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c We propose a stochastic evolutionary model in continuous trait axis.
c The model assumes resident-mutant system with very small mutation rate.
c The model is analyzed by population-genetic methods including moment closure.
c We study the first- and second-order stability conditions.
c Convergence stability alone is enough to characterize long-term evolution.
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a b s t r a c t

The evolution of a quantitative phenotype is often envisioned as a trait substitution sequence where
mutant alleles repeatedly replace resident ones. In infinite populations, the invasion fitness of a mutant
in this two-allele representation of the evolutionary process is used to characterize features about long-
term phenotypic evolution, such as singular points, convergence stability (established from first-order
effects of selection), branching points, and evolutionary stability (established from second-order effects
of selection). Here, we try to characterize long-term phenotypic evolution in finite populations from
this two-allele representation of the evolutionary process. We construct a stochastic model describing
evolutionary dynamics at non-rare mutant allele frequency. We then derive stability conditions based
on stationary average mutant frequencies in the presence of vanishing mutation rates. We find that the
second-order stability condition obtained from second-order effects of selection is identical to
convergence stability. Thus, in two-allele systems in finite populations, convergence stability is enough
to characterize long-term evolution under the trait substitution sequence assumption. We perform
individual-based simulations to confirm our analytic results.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The evolution of a quantitative phenotype (e.g., antler size,
sex-ratio, parental effort into offspring survival) is often envi-
sioned as a step-by-step transformation through the successive
invasion of mutant alleles expressing different phenotypic
features than those coded by resident alleles. A simple and
convenient model is the evolution of a one dimensional pheno-
type where only two alleles, mutant and resident, compete
against each other. Once either mutant or resident wins, another

mutant is introduced to trigger a new competition. This trait
substitution sequence provides a basic framework of classic
theories of adaptive dynamics and evolutionary game theory
(Maynard-Smith, 1982; Eshel, 1983; Hammerstein, 1996; Metz
et al., 1996; Champagnat et al., 2006). Given the complexity of the
genetic and demographic processes underlying the trait substitu-
tion process in natural populations, to what extent can the end
points or the polymorphic states of the evolutionary dynamics be
predicated from simple criteria?

The concept of evolutionary stability (Maynard-Smith, 1982;
Eshel, 1983) is born out of the aim of characterizing long-term
phenotypic evolution directly from payoff functions, devoid of the
intricacies of population genetics considerations. The strength of
the concept of evolutionary stability has been forcefully revealed
when analyzing the evolution of continuously varying phenotypes,
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where it has been applied to investigate the evolution of many of
different traits, from the sex-ratio in spatially structured popula-
tions, to body size in prey–predator systems, to the evolution of
other-regarding preferences (e.g., Parker and Maynard Smith,
1990; Bulmer, 1994; Taylor, 1994; Geritz et al., 1998; Vincent
and Brown, 2005; Dercole and Rinaldi, 2008; Leimar, 2009; Akc-ay
and Van Cleve, 2012).

Eshel (1983) identified two questions pertaining to the long-
term stability of a continuous strategy. (i) If z is a phenotype
expressed by most individuals in a population, will the expected
fitness of its carriers be at least as high as the expected fitness to
individuals expressing any alternative phenotype, whenever indi-
viduals carrying the mutant phenotype are in the minority? This
is the question of evolutionary stability. (ii) If a large enough
number of individuals in the population express a phenotype
zþd, which is sufficiently close to z, will it be advantageous for a
mutant individual with deviation d in this population to express a
phenotype even closer to, rather than farther away from z? This is
the question of convergence stability. Eshel (1983) demonstrated
that a positive answer to question (i) does not necessarily imply a
positive answer to question (ii).

Although much attention has been paid to theoretical aspects
of selection in finite population with and without frequency-
dependent selection (e.g., Wright, 1931; Crow and Kimura, 1970;
Gandon and Rousset, 1999; Ewens, 2004; Rousset and Ronce,
2004; Otto and Day, 2007; Lessard, 2005; Lessard and Ladret,
2007; Tarnita et al., 2009; Ohtsuki, 2010), there are few studies
(Rousset and Billiard, 2000; Rousset, 2004) addressing the theo-
retical question of the stability of continuous phenotypes in finite
populations (for discrete strategies, see Nowak et al., 2004; Wild
and Taylor, 2004; Lessard, 2005). Here, random genetic drift can
markedly increase the frequency of a mutant allele even if it
would be always eliminated by selection in a large population.
Thus, a superior allele does not always fix in a finite population.

Under the standard trait substitution sequence assumption
(two-allele system), there are at least three different ways to
determine the evolutionary advantage of a mutant over a resi-
dent. First, by determining whether the direct fitness (or invasion
fitness) of a rare mutant is larger than that of the resident. Second,
by determining whether the mutant has a higher than neutral
fixation probability. Finally, by establishing whether the mutant
has a higher stationary average frequency than the resident allele
in the presence of a low recurrent mutation rate. To the first
order in selection intensity, these three ways of determining the
evolutionary advantage of the mutant are equivalent (Rousset and
Billiard, 2000; Taylor et al., 2007). Hence, singular points and
convergence stability conditions for finite populations can be
ascertained from direct fitness alone.

However, whether disruptive selection and eventually branch-
ing occur at a singular point cannot be determined from con-
sidering only first-order effects of selection. Several studies have
considered second-order effects to answer the question of evolu-
tionary stability (Eshel, 1983; Taylor, 1989; Lessard, 1990; Geritz
et al., 1998). But this has not been much investigated in the
context of the evolution of continuous phenotypes in finite
populations.

While mutual invasion and the coexistence of different phe-
notypes are usually discussed in relation to evolutionary branch-
ing (e.g., Metz et al., 1996), only a few mathematical analysis have
been done in this context from the perspective of stochastic
dynamical systems (Champagnat and Méléard, 2011). Further,
even within the assumption of the trait substitution sequence,
second-order effects on the fixation probabilities and the result-
ing long-term evolutionary dynamics have not been studied by a
stochastic model taking the effect of small population size into
account.

The aim of this paper is to investigate second order effects in
selection intensity and their connection to long-term evolutionary
dynamics within the trait substitution sequence framework. We
first recall standard conditions of evolutionary and convergence
stability by a deterministic model allowing non-rare mutants.
Then we extend this model to finite population size to derive a
stochastic model. We analytically derive stability conditions in the
stochastic model and discuss their relation to standard conditions.
Finally, we apply our results to a pairwise public goods game
where evolutionary branching can occur and compare our results
with results of individual-based simulations.

2. Deterministic model

We consider a haploid population of constant and infinite size.
This population is not subdivided into classes (be it by geography,
age, or stage) and individuals reproduce at discrete time points.
We assume that two alleles segregate in the population. Indivi-
duals carrying a mutant allele, denoted by A, express a continu-
ously varying strategy that takes the value zþd, where z is the
phenotypic value expressed by individuals carrying the resident
allele, say a. In each generation, individuals interact with each
other so that the payoff of an individual depends on its own
phenotype as well as on that of others. Let f ðz1,z2Þ be the payoff
given to a player taking strategy z1 when matched with a player
taking strategy z2. We consider that interactions occur at random
so that we can write the fecundity (the number of offspring
produced) of both types of alleles in the population when the
frequency of the mutant is pA as

FA ¼ pAf ðzþd,zþdÞþð1%pAÞf ðzþd,zÞ

Fa ¼ pAf ðz,zþdÞþð1%pAÞf ðz,zÞ: ð1Þ

The change in the frequency pA of the mutant allele over one
generation obeys the discrete-time version of replicator equation

DpA ¼ pAð1%pAÞðwA%waÞ, ð2Þ

where pAð1%pAÞ is the variance in gene frequency,
wA & FA=½pAFAþð1%pAÞFa( is the fitness of a mutant individual,
while wa & Fa=½pAFAþð1%pAÞFa( is the fitness of a resident so that
fitness defined in this way gives the total number of descendants
of an individual after one full iteration of the life cycle of the
organism (Hamilton, 1964, p. 1).

By way of a Taylor expansion of Eq. (2) around ðz1,z2Þ ¼ ðz,zÞ,
the allele frequency change can be written as

DpA ¼ pAð1%pAÞ d
f 1

f
þ
d2

2
f 11þ2pAf 12

f
%

pAf 1ðf 1þ f 2Þ

f 2

 !" #
þOðd3Þ,

ð3Þ

where fi is the partial derivative of f ð),)Þ with respect to the i-th
argument and fij denotes the function derived once with respect
to the i-th and a second time with respect to the j-th argument
(see Eq. (A.2) in Online Supplement). When d is small, the change
of allele frequency is approximately DpACpAð1%pAÞdf 1=f and the
direction of evolution is determined by the sign of the selection
gradient f 1=f . Since f Z0, the direction of evolution is determined
by the sign of f 1. When f 1a0 holds, selection is unidirectional
(the dynamics of pA is monotonic increasing or decreasing),
independently of the value pA, and thus the sign of f 1 predicts
the direction of evolution on the z-axis.

At a singular point zn satisfying f 1ðznÞ ¼ 0, we have DpA ¼ 0 to
the first order in selection intensity and the direction of selection is
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determined by the second order term in Eq. (3), which reduces to

DpA ¼ pAð1%pAÞ
d2

2
f 11þ2pAf 12

f

! "
þOðd3Þ: ð4Þ

When the residents adopt a singular strategy, the frequency of
mutants taking a strategy znþd decreases to the second order in
selection intensity if

f 11ðz
nÞþ2pAf 12ðz

nÞo0: ð5Þ

Although this is frequency dependent, the standard condition for
evolutionary stability (Maynard-Smith, 1982) is obtained by
assuming vanishing mutant frequencies as it is defined from
FA%Fa evaluated at pA-0 (Bishop and Cannings, 1978, p. 90).
Hence a singular strategy is evolutionarily stable if f 11ðznÞo0.

Whether or not a population will eventually reach a singular
point zn depends on the condition of convergence stability (Eshel,
1983), which can be characterized from the selection gradient
when neither the mutant nor the resident adopts a singular
strategy. As f 1 in Eq. (3) does not vanish and the selection
gradient becomes independent of the frequency of the mutant,
we reproduce the traditional convergence stability condition

df 1ðzÞ
dz

####
z ¼ zn
¼ f 11ðz

nÞþ f 12ðz
nÞo0, ð6Þ

under which the allele that has a closer phenotypic value to zn

replaces the other allele for any allele frequency p.
In summary, we have three standard conditions, one for

singular strategy (QS), one for evolutionary stability (QES), and
one for convergence stability (QCS)

QS : f 1ðz
nÞ ¼ 0

QES : f 11ðz
nÞo0

QCS :
df 1ðzÞ

dz

####
z ¼ zn
¼ f 11ðz

nÞþ f 12ðz
nÞo0 ð7Þ

(Eshel, 1983; Taylor, 1989; Lessard, 1990; Geritz et al., 1998).

3. Stochastic model

3.1. Allele frequency change

3.1.1. Formulation
We now reformulate the previous model and consider that the

population is of constant but finite size N. There are at least two
different ways to study long-term evolution in finite populations.
First, calculating a fixation probability in a model without muta-
tions (Crow and Kimura, 1970). Second, the long-term expected
frequency of the mutant under a selection–drift–recurrent muta-
tion process (Crow and Kimura, 1970). Hence, it is natural to try
to study evolutionary stability either from the fixation probability
of the mutant or from its long-term frequency in the presence of
mutation. In the latter approach, we assume that the mutation
rate and step size is so small that the expected time until a new
mutant appears is much longer than the expected time until
competition between two alleles leads to the fixation of one of
them (separation of time scales assumption, Gillespie, 1991; Metz
et al., 1996; Champagnat et al., 2006). By assuming this vanishing
mutation rate, we can remain in the mutant–resident framework,
or the two-allele system (Rousset and Billiard, 2000; Taylor et al.,
2007).

Let rA,t be the expected frequency of the mutant allele at time
t. Call pAðNAÞ the fixation probability of the mutant in a popula-
tion with an initial number NA of mutants and in an evolutionary
model without mutations. Then pA ¼ limt-1rA,t holds because
the mutant frequency is either zero or one if t is larger than

fixation time. We can also calculate stationary average frequency
from pA as

rA ¼
pAð1Þ

pAð1Þþ½1%pAðN%1Þ(
, ð8Þ

because, under our assumption of vanishing mutation rate, the
system almost always stays at either of the two fixation states
(Gillespie, 1991; Rousset and Billiard, 2000; Fudenberg and Imhof,
2006).

We now develop the stochastic analog of the replicator
equation (Eq. (2)) and write down recursions for the average
mutant allele frequency over one generation. As before, we
assume that the resident allele takes phenotype z and the mutant
allele phenotype zþd. But by contrast to the previous model,
where fitness was defined in an allele-centered way, we now
construct the model from an individual-centered perspective. We
denote the fitness of individual i by wiðzÞ, which may depend on
the phenotypes of the different individuals in the populations.
These phenotypes are collected into the vector z& ðz1, . . . ,zNÞ. The
phenotype zi of individual i is written as zi ¼ zþdpi, where pi takes
the value one if individual i carries the mutant, and zero other-
wise (piAf0;1g).

We denote by pA &
PN

i ¼ 1 pi=N the frequency of the mutant in
the population, which is determined by the realized values of
mutant frequencies in the population that are collected in the
vector p& ðp1, . . . ,pNÞ. The probability distribution of p at time t,
which depends on the effect of the mutant (d), is denoted by
PrðpðtÞ ¼ p; dÞ. In other words, we add the symbol ðtÞ to represent a
random variable. The expectation of the frequency in the next
generation, conditional on the current realization pðtÞ ¼ p, can be
written as

E½pAðtþ1Þ9pðtÞ ¼ p( ¼
1
N

XN

i ¼ 1

wiðzðpÞÞpi, ð9Þ

where wiðzðpÞÞ denotes the fitness of individual i under realization
p. This equation sums up the expected numbers of offspring
(¼fitness) produced by all mutants (pi ¼ 1) while the offspring of
residents (pi ¼ 0) are not counted.

We now Taylor expand the fitness function around d¼ 0 as

wiðzðpÞÞ ¼ 1þd
XN

j ¼ 1

@wiðzðpÞÞ
@zj

pjþ
d2

2

XN

j ¼ 1

XN

k ¼ 1

@2wiðzðpÞÞ
@zj@zk

pjpkþOðd3Þ,

ð10Þ

all partial derivatives are evaluated at the resident phenotypic
values z¼ ðz,z, . . . ,zÞ corresponding to d¼ 0. Since we assume a
panmictic population, the phenotype of individual j has the same
effect on the fitness of any individual ia j, while having a different
effect on itself. Formally, this amounts to the assumption that the
following symmetries hold for any i,j,k,l

wi,i ¼wj,j,

wi,ii ¼wj,jj,

wi,j ¼wk,l ðia j,ka lÞ,

wi,ij ¼wk,kl ðia j,ka lÞ,

wi,jj ¼wk,ll ðia j,ka lÞ, ð11Þ

where

wi,j &
@wi

@zj
, wi,jk &

@2wi

@zj@zk
, ð12Þ

which are functions of the phenotype vector, i.e., wi,j ¼wi,jðzÞ and
wi,jk ¼wi,jkðzÞ.
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3.1.2. Connection to the deterministic model
How is this individual-centered notation related to the deter-

ministic model in the preceding section? The (direct) fitness
function of individual i carrying a mutant allele is given by

wiðzðpÞÞ ¼ 1þdwi,ipiþ
d2

2
wi,iipiþðEffects from other mutantsÞþOðd3Þ,

ð13Þ

where the fourth term represents all mutant–mutant interactions
(pjpk terms where jak in Eq. (10)). In the traditional definition of
ESS (Maynard-Smith, 1982), mutants are assumed to be rare so
the fourth term is neglected. By doing so, Eq. (13) shows that the
selection gradient on a rare mutant is given by wi,i to the first
order. A singular point is given by wi,iðznÞ ¼ 0 and it is stable by
convergence if dwi,iðzÞ=dzo0. At a singular point, the one gen-
erational change in allele frequency for a rare mutant is predicted
by the sign of wi,ii and thus zn is evolutionary stable if wi,iio0.
Hence, taking into account first and second order effects in
selection intensity, we have the following stability conditions in
a finite population by imposing that the mutant remains rare:

QS : wi,iðznÞ ¼ 0,

QES : wi,iiðznÞo0,

QCS :
dwi,iðzÞ

dz

####
z ¼ zn
¼wi,iiðznÞþðN%1Þwi,ijðznÞo0: ð14Þ

This result parallels that for the deterministic model (Eq. (7)), but
here we do not assume pairwise interactions and individuals
might be playing against the field (Maynard-Smith, 1982).

3.1.3. Back to the stochastic model
We now study the evolutionary dynamics when mutants are

no longer rare so that mutant–mutant interactions cannot be
neglected. We thus return to the evaluation of the fixation
probability and the stationary average frequency of the mutant,
which capture such interactions. In order to simplify the evalua-
tion of Eq. (9), we will further use the variables

pA=A &
1

NðN%1Þ

X

i

X

ja i

pipj

pA=A=A &
1

NðN%1ÞðN%2Þ

X

i

X

ja i

X

ka j, a i

pipjpk, ð15Þ

where pA=AðtÞ (pA=A=AðtÞ) can be interpreted as the probability that
two (three) randomly sampled individuals without replacement
from the population carry the mutant allele at time t.

Substituting the fitness function (Eq. (10)) into Eq. (9), using
Eqs. (11) and (15) and the zero-sum property of the partial
derivatives (i.e.,

PN
j ¼ 1 wi,j ¼

PN
j ¼ 1

PN
k ¼ 1 wi,jk ¼ 0, Rousset,

2004), and rearranging produces

E½pAðtþ1Þ9pðtÞ ¼ p( ¼ pAþ d _a11þ
d2

2
€a11

 !
pAþ d _a12þ

d2

2
€a12

 !
pA=A

þ
d2

2
€a13pA=A=AþOðd3Þ, ð16Þ

where the _aij’s ( €aij’s) are first (second) order selection coefficients
(Kirkpatrick et al., 2002), which are given by

_a11 ¼wi,i,

_a12 ¼% _a11,

€a11 ¼wi,ii,

€a12 ¼ 2ðN%1Þwi,ijþðN%1Þwi,jj,

€a13 ¼% €a11% €a12: ð17Þ

Note that the summation in Eq. (9) is absorbed into Eq. (15) and
thus does not appear as a sum over actor specific selection
coefficients in Eq. (16). This stems from the fact that we assumed
a non-structured population, where the phenotype of individual j
has the same effect on the fitness of any individual ia j, while
having a different effect on itself (Eq. (11)).

Eq. (16) can be interpreted as the extension of the replicator
equation (Eq. (2)) to finite populations but this is no longer a
recurrence equation in a deterministic variable because it gives
the expected allele frequency in a descendant generation condi-
tional on the realization pðtÞ ¼ p in the parental generation.
However, integrating Eq. (16) over PrðpðtÞ ¼ p; dÞ produces an
equation for the unconditional expected mutant allele frequency
at time t

rA,tþ1 & E½pAðtþ1Þ( ¼
X

p

E½pAðtþ1Þ9pðtÞ ¼ p(PrðpðtÞ ¼ p; dÞ: ð18Þ

According to Eq. (16), we do not need to know the full distribution
PrðpðtÞ ¼ p; dÞ to evaluate the expected allele frequency, but only
the first three moments at time t are enough to that aim since

rA,tþ1 ¼ rA,tþ d _a11þ
d2

2
€a11

 !
rA,tþ d _a12þ

d2

2
€a12

 !
rA=A,t

þ
d2

2
€a13rA=A=A,tþOðd3Þ, ð19Þ

which depends on the three moments; rA,t , rA=A,t & E½pA=AðtÞ( and
rA=A=A,t & E½pA=A=AðtÞ(.

3.2. Moment closure

In order to evaluate explicitly the dynamics of rA,t , we use a
population genetic moment closure method based on a Markov
chain approach (Lehmann and Rousset, 2009). In general, rA, rA=A,
and rA=A=A all depend on selection. But since we want to evaluate
rA only to the second order around d¼ 0, we can close the system
with the variable rA=A and rA=A=A since they are, respectively,
multiplied by first and second order selection coefficients
(Eq. (19)). It is then sufficient to evaluate rA=A to the first order
of selection and rA=A=A only under neutrality (d¼ 0), as any higher
order effect of selection on rA=A and rA=A=A would result in higher
than second order effects of selection on allele frequency change,
which are neglected by assumption. Further, under neutrality
rA=A=A depends on at most a three gene position. In order
to evaluate rA to the second order, we then define qt &
ðrA,t ,rA=A,t ,rA=A=A,tÞ

T as the vector of moments at time t, and
construct the recursion

qtþ1 ¼AðdÞqt , ð20Þ

with

AðdÞ ¼ A1þd _Aþ
d2

2
€AþOðd3Þ, ð21Þ

where, generically for the above assumptions, we have

A1&

1 0 0

a121 1%a121 0

a131 a132 1%a131%a132

0

B@

1

CA, ð22Þ

which is a matrix gathering zero-th order coefficient. Each compo-
nent a1ij can be derived algebraically (see Online Supplement)
or by considering it as the probability that a set of genes sampled
in i different individuals descend from j different individuals in the
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previous generation (see Section 3.3). We also have

_A &

_a11 % _a11 0
_a21 _a22 % _a21% _a22

0 0 0

0

B@

1

CA ð23Þ

and

€A &

€a11 €a12 % €a11% €a12

0 0 0

0 0 0

0

B@

1

CA, ð24Þ

which are matrices gathering first and second order selection
coefficients, respectively.

Recall that pAðNAÞ is the fixation probability of the mutant
allele in a population consisting initially of NA mutants. From
Eq. (20), we have

lim
t-1

AðdÞtq0 ¼

pAðNAÞ
pAðNAÞ
pAðNAÞ

0

B@

1

CA, ð25Þ

where the initial moments are given by

q0 ¼

NA=N

NAðNA%1Þ=½NðN%1Þ(
NAðNA%1ÞðNA%2Þ=½NðN%1ÞðN%2Þ(Þ

0

B@

1

CA: ð26Þ

Since Eq. (20) is a three-dimensional linear recursion, we can
directly calculate the solution in terms of the series in d. It is clear
that A1 plays an important role in the asymptotic behavior of
mutant frequency (Eq. (25)). As we can see from its second
and third row elements, the transition matrix A1 is not simple
(Eq. (22)). These elements represent the dynamics of the
moments in the neutral process and they depend on what kind
of life-cycle is assumed for the model (see below for examples).
More generally, our construction should apply to any haploid
reproductive scheme where the one generation conditional
change in allele frequency can be expressed in terms of a single
fitness function wiðzðpÞÞ (Eq. (10)) with evolution occurring in a
panmictic population (Eq. (11)). These are the reproductive
schemes following into the domain of Kingman’s coalescent for
constant population size (Donnelly and Tavaré, 1995), but where
population size needs not to be very large (see Lessard, 2011 for
an application of the perturbation expansions approach in this
domain to games with pure strategies).

3.3. Example: Wright–Fisher and Moran models

To illustrate the biological meaning of A1, let us consider an
explicit representation of the coefficients appearing in Eqs.
(20)–(24) in terms of demographic parameters for Wright–Fisher
and Moran processes (Ewens, 2004). For the Wright–Fisher
process without selection, it follows that:

E½pA=Aðtþ1Þ9pðtÞ ¼ p( ¼
1
N

pAþ
N%1

N
pA=A, ð27Þ

because two (different) individuals have the same parent with
probability 1=N, in which case their common parent carries the
mutant allele with probability pA. With the remaining probability
ðN%1Þ=N, they have different parents both of who have the
mutant allele with probability pA=A. Thus we have a121 ¼ 1=N.
Note that we do not need further information (e.g., pA=A=A) to
determine the dynamics of the second moment.

The result (a121 ¼ 1=N) can also be obtained more algebraically
(see Online Supplement), and we derive the coefficients of A1
which is summarized in Table 1, which shows the difference
between the Wright–Fisher and Moran processes (Ewens, 2004).

Using Eq. (17) and the results of Online Supplement
(Eqs. (A.26) and (A.14)), the second order selection coefficients
necessary to evaluate _A are given for both the Wright–Fisher and
the Moran process by

_a21 ¼
2
N

wi,i

_a22 ¼
2ðN%3Þ

N
wi,i, ð28Þ

and such coefficients for the more general Cannings process are
given in Online Supplement (Eqs. (A.26) and (A.32)).

4. Stability conditions from asymptotic frequencies

Having derived moment equations, we can now obtain the
mutant fixation probability and its stationary average frequency.

4.1. Fixation probabilities

The fixation probability of a single mutant allele can be
expressed as

pAð1Þ ¼
1
N
þd _pðzÞþ d2

2
€pðzÞþOðd3Þ ð29Þ

(see Eq. (A.35) of Online Supplement). The zero-th order term is
1=N because this is the fixation probability of the mutant under
neutrality. The first-order term is

_pðzÞ ¼ T2

N
wi,i, ð30Þ

where T2 ¼ 1=a121 can be considered as the coalescence time into
a common ancestor of two genes in the neutral process. The first
order in selection intensity _pðzÞ40 implies that pAð1Þ41=N for
d40, which means that a single mutant has a higher than neutral
fixation probability (Eq. (A.36) of Online Supplement or Rousset
and Billiard, 2000). Hence, evolution on the z-axis tends to lead to
the increase in z value under a trait substitution process. The
value of zn satisfying _pðznÞ ¼ 0 defines a singular strategy; that is,
a point where first order effects of selection vanish.

When residents adopt a singular strategy zn, whether a mutant
has a higher or lower than neutral fixation probability is given by
the second order effect, €pðznÞ. From Eq. (11) and Eq. (A.35), we
have

€pðznÞ ¼ T2

N
½g1wi,iiþðg1%1Þf2ðN%1Þwi,ijþðN%1Þwi,jjg(, ð31Þ

where g1 ¼ T3=T2 and T3 ¼ ða121þa132Þ=ða121fa131þa132gÞ can be
considered as the coalescence time of three genes into a common
ancestor in the neutral process. The sign of €pðznÞ depends on g1

and using the elements in Table 1, we have

g1 ¼

4N%3
3N%2

Wright2Fisher

4
3

Moran,

8
>><

>>:
ð32Þ

Table 1
Coefficients of A1.

Coefficient Wright–Fisher Moran

a121
1
N

2
N2

a131
1

N2
0

a132
3ðN%1Þ

N2
6

N2
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which shows the effect of underlying life cycle assumptions
(e.g., Wright–Fisher vs. Moran).

The expression for €pðznÞ is one of our primary results. The
condition €pðznÞo0 implies that pAð1Þo1=N, so it captures the
stability of a singular strategy to the second-order effects in a
single event of invasion of a mutant. However, €pðznÞo0 does not
imply that a single resident allele has a higher than neutral
fixation probability (Eq. (A.38)). Hence, under the trait substitu-
tion sequence assumption, the sign of €pðznÞ is not indicative of the
direction of evolution on the z-axis in the presence of mutations,
and it cannot be used here to characterize long-term phenotypic
evolution. To that aim, we now turn to the stationary average
mutant frequency.

4.2. Stationary average frequency

4.2.1. First and second order effects
We find that we can express the stationary average frequency

of the mutant allele in the presence of vanishing mutation rates as

rA ¼
1
2
þd _rðzÞþ d2

2
€rðzÞþOðd3Þ ð33Þ

(see Eq. (A.39) of Online Supplement). The zero-th order term is
one half because the two alleles have the same frequencies on
average in the absence of selection. Any increase over one half is
indicative of positive selection on the mutant allele with all
possible realizations of allele frequencies in the population taken
into consideration.

The first-order term is

_rðzÞ ¼ L2

4
wi,i, ð34Þ

where Lj40 can be considered as the total branch length in
number of generations of a coalescent tree involving i genes in the
neutral process (Eq. (A.40)). For _rðzÞ40 and d40, rA41=2 holds
to the first-order. In addition, the condition _rðzÞ40 is equivalent
to _pðzÞ40. This means that the competition between the mutant
and the resident tends to favor the former and that evolution on
the z-axis tends to increase the value of z in the trait substitution
sequence process.

At a singular point zn, a mutant allele is selected against to the
second-order effects if

€rðznÞ ¼ L2

4
½g2wi,iiþðg2%1Þf2ðN%1Þwi,ijþðN%1Þwi,jjg(o0, ð35Þ

where g2 ¼ L3=L2 (Eqs. (A.34)–(A.39) in Online Supplement). Using
the elements in Table 1, Eqs. (A.34) and (A.39), we can directly
calculate

g2 ¼ 3
2, ð36Þ

for both the Wright–Fisher and Moran processes. More generally,
an argument based on coalescence probabilities shows that this
value holds whenever matrix A1 (Eq. (22)) describes the dynamics
of moments of allele frequencies. That is, it holds for any
biological system whose neutral process can be described by
Eq. (22) (Eqs. (A.41)–(A.42) in Online Supplement).

We denote the condition €rðznÞo0 as QTS (‘‘two-allele stabi-
lity’’) in order to emphasize that it is obtained by considering only
two alleles at a time in the population. It is a stochastic analogue
of the evolutionary stability condition because second-order
effects in selection intensity are taken into account. Further, by
contrast to that of €pðznÞ, the sign of €rðznÞ does not depend on the
underlying life-cycle assumption, which is an additional reason to
define a two-allele stability condition based on €rðznÞ.

Whether or not evolution will tend to the singular point
depends on whether zn is convergence stable. The condition is
that _rðzÞ is a decreasing function at z¼ zn, i.e., d _rðzÞ=dzo0, and

from Eqs. (11) and (34), yields a CS condition obtained from the
perspective of stationary average frequencies

dwi,iðz,z, . . . ,zÞ
dz

¼
XN

j

wi,ij ¼wi,iiþðN%1Þwi,ijo0: ð37Þ

Thus, using g2 ¼ 3=2 into Eq. (35), we obtain the following
stability conditions for evolution on the z-axis

QS : wi,iðznÞ ¼ 0,

QTS : 3wi,iiþ2ðN%1Þwi,ijþðN%1Þwi,jjo0,

QCS :
dwi,iðzÞ

dz

####
z ¼ zn
¼wi,iiðznÞþðN%1Þwi,jjðznÞo0: ð38Þ

If QTS and QCS are of opposite signs at a given singular point zn,
then first-order effects in selection intensity tend to push the
system towards (away from) zn, while second-order effects tend
to push it away from (towards) zn. In a two-allele system, one
then expects the first-order effects to dominate and it may be
intuitively felt that QTS and QCS cannot be of opposite signs, which
we now demonstrate.

4.2.2. Two-allele stability reduces to convergence stability
We have

€rðznÞo033wi,iiþ2ðN%1Þwi,ijþðN%1Þwi,jjo0 ð39Þ

and using

wi,iiþðN%1Þwi,jj ¼wi,iiþðN%1Þwj,ii ¼
@2

@z2
i

XN

j ¼ 1

wj

0

@

1

A¼ 0, ð40Þ

where we used the symmetry assumptions (Eq. (11)) and the fact
that the fitness functions always sum up to N, we have

€rðznÞo03wi,iiþðN%1Þwi,ijo0: ð41Þ

Thus, as long as g2 ¼ 3=2, the CS and TS conditions are identical

d _rðznÞ=dzo0 3 €rðznÞo0: ð42Þ

In summary, by taking into account second order effects in
selection intensity, we arrive at the two conditions

QS : wi,iðznÞ ¼ 0,

QCS :
dwi,iðzÞ

dz

####
z ¼ zn
¼wi,iiðznÞþðN%1Þwi,jjðznÞo0, ð43Þ

which characterize long-term phenotypic evolution on the z-axis
under the trait substitution sequence assumption (two-allele
system).

4.3. Stationary phenotypic distribution

We have considered only a two-allele system, from which we
inferred long term evolution on the z-axis (Eq. (43)). Here, we
show that this result is consistent with that obtained from a
stochastic model allowing for a continuum of alleles under the
limit of small mutation rates. Call cðzÞ the probability density
function that phenotype z obtains in the population at a
mutation–selection–drift balance. Under the assumption of small
mutation step size (d small), this probability density function is
given by

cðzÞ ¼ C exp
Z z

2N _pðyÞ dy

$ %
, ð44Þ

where is C is a normalizing constant (for derivation, see
Eqs. (A.45)–(A.52) in Online Supplement). This is the stationary
solution of the so-called canonical diffusion of adaptive dynamics,
which itself reduces to the canonical equation of adaptive
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dynamics in the limit of very large population size (Champagnat
and Lambert, 2007).

The maxima of cðzÞ are the most likely phenotypic outcomes
of evolution under the mutation–selection–drift balance. Hence, a
population of residents that is in small neighborhood from a local
or global optimum of cðzÞ is likely to be replaced by a population
of mutants that expresses a phenotypic value closer to that point.
Conversely, if a population is located at a minimum of cðzÞ, then a
mutant that expresses a phenotypic value away from that of the
resident is likely to invade. Hence, an internal singular point zn

can be said to be stable by convergence if dcðzÞ=dz¼ 09z ¼ zn and
d2cðzÞ=dz2o09z ¼ zn (Lehmann, 2012). This condition reproduces
our QS and QCS conditions (Eq. (43)), which corroborates our
result that convergence stability alone carries sufficient informa-
tion to predict long-term evolutionary dynamics under the traits
substitution sequence assumption, even when second order
effects in selection intensity are taken into account.

5. Applications

In order to check the accuracy of our approximations and in
order to obtain some insights on the conditions under which
long-term evolution can be well approximated by a two alleles
system, we analyze a specific example of the evolution of
continuous phenotype in a non-linear cooperator/defector game,
where branching can occur in a large population.

5.1. Pairwise interaction game

In our analysis in Sections 3 and 4, we did not make any
assumption on whether individuals were playing the field or were
randomly matched in pairwise interactions, as is standardly
assumed in models defining stability conditions (Maynard-
Smith, 1982; Bishop and Cannings, 1978; Weibull, 1997). In order
to provide an application of our results, we now consider that
fitness depends on pairwise interactions and that the interaction
between individual i and j leads to payoff f ðzi,zjÞ to individual i.

We assume that individual i interacts with all other indivi-
duals j ða iÞ with the same probability so that its fecundity is
given by the average payoff

FiðzÞ ¼
1

N%1

XN

ja i

f ðzi,zjÞ, ð45Þ

and the population-average fecundity is F ðzÞ ¼
P

iFiðzÞ=N, which
gives the fitness of individual i as

wiðzÞ ¼

FiðzÞ
F ðzÞ

Wright2Fisher

N%1
N
þ

1
N

FiðzÞ
F ðzÞ

Moran:

8
>>><

>>>:
ð46Þ

Substituting the fitness functions (Eqs. (45) and (46)) into the
stability conditions, they can be expressed in terms of fecundity

Fig. 1. Results of individual based simulations and analytic prediction when a singular strategy is CS and ES according to Eq. (49). Left panels show the evolutionary
dynamics for Wright–Fisher process. Darker shades indicate higher frequencies of a phenotype value. Right panels show the distribution of phenotype averaged over long
time period. Curves represent an analytic solution cðzÞ, while dots represent the result of individual based simulations. The distribution under the Wright-Fisher model
(red) has a higher peak than under the Moran model (blue). For N¼8 (yielding znN¼0.445), the analytic solutions agree well with the simulated stationary distribution
where the simulations are run for more than 1012 generations. For N¼1000 (yielding znN ¼ 0:599), the agreement still persists where the simulations are run only for 108

(1012) generations for Wright–Fisher (Moran) models. Parameter values in all panels: m¼ 0:001, s¼ 0:003, b1 ¼ 7:0, b2 ¼%1:5, c1 ¼ 4:6, c2 ¼%1, zn ¼ 0:6. (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this article.)
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effects as

QS : f 1ðz
nÞ%f 2ðz

nÞ=ðN%1Þ ¼ 0,

QCS : f 11ðz
nÞþ f 12ðz

nÞðN%2Þ=ðN%1Þ%f 22ðz
nÞ=ðN%1Þo0,

QES : f 11ðz
nÞ%f 22ðz

nÞ=ðN%1Þo0: ð47Þ

5.2. Game with branching

As an example, we follow the model of Doebeli et al. (2004).
Let z represent the amount of investment in public goods, which
defines the payoff of a player with strategy z1 when meeting a z2

player as

f ðz1,z2Þ ¼ 1þ½b2ðz1þz2Þ2þb1ðz1þz2Þ(%½c2ðz1Þ2þc1z1(, ð48Þ

where the public goods benefit returning to an actor depends on
the sum of the amounts of investments by both players, while the
cost is paid by the actor alone. Then we have

QS : znN ¼
c1%aNb1

4aNb2%2c2
,

QCS : 4aNb2%2c2o0,

QES : 2aNb2%2c2o0, ð49Þ

where aN & ðN%2Þ=ðN%1Þ. When population size becomes infi-
nitely large, aN tends to unity, and one has

QS : zn ¼ ðc1%b1Þ=ð4b2%2c2Þ,

QCS : 4b2%2c2o0,

QES : 2b2%2c2o0, ð50Þ

which matches the expressions of Doebeli et al. (2004). By
comparing Eq. (49) to Eq. (50) one sees that in a finite population
the effective benefits of cooperation produced by investment is
decreased by the factor aN relative to the infinite population case.

5.3. Numerical–analytical comparisons

Doebeli et al. (2004) have shown by individual based simula-
tions that evolutionary branching occurs in a population of size
N¼10 000 for appropriate mutation parameters when zn is CS but
not ES according to Eq. (50). When population size is small, we
must use Eq. (49) instead of Eq. (50) to obtain the singular
strategy znN and the stability conditions. In order to compare our
results to those obtained in simulations, where mutations are
present and which leads to a long-run phenotypic stationary

distribution, we evaluate the stationary distribution, cðzÞ, arising
from the game described by Eq. (48). To that aim we use the
gradient

_pðzÞ ¼ ðN%1Þ
Nð1þsÞf

b1þ4b2z%c1%2c2z%
b1þ4b2z

N%1

$ %
, ð51Þ

which is obtained by putting Eq. (48) into our analytic results and
where s is the survival probability of an individual, which is s¼0
in the Wright–Fisher process and by setting s¼1 one captures the
Moran process (Eqs. (A.45)–(A.52) in Online Supplement).

The stationary distribution is compared in Figs. 1–2 to that
obtained from individual based simulations in which the muta-
tion process is explicitly modeled and thus more than two
different phenotypes can simultaneously coexist at each snapshot
in the population and phenotypic effects of mutants can be large
(see Online Supplement ‘‘Individual based simulation’’ for
details). When the mutation rate, m, and the variance of the
probability distribution of mutation step size, s2, are small, the
simulation results agree well with the analytic predictions when a
singular strategy is both ES and CS, where the stationary dis-
tribution is centered at znN predicted by Eq. (49) (Fig. 1). In the case
of a small population (N¼8), the distribution is broad due to
strong genetic drift but well approximated by the stationary
distribution cðzÞ (Fig. 1). In the case of N¼1000, the population
is large enough to have znN Czn but not large enough to obtain a
sharp peak at znN in the stationary distribution so that drift still
plays an important role (Fig. 1), which is well predicted by the
stationary distribution. Finally, the distribution becomes broader
when we adopt the Moran model instead of the Wright–Fisher
model, which is again analytically predicted by Eq. (44) with
Eq. (51).

The agreement between simulations and analytical predictions
is good not only when the singular point is both CS and ES (as in
Fig. 1), but also when the singular point is CS and non-ES
(i.e., evolutionary branching point) as long as the mutational
effects (m and s2) are small (Fig. 2).

Next we run simulations where mutational effects and rates
are no longer small (Fig. 3). When the population is small (N¼8),
the realized stationary distribution has still the same features as
that predicted from a two-allele model; the distribution has a
peak at each snapshot but the position of the peak moves around
(compare panel A Figs. 1–3). This result is consistent with the
result of the two-allele model because it claims that population
should spend more time near z¼ znN when population can have at
most two different kinds of phenotypes, z and zþd, at each time.
As long as our two-allele approximation is good, the only stability
condition is Eq. (49), which converges to the CS condition in
the infinite population limit, and evolutionary branching does

0.4 0.5 0.6 0.7 0.8
0

5

10

15

Fig. 2. Results of individual based simulations and analytic prediction when a singular strategy is CS but not ES according to Eq. (49) (b1 ¼ 6:0, b2 ¼%1:4, c1 ¼ 4:56,
c2 ¼%1:6, zn ¼ 0:6). The left panel shows the evolutionary dynamics (t¼0–106), while the right panel shows the long time averaged distribution of z for t¼0–1010.
The curve in the right panel represents the analytic solution. No evolutionary branching is observed. The mutation rate and step-size are the same as in Fig. 1
(m¼ 0:001, s¼ 0:003). Wright–Fisher model is used with a population size N¼1000.
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not occur. When population size is intermediate (N¼128), the
approximation is no longer good and some level of phenotypic
variance persists at each snapshot. However, it is not large
enough to lead to evolutionary branching. As we increase popula-
tion size more (N¼1000), the variance is also increased and
evolutionary branching occurs. In the last simulation showing
branching dynamics, the average number of segregating alleles
(different alleles simultaneously coexisting) is roughly 80, which
is far more than two and the outcome of evolution is now much
different from that predicted from the two-allele approximation
(compare Figs. 2 and 3).

6. Discussion

6.1. Summary of the approach

We have derived stability conditions for the long-term evolu-
tion of a continuous phenotype in a finite population where
mutant–mutant interactions are explicitly taken into account.
These conditions are based from considerations of the stationary
average frequency of a mutant allele in the presence of vanishing
mutation rates in a two-allele model. We focused on a two-allele
system because this represents the natural extension to finite
populations (stochastic system) of standard mutant–resident
model of evolutionary game theory in infinite populations (e.g.,
Eshel, 1983; Taylor, 1989; Lessard, 1990; Geritz et al., 1998), and
provides the possibility to analytically determine stability condi-
tions. We calculate the stationary average frequency from the
fixation probability, as we are interested in long-term evolution in
small populations where invasion and fixation repeatedly occurs.

In order to obtain the stability conditions, we have derived
perturbation expansions of the asymptotic frequencies (fixation

probability and stationary average frequency) of a mutant allele
with a moment closure method based on a Markov chain
approach, which encapsulates many different life-cycle assump-
tions (e.g., reproductive scheme or underlying neutral process
such as Wright–Fisher, Moran, etc.). As in standard deterministic
models, we considered the first- and second-order effects of
selection intensity on allele frequency change, thereby assuming
weak selection in the sense that phenotypic difference between
resident and mutant are small. But owing to finite population size,
mutant–mutant interactions are taken into account. Thus, stabi-
lity conditions may not be determined by payoff alone as in
deterministic systems (e.g., Eshel, 1983; Taylor, 1989; Lessard,
1990; Geritz et al., 1998), but may depend on the features of the
life-cycle assumption.

6.2. Summary of the results

As in previous analyses (Rousset, 2003; Lessard and Ladret,
2007; Lehmann and Rousset, 2009), we expressed the perturba-
tion expansion of the mutant fixation probability in terms of
fitness effects weighted by coalescence times (Eqs. (30) and (31)),
which capture the effect of mutant–mutant interactions in a finite
population. Unexpectedly, we find that the perturbation expan-
sion of the stationary average mutant frequency can be expressed
in terms of fitness effects weighted by the total branch length in
number of generations of a coalescent tree (Eqs. (34) and (35)).
This symmetry may be interesting to explore further.

Turning to the stability conditions, we find that the condition
for a strategy to be a singular point (QS), where first-order effects
in selection intensity vanish, does not depend on the specificities
of the life-cycle assumption. This condition can be directly
obtained from the selection gradient on a mutant allele (or
invasion fitness), which is proportional to the first-order effects
in selection intensity on both the fixation probability or the
stationary average frequency of a mutant allele (Eqs. (30) and
(34)). This result has been derived previously (Rousset and
Billiard, 2000; Taylor et al., 2007), and it shows that the determi-
nation of singular points for a continuous trait in a stochastic
system (finite population size) is qualitatively the same as that in
a deterministic system (infinite population size).

Since the condition of convergence stability (QCS) in finite
populations is defined from first-order effects of selection, it
qualitatively agree with that for infinite population size, irrespec-
tive of whether we define it based on the fixation probability
( _pðzÞ) or the stationary average frequency of the mutant allele
( _rðzÞ).

We find that our second-order stability condition (QTS, Eq. (43)),
which is computed from second-order effects in selection intensity
as is the standard condition of evolutionary stability, reduces to the
condition of convergence stability (QTS¼QCS). Hence, under the
traits substitution sequence assumption, a positive answer to the
question of convergence stability [question (ii) of Eshel, 1983
described in the Introduction] guaranties a positive answer to the
question of evolutionary stability [question (i) of Eshel, 1983
described in the Introduction], and vice versa.

It is well known that evolutionary branching can occur at a
singular point that is convergence stable in a population of large
size with sufficiently large mutation rate, and that these points
are well predicted by the traditional ES condition (Geritz et al.,
1997; Dieckmann and Doebeli, 1999; Doebeli et al., 2004). But
whether such branching actually occurs critically rely on the
number of different alleles coexisting in the population. Compar-
ing Figs. 2 and 3 illustrates that the interaction between mutation
rate and population size plays a crucial in role in the evolutionary
dynamics, a feature that has been pointed out before (Waxman
and Gavrilets, 2005; Barton and Polechova, 2005; Champagnat

Fig. 3. Evolutionary dynamics in individual based simulations when a singular
strategy is CS but not ES according to Eq. (49). The same parameter as in Fig. 2 are
used except that the mutation rate and step size are increased. Singular values, znN ,
are 0.364, 0.591 and 0.599, respectively for N¼8, 128, and 1000. Results for
Wright–Fisher models are shown. Parameter values: m¼ 0:01, s¼ 0:02, b1 ¼ 6:0,
b2 ¼%1:4, c1 ¼ 4:56, c2 ¼%1:6, zn ¼ 0:6.
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et al., 2006). Even if the mutation rate is larger than the bound
ensuring the trait substitution sequence [mo1=ðN logðNÞÞ,
Champagnat et al., 2006; Wu et al., 2012], the simulation results
do not deviate significantly from the analytical results. However,
none of the QS, QES, or QTS conditions actually include mutation
rate nor mutation step size.

The curvature of the stationary phenotypic distribution func-
tion (Eq. (44)) at a singular point is indicative of its stability by
convergence and it may be characterized by Hamilton’s (1964)
inclusive fitness effect in spatially or family structured popula-
tions (Lehmann, 2012). This is parallel but different from the
result that the curvature of the invasion fitness is indicative of the
ES condition (Eq. (14)). Thus, for two-allele models, long-term
phenotypic evolution might be characterized by the inclusive
fitness effect alone (based on first order effects in selection
intensity), which applies to class-structured population of finite
size (Rousset, 2004; Rousset and Ronce, 2004; Taylor et al., 2007).

In a general case with large mutational effects, two-allele
models are no longer appropriate. Evolutionary branching may
then occur and the traditional ES condition is usually used to
determine branching. But in finite populations one cannot predict
whether branching occurs without knowing more details about
the mutation scheme, so checking the traditional evolutionary
stability conditions is not sufficient. In order to survey the
conditions under which evolutionary branching occurs, it seems
necessary to better understand the effect of two additional
factors: the number of alleles that can simultaneously segregate
in the system and the mutation step size distribution.
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Definitions of fi and fij

Considering that a pairwise payoff function f(z1, z2) is a smooth function, we have

f(z + δ1, z + δ2) = f + f1δ1 + f2δ2 + f11
δ21
2

+ f12δ1δ2 + f22
δ22
2

+ ..., (A-1)

where

f ≡ f(z, z)

f1 ≡ ∂f(z1, z2)

∂z1

∣∣∣∣
z1=z2=z

f2 ≡ ∂f(z1, z2)

∂z2

∣∣∣∣
z1=z2=z

f11 ≡ ∂2f(z1, z2)

∂z21

∣∣∣∣
z1=z2=z

f22 ≡ ∂2f(z1, z2)

∂z22

∣∣∣∣
z1=z2=z

f12 ≡ ∂2f(z1, z2)

∂z1∂z2

∣∣∣∣
z1=z2=z

=
∂2f(z1, z2)

∂z2∂z1

∣∣∣∣
z1=z2=z

≡ f21, (A-2)

so that all functions are evaluated at the resident value z.

Coefficients of the A matrix

Here, we evaluate the remaining coefficients appearing in the recursion defined by eqs. 20-21

and we will do this for both Wright-Fisher, Moran, and Cannings process (Ewens, 2004).

From eqs. 20–22, the recursion for the conditional second moment is

E[pA/A(t+ 1)|p(t) = p; δ] = a◦21pA + (1− a◦21)pA/A

+ δ[
.
a21pA +

.
a22pA/A − (

.
a21 +

.
a22)pA/A/A] + O(δ2), (A-3)

where pA, pA/A, and pA/A/A are calculated from the realization of the allele frequency

distribution p in the parental generation. In order to evaluate the coefficients appearing in
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this second order approximation, we first note that regardless of the intensity of selection

we have from eq. 15 that

E[pA/A(t+1)|p(t) = p; δ] =
1

N(N − 1)

∑

i

∑

j !=i

Pr(pi(t+1) = pj(t+1) = 1|p(t) = p; δ),

(A-4)

where Pr(pi(t + 1) = pj(t + 1) = 1|p(t) = p; δ) is the conditional probability that both

individual i and j carry the mutant allele in the descendant generation given realization p.

We will first obtain an expression for Pr(pi(t + 1) = pj(t + 1) = 1|p(t) = p; δ), and then

calculate the coefficient in eq. A-4 from it.

Wright-Fisher process

For the Wright-Fisher process, the probability Pr(pi(t+ 1) = 1|p(t) = p; δ) that individual

i carries the mutant allele in the descendant generation conditional on realization p in the

parental generation is

Pr(pi(t+ 1) = 1|p(t) = p; δ) =
1

N

N∑

k=1

wk(z(p))pk. (A-5)

Since the random variables pi(t+1) and pj(t+1) are independent for i "= j, i.e., the sampling

of the parent of individual i and that of j are independent and we have

Pr(pi(t+ 1) = pj(t+ 1) = 1|p(t) = p; δ) =
1

N2

N∑

k=1

N∑

l=l

wk(z(p))wl(z(p))pkpl. (A-6)

Substituting this expression into eq. A-4 and applying a first order Taylor expansion of the

fitness function around δ = 0 yields

E[pA/A(t+1)|p(t) = p; δ] =
1

N2

N∑

k=1

N∑

l=l

pkpl

[
1 + δ

(
N∑

m=1

wk,mpm +
N∑

n=l

wl,npn

)]
+O(δ2).

(A-7)

The right hand side equals

1

N2
[NpA +N(N − 1)pA/A] +

2δ

N2
X +O(δ2) (A-8)

where

X ≡
N∑

k=1

N∑

l=l

wk,kpkpl +
N∑

k=1

N∑

l=l

N∑

m!=k

wk,mpkplpm. (A-9)
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Using the symmetry (eq. 11), we have

X = wk,k




N∑

k=1

pk +
N∑

k=1

N∑

l !=k

pkpl



+ wk,m



2
N∑

k=1

N∑

m !=k

pkpm +
N∑

k=1

N∑

m !=k

N∑

l !=k,m

pkplpm





(A-10)

and using eq. 15 gives

X = wk,k

[
NpA +N(N − 1)pA/A

]

+ wk,m

[
2N(N − 1)pA/A +N(N − 1)(N − 2)pA/A/A

]
. (A-11)

We now substitute wk,m = −wk,k/(N − 1) into this equation (obtained from the zero sum

property of the partial derivatives (Rousset, 2004)), which gives

X = wk,kN
[
pA + (N − 3)pA/A − (N − 2)pA/A/A

]
. (A-12)

Combining these results, we finally obtain

E[pA/A(t+ 1)|p(t) = p; δ] =
1

N
pA +

N − 1

N
pA/A

+ δwi,i

[
2

N
pA +

2(N − 3)

N
pA/A − 2(N − 2)

N
pA/A/A

]
+ O(δ2) (A-13)

which shows that

a◦21 =
1

N

a◦22 =
N − 1

N
.
a21 =

2

N
wi,i

.
a22 =

2(N − 3)

N
wi,i.

a◦23 = −2(N − 2)

N
wi,i. (A-14)

In order to close the system (eqs. 20-21), we need the recursion for ρA/A/A(t) under

neutrality. By a similar calculation, we obtain

E[pA/A/A(t+1)|p(t) = p; δ] =
1

N2
pA+

3(N − 1)

N2
pA/A+

(N − 1)(N − 2)

N2
pA/A/A+O(δ),

(A-15)

which shows that a◦31 = 1/N2 and a◦32 = 3(N − 1)/N2.
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Moran process

For the Moran process, we assume that the N haploid parents produce a very large number

of haploid offspring and that exactly one randomly sampled parent dies after reproduction,

which is then replaced by a juvenile randomly sampled from the pool of offspring. We also

assume that the behavior of individuals affect fecundity. With this we can write the fitness

of individual i as

wi(z(p)) =
N − 1

N
+

1

N
w̃i(z(p)), (A-16)

where

w̃k ≡ Fk(z)

F̄ (z)
(A-17)

is the fecundity of individual k relative to the average fecundity. Since this fitness function

determines the dynamics of the mean allele frequency (eq. 9), we have from eqs. 10–16 that

.
a11 = w̃i,i/N

..
a 11 = w̃i,ii/N

..
a 12 = [2(N − 1)w̃i,ij + (N − 1)w̃i,jj ] /N. (A-18)

In the Moran process, the random variables pi(t+ 1) and pj(t+ 1) are not independent

because an individual i cannot be a newborn if an individual j is a newborn, and the

conditional probability that both individual i and j carry the mutant allele in the descendant

generation is given by

Pr(pi(t+ 1) = pj(t+ 1) = 1|p(t) = p; δ)

=

(
N − 2

N

)
pipj +

1

N
×
(

1

N

N∑

k=1

w̃k(z(p))pkpi +
1

N

N∑

k=1

w̃k(z(p))pkpj

)
, (A-19)

where (N − 2)/N is the probability that individual i and j have survived from the parental

generation, while with probability 1/N either individual has died and has been replaced by

an offspring. In each of these two events, the new offspring descends from individual k with

probability w̃k/N , where w̃k ≡ Fk/F̄ is the fecundity of individual k relative to the average

fecundity. Substituting the conditional probability into eq. A-4 yields

E[pA/A(t+ 1)|p(t) = p; δ] =
N − 2

N
pA/A +

2

N
×



 1

N2

N∑

k=1

N∑

j=1

w̃kpkpj



 (A-20)
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We have the following Taylor expansion

1

N2

N∑

k=1

N∑

j=1

w̃kpkpj =
N∑

k=1

N∑

j=1

(
1 + δ

N∑

i=1

w̃k,ipi

)
pkpj +O(δ2) (A-21)

which yields

1

N2

N∑

k=1

N∑

j=1

w̃kpkpj =
1

N2
[NpA +N(N − 1)pA/A] +

δ

N2
Y +O(δ2), (A-22)

where

Y ≡
N∑

k=1

N∑

j=1

N∑

i=1

w̃k,ipipkpj , (A-23)

which has the same structure as eq. A-9. Using eq. 11 and the zero sum property of the

partial derivatives (Rousset, 2004), we thus get

Y = w̃k,kN
[
pA + (N − 3)pA/A − (N − 2)pA/A/A

]
(A-24)

and with this, we finally obtain

E[pA/A(t+ 1)|p(t) = p; δ] =
2

N2
pA +

N2 − 2

N2
pA/A

+ δ

[
2

N2
pA +

2(N − 3)

N2
pA/A − 2(N − 2)

N2
pA/A/A

]
w̃k,k + O(δ2) (A-25)

which gives

a◦21 =
2

N2

a◦22 =
N2 − 2

N2

.
a21 =

2

N2
w̃i,i

.
a22 =

2(N − 3)

N2
w̃i,i.

.
a23 = −2(N − 2)

N2
w̃i,i.

(A-26)

Comparing eq. 17 and eq. A-14 for the Wright-Fisher process to eq. A-18 and eq. A-26 for the

Moran process shows that the neutral process under the Wright-Fisher and Moran processes

involves different zeroth order coefficients but that the the first order coefficients take the

same form when expressed in terms of fitness effects since w̃i,i = Nwi,i, and w̃i,jk = Nwi,ij .
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But importantly, since for fecundity effects are wi = Fi/F̄ for the Wright-Fisher process,

while w̃i = Fi/F̄ for the Moran process, the selection coefficients in the two processes are

equivalent up to a constant of proportionality 1/N .

In order to close the system for the Moran process, we need the recursion for ρA/A/A(t)

under neutrality. Applying standard arguments (Ewens, 2004) shows that

E[pA/A/A(t+1)|p(t) = p; δ] =
N − 3

N
pA/A/A+

3

N

(
2

N
pA/A +

N − 2

N
pA/A/A

)
+O(δ),

(A-27)

which shows a◦31 = 0 and a◦32 = 6/N2.

Cannings process

For the Cannings process, we consider that each individual adult dies with probability s and

is replaced by an individual randomly sampled from the pool of offspring. With behavior

affecting fecundity, the fitness of individual i in the Cannings process is

wi(z(p)) = s+ (1− s)w̃i(z(p)), (A-28)

and

Pr(pi(t+ 1) = pj(t+ 1) = 1|p(t) = p; δ) = s2pipj

+ s(1− s)×
(

1

N

N∑

k=1

w̃k(z(p))pkpi +
1

N

N∑

k=1

w̃k(z(p))pkpj

)

+ (1 − s)2 ×
(

1

N2

N∑

k=1

N∑

l=l

w̃k(z(p))w̃l(z(p))pkpl

)
, (A-29)

Substituting this equation into eq. A-4, after some calculation we have

E[pA/A(t+ 1)|p(t) = p; δ] = s2pA/A + (1− s2)

(
1

N
pA +

N − 1

N
pA/A

)

+ δwi,i(1− s)

[
2

N
pA +

2(N − 3)

N
pA/A − 2(N − 2)

N
pA/A/A

]
+O(δ2). (A-30)
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In order to close the system, we need the recursion for the triplets under neutrality, which

is given by

E[pA/A/A(t+ 1)|p(t) = p; δ] = s3pA/A/A + 3s2(1− s)

(
2

N
pA/A +

N − 2

N
pA/A/A

)

{3s(1−s)2+(1−s)3}×
(

1

N2
pA +

3(N − 1)

N2
pA/A +

(N − 1)(N − 2)

N2
pA/A/A

)
+O(δ),

(A-31)

All these equations show that

a◦21 =
(1− s2)

N

a◦31 =
(1− s)3

N2
+

3s(1− s)2

N2

a◦32 =
3
(
1− 1

N

)
(1− s)3

N
+

6s2(1− s)

N
+

9
(
1− 1

N

)
s(1− s)2

N.
a11 = (1− s)w̃i,i

.
a21 =

2(1− s)

N
w̃i,i

.
a22 =

2(N − 3)(1− s)

N
w̃i,i.

.
a23 = −2(N − 2)(1− s)

N
w̃i,i. (A-32)

Asymptotic frequencies

Method

Here, we present the explicit expression for the fixation probability obtained from eqs. 21–25.

In order to obtain this expression, we note thatA(δ) has a dominant unit eigenvalue and that

all remaining eigenvalues of A(δ) are all < 1 (in modulus) in some small neighborhood of

δ = 0 because all non-unit eigenvalues of A◦ are all < 1 (in modulus). Thus, limt→∞ A(δ)tρ0

can be expressed in terms of the outer product of the right and left eigenvector associated

with the unit eigenvalue of A(δ) (e.g., Karlin and Taylor, 1981; Ewens, 2004). Here we only

show the results of the calculation, since the derivations are complicated but straightforward

application of linear algebra.

In order to interpret the resulting algebraic expressions obtained for the fixation prob-

ability, it is further useful to observe that the transition matrix A◦ for the neutral process

not only describes the forward dynamics of the moments of allelic states but since element



8

a◦ij gives the probability that a set of genes sampled in i different individuals descend from

j different individuals in the previous generation, A◦ also describes a backward process:

u(h + 1) = u(h)A◦, where h proceeds from the present, h = 0, backwards in time, and

where element ui(h) of u(h) gives the probability that the ancestral lineages of a set of

genes sampled from a given set of positions in the present will be in i different individuals at

time h (Lehmann and Rousset, 2009). Standard results of Markov chain theory then show

that the mean number of time steps Tij (sojourn time) that i gene lineages spend in j differ-

ent individuals before coalescing into the same individual can be expressed in terms of the

elements of the transition matrix A◦, so that the perturbations of the fixation probabilities

can be expressed in terms of these sojourn times.

Fixation probability

Calculating explicitly limt→∞ A(δ)tρ0 in terms of the outer product of the right and left

eigenvector associated with the unit eigenvalue of A(δ), and rearranging the result in terms

of sojourn times, the fixation probability of the mutant allele in a population consisting

initially of NA is given by

πA(NA) =
NA

N
+
NA(N −NA)T22

N(N − 1)

[
δ
.
a11 − δ2

.
a11
(.
a21 +

.
a22
)(

T32 + T33 +
NA − 1

N − 2
T33

)

+δ2
.
a11
(.
a11 +

.
a22
)
T22 +

δ2

2

{(..
a 11 +

..
a 12

)(T32 + T33

T22
+

NA − 1

N − 2

T33

T22

)
− ..a 12

}]
+O(δ3),

(A-33)

where

T22 =
1

a◦21

T32 =
a◦32

a◦21 (a
◦
31 + a◦32)

T33 =
a◦21

a◦21 (a
◦
31 + a◦32)

. (A-34)

The fixation probability can be further simplified in the presence of a single initial mutant

to give

πA(1) =
1

N
+

T2

N

(
δ
.
a11 − δ2

.
a11
[(.

a21 +
.
a22
)
T3 −

(.
a11 +

.
a22
)
T2

]

+
δ2

2

[
T3

T2

..
a 11 +

(
T3 − T2

T2

) ..
a 12

])
+ O(δ3), (A-35)
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where T2 ≡ T22 and T3 ≡ T32 + T33, so that Ti is the coalescence time of i gene lineage into

a single common ancestor.

Finally, we note that to the first order of selection πA(1) > 1/N implies that a single

resident in a population of mutants has a lower than neutral fixation probability. This can

be seen from eq. A-33 since to the first order in selection intensity, we have

πA(1) =
1

N
+ δ

T2
.
a11
N

1− πA(N − 1) =
1

N
− δ

T2
.
a11
N

, (A-36)

and so

.
a11 > 0 ⇔ πA(1) >

1

N
⇔ 1− πA(N − 1) <

1

N
(A-37)

holds for δ > 0. By contrast, at a singular point, this is no longer true since in that case the

fixation probability of a single mutant and a single resident is, respectively

πA(1) =
1

N
+
δ2

2

[
−..a 12 +

(..
a 11 +

..
a 12

) T32 + T33

T22

]

1− πA(N − 1) =
1

N
− δ2

2

[
−..a 12 +

(..
a 11 +

..
a 12

) T32 + 2T33

T22

]
. (A-38)

Stationary average frequency with vanishing mutation rates

Substituting eqs. A-33 into eq. 8, we find that the asymptotic mutant frequency in the

presence of vanishing mutation rate can be written as

ρA =
1

2
+

L2

4

(
δ
.
a11 −

δ2

2
.
a11
[(.

a21 +
.
a22
)
L3 −

(.
a11 +

.
a22
)
L2

]

+
δ2

2

[
L3

L2

..
a 11 +

(
L3 − L2

L2

) ..
a 12

])
+ O(δ3), (A-39)

where

L2 = 2T2

L3 = 2T32 + 3T33 (A-40)

so that Lj can be interpreted as the total branch length in number of generations of a

coalescent tree involving i genes.
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The stationary average frequency depends on the variable g2 = L3/L2, which using

eq. A-40 and eq. A-34 is given by

g2 =
3a◦21 + 2a◦32
2a◦31 + 2a◦32

. (A-41)

The coefficient a◦21 is the probability that two individuals i and j coalesce into a common

ancestor (parent) in a single backward step. This probability is identical to

a◦21 = a◦31 +
a◦32
3

(A-42)

since a◦31 is the probability that three individuals i, j and k coalesce into a common parent

and a◦32/3 is the probability that two specified individuals i and j coalesce into a common

parent and an individual k does not coalesce into the common parent of i and j. Using

this relationship, we have g2 = 3/2, which holds whenever matrix A◦ (eq. 22) describes the

dynamics of moments of allele frequencies.

Explicit coefficients for fecundity effects

Here, we present the expressions for the selection coefficients in the presence of pairwise

interactions for the Wright-Fisher process. Substituting eqs. 45–46 into eq. 28 yields:

.
a11 =

(N − 1)

Nf

[
f1 −

f2
N − 1

]

.
a21 =

2(N − 1)

N2f

[
f1 −

f2
N − 1

]

.
a22 =

2(N − 1)(N − 3)

N2

[
f1 −

f2
N − 1

]

..
a 11 = − (N − 1)

Nf

[
2 (f1 + f2)

Nf

(
f1 −

f2
N − 1

)
− f11 +

f22
N − 1

]

..
a 12 = − (N − 1)

Nf

[
2(N − 3)

Nf

(
f2
1 +

N − 2

N − 1
f1f2 −

f2
2

N − 1

)
+ f11 − 2

N − 2

N − 1
f12 −

f22
N − 1

]
.

(A-43)
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At a singular point f1 = f2/(N − 1), whereby

.
a11 = 0

.
a21 = 0

.
a22 = 0

..
a 11 =

(N − 1)

Nf

[
f11 −

f22
N − 1

]

..
a 12 = − (N − 1)

Nf

[
f11 − 2

N − 2

N − 1
f12 −

f22
N − 1

]
.

(A-44)

For the Moran and Cannings process, the right members of eqs. A-43–A-44 are proportional

to 1/N and (1− s), respectively.

Stationary phenotypic distribution

Here we derive the long-term stationary phenotypic distribution of z by using the fixation

probability of a single mutant (eq. A-35) in conjunction with the canonical diffusion of

adaptive dynamics (Champagnat and Lambert, 2007).

Canonical diffusion

The so-called canonical diffusion (Champagnat and Lambert, 2007) is an equation describing

the dynamics of the phenotype z over evolutionary time in which the time to fixation is

assumed to be a fast variable, so that fixation occurs instantly and the dynamics of z over

evolutionary time follows a stochastic trait substitution sequence. This canonical diffusion

equation will allow us to derive the steady-state values of z. In order to use the canonical

diffusion, we assume that with probability µ an individual mutates to a novel type and

denote by σ2 the variance of the mutation step δ, which involves phenotypic deviations of

order δ2. We also assume that the mutation mechanism is assumed here to be independent

of the evolving phenotype z.

Then, as the mutation rate becomes very small µ → 0 and neglecting phenotypic devia-

tion of order δ3, the dynamics of the phenotype of evolutionary time scale t can be described
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by the stochastic differential equation

d

dt
z(t) = a(z(t)) +

√
b(z(t))

dB(t)

dt
, (A-45)

where dB(t)/dt is the white noise (e.g., Karlin and Taylor, 1981, p. 342), and a(z(t)) and

b(z(t)) are the infinitesimal mean and variance of the change in phenotype (Champagnat and

Lambert, 2007, eq. 3). With our assumptions that the mutation mechanisms is independent

of the evolving phenotype z and that evolution occurs in a population of constant size N ,

we have from Champagnat and Lambert (2007, eq. 3) that

a(z(t)) = Nµσ2.π(z(t))
b(z(t)) = µσ2, (A-46)

where the infinitesimal variance is independent of z(t).

Eq. A-46 also provide the infinitesimal mean and variance of the diffusion process that

arises as a solution of eq. A-45 (Karlin and Taylor, 1981, p. 376), and which describes the

dynamics of the probability density ψ(z, t) that phenotype z is observed at time t as

∂ψ(z, t)

∂t
= − ∂

∂z
[a(z)ψ(z, t)] +

1

2

∂2

∂z2
[b(z)ψ(z, t)] , (A-47)

which can also be derived by using the substitution rate approach of population genetics

(Lehmann, 2012).

Stationary distribution

Our aim is to obtain the long term phenotypic distribution ψ(z) = limt→∞ ψ(z, t), which

is characterized by an evolutionary steady-state ∂ψ(z, t)/∂t = 0. In order to obtain this

distribution, we first note that eq. A-47 can be expressed as ∂ψ(z, t)/∂t = −∂J(z, t)/∂z,

where J(z, t) is the probability flux through z at time t (Kimura, 1964, p. 187;Gillespie, 1991,

p. 157;Gardiner, 2004, p. 119). At steady state, the probability flux J(z) = limt→∞ J(z, t)

is given by

J(z) = a(z)ψ(z)− 1

2

∂

∂z
[b(z)ψ(z)] . (A-48)

Since we assume that the process takes place in some interval [l, r], where l and r are,

respectively, the left and right boundary of phenotypic values, there is no probability flux
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out of the interval [l, r]. We then have a process with reflecting boundaries (Gardiner, 2004,

pp. 119-124), where J(z) = 0 for any z ∈ [l, r]. The stationary distribution ψ(z) is then

obtained by solving the differential equation A-48, which gives

ψ(z) =
C

b(z)
exp

[
2

∫ z

l

a(y)

b(y)
dy

]
, (A-49)

where C is a normalization constant (e.g., Kimura, 1964; Gillespie, 1991; Ewens, 2004;

Gardiner, 2004). Substituting eq. A-46, we obtain

ψ(z) ∝ exp

[∫ z

l
2N
.
π(y) dy

]
, (A-50)

which shows that the stationary distribution of the phenotypes will be independent of the

features of the mutation process in the limit of a vanishing mutation rate.

Example

We will now evaluate ψ(z) for the cooperator-defector game introduced in the main text

(eq. 48). We will evaluate this for the Cannings process, as it allow use to cover both the

Wright-Fisher and Moran model. For this model, we have from eq. 30 and that

.
π(z) =

T2

N
(1− s)w̃i,i, (A-51)

where T2(1 − s)/N = 1/(1 + s) and w̃i,i is given by (N − 1) [f1(z)− f2(z)/(N − 1)] /(Nf)

(from eq. A-17), whereby using eq. 48 gives

.
π(z) =

(N − 1)

N(1 + s)f

[
b1 + 4b2z − c1 − 2c2z −

b1 + 4b2z

N − 1

]
. (A-52)

Substituting eq. A-52 into eq. A-50, setting l = 0 and using sc ≡ 1/(1+ s) as the scaling

factor between the various neutral processes (it can be checked that for the Moran process

sc = 1/2 and can thus be recovered when s = 1), we obtain

ψ(z) ∝ exp
[
4Nsc(2b2c1−b1c2)

{
tan−1

(
2b1 − c1

B

)
− tan−1

(
2b1 + 8b2z − c1− 2c2z

B

)}

+2scx(2b2(N − 2)− c2N + c2)(log [−z(2b1 + 4b2z − c1 − c2z)− 1]− iπ)
]
, (A-53)

where B =
√

16b2 − 4c2 − (c1 − 2b1)2. The function ψ(z) can take a complex number but

it takes a real number for every set of parameter values used in our simulation.
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Individual based simulation

Here, we present the algorithm of our individual based simulations. Each individual i ∈

{1, 2, ..., N} can take a different phenotype zi(t) ∈ [0, 1] at discrete time t. At each time step,

each individual i obtains fecundity Fi(t) =
∑

j !=i f(zi(t), zj(t)) from pairwise interactions

with N − 1 individuals. The next generation is then sampled according to the fecundity

values of all individuals and according to the life-cycle assumption (Moran or Wright-Fisher).

We applied the Moran or Wright-Fisher process exactly, which is different from Doebeli et al.

(2004) and requires more computer time.

To introduce mutation, we assume that any newborn individual k produced by an individ-

ual i has phenotype zk(t+1) = zi(t) with probability 1−µ and phenotype zk(t+1) = zi(t)+δ

with probability µ. The mutation step size δ = N (0,σ) is a random variable obeying the

normal distribution with mean 0 and variance σ2. When zk < 0 or zk > 1 occurs by muta-

tion, we set zk = 0 or zk = 1 accordingly. When we choose a small σ value, δ almost always

takes a small value.

The initial condition is chosen so that all individuals have z=0.1 at t=0. When we

calculate the stationary distribution, we run simulation until t=T and the time-averaged

frequencies over [T/2, T ] are calculated.
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Corrigendum

Corrigendum to ‘‘Evolutionary and convergence stability for continuous
phenotypes in finite populations derived from two-allele models’’
[J. Theor. Biol. 310 (2012) 206–215]

Joe Yuichiro Wakano a,b,n, Laurent Lehmann c

a Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Japan
b PRESTO, Japan Science and Technology Agency, Japan
c Department of Ecology and Evolution, University of Lausanne, Switzerland

In the above article the last equation in Eq. (38) and the same equation in Eq. (43) (both in page 211) were printed incorrectly. Here
reproduced correctly

QCS :
dwi,iðzÞ

dz

!!!!
z ¼ z*
¼wi,iiðz*ÞþðN%1Þwi,ijðz*Þo0
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