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EEG functional connectivity 
metrics wPLI and wSMI account for 
distinct types of brain functional 
interactions
Laura Sophie Imperatori   1, Monica Betta1, Luca Cecchetti   1, Andrés Canales-
Johnson2,7,8, Emiliano Ricciardi1, Francesca Siclari   3, Pietro Pietrini1, Srivas Chennu4,5 & 
Giulio Bernardi1,3,6

The weighted Phase Lag Index (wPLI) and the weighted Symbolic Mutual Information (wSMI) represent 
two robust and widely used methods for MEG/EEG functional connectivity estimation. Interestingly, 
both methods have been shown to detect relative alterations of brain functional connectivity in 
conditions associated with changes in the level of consciousness, such as following severe brain injury 
or under anaesthesia. Despite these promising findings, it was unclear whether wPLI and wSMI may 
account for distinct or similar types of functional interactions. Using simulated high-density (hd-)
EEG data, we demonstrate that, while wPLI has high sensitivity for couplings presenting a mixture of 
linear and nonlinear interdependencies, only wSMI can detect purely nonlinear interaction dynamics. 
Moreover, we evaluated the potential impact of these differences on real experimental data by 
computing wPLI and wSMI connectivity in hd-EEG recordings of 12 healthy adults during wakefulness 
and deep (N3-)sleep, characterised by different levels of consciousness. In line with the simulation-
based findings, this analysis revealed that both methods have different sensitivity for changes in brain 
connectivity across the two vigilance states. Our results indicate that the conjoint use of wPLI and 
wSMI may represent a powerful tool to study the functional bases of consciousness in physiological and 
pathological conditions.

Functional connectivity (FC) metrics identify statistical (undirected) associations among spatially distinct brain 
areas. Electroencephalography (EEG) and magnetoencephalography (MEG) represent popular neuroimag-
ing modalities for the estimation of FC owing to their high temporal resolution, in the order of milliseconds. 
However, both EEG and MEG suffer from volume conduction, which results from the instantaneous propagation 
of electric fields generated by a primary current source to all (or most) of the on-scalp sensors. Because of this 
linear mixing of different sources on the same sensor, common methods for FC estimation, such as coherence 
or mutual information, may lead to the identification of apparent functional couplings that do not reflect true 
brain inter-regional interactions1–3. To overcome this problem, several new FC methods have been specifically 
designed to minimize the impact of volume conduction effects. In particular, the weighted Phase Lag Index 
(wPLI1) and the weighted Symbolic Mutual Information (wSMI4), represent examples of spectral (wPLI) and 
information-theoretic (wSMI) connectivity estimation methods that are increasingly applied to both EEG and 
MEG data5–19. These two connectivity metrics are modified versions of pre-existing methods (PLI1,20; SMI4) that 
minimise the contribution of ‘(almost-)zero-lag’ interactions, potentially determined by volume conduction. 
These approaches are thus expected to allow identifying true time-lagged functional couplings21–25 in the activity 
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of underlying brain sources, while excluding apparent zero-lag connectivity driven by a mixture of real and spu-
rious relationships26,27.

Both wPLI and wSMI have been applied to explore brain functional dynamics associated with different behav-
ioural states6,12 or potential network-level alterations in pathological conditions (e.g., Alzheimer’s disease13, mul-
tiple sclerosis14, schizophrenia15 and social anxiety disorder16). Interestingly, they have also been suggested to 
allow the identification of variations in functional integration accompanying changes in the level of conscious-
ness4,8–10,17–19. For instance, King and colleagues4 found that wSMI connectivity between centro-posterior areas 
and other brain regions is higher in healthy conscious individuals as compared to patients with unresponsive 
wakefulness syndrome (UWS) or in a minimally conscious state (MCS). Similarly, Chennu and colleagues17,19 
showed that alpha-band wPLI-based functional networks differ between healthy individuals and patients with 
disorders of consciousness (UWS, MCS). In line with this, previous studies9,18 also showed that propofol sedation 
in healthy individuals is associated with a decrease in alpha-band wPLI18 and a relative increase in delta-band 
wPLI connectivity9. These observations across different conditions characterised by altered levels of conscious-
ness are particularly interesting, as they suggest that wPLI and wSMI may offer general, relatively simple and 
reproducible indices of the current level of consciousness of an individual28.

In spite of these promising findings, it is currently unclear whether the two methods provide a similar descrip-
tion of brain inter-regional relationships or account instead for distinct types of functional interactions. In fact, 
wPLI1 is a measure of phase synchronisation that may account for linear interactions but is also expected to be 
sensitive to nonlinear couplings29,30. On the contrary, wSMI4 is thought to reveal nonlinear relationships due to 
its grounding in information theory31. However, the actual performance of the two methods at detecting dis-
tinct types of connectivity dynamics has never been directly compared in simulated or real experimental data. 
Therefore, here we used simulated high-density (hd-)EEG data to specifically investigate and compare the accu-
racy of wPLI and wSMI in identifying different types of interaction dynamics, including both linear and nonlinear 
dependencies. In addition, to evaluate the potential impact of differences between the two methods on the anal-
ysis of real experimental data, we tested wPLI and wSMI on hd-EEG recordings collected from human partici-
pants in distinct behavioural states, namely wakefulness and deep (N3-)sleep, typically characterised by markedly 
different levels of consciousness32. In light of previous observations suggesting that the two methods may allow 
the detection of differences in the level of consciousness4,7–10,17–19 we expected both wPLI and wSMI connectivity 
to differ between wakefulness and N3-sleep. However, here we also asked whether the two connectivity metrics 
provide overlapping or complementary information about changes in brain functional dynamics across the two 
vigilance states.

Results
Simulation of linear and nonlinear interdependencies in hd-EEG data.  The MATLAB-based (The 
MathWorks, Inc., Natick, Massachusetts, USA) ‘Berlin Brain Connectivity Benchmark’ (BBCB) framework33 was 
used to simulate scalp-level hd-EEG recordings (108 channels, 500 Hz, 120 s) including bivariate relationships 
between two cortical sources. We modelled an intra-hemispheric interaction, between the right inferior parietal 
lobule (RIPL) and the right middle frontal gyrus (RMFG), and an inter-hemispheric interaction, between the left 
inferior parietal lobule (LIPL) and the right middle frontal gyrus (RMFG) (Fig. 1). The choice of these locations 
was motivated by previous neuroimaging studies showing that resting-state activity of these areas is modulated 
by conscious perception and attention34–37. As detailed in the Materials and Methods section, we simulated nine 
different coupling relationships between the two sources, respectively based on linear autoregressive (AR) model, 
Hénon map, Ikeda map, Rössler (x, y), Rössler (x, z), Rössler (y, z), Lorenz (x, y), Lorenz (x, z) and Lorenz (y, z) 
(see below for details). For each pair of source locations (LIPL-RMFG and RIPL-RMFG) and each type of simu-
lated source coupling dynamics we modelled 100 different signal-to-noise ratios (SNR; from 0.01 to 1, with steps 
of 0.01), which describe the weighting of simulated source signals with respect to simulated background activity. 
Moreover, 100 different background noise patterns were obtained for each considered SNR. As detailed below, 
the accuracy of wPLI and wSMI at detecting the different interaction dynamics was thus computed both across 
patterns of noise distribution (for accuracy at each SNR) and across SNRs (for an estimate of overall accuracy) 
(Fig. 2).

First, we quantified the content of linear and nonlinear interdependencies in the nine examined interac-
tion dynamics. In particular, to quantify the linear content of the bivariate relationships between the original 
sources we used cross-correlation, which offers a simple measure of similarity of two signals as a function of 
the displacement of one relative to the other38. In order to measure the nonlinear content, we took the average 
of the directional, nonlinear interdependence measure N in both directions of the source dynamics38,39. Most of 
the modelled interaction dynamics presented a mixture of linear and nonlinear dependencies, with the nota-
ble exception of Lorenz (x, z) and Lorenz (y, z), which showed a clear predominance of nonlinear interactions 
(Fig. 3).

Simulated data - whole-brain connectivity.  The whole-brain detection accuracy was computed as 
the proportion of cases in which the whole-brain median connectivity value (across all channel-pairs) of each 
simulated EEG dataset passed the 95th percentile of the corresponding null distribution. The null distribution 
consisted of whole-brain median connectivity values that were computed in matched simulated EEG datasets, 
where the time series between cortical sources of interest were subjected to one of two different surrogate proce-
dures (time-point-shuffling or AAFT-randomization) to destroy their interaction relationship (see Figs 1 and 2). 
Figure 4A shows the mean accuracy of wPLI and wSMI (averaged over all SNRs) computed for each source pair-
ing (intra/inter-hemispheric) and tested interaction dynamics. Figure 4B shows the whole-brain accuracy at each 
SNR. Of note, the accuracy of the two connectivity measures was similar for intra- and inter-hemispheric con-
nections. The performance of both metrics was similar for the linear relationship in the broadband (0.5–12 Hz) 
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signal. However, wPLI showed higher accuracy than wSMI in the intra-hemispheric case when connectivity in 
the alpha-band (8–12 Hz; corresponding to the range in which the interaction was modelled), was specifically 
considered (Fig. S1). While wSMI performed better at detecting the Hénon map dynamics for high SNRs (≥0.67), 
wPLI performed better at detecting the Ikeda dynamics, especially at intermediate SNRs (0.28–0–86). Both wPLI 
and wSMI showed significant and comparable levels of accuracy for all Rössler (x, y; x, z; y, z) cases at all tested 
SNRs, with the exception of low SNRs (Rössler (y, z) SNRs 0.05–0.08), for which wSMI tended to achieve a better 
detection performance. For the Lorenz (x, y) dynamics, wPLI achieved a better mean intra-hemispheric accuracy 
relative to wSMI, with the strongest differences observed for low SNRs (0.06–0.32). On the other hand, wSMI 
had higher accuracy for identifying Lorenz (y, z) dynamics for all SNRs ≥0.06. Finally, while no overall perfor-
mance differences were observed at detecting Lorenz (x, z)-based interaction dynamics, wPLI tended to achieve 
a higher accuracy for intermediate SNRs, between 0.41 and 0.51. Of note, with the expected exception of the 
Rössler dynamics (see Methods), similar results were obtained when the null distributions were generated using 
phase-shuffling (AAFT) instead of time-point shuffling (Fig. S2).

Simulated data - topographic connectivity.  The topographic accuracy was defined as the proportion of 
simulated EEG datasets (with true interactions between the cortical sources of interest), in which the connectivity 
between the two electrodes closest to the cortical sources passed the 95th percentile of all other electrode pairings. 
Results are similar to those described for whole brain accuracy (Fig. 5). For the linear dynamics, wPLI and wSMI 
showed again similar mean accuracies, but wPLI tended to have higher accuracy for low SNRs (0.05–0.08) and 
high SNRs (>0.94). Accuracy of wPLI (but not of wSMI) further improved for band-limited connectivity in the 
alpha-range (8–12 Hz; Fig. S1), especially for low SNRs (0.04–0.09) as well as high SNRs (≥0.93). For both Hénon 
and Ikeda iterated maps the mean topographic accuracy of wPLI was significantly higher than the mean topo-
graphic accuracy of wSMI. Specifically, in the Hénon case wPLI had higher accuracy especially for SNRs ≥ 0.44, 
while in the Ikeda case it had higher accuracy at low and intermediate SNRs (0.14–0.50). Both wPLI and wSMI 
showed high levels of mean accuracy for the three Rössler cases (x, y; x, z; y, z), although wPLI performed signif-
icantly better than wSMI in the intra-hemispheric case of Rössler (x, y), the interhemispheric case of Rössler (x, 
z) and both inter-and intra-hemispheric cases of Rössler (y, z). The evaluation of accuracy levels as a function of 
SNR showed that wSMI tended to perform better than wPLI for low SNRs (0.11–0.21) in the Rössler (y, z) case, 
while it showed a steep decrease in accuracy at high SNRs (R-R Rössler (x, y) ≥0.75; L-R Rössler (x, z) ≥0.86; 
L-R/R-R Rössler (y, z) ≥0.76/0.83). Finally, while wPLI and wSMI showed similar mean accuracy in the Lorenz 
(x, y) case (with wPLI performing relatively better for SNRs in the range 0.03–0.06), only wSMI was able to detect 
interactions based on Lorenz (x, z) and Lorenz (y, z) dynamics (Lorenz (x, z) ≥0.07; Lorenz (y, z) ≥0.04).

 A video of the mean wPLI and wSMI connectivity matrices across all simulated hd-EEG recordings as a 
function of SNR for all nine investigated dynamics can be found in Supplementary Material Movie S1. Moreover,  
a video of frequency-resolved wPLI computed between the electrodes spatially closest to the sources can be found 
in Supplementary Material Movie S2.

Figure 1.  From modelling source dynamics to EEG field patterns. Intra- and inter-hemispheric interactions 
between two source pairs were modelled: the first source was placed either in left (LIPL) or right (RIPL) inferior 
parietal lobule, while the second source was kept in the right middle frontal gyrus (RMFG). Source amplitudes 
are shown using a lateral view of the brain, while resulting EEG field potentials are plotted using a top view of 
the scalp (A.U. stands for arbitrary unit). The brain images were plotted using the Matlab functions provided in 
the BBCB toolbox33.
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Figure 2.  Outline of the methodological design for the assessment of whole-brain accuracy. The source 
locations LIPL, RIPL and RMFG are marked as yellow dots in the brain plots, while the red line indicates a 
true interaction between two of the sources (RIPL-RMFG). For each SNR in the range 0.01–1.00 (0.01 steps; 
N = 100) different spatial distributions (N = 100) of random background noise (marked as green dots) were 
generated in combination with true interactions between the source pairs and projected at scalp level. The 
corresponding null distributions were obtained through time-point-shuffling of the original interacting source-
level timeseries. The same procedure has been applied to all interaction dynamics and tested source pairs (intra/
inter-hemispheric). The brain images were rendered using Surf Ice (vers. 5 May 2016, 64-bit).

Figure 3.  Linear and non-linear interdependencies between bivariate sources of simulated data. The absolute 
value of cross-correlation (CC; measure of similarity of two series as a function of the displacement of one 
relative to the other) and the interdependence measure N (measure of the nonlinear relationship between 
two time series) were computed for simulated true source time-series (0.5–12 Hz) and the null distribution, 
obtained by shuflling the source time-series (N = 1000, 0.5–12 Hz). For both CC and N, low values indicate 
independence, while high values indicate strong dependence. The differences between the true simulated data 
and its null distribution, i.e. surrogate data, were computed (* for pone-tail < 0.05, Bonferroni-corrected based 
on 18 comparisons). The error bars show the standard deviation for the null distribution. For all cases, N was 
computed using the following parameters (but very similar results were obtained when optimal, individual 
parameters were selected for each time-series): embedding dimension (m = 10), time lag (tau = 5), theiler 
correction (theiler = 50), number of nearest neighbours (nn = 10).
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Experimental data in wakefulness and sleep.  In wakefulness, both wPLI and wSMI revealed signif-
icant levels of connectivity in all tested electrodes (p < 0.05, cluster-corrected), relative to values observed in 
time-point shuffled data (Figs 6 and 7A; 0.5–12 Hz frequency range). In particular, for both measures the highest 
connectivity values were observed in posterior (occipital, parietal) areas. However, in N3-sleep the two methods 
provided different results: wPLI revealed diffuse high connectivity values peaking in frontal areas, while wSMI 
showed reduced connectivity values (Figs 6 and 7B). In line with these observations, the direct contrast between 
wakefulness and N3-sleep also revealed distinct changes based on wPLI and wSMI (Figs 6 and 7C). Specifically, 
while wSMI connectivity was significantly higher for wakefulness as compared to N3-sleep in all areas, there were 
no statistically significant differences in wPLI between these two states of vigilance.

Further analyses focusing on classical frequency bands (delta: 0.5–4 Hz, theta: 4–8 Hz, alpha: 8–12 Hz), 
showed that both wPLI and wSMI were higher in wakefulness than in sleep within the alpha-band (Figs 8 and 9).  

Figure 4.  (A) Mean whole-brain detection accuracy for all nine different relationships between the chosen 
source location pairings (L-R = left IPL to right MFG; R-R = right IPL to right MFG). The green vertical lines 
mark significant differences between wPLI and wSMI (permutation tests, p < 0.05) for each type of interaction, 
pairing of source locations and SNR. The brain images were plotted using the Matlab functions provided in the 
BBCB toolbox33. (B) Whole-brain detection accuracy for all nine different relationships between the chosen 
source location pairings as a function of SNRs. Black dots at the top of each graph mark significant accuracy 
differences between wPLI and wSMI for each specific SNR that were observed for both intra- and inter-
hemispheric conditions.
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However, wPLI was also lower in wakefulness relative to N3 in the delta-band. Frequency-resolved wPLI for 
wakefulness and sleep can be found in Supplementary Fig. S3.

Discussion
The weighted Phase Lag Index1 and the weighted Symbolic Mutual Information4 are two robust functional con-
nectivity approaches increasingly applied to M/EEG data, because of their relative immunity to volume con-
duction effects5–19,25. Here we set out to investigate whether the two methods are able to capture overlapping or 
complementary information regarding variations in brain inter-regional interactions. By combining analyses on 
simulated hd-EEG data and real hd-EEG recordings collected in different states of vigilance, we demonstrated 
that wPLI has an optimal sensitivity for interaction dynamics presenting a mixture of linear and nonlinear com-
ponents, whereas wSMI has higher sensitivity to predominantly nonlinear dynamics. Given that the brain is a 

Figure 5.  (A) Mean topographic detection accuracy for all nine different relationships between the chosen 
source location pairings (L-R = left IPL to right MFG; R-R = right IPL to right MFG). The green vertical lines 
mark significant differences between wPLI and wSMI (permutation tests, p < 0.05) for each type of interaction, 
pairing of source locations and SNR. The brain images were plotted using the Matlab functions provided in the 
BBCB toolbox33. (B) Topographic detection accuracy for all nine different relationships between the chosen 
source location pairings as a function of SNRs. Black dots at the top of each graph mark significant accuracy 
differences between wPLI and wSMI for each specific SNR that were observed for both intra- and inter-
hemispheric conditions.
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highly complex system typically characterised by both linear and nonlinear interaction dynamics40, it may be 
better described through the combined use of different measures30. Consistent with this view, our results suggest 
that the conjoint use of wPLI and wSMI may allow researchers to obtain complementary information about FC 
interactions, and thus to better describe relative changes associated with distinct behavioural states.

Performance of wPLI and wSMI in simulated data.  The ‘Berlin Brain Connectivity Benchmark’ 
(BBCB) framework33 was adapted and employed to generate hd-EEG recordings in sensor-space. This frame-
work allowed us to model different interaction dynamics between two cortical sources, noise with temporal and 

Figure 6.  Whole-brain wPLI (left) and wSMI (right) connectivity in wakefulness and sleep (0.5–12 Hz). Paired 
comparisons were performed between median whole-brain connectivity in wakefulness and N3-sleep, as well as 
between experimental and surrogate data. * marks p < 0.05 (non-parametric permutation tests).

Figure 7.  Topographic wPLI (left) and wSMI (right) connectivity in wakefulness and sleep (0.5–12 Hz). Paired 
comparisons were performed between (A) wakefulness and shuffled surrogate data and (B) N3-sleep and 
shuffled surrogate data and (C) wakefulness and N3-sleep, for wPLI (top row) and wSMI (bottom row). White 
dots mark significant effects (cluster-based non-parametric permutation test, p < 0.05). Colorbars show the 
permutation test statistic for the difference between conditions, so that the red color marks higher values in real 
vs. surrogate data for panels A and B. In panel C, the red color indicates higher values in wakefulness, while 
the blue color indicates higher values in sleep. These images were generated using the ‘topoplot’ function in 
EEGLAB70.
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spatial structure as well as source mixing due to volume conduction, in a highly realistic electromagnetic volume 
conductor (head) model. We generated interaction dynamics with different degrees and types of nonlinearity, 
from linear to exclusively nonlinear, and specifically tested the sensitivity of wPLI and wSMI at detecting these 
inter-regional dependencies. For each of the considered dynamics, we also tested two different source locations 
(intra- and inter-hemispheric interactions) and different signal-to-noise ratios (SNR). Our results showed that the 
phase-based measure wPLI performs generally better at detecting inter-regional couplings presenting both linear 
and nonlinear components. Only in two of the more complex nonlinear coupling cases (Lorenz (x, z) and Lorenz 
(y, z)), characterised by non-significant cross-correlation values (see Figs 4 and 5), wPLI had a very low accuracy. 
Contrarily, the information-theoretic measure wSMI had a significantly higher accuracy for these two interaction 
dynamics, but performed significantly worse for the Ikeda-based couplings and also had lower topographic accu-
racy for Hénon- and Rössler-based couplings.

Figure 8.  Whole-brain, median wPLI and wSMI in wakefulness (W) and N3-sleep in different frequency bands 
(delta: 0.5–4 Hz, theta: 4–8 Hz, alpha: 8–12 Hz). Error bars show the standard error of the mean. Horizontal bars 
and * mark significant differences between conditions (non-parametric permutation tests, p < 0.05, Bonferroni-
corrected for the number of tested frequency bands).

Figure 9.  Topographic wPLI and wSMI connectivity in wakefulness (W) and N3-sleep in different frequency 
bands (delta: 0.5–4 Hz, theta: 4–8 Hz, alpha: 8–12 Hz). Colorbars show the permutation test statistic for the 
differences between wakefulness and N3-sleep. The red color marks higher values in wakefulness, while the 
blue color indicates higher values in sleep. White dots mark significant differences between conditions (cluster-
based non-parametric permutation test, p < 0.05). These images were generated using the ‘topoplot’ function in 
EEGLAB70.
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With few exceptions, the accuracies of wPLI and wSMI were very similar for intra- and inter-hemispheric 
interactions, and the detection accuracy of both methods tended to increase with an increase in SNR. Of note, the 
spatial (topographic) accuracy of wSMI (but not the whole-brain accuracy based on median global connectiv-
ity) showed instead a decrease at high SNRs for linear and Rössler interactions. This accuracy reduction may be 
related to an increase in the spatial spreading of the source signals to more distant scalp electrodes with increasing 
SNRs, which may have led a greater proportion of electrodes to detect the underlying functional coupling (loss 
of spatial resolution). Moreover, at high SNRs a relative ‘cross-contamination’ may be expected to occur between 
the two electrodes spatially closest to the interacting sources. In particular, the activity of one source may be 
‘volume-conducted’ to the electrode closest to the other source (and vice-versa). Due to the particular weighting 
approach used for wSMI, the increased similarity between the signals of these particular channels may limit the 
maximum attainable connectivity strength, thus reducing the relative difference with respect to all other electrode 
pairings. On the other hand, such effects of volume conduction at high SNRs can be expected to have had only 
a marginal impact on (or even to improve) the estimation of whole-brain accuracy with respect to null-datasets 
generated from point- or phase-shuffled time-series.

In the linear case, where interacting dynamics were fixed in the alpha-range, we noted that both wPLI and 
wSMI had a lower accuracy at detecting the presence of interacting sources when evaluating the broadband 
signal instead of the band-limited one (Supplementary Fig. S1). As described below, this was confirmed by the 
analysis on experimental data, which revealed a higher sensitivity of the band-limited analysis to potential dif-
ferences across vigilance states (Fig. 9). These observations indicate that wPLI and wSMI may have a lower sen-
sitivity when computed on a frequency range larger than the one in which the interaction actually occurs. For 
this reason, a-priori knowledge regarding the potential frequency ranges of interest should be used to guide the 
analyses whenever possible. In this respect, wPLI has the important advantage of also allowing more exploratory, 
frequency-resolved analyses; however, such analyses may raise statistical issues when many distinct interactions 
have to be tested.

Overall, our results demonstrated that wPLI, as a measure of phase synchronization, performs generally better 
at detecting functional couplings presenting a mixture of linear and nonlinear dynamics, whereas wSMI, funda-
mentally rooted in information theory, has higher sensitivity for exclusively nonlinear dynamics, such as Lorenz 
(x, z) and Lorenz (y, z) dynamics. Importantly, present results also demonstrated that both wPLI and wSMI are 
characterised by a high spatial (topographic) accuracy, thus supporting their use in graph theoretical analysis at 
sensor-level.

Performance of wPLI and wSMI in distinct states of vigilance.  To evaluate whether the results we 
obtained from simulated EEG data are relevant to the analysis of real experimental data, we tested and compared 
the performance of the two connectivity measures in hd-EEG recordings collected in humans in different states 
of vigilance. In fact, both wPLI and wSMI have been previously shown to successfully identify relative varia-
tions in brain FC associated with different degrees of consciousness under anaesthesia or following severe brain 
injury4,8–10,17,18. Based on these premises, here we asked whether the two methods may identify similar or distinct 
changes associated with variations in the level of consciousness of healthy subjects from wakefulness to deep 
NREM-sleep (N3). In humans, N3-sleep is characterised by the occurrence of large and diffuse EEG slow waves 
(0.5–4 Hz), by relative sensory disconnection41 and by a low probability of having any conscious experiences 
(dreams)42. It has been suggested that slow waves, representing the alternation of neuronal silence (off-period) 
and firing (on-period), and occurring out-of-phase in different cortical areas, may contribute to the fading of 
consciousness through the interruption of causal interactions between distant brain regions43–46.

Here we showed that N3-sleep is associated with a significant and diffuse decrease in wSMI connectivity within 
the 0.5–12 Hz frequency range. This difference appeared particularly prominent in posterior brain areas. In con-
trast, we observed no significant differences between wakefulness and N3-sleep in broadband wPLI-connectivity. 
A band-limited analysis revealed that changes in wSMI were mainly driven by an overall decrease in alpha 
(8–12 Hz) connectivity in N3 relative to wakefulness. Of note, alpha-band wPLI connectivity also showed a sim-
ilar, but more localized, decrease during N3-sleep, especially in posterior areas. These results are in line with 
previous work showing that the transition into unconsciousness due to sedation or physiological sleep (stage N1/
N2) is associated with a decrease in alpha wPLI-connectivity7,9,10,18,47, especially in posterior regions9,10 and for 
posterior-anterior interactions7,18,47. Moreover, they are consistent with evidence indicating that relative to healthy 
individuals, patients with unresponsive wakefulness syndrome (UWS) or in a minimally conscious state (MCS) 
display a connectivity decrease that mainly affects posterior areas or posterior-anterior interactions4,8,17,19,48. 
Similarly, alpha-band wSMI has been found to be lower in UWS as compared to MCS patients8. Therefore, our 
findings indicate that both wPLI and wSMI may be suited to capture variations in alpha-connectivity associated 
with relative changes in vigilance and/or responsiveness to the environment. However, wPLI also revealed a rel-
ative increase in delta (0.5–4 Hz) connectivity. Importantly, the change in delta-wPLI is consistent with the pres-
ence of traveling slow waves during sleep49 as well as with a recent similar observation of increased parietal and 
parieto-frontal delta-wPLI connectivity during propofol sedation9 and midazolam-based anaesthesia10. Moreover, 
wPLI in the delta/theta-band has been shown to be increased in patients with disorders of consciousness (UWS, 
MCS), relative to healthy awake subjects17.

In summary, the analysis of wPLI- and wSMI-based connectivity in different states of vigilance confirmed 
our findings in simulated data, indicating that the two methods are sensitive to distinct brain dynamics. While 
an in-depth characterization of the differences in FC between wakefulness and sleep was beyond the scope of the 
present work, our results also suggest that wakefulness may be characterised by a mixture of ‘simple’ (i.e., mainly 
linear; better described by wPLI) and more complex (i.e., mainly nonlinear) interactions (better described by 
wSMI) in the alpha range, while sleep may be dominated by ‘simpler’ delta-band connectivity (better captured 
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by wPLI), likely reflecting the occurrence of traveling slow waves. This interpretation is in line with previous 
observation indicating that N3 is associated with lower complexity or entropy40,50 as compared to wakefulness.

Conclusions
Our study demonstrates that wPLI and wSMI connectivity metrics provide distinct but complementary informa-
tion about inter-regional interactions and indicate that the combined use of these two methods may provide a 
better and more complete characterization of brain functional dynamics within and across distinct behavioural 
states. In particular, we showed that while wPLI displays an optimal sensitivity for interaction dynamics with 
linear and nonlinear components, wSMI has a higher sensitivity for predominantly nonlinear dynamics. We also 
showed that this finding may have significant implications for the analysis of functional connectivity in states of 
vigilance associated with different levels of consciousness. In light of recent evidence indicating that the inde-
pendent application of wPLI and wSMI connectivity metrics may allow to identify changes in brain connectivity 
associated with variations in the level of consciousness, our results point to their possible combined use as a pow-
erful tool to increase their accuracy and predictive value. Nonetheless, our findings may also have more general 
implications for the study of functional connectivity in a wide variety of behavioural conditions characterised by 
distinct underlying brain dynamics.

Materials and Methods
Ethics statement.  The collection of experimental EEG data in wakefulness and sleep was approved by the 
ethical committee of the Canton of Vaud (Switzerland) and performed in accordance with relevant guidelines and 
regulations. Written informed consent was obtained from each subject.

Simulation of hd-EEG data.  The MATLAB-based ‘Berlin Brain Connectivity Benchmark’ (BBCB) frame-
work33 was used to simulate realistic hd-EEG recordings (108 channels, 500 Hz, 120 s). In particular, the simulated 
electrical activity was generated by imposing bivariate relationships between two cortical sources, which were 
then projected at scalp level using a biophysically realistic model of electrical current propagation in the head. 
The adopted model was based on the standard ICBM152 anatomical template51 and included 6 tissue types: scalp, 
skull, air cavities, gray matter, white matter and cerebrospinal fluid (CSF). A finite element model (FEM) was 
solved to generate the lead field.

We modelled both intra- and inter-hemispheric interactions between pairs of cortical sources (see Fig. 1, 
including corresponding MNI coordinates). Specifically, the first source was placed either in left (LIPL) or right 
(RIPL) inferior parietal lobule, while the second source was kept in the right middle frontal gyrus (RMFG). The 
choice of these locations was motivated by previous neuroimaging studies showing that resting-state activity 
of these areas is modulated by conscious perception and attention34–37. Moreover, studies that employed wPLI 
and wSMI to investigate functional connectivity in different states of consciousness specifically suggested that 
a key correlate of such changes may be represented by variations in the strength of interactions across posterior 
and anterior brain areas7,18,47. For the sake of simplicity, only two interacting sources at a time were considered: 
LIPL-RMFG (inter-hemispheric) and RIPL-RMFG (intra-hemispheric).

As detailed below, we simulated nine different coupling relationships between the two sources, which dif-
fered in the type and relative degree of linear and nonlinear components. For each pair of source locations 
(LIPL-RMFG and RIPL-RMFG) and each type of simulated source coupling dynamics we also modelled 100 
different signal-to-noise ratios (SNR; from 0.01 to 1, with steps of 0.01), which describe the weighting of simu-
lated source signals with respect to simulated background activity. As detailed below, 100 different background 
noise patterns were obtained for each considered SNR. Specifically, brain noise nb(t) was generated by placing 500 
mutually statistically independent time-series characterised by 1/f-shaped power (pink noise) and random phase 
spectra at an equal number of random locations sampled from the entire cortical surface. Moreover, spatially 
and temporally uncorrelated sensor noise ns(t) was sampled from a univariate standard normal distribution. The 
overall noise contribution was defined as noise n(t):
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where n(t)F is the Frobenius norm. The simulated hd-EEG recording was generated according to:
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where sint corresponds to the signal contribution of the sources of interest to the EEG scalp signal (i.e. sint is the 
projected source interaction to the EEG sensors through multiplication of the lead field with the source time 
courses, mapped to two patches of the cortical surface). The parameter α is related to the signal-to-noise and 
~n t( ) is the filtered version of n(t) in the frequency-range of interest (8–12 Hz for linear dynamics, 0.5–12 Hz for 
the non-linear dynamics).

Source interaction dynamics.  For each source pairing (LIPL-RMFG, RIPL-RMFG), nine different cou-
pling relationships were simulated by modelling the time-series of the two sources based on linear (AR) and 
nonlinear (Hénon52, Ikeda53, Rössler54, Lorenz55) dynamical systems.

Linear interactions.  The time courses of the two sources were modelled using bivariate linear autoregressive 
(AR) models of order 5:
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where aij(p), i,j ∈ {1, 2}, p ∈ {1, .., P} are linear AR coefficients, and εi(t), i ∈ {1, 2} are uncorrelated standard nor-
mal distributed noise variables. The off-diagonal entry a12(p) was set to zero, while a21(p) was set to 0.5. Thus, 
interactions arise from a unidirectional time-delayed influence of z1 on z2. Moreover, the generated time series 
were bandpass-filtered in the alpha band (8–12 Hz) using an acausal third-order Butterworth filter with zero 
phase-delay33. We decided to simulate alpha oscillations with a clearly defined sender-receiver relationship, as 
they are also a key feature of brain activity in physiological wakefulness56.

Nonlinear interactions.  Several distinct non-linear dynamics were selected in order to represent a wide-range of 
possible functional interactions. Among the chosen dynamics, the Hénon map and the Rössler systems have 
previously been employed by Wang et al.57 to test different functional connectivity measures. The time courses of 
the two sources were modelled by considering each one as a time-varying state variable of a specific dynamical 
system. In particular, we considered four different nonlinear systems: two defined by two-dimensional 
non-iterated maps (Hénon52,57 and Ikeda53) and two represented by three-dimensional nonlinear ordinary differ-
ential equation systems (Rössler54,57 and Lorenz55). Dynamical systems describe the motion of a point in a multi-
dimensional state space, where the starting point is defined by the initial conditions of the system. For each 
system all potential combinations of variables have been considered as representing different interaction dynam-
ics, i.e. Hénon (x, y), Ikeda (x, y), Rössler (x, y), Rössler (x, z), Rössler (y, z), Lorenz (x, y), Lorenz (x, z), Lorenz (y, 
z). The MATLAB-based Chaotic Systems Toolbox was used to compute the time series for the selected nonlinear 
systems, and the respective parameters were chosen to achieve complex chaotic behaviour: Hénon map [a = 1.4; 
b = 0.3], Ikeda map [μ = 0.9], Rössler dynamics [a = 0.2, b = 0.2, c = 5.7, x0 = 0.1, y0 = 0.1, z0 = 0.1, h = 0.1], 
Lorenz dynamics [σ = 10, β = 28,  = 8/3, x0 = 0.1, y0 = 0.1, z0 = 0.1, h = 0.1]. Due to the complex nature of these 
dynamics, they have not been limited to a specific frequency band.

Connectivity analysis.  The simulated EEG datasets (108 channels, 500 Hz, 120 s) generated for each cou-
pling model were divided into 60 non-overlapping 2 s-epochs1,4,58. Then FC was computed for each epoch and 
pair of electrodes. While wPLI and wSMI could be theoretically applied to source-modelled EEG data, they are 
most commonly applied at scalp-level. For this reason all present analyses were performed by computing con-
nectivity values between pairs of scalp EEG-sensors. Analyses were focused on the 0.5–12 Hz frequency range. 
Before computing connectivity measures, a current-source-density transform59 was applied to the EEG data, as 
in previous works1,4. This method provides a reference-independent signal and acts as a spatial filter, leading to a 
relatively improved spatial resolution60.

wPLI.  The wPLI measures the extent to which phase angle differences between two time series x(t) and y(t) are 
distributed towards positive or negative parts of the imaginary axis in the complex plane (similar to the PLI1,20). 
The underlying idea is that volume-conducted activity accounts for the greatest proportion of detected 0° or 180° 
phase differences between signals. Therefore, to obtain a conservative estimate for real, non-volume conducted 
activity, only phase angle distributions predominantly on the positive or negative side are considered. The PLI is 
defined as the absolute value of the sum of the signs of the imaginary part of the complex cross-spectral density 
Sxy of two real-valued signals x(t) and y(t) at time point or trial t.
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While PLI is already insensitive to zero-lag interactions, the weighted Phase-Lag Index1 further addresses 
potential confounds caused by volume conduction, by scaling contributions of angle differences according to 
their distance from the real axis, as almost ‘almost-zero-lag’ interactions are considered as noise affecting real 
zero-lag interactions:
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The wPLI is based only on the imaginary component of the cross-spectrum, and thus implies robustness to 
noise compared to coherence, as uncorrelated noise sources cause an increase in signal power21. Here wPLI was 
computed using the Fieldtrip toolbox61 (multi-taper method fast Fourier transform, single Hanning taper1, 0.5 Hz 
frequency resolution). The mean value across the frequency-bins in the frequency range of interest was computed 
to obtain a single wPLI coupling value (Broadband 0.5–12 Hz; Delta 0.5–4 Hz; Theta 4–8 Hz; Alpha 8–12 Hz).

wSMI.  The wSMI4 evaluates the extent to which two EEG signals present non-random joint fluctuations, sug-
gesting sharing of information. The time series X and Y in all EEG channels are first transformed into sequences 
of discrete symbols (X̂, Ŷ). The symbols are coded according to the trends in amplitudes of a specific predefined 
number of consecutive time points. We chose the kernel k to be 3, implying that the symbols are constituted of 
three elements, leading to 3! = 6 different potential symbols in total4,8. The temporal separation of elements that 
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constitute a symbol was set to be τ = 14 frames (τt = 28 ms), such that the maximum resolved frequency was 
= = = .

τ
f Hz11 9max

fs Hz
xkx

500
3 14

. Prior to wSMI computation, the signal was low-pass-filtered using the ‘ft_pre-
proc_lowpass’ FieldTrip function with an additional mirror padding (‘ft_preproc_padding’) of 1 s before and after 
each individual epoch to avoid potential filter edge-artifacts. For the analysis in frequency bands, a bandpass-filter 
(‘ft_preproc_bandpass’) was used with the same padding scheme. For the additional computation of wSMI in 
delta- and theta- bands in experimental EEG recordings, τ was chosen accordingly (τ = 41 frames and τ = 21 
frames, respectively). 

The joint probability of each pair of symbols co-occurring in two different time series is computed to estimate 
the symbolic mutual information (SMI) shared across two signals. To address volume conduction artifacts, the 
weighted symbolic mutual information disregards co-occurrences of identical or opposite-sign signals.

∑ ∑=ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆˆ ˆ ˆ ˆX Y

log k
w x y p x y log p x y

p x p y
wSMI( , ) 1

( !)
( , ) ( , ) ( , )

( ) ( ) (6)x X y Y 

The wSMI can lead to negative values, given that it is a weighted mutual information measure, a form of 
weighted relative entropy62.

Statistical procedure for simulated data.  The accuracy of wPLI and wSMI was evaluated at whole-brain 
and topographic levels, respectively indicating i) the ability to detect the presence of statistical dependencies in 
the overall (median) connectivity across all pairs of electrodes (see Fig. 2), and ii) the ability to detect a signif-
icant interaction between the pairs of electrodes spatially closest to the actual brain sources among all pairs of 
electrodes.

Whole-brain accuracy.  For each source pairing (LIPL-RMFG, RIPL-RMFG), tested interaction dynamics and 
SNR, the whole-brain detection accuracy of wPLI and wSMI was computed as the proportion of cases (N = 100 
datasets differing by their respective spatial noise distributions), in which the whole-brain median connectivity 
value (across all electrode-pairs) of simulated EEG data passed the 95th percentile of a null distribution obtained 
after time-point-shuffling of the original source-level timeseries (N = 100 permutations; Fig. 2). To account for 
the small number of permutations, a generalised Pareto distribution was used to model the tail of the null dis-
tribution, using the PALM (Permutation Analysis of Linear Models) software63. Of note, we chose to focus on a 
time-point-shuffling procedure instead of phase-shuffling, since the latter can introduce spurious interdepend-
ences between time-series, especially for the Rössler dynamics64. However, in the Supplementary Material, we 
also present results obtained with null distributions generated by phase-shuffling the original time-series using 
the Amplitude-Adjusted-Fourier-Transform (AAFT) procedure65,66. With the expected exception of the Rössler 
dynamics, the two approaches provided similar results (see Fig. S2).

Topographic accuracy.  For each source location pairing, interaction dynamics and SNR, the topographic 
accuracy was defined as the proportion of simulated EEG datasets (N = 100 differing by their respective spa-
tial noise distributions), in which the connectivity between the two electrodes spatially closest to the cortical 
sources (minimum Euclidean distance) passed the 95th percentile of all other electrode pairings in each simulated 
EEG-recording with the same underlying brain noise (N = 5778 channel pairs).

In summary, for both approaches, a threshold corresponding to the 95th percentile of the respective 
null-distributions (surrogate data for whole-brain connectivity, and connectivity of all electrode-pairs in top-
ographic analysis) was regarded as the limit for the detection of significant FC interactions (α = 0.05). The 
mean total accuracy of wPLI and wSMI was computed as the mean of accuracies obtained across all SNRs. 
Non-parametric permutation tests (N = 10000, p < 0.05) were used to compare the performance of the two met-
rics at each SNR and for mean accuracy. Specifically, for each examined condition, the difference in mean accu-
racy between wPLI and wSMI was compared with a null distribution obtained by randomly ‘reassigning’ to the 
two metrics the values of accuracy determined for the different SNR configurations. A similar procedure was used 
to compare performance of wPLI and wSMI for different spatial distributions of noise at each SNR.

Experimental hd-EEG recordings.  To verify whether potential differences between wPLI- and 
wSMI-based FC metrics in recognising distinct interaction dynamics have actual implications for the analy-
sis of real experimental data, an additional investigation was performed on hd-EEG recordings (257 channels, 
Electrical Geodeisics Inc.; 500 Hz) obtained in different behavioural states. Specifically, data were obtained from 
12 healthy volunteers (25 ± 4 yrs, 6F) during distinct states of vigilance: relaxed wakefulness with eyes closed (W) 
and deep (N3-)sleep. The data was recorded as part of a larger project aimed at exploring the effects of changes in 
visual experiences during wakefulness on NREM-sleep features67.

Brain activity during N3-sleep was extracted from an overnight EEG recording in the sleep laboratory, whereas 
wakefulness data consisted of six minutes of eyes-closed resting-state activity obtained at 8AM the following 
morning, when homeostatic sleep pressure is expected to be at its minimum68. All continuous wake and N3-sleep 
recordings were band-pass filtered between 0.5 and 45 Hz (NetStation 5, EGI), and the first and last 5-s of data 
were discarded to account for filter-related edge-artifacts. Bad channels were identified upon visual inspection 
and interpolated using spherical splines: we removed 31.5 ± 12.9 electrodes (corresponding to 12.3 ± 5.0% of all 
electrodes) in sleep recordings, and 30.8 ± 8.6 electrodes (12.0 ± 3.4%) in wakefulness recordings. Sleep scoring 
was performed using standard procedures69 and all 30 s epochs containing N3-sleep were extracted and concate-
nated. EEG recordings during wakefulness were divided into non-overlapping 5 s segments and visually inspected 
to identify and reject clear artifacts. Overall, 27.3 ± 13.8% of all epochs were discarded due to artifacts, while in 
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deep sleep no epochs were discarded. Indeed, large artifacts caused by eye movements, movements or muscular 
activity are typically absent or greatly reduced while in deep sleep.

For both wakefulness and sleep data, a procedure based on Independent Component Analysis (ICA) was used 
to remove residual ocular, muscular, and cardiac artifacts70. For each subject, we randomly extracted and analyzed 
the minimum common number (across subjects) of artifact-free 2s-long epochs of wakefulness data, correspond-
ing to 70 segments (i.e. 140 s; the first 0.5 s and the last 0.5 s of each 5 s segment were discarded). The same amount 
of data (i.e. 70 2s-epochs; 140 s) was randomly selected from N3-sleep that occurred during the first half of the 
night. From this selection, we excluded epochs representing potential outliers in terms of signal power within 
classical frequency bands. Specifically, the Power Spectral Density (PSD; Welch’s method, Hamming windows, 
8 sections, 50% overlap) of all N3 2s-epochs was calculated in delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), 
sigma (12–16 Hz), beta (18–25 Hz), gamma (30–45 Hz) and broadband (0.5–45 Hz) frequency ranges. Then, out-
lier segments for any of the seven considered frequency ranges (i.e., threshold = median PSD ± 2 median absolute 
deviations; MAD) were excluded from the random selection procedure (see Fig. S4).

For each condition and channel, the median wPLI and wSMI connectivity of each electrode to all other 
scalp electrodes was computed in all epochs for the 0.5–12 Hz frequency range (i.e., as in simulated data). The 
median one-to-all connectivity of each electrode was computed and compared to the average of the median 
one-to-all connectivity across surrogate datasets (1000 iterations) generated through time-point shuffling of 
the original recordings of each channel. In this approach, the same permutation scheme was used for all sub-
jects, and the global signal, corresponding to the average signal across all electrodes, was re-added to each shuf-
fled dataset to ensure the preservation of the internal characteristics of the data and of the potential spurious 
(volume-conduction-dependent) interactions.

Paired comparisons were performed between i) wakefulness and surrogate data, ii) N3-sleep and surrogate 
data, and iii) wakefulness and N3-sleep (non-parametric permutation test; p < 0.05). Correction for multiple 
comparisons was ensured using a permutation-based supra-threshold cluster correction71,72. In brief, the same 
contrast was repeated (N = 10000 iterations) after shuffling the labels of the two compared sets and the maxi-
mum size of significant electrode-clusters was saved in a frequency table. A cluster-size threshold corresponding 
to the 95th percentile of the obtained distribution (α = 0.05) was applied to correct for multiple comparisons. 
Whole-brain connectivity (median of one-to-all connectivity across all electrodes) was also evaluated and com-
pared to surrogate data using non-parametric permutation tests (N = 10000 iterations; p < 0.05).

Data Availability
The scripts used for simultating and analysing the hd-EEG datasets are available from the first corresponding 
author on reasonable request. The ethical approval granted to the authors does not allow the publication of the 
raw EEG experimental data online. If readers would like to reanalyse the dataset, additional ethical approvals (on 
a individual user and purpose basis) will be required.
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