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Alcohol consumption is a moderately heritable trait, but the ge-
netic basis in humans is largely unknown, despite its clinical and
societal importance. We report a genome-wide association study
meta-analysis of ∼2.5 million directly genotyped or imputed SNPs
with alcohol consumption (gram per day per kilogram body weight)
among 12 population-based samples of European ancestry, com-
prising 26,316 individuals, with replication genotyping in an addi-
tional 21,185 individuals. SNP rs6943555 in autism susceptibility
candidate 2 gene (AUTS2) was associated with alcohol consump-
tion at genome-wide significance (P = 4 × 10−8 to P = 4 × 10−9).
We found a genotype-specific expression of AUTS2 in 96 human
prefrontal cortex samples (P = 0.026) and significant (P < 0.017)
differences in expression of AUTS2 in whole-brain extracts of mice
selected for differences in voluntary alcohol consumption. Down-
regulation of an AUTS2 homolog caused reduced alcohol sensitiv-
ity in Drosophila (P < 0.001). Our finding of a regulator of alcohol
consumption adds knowledge to our understanding of genetic
mechanisms influencing alcohol drinking behavior.

genome-wide analysis | epidemiologic | transcriptional expression analysis

Alcohol drinking accounts for 9% of the disease burden in de-
veloped countries and is linked to more than 60 diseases,

including cancers, cardiovascular diseases, liver cirrhosis, neuropsy-
chiatric disorders, injuries, and fetal alcohol syndrome (1). The
burden of alcohol-associated disease is largely caused by the level of
alcohol consumption in a population, not alcohol dependence (2).
Although much of the population variance of alcohol drinking is
nongenetic, reflecting large societal, lifestyle, and behavioral influ-
ences, there is also an important genetic component (3). Heritability
of alcohol drinking is estimated to be ∼40% (4), and its genetic
component gradually grows in importance as individuals age (3, 5).
Alcohol drinking behavior, as well as alcohol addiction, has complex,
non-Mendelian inheritance patterns, indicating an involvement of
multiple genes (5). Accordingly, any single gene contributes only to
a limited extent to the phenotypes observed in alcohol consumption
(6). In contrast to alcohol addiction, which has been investigated in
numerous genetic studies (5), including recent genome-wide associ-
ation studies (GWAS) analyses (7–9), few genes regulating alcohol
consumption in humans have been described—with the notable ex-
ceptionof alcohol dehydrogenase (3, 5, 10).Thismay, to someextent,
reflect the complexity of the phenotype, because the genetic and
environmental determinants of alcohol drinking behavior may vary
over the lifespan, and there may be substantial heterogeneity of in-
take and measurement across different populations and studies.
Here, we combine discovery through GWAS with functional

genetic studies to identify genetic mechanisms associated with
alcohol drinking behavior. We first analyzed GWAS data on
daily alcohol intake from 26,316 individuals in 12 populations of
European ancestry (Tables S1 and S2A), both for all persons and
for 21,607 alcohol drinkers after exclusion of 4,709 nondrinkers;

this is because abstainers may not drink for cultural, health, or
social reasons, and this group may include former problem
drinkers (11). We then carried out functional genetic studies in
both humans and animal models (Fig. S1).

Results
The geometric mean of alcohol intake among drinkers varied across
the samples from 0.09 to 0.24 g/d per kg in males and from 0.02
to 0.16 g/d per kg in females (Table S1). In age-adjusted single
SNP regressionanalyses (additive geneticmodel) of the contributing
cohorts, adjustment using genomic control (12) for inflation because
of interindividual relatedness or population stratification was mod-
est (λ=1.00–1.05) (Table S2B). In themetaanalyses across cohorts,
quantile–quantile plots also showed good adherence to expectation
(λ = 1.03 for the analyses that included nondrinkers and λ = 1.02
for the analyses among drinkers) (Fig. S2 A and B). We identified
the top-ranking SNP from each of the six GWASmetaanalyses (i.e.,
for males and females combined and for each sex considered sepa-
rately among drinkers and nondrinkers and among drinkers only).
This identified SNPs in or near Ras protein-specific guanine nucleo-
tide-releasing factor 2 (RASGRF2),OTUdomain-containing protein 3
(OTUD3), chromodomain protein on Y chromosome-like (CDYL),
syndecan-binding protein 2 (SDCBP2), neuropilin- and tolloid-like 1
(NETO1), and carboxypeptidase A6 (CPA6) (Tables 1 and 2, Fig. S2
C–H, and Table S3 A and B). To identify further plausible in-
dependent association signals to take forward to replication, we
applied a procedure in each analysis whereby we removed all SNPs
within 200 kb of the top-ranked SNP and then identified the most
significant remaining association as the second-ranked SNP. We
reapplied this procedure to further identify the third-ranked asso-
ciated SNP. Among these second- and third-ranked SNPs, we
identified four that were intragenic, lying within LHFP-like protein 3
(LHFPL3), muscleblind-like protein 2 (MBNL2), GLIS family zinc
finger protein 3 (GLIS3) (Table S3C), and autism susceptibility can-
didate 2 (AUTS2) (Fig. S2E). Only one of these genes, namely
AUTS2, has previously been implicated inneurobehavioral disorders
(13).We, therefore, additionally selected rs6943555, the top-ranking
SNP in AUTS2, for replication (Tables 1 and 2).
Results of the replication analyses (Table S4) for the seven se-

lected SNPs for men and women combined are shown in Table 2.
Allowing for 28 tests [SNPs (7) × men/women (2) × quantile/log
(2)], we set significance level for replication at 1.8 × 10−3; we rec-
ognize that this is conservative, because the tests are not in-
dependent (we did not include an extra degree of freedom formen
andwomencombined, because this is basedona combinationof the
results for men and women considered separately). Of the seven
SNPs tested, only rs6943555 in AUTS2 attained statistical signifi-
cance in the replication analyses according to the above criterion:
P = 1.2 × 10−3 and P = 6.9 × 10−6 for men and women combined
quantile transformation and log-transformed analyses, respectively
(Table 2). In addition, rs6943555 attained genome-wide signifi-
cance overall: P= 4.2 × 10−8 and P = 4.1 × 10−9 (Table 2).
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In the replication cohorts among drinkers, the minor ancestral
allele at rs6943555 is associated with 5.5% lower alcohol con-
sumption (Table 2). Regional association and forest plots for
rs6943555 are shown in Fig. S3 A–C. Additional analyses in
population-based samples with categorical rather than continu-
ous data on alcohol consumption or in alcohol dependence
samples did not yield any significant findings (Table S5 A–C).
Results for men and women considered separately are given in

Table S3 A and B. Although there was a suggestive signal for
rs26907 in RASGRF2 in the initial meta-analysis among drinkers
(log transformed) in men (P = 1.0 × 10−07), this did not achieve
statistical significance in the replication analysis after Bonferroni
correction (P = 2.4 × 10−02).
SNPs rs7590720 and rs1344694 downstream of the peroxisomal

trans-2-enoyl-CoA reductase (PECR) gene have previously been
reported to attain genome-wide significance in alcohol de-
pendence (9). In our analyses of alcohol consumption, P values
for these two SNPs were ≥0.5 in all analyses. We also examined
association data within ±50 kb of 121 candidate autosomal genes
for addictions (alcoholism, other addictions, and disorders of
mood and anxiety) listed in a recent review (14). The SNP with
the lowest P value for each of the 121 genes is shown in Table S6.

On the basis of our GWAS and replication findings, we selected
AUTS2 for further functional genetic characterization in both
humans and animal models. We analyzed gene expression of
AUTS2 in silico using BioGPS (http://biogps.gnf.org/#goto=
welcome) and found widespread expression in numerous human
tissues, including several brain regions (Fig. S3D). In quantitative
PCR experiments of ex vivo human tissue, we detected expression
of AUTS2 in the brain regions most implicated in reinforcement
mechanisms, the frontal cortex, caudate putamen (including the
nucleus accumbens), amygdala (15) and to a lesser extent, liver
(Fig. 1A). We then conducted genotype-specific quantitative PCR
analyses of 96 prefrontal cortex samples from human brain. We
detected increased expression ofAUTS2 in carriers of the minor A
allele of rs6943555 compared with T allele (P= 0.026) (Fig. 1B).
We did not identify nonsynonymous genetic variants after

sequencing the exons most proximal to rs6943555 in 200 indi-
viduals (Materials and Methods).
We further tested the role of AUTS2 in animal models of

alcohol reinforcement. Transcriptional expression analysis of
AUTS2 in whole-brain extracts of seven mouse models, known to
differ markedly in voluntary alcohol consumption (16), revealed
significant expression differences (P < 0.017 after Bonferroni
correction for three probe sets) for two of three probe sets:

Table 1. SNPs selected for replication genotyping: genomic context, reference (minor)/alternative allele, and frequency of reference
(minor) allele

SNP Chr Chr band Nearest gene (bp) Context
Reference (minor)

allele/alternative allele
Frequency of reference

(minor) allele (%)

rs16823039 1 p36.13 OTUD3 (24,351) Intergenic C/T 11
rs26907 5 q14.1 RASGRF2 (0) Intronic/promoter* A/G 17
rs2985678 6 p25.1 CDYL (4,645) Downstream T/C 28
rs6943555 7 q11.22 AUTS2 (0) Intronic A/T 24
rs4500065 8 q13.2 CPA6 (40,136) Intergenic C/G 12
rs8090940 18 q22.3 NETO1 (68,467) Intergenic A/G 29
rs6104890 20 p13 SDCBP2 (612) Intronic T/C 16

Chr, chromosome. Reference (minor) allele and frequency of reference (minor) allele estimated in four cohorts, Cohorte Lausannoise (COLAUS), the
Rotterdam Study (ERGO), Northern Finland Birth Cohort (NFBC), and Turin (>4,000 samples in each cohort; Table S1). Chromosome and position (in Build
36) of SNPs to the nearest gene.
*Dependent on the isoform of RASGRF2.

Table 2. P values in primary GWAS meta-analysis, replication samples, and overall and effect sizes per reference
(minor) allele in replication cohorts for men and women combined: quantile transformation (includes nondrinkers)
and log transformation (drinkers only)

P values

SNP Nearest gene GWAS Replication Overall Effect (95% CI)*

Quantile transformation
rs16823039 OTUD 6.9 × 10−01 4.6 × 10−01 4.0 × 10−01 −0.0028 (−0.0103, 0.0046)
rs26907 RASGRF2 6.4 × 10−02 5.5 × 10−02 7.9 × 10−03 −0.0104 (−0.0209, 0.0002)
rs2985678 CDYL 1.3 × 10−03 5.0 × 10−01 1.3 × 10−01 0.0025 (−0.0047, 0.0097)
rs6943555 AUTS2 8.9 × 10−06 1.2 × 10−03 4.2 × 10−08 −0.0126 (−0.0281, 0.0030)
rs4500065 CPA6 9.9 × 10−07 5.5 × 10−01 5.0 × 10−04 0.0023 (−0.0051, 0.0096)
rs8090940 NETO1 2.5 × 10−05 4.9 × 10−01 6.2 × 10−04 0.0025 (−0.0046, 0.0096)
rs6104890 SDCBP2 1.3 × 10−02 5.4 × 10−01 6.0 × 10−02 −0.0058 (−0.0242, 0.0126)

Log transformation
rs16823039 OTUD 5.3 × 10−02 5.1 × 10−01 1.0 × 10−01 −0.7 (−2.7, 1.4)
rs26907 RASGRF2 7.4 × 10−04 8.7 × 10−02 2.2 × 10−04 −2.6 (−5.5, 0.4)
rs2985678 CDYL 1.1 × 10−06 5.7 × 10−01 8.4 × 10−03 0.6 (−1.4, 2.6)
rs6943555 AUTS2 1.1 × 10−04 6.9 × 10−06 4.1 × 10−09 −5.5 (−7.8, −3.1)
rs4500065 CPA6 5.3 × 10−04 2.4 × 10−01 2.3 × 10−03 1.2 (−0.8, 3.2)
rs8090940 NETO1 4.6 × 10−03 4.9 × 10−01 1.4 × 10−02 0.7 (−1.3, 2.7)
rs6104890 SDCBP2 5.8 × 10−02 2.2 × 10−01 3.0 × 10−01 −3.1 (−7.9,1.9)

Adjusted for sex by stratification in metaanalyses. CI, confidence interval.
*Effect sizes per reference (minor) allele are percentile rank change (quantile transformation) and percentage change (log trans-
formation).
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P = 0.005, P = 0.019, and P = 0.001 (Table S7). Murine AUTS2
maps to a Quantitative Trait Locus (QTL) for alcohol preference
detected on chromosome 5 of high alcohol-preferring (HAP1)/low
alcohol-preferring (LAP1) mice which were found to have highly
significant expression differences of AUTS2 (Table S7) (16).

Behavioral characterization of two different Drosophila in-
sertion mutants in the AUTS2 homolog tay (Fig. 1C) showed
reduced alcohol sensitivity (P < 0.001) (Fig. 1 D and E). Pan-
neuronal down-regulation of tay by RNA interference resulted in
a similar phenotype (Fig. 1 F and G). These alterations in be-
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Fig. 1. Functional genetic analysis of AUTS2. (A)
Tissue-specific quantitative mRNA expression.
Mean mRNA level (SE) of AUTS2, represented by
100/δ Ct, across three independent experiments
in human amygdala, frontal cortex, putamen,
and liver. Mean Ct values for the housekeeping
gene (GAPDH) were similar across tissues: 21.97,
22.42, 21.64, and 19.93, respectively. (B) Genotype-
specific quantitative mRNA expression in hu-
man prefrontal cortex. Generalized linear model
for AUTS2 mRNA levels. Increased AUTS2 mRNA
expression observed in carriers of the minor A
allele of rs6943555 relative to the major T allele;
gene dose effect was significant at P = 0.026.
Regression estimates and SEs are shown for the
predictors in the model; negative normalized ΔCt
values indicate higher expression levels. (C) Line
diagram representing tay (dAUTS2) gene region
of Drosophila melanogaster. Exons are shown as
boxes and positions of P-element insertions by
vertical arrows. Direction of transcription is to the
right (arrow; http://flybase.org). (D and E) Sensi-
tivity to ethanol sedation of flies with dAUTS2/
tay P-element insertion. P-element insertion
mutants KG00195 and NP0941, in the 5′-UTR and
first intron of tay, respectively, exhibit strongly
reduced sensitivity to ethanol sedation relative
to the control strain (F2,23 = 20.7; ***P < 0.001;
n = 8). (F and G) Sensitivity to ethanol sedation of
flies expressing dAUTS2/tay RNAi in neurons. Flies
harboring both the neuronal GAL4 driver elav-
GAL4c155 and the Gal4-responsive UAS-tayRNAi

construct exhibited significantly reduced sensi-
tivity to ethanol sedation compared with control
flies harboring either transgene alone (F2,23 = 7.4;
**P = 0.004; n = 8). (H and I) Ethanol absorption
of flies with reduced dAUTS2/tay. Internal etha-
nol concentrations after ethanol exposure for (H)
tay RNAi experiment and (I) tay mutants. Neuro-
nal expression of dAUTS2 RNAi did not alter
ethanol absorption (F2,23 = 2.55; P = 0.1; n = 8),
and mutants in dAUTS2/tay did not show any
significant difference from controls (F2,11 = 0.252;
P = 0.78; n = 4).
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havior were not caused by decreased ethanol absorption, because
internal ethanol concentrations in mutant flies after ethanol
exposure were similar to controls (Fig. 1 H and I).

Discussion
In this study, we identified at genome-wide significance an as-
sociation of AUTS2 with alcohol intake, and we used functional
genetic studies ex vivo and in animal models to characterize and
further validate the signal from GWAS. This has the advantage
of providing deeper biological insights than from use of GWAS
data alone. The approach may be particularly suited for phe-
notypes such as alcohol drinking behavior for which the genetic
and environmental determinants may vary over the lifespan
(3) and where there may be substantial heterogeneity of both
intake and measurement across the very large population sam-
ples needed for GWAS.
Although the function of AUTS2 is not known, it is de-

velopmentally regulated and a highly conserved neuronal nuclear
protein (17), first described in the context of autism (13) and
mental retardation (18). More recently, it has been associated
with Attention Deficit Hyperactivity Disorder (ADHD) (19),
which is associated with increased alcohol intake (20). AUTS2 is
expressed in striatal dopaminergic neurons (17) involved in re-
ward mechanisms and frontocortical glutamatergic and GABAer-
gic neurons (17) influencing alcohol sensitivity and impulsivity
(21). This neuronal expression pattern is consistent with our
finding of genotype-specific differential expression of AUTS2 in
human postmortem prefrontal cortex and suggests a role for this
gene in primary reinforcement (22). It also provides a possible
mechanism linking AUTS2 with impulsivity, relevant to both
ADHD (19) and alcohol reinforcement.
In our behavioral animal models, we provide corroborative

functional evidence for the involvement of AUTS2 in alcohol
drinking behavior. The findings in mouse models selected for
high vs. low alcohol consumption—especially the observation
that AUTS2 maps to a QTL on chromosome 5 (16) in HAP1 vs.
LAP1 mice—support the involvement of this gene in mecha-
nisms of alcohol reinforcement. In the case of HAP1/LAP1
mice, this may include an involvement of AUTS2 in regulating
alcohol preference (16) as well as impulsivity (23). In contrast,
down-regulation of AUTS2 homolog tay in Drosophila results in
reduced sensitivity to the effects of alcohol, pointing to AUTS2-
mediated regulation of the level of response to alcohol. Al-
though the percent homology shared by mammalian AUTS2 and
Drosophila tay proteins is low, a neurological role for Drosophila
tay has been described (24). A low level of response to alcohol
has been identified as a risk factor for alcohol dependence in
both human and animal studies (25, 26). Thus, our functional
genetic experiments provide evidence for the involvement of
AUTS2 in alcohol drinking behavior across three different spe-
cies. Our results point to different mechanisms by which AUTS2
may influence alcohol consumption, which might vary depending
on the species investigated and its neuro-developmental level as
well as gene expression patterns in different brain regions.
In summary, our approach combining signals from GWAS

with functional genetic studies identifies AUTS2 in the regulation
of alcohol intake in both humans and animal models. Our find-
ings indicate the potential importance of common genetic var-
iants influencing levels of alcohol consumption in the general
population and may lead to a better understanding of mecha-
nisms underlying alcohol drinking behavior.

Materials and Methods
Alcohol Intake Data. Quantitative information on alcohol consumption
among the 21,607 drinkers was obtained from study-specific questionnaires.
It was converted into grams per day intake using standard conversion factors
and divided by body weight (kilograms). In the analyses that included
nondrinkers, we ranked individuals according to intake (grams per day per
kilogram) and performed the data analyses using the resultant study-specific
quantiles. Individuals were ranked 1–N within each population sample
according to intake. We calculated, for each percentage rank, the quantile
value under a unit normal distribution, which was then treated as a quan-

titative variable in subsequent analyses. Where intake was tied, each in-
dividual was randomly assigned a relative rank, and the mean of their
quantile-transformed values was used. For example, if there were M non-
drinkers in the cohort, the ranks 1–M were randomly assigned (without re-
placement) to each of the nondrinkers. In the analyses of drinkers only, we
used log transformation to normalize the data.

GWAS Meta-Analysis. For GWAS, genotyping was done on a variety of plat-
forms (Affymetrix 500K, Illumina HumanHap 300, Illumina 317K, Illumina
370K, and Perlegen 600K); rs6943555 in AUTS2 was directly genotyped on
the Affymetrix 500K platform. Imputation of nongenotyped SNPs in the
HapMap CEU v21a or v22 was carried out within each study using MaCH (27)
or IMPUTE (28, 29) (Table S2A). SNPs were excluded if imputation quality
score assessed by r2.hat (MaCH) or .info (IMPUTE) was <0.5 or minor allele
frequency was <1%. We carried out analyses for men and women combined
(stratified by cohort and sex) and for men and women considered sepa-
rately. We performed age-adjusted single SNP regression analyses under an
additive genetic model using SNPTEST, PLINK, and GENABEL (Table S2A).
Cohort- and sex-specific effect estimates were oriented to the forward
strand of the human genome reference sequence and adjusted for inflation
caused by interindividual relatedness or population stratification using ge-
nomic control (12). We then conducted meta analysis across cohorts using an
inverse variance weighted fixed effects model.

Replication Analyses. For replication, we chose top-ranking SNPs, which were
selected on the basis of (i) association test results from the GWAS meta-
analyses and (ii) biological plausibility. First, we chose the SNP with lowest
P value from independent regions of association in the GWAS metaanaly-
ses for all persons, drinkers only, men and women combined, and men and
women considered separately. Then, for each of these six analyses, we
looked for intragenic SNPs among the second- and third-ranking regions for
which we sought information on biological relevance of the genes for
neurobehavioral traits as a further basis for inclusion in the replication
studies. We carried out direct genotyping or in silico replication of the se-
lected SNPs in seven independent samples with continuous data on alcohol
consumption (Table S4).

Twin Studies. One of each monozygous twin pair was included in the Aus-
tralian Semi-Structured Assessment for Genetics of Alcoholism (SSAGA). In
the Finnish Twin Cohort (FTC), we used mean alcohol consumption if both
twins were drinkers and the value of the drinking twin if the cotwin had
missing data or was an abstainer. Both twins in the Twins U.K. sample were
used with family structure taken into account in the association model.

Fine Sequencing of AUTS2 Proximal Exons. Sequencing of AUTS2 exons most
proximal to rs6943555 was done in 200 individuals from the Data from an Epi-
demiological Study on the Insulin Resistance syndrome (DESIR) study using an
ABI3730xlDNAAnalyzer. It revealedtworarenoncodingmutations(3,815:T/del;
4,123: C/T) in exon 4 of the predicted long isoform and three rare noncoding
mutations (112: C/G; 113: A/G; 331: A/G) in exon 5 in the short isoform ofAUTS2.

Human Brain Tissue and Genotype-Specific Expression. Postmortem sample.
Brains from suicide victims (17male and 10 female) and control individuals (41
maleand28 female), a total sampleof96 individuals,wereobtainedatautopsy
at the Department of Forensic Medicine, Semmelweis University Medical
School (Budapest) (30). The brains were microdissected and stored in the Hu-
man Brain Tissue Bank, Budapest. Medical, psychiatric, and drug histories of
suicides were obtained through chart review and interviews with the at-
tending physician/psychiatrist and family members. Control participants did
not havepsychiatric illness or alcohol or drug abuse during the last 10 y. Causes
of death in control subjects were acute cardiac failure or traffic accident. After
removal from the skull, the brains were rapidly frozen on dry ice and stored at
−70 °C until microdissection (2 d to 2mo later). At time of dissection, the brain
sampleswere sliced into1- to1.5-mmcoronal sections at 0–10 °C. Cortical areas
were cut from the sections using a fine microdissecting (Graefe’s) knife or
microdissectingneedles; thedorsomedial prefrontal cortex (Brodmannarea9)
was dissected just dorsal to the frontopolar area, including the most anterior
portions of the superior and middle frontal gyri. The samples were stored at
−80 °C until further use. Tissue harvesting occurred after written informed
consent was obtained from next of kin and with local ethics committee
(Semmelweis University) approval.
Sample preparation. Total RNA and DNAwere extracted from brain tissue using
TRIzol according to manufacturer’s protocol (Invitrogen). Before cDNA syn-
thesis, the RNA sampleswere prepared using the RNeasyMini Kit (Qiagen) and
treated with RQ1 RNase-free DNase (Promega) following the manufacturer’s
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instructions to ensure no DNA contamination. The concentration of extracted
total RNA and DNAwas determined by measuring absorbance at 260 and 280
nmwith a spectrophotometer. RNAqualitywas analyzedwith theAgilent 2100
Bioanalyzer; 100 ng RNA was used for cDNA synthesis performed using the
Invitrogen SuperScript III first-strand synthesis kit according to the manu-
facturer’s instructions with a mix of random hexamers and Oligo(dT).
Genotyping. SNP rs6943555 was genotyped by single-base extension using
SNaPShot chemistry (Applied Biosystems). Initial PCR amplification was per-
formed usingHotStar TaqDNApolymerase (Qiagen) in a total volume of 12 μL
containing 0.25 μMboth forward and reverse primer and 24 ng genomic DNA.
Thermal cycler conditions consisted of an initial step of 95 °C for 15 min fol-
lowed by 35 cycles of 95 °C for 40 s, 35 cycles of 55 °C for 30 s, and 35 cycles of
72 °C for 40 s, with a final step of 72 °C for 10 min. Primers usedwere forward:
5′-AAACTCAAAACCCACTCCTGAA-3′ and reverse: 5′-CAGTATACATAAACA-
TTGGAAAAGAGG-3′. Amplified samples were incubated with 1 U shrimp al-
kaline phosphatase (USB) and 2 U exonuclease I (New England Biolabs) for 1 h
at 37 °C followed by 15 min at 85 °C. Single-base extension was performed
using the SNaPshot Multiplex Kit (Applied Biosystems) in a total volume of
10 μL containing 2 μL clean PCR product, 1.25 μL SNaPshot master mix, 0.1 μM
extension primer, and ddH2O. Thermal cycler conditions consisted of an initial
step of 95 °C for 2 min followed by 30 cycles of 95 °C for 10 s, 30 cycles of 50 °C
for 5 s, and 30 cycles of 60 °C for 10 s. Extension primer used was 5′-ACATA-
AACATTGGAAAAGAGGAAA-3′. After single-base extension, reaction prod-
ucts were incubated with 1 U shrimp alkaline phosphatase for 1 h at 37 °C
followed by 15 min at 85 °C. Then, 2 μL SNaPshot product was added to
8 μL HiDi formamide and loaded onto a 3130xl Genetic Analyzer (Applied
Biosystems). Data were collected by the Run 3130xl Data Collection (v3.0)
software (Applied Biosystems), and genotypes were ascertained using Gene-
Marker (v1.71) software (Softgenetics). Genotyping yielded 6 minor homo-
zygotes (AA), 33 heterozygotes (AT), and 57 major homozygotes (TT).
Quantitative PCR. Samples were amplified using an ABI Prism 7900HT sequence
detection system (Applied Biosystems) in a final volume of 20 μL containing 2×
power SYBR Green (Applied Biosystems), 4 μL diluted cDNA, and 0.07 μM each
primer. The following thermal cycler conditions were used: 95 °C for 15 min
followedby 95 °C for 30 s and 59 °C for 30 s for 40 cycles each; then, the PCRwas
evaluated by dissociation curve analysis. Primers used were AUTS2 forward:
5′-CGAGAAAATGACCGCAATCT-3′ and AUTS2 reverse: 5′-ACTGTCCCTGCA-
GCTGTTCT-3′; GAPDH (housekeeping gene) forward: 5′-CATGAGAAGTAT-
GACAACAGCCT-3′ and GAPDH reverse: 5′-AGTCCTTCCACGATACCAAAGT-3′.
Statistical analysis. The relative gene expression levels of AUTS2 to GAPDH
(ΔCt) were transformed using normal quantile transformation. Neither
cause of death nor ancestry affected AUTS2 gene expression levels (P = 0.770

and P = 0.739, respectively). We used a generalized linear model to assess
the effect of allele on AUTS2 mRNA levels, with sex, age, postmortem in-
terval, and RNA integrity number included as covariates.
Drosophila Studies. Drosophila strains were obtained from the following
sources: KG00195 (strain 13059) and elav-GAL4c155, Bloomington Drosophila
Stock Center at Indiana University; NP0941 (DGRC 103–825), Drosophila Ge-
netic Resource Center, Kyoto Institute of Technology; RNAi to dAUTS2
(CG9056/tay), Vienna Drosophila RNAi Center (31). All strains were outcrossed
for five generations to the WT strain 2202U (32) before behavioral assays.
Measurement of alcohol tolerance. Sedation assays were performed (33). Each
sample consisted of ∼30 male flies aged 2–4 d posteclosion. Flies were ex-
posed continuously in perforated tubes to a mixture of ethanol vapor and
humidified air at a relative ratio (E/A) of 90 U/60 U (Fig. 1 D and E) or 100 U/
50 U (Fig. 1 F and G).
Ethanol absorption assay. Flieswere exposed to ethanol vapor as follows: 15min
at 100U/ 50U E/A for the tay-RNAi experiment (Fig. 1H) and 10min at 90U/60U
E/A for the mutants (Fig. 1I); after exposure, flies were snap-frozen and pro-
cessed to determine internal ethanol concentration in fly extracts using a kit
(229-29; Genzyme).
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