37 using
the UCSC liftOver tool.

We also selected the summary statistics of 7 blood cell phenotypes, from the UK
Biobank, available to download from: https://pan.ukbb.broadinstitute.org/. The
accession numbers for the UK Biobank summary statistics reported in this paper
are GWAS Catalog: GCST90002379–GCST90002407. We selected the following
blood traits (BT): Basophil count (BC), Eosinophil count (EC), Red blood cell
count (RBC), White blood cell count (WBC), Lymphocyte count (LC), Neutrophil

count (NC) and Monocyte count (MC). If the lead QTL (<5% FDR) or its LD tag
(L > 0.9) maps to a GWAS variant (P value < 1 × 10−5), then we consider that the
QTL overlaps with a GWAS signal. Here, we calculated the LD information of the
QTLs based on our Whole-Genome Sequencing data using plink51 and 500 kb
window.

Quantile–quantile plots of association p-values (not filtered) were built against a
uniform distribution and the genomic inflation factor was calculated as λ, defined
as the median of the resulting test statistics divided by the expected median of the
normal distribution with one degree of freedom.

In order to systematically measure the statistical significance of the overlaps
between GWAS disease variants and molecular QTLs, we used GARFIELD (GWAS
Analysis of Regulatory or Functional Information Enrichment with LD
correction)35, an enrichment analysis approach taking genome-wide association
summary statistics to calculate odds ratios for association between annotation
overlap and disease status at given GWAS significance thresholds, while testing for
significance via generalized linear modeling framework accounting for linkage
disequilibrium, minor allele frequency, and local gene density. Linkage
disequilibrium was calculated using SNPs from the combined UK10K cohort. For
functional annotations, we used the genomic positions of unique significant
variants (<5% FDR) for histone and methyl CRD-QTLs, in all three cell types. We
tested for enrichment variants reaching 1x10-5 significance threshold for selected
autoimmune diseases and blood traits as listed above. Multiple testing correction
was further performed on the effective number of annotations used.

Mapping trans eQTLs through histone trans CRD network. In order to calculate
trans-eQTLs through histone Trans CRD network, we compiled multiple layers of
associations for each cell type. For scenario 1, we included the following layers of
associations: (1) aCRD-QTLs, which links genetic variants and CRDs together in
cis; (2) CRD-CRD inter-chromosomal associations in trans; and (3) gene-CRD
associations, which links genes and CRDs together in cis. Scenario 2’s included: (1)
eQTLs, which links genetic variants and genes together in cis; (2) gene-CRD
associations in cis; (3) CRD-CRD inter-chromosomal associations in trans; and (4)
gene-CRD associations in cis, which links genes and CRDs together. Overlap of the
discovered trans eQTLs with the significant trans eQTLs from the eQTLGen
consortium44 was performed using on pairs of variants in linkage disequilibrium
(LD > 0.9) as given by the API of the LDmatrix webtool (https://ldlink.nci.nih.
gov)52.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data from the European Genome-Phenome Archive https://ega-archive.org/datasets:
EGAD00001002663 Illumina HiSeq 2000, 193 samples
EGAD00010000850 DNA methylation profiles of monocytes, neutrophils and T cells
from 525 healthy donors
EGAD00001002675 RNA-Seq data for 205 mature neutrophil sample(s)
EGAD00001002670 ChIP-Seq data for 182 mature neutrophil sample(s)
EGAD00001002671 RNA-Seq data for 212 CD4-positive, alpha-beta T cell sample(s)
EGAD00001002673 ChIP-Seq data for 154 CD4-positive, alpha-beta T cell sample(s)
EGAD00001002672 ChIP-Seq data for 172 CD14-positive, CD16-negative classical
monocyte sample(s)
EGAD00001002674 RNA-Seq data for 197 CD14-positive, CD16-negative classical
monocyte sample(s).
The PHi-C data comes from Javierre et al.
The data generated during the current study are available in Supplementary Data 1–5
(namely CRD-gene associations (FDR 5%), CRD-QTLs (FDR 5%) significant trans CRD
associations (FDR 1%) and trans-eQTLs (FDR 5%)).

Code availability
The code for data analysis and figure generation is available at the github repository:
(https://github.com/dianamatata/CRD_immune_cells) and archived at zenodo (https://
zenodo.org/record/7660407). The scripts for figures are found in the folder
CRD_immune_cells/A_CRDs/R_plots.
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