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ABSTRACT 1 

Background: Although heart rate variability (HRV) is widely used to assess cardiac 2 

autonomic function, few studies have specifically investigated nocturnal HRV.  3 

Objective: We aimed to assess the association between nocturnal HRV and cardiovascular 4 

disease (CVD) incidence over 4 years in a population-based sample.  5 

Methods: 1784 participants (48.2% male, 58±11 years) from the HypnoLaus population-6 

based cohort free of CVD at baseline were included. Polysomnography-based 7 

electrocardiograms were exported to analyse time and frequency-domain HRV, Poincaré 8 

plots indices, detrended fluctuation analysis, acceleration (AC) and deceleration capacities 9 

(DC), entropy, heart rate fragmentation (HRF), and heart rate turbulence. Multivariable-10 

adjusted cox regression analysis was used to assess the association between HRV indices 11 

and incident CVD.  12 

Results: 67 participants (3.8%) developed a CVD over a mean follow-up time of 4.1±1.1 13 

years. In a fully adjusted model, AC (hazard ratio per one SD increase [95% confidence 14 

interval]: 1.59 [1.17-2.16]; p=0.004), DC (0.63 [0.47-0.84]; p=0.002) and HRF (1.41 [1.11-15 

1.78]; p=0.005) were the only HRV metrics significantly associated with incident CVD events 16 

after controlling for false discovery rate. 17 

Conclusion: Nocturnal novel HRV parameters such as AC, DC and HRF are better 18 

predictors of CVD events than time and frequency traditional HRV parameters. These 19 

findings suggest a form of dysautonomia and fragmented rhythms but further experimental 20 

studies are needed to delineate the underlying physiological mechanisms of these novel 21 

HRV parameters.  22 

 23 

Key Words: heart rate variability; heart rate fragmentation; cardiovascular disease; 24 

electrocardiogram; sleep; prospective study.  25 
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INTRODUCTION 26 

Sleep is a complex homeostatic and circadian function during which autonomic nervous 27 

system (ANS) regulation is largely independent of external stimuli and therefore provides a 28 

reasonable representation of basal autonomic regulatory equilibrium.1 For over three 29 

decades, analysis of heart rate variability (HRV) has been proposed as a non-invasive and 30 

accessible tool to evaluate cardiac autonomic function (CAF) in health and disease.2 In 31 

practice, normal beat-to-beat intervals are extracted from the electrocardiogram (ECG) and 32 

numerous HRV indices can be calculated using time-domain, frequency-domain and non-33 

linear analysis.3-5 These indices provide information about sympathetic and parasympathetic 34 

modulations as well as randomness of heart rate.3, 4 Several epidemiological studies have 35 

shown that altered HRV is an independent predictor of cardiovascular outcomes and all-36 

cause mortality.6-8 37 

Despite this, HRV is sometimes criticized due to its lack of reproducibility and reliability if 38 

standardized procedures are not utilized. To improve reproducibility, HRV indices are usually 39 

calculated from 24-h ECG Holter monitoring while participants perform their usual daily 40 

activities3 but Holter monitoring is mostly used by cardiologists. Moreover, unrestricted 41 

activities for the same participant may vary within and between days, which may have 42 

unpredictable effects on 24-h HRV parameters and thus decrease reproducibility.9 HRV can 43 

also be acquired during daytime using short-term recordings, but methods of measurement 44 

need to be highly standardized (position, breathing pace, recording time, etc.) and short-term 45 

measurements have lower predictive power than 24-h recordings.4, 10, 11  46 

Recently, sleep has been proposed as a highly standardized condition to time-efficiently 47 

measure HRV in a setting that is less influenced by environmental factors compared with 48 

daytime measures.12 However, although the association between 24-h HRV and 49 

cardiovascular events is well established, it is still largely unknown whether nocturnal HRV 50 

metrics can predict the occurrence of cardiovascular diseases (CVD) events. 51 

Thus, the primary objective of this study was to determine whether nocturnal HRV indices 52 

can predict the incidence of fatal and non-fatal CVD events over a 4-year follow-up period.  53 
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METHODS 54 

Study Population 55 

The HypnoLaus study13 is a nested study of CoLaus|PsyCoLaus,14, 15  a prospective cohort 56 

study including 2,162 participants randomly selected according to the civil register of the city 57 

of Lausanne (Switzerland) who completed an ambulatory full polysomnography (PSG) in 58 

addition to a full clinical work-up between 2009 and 2013 to assess the prevalence and 59 

correlates of sleep characteristics and sleep disorders (more details in Supplemental 60 

Appendix).  61 

 62 

Ethical Statement 63 

Both the CoLaus|PsyCoLaus and HypnoLaus studies were approved by the Ethics 64 

Committee of the Vaud Canton (approval numbers 16/03 and 33/09), and written informed 65 

consent was obtained from all participants. 66 

 67 

Heart Rate Variability Measurements 68 

Single-lead ECG data were extracted from the polysomnography recordings in European 69 

Data Format (EDF) using Somnologica Studio (version 5.1.1, Embla® Flaga). Each QRS 70 

complex was validated and raw RR series were imported to the HRVanalysis software 71 

version 1.2.16 An accurate preprocessing was performed as suggested in the HRV Task 72 

Force.3 HRV was first analyzed for the whole sleep period using sleep onset and wake-up 73 

timestamps from the PSG (including wake after sleep onset periods). In a secondary 74 

analysis, HRV was analyzed from the average of 5-minute stable epochs during non-rapid 75 

eye movement (NREM, including sleep stages 1, 2 and 3) and rapid eye movement (REM) 76 

sleep using the sleep scoring of the PSG. Moreover, HRV was analyzed from the average of 77 

5-minute stable epochs without events (arousals, apnea-hypopnea or periodic leg 78 

movements) during NREM and REM sleep. HRV analysis included standard time-domain, 79 

frequency-domain, non-linear and novel indices according to standard criteria (more details 80 

in Supplemental Appendix).3, 5  81 
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 82 

Linear HRV Analysis 83 

In the time-domain, the following indices were reported: mean peak-to-peak R intervals (RR), 84 

the standard deviation of normal-to-normal (N-N) intervals (SDNN) and the root mean square 85 

of successive N-N differences (rMSSD). In the frequency-domain, a Fast Fourier Transform 86 

algorithm was applied based on 5-min epochs and the following spectral power parameters 87 

were calculated:  very low frequency (VLF), low frequency (LF), high frequency (HF) and the 88 

ratio LF/HF.3  89 

 90 

Nonlinear HRV Analysis 91 

Non-linear measurements provide information on the complexity of autonomic regulations, 92 

and included Poincaré plot analysis (short-term [SD1] and long-term variability indices 93 

[SD2]),17 detrended fluctuation analysis (short- and long-term fluctuations indices DFA α1 94 

and α2)18 and entropy (approximative entropy [ApEn] and sample entropy [SampEn]).19  95 

 96 

Novel HRV analysis 97 

Novel HRV analysis included deceleration capacity (DC) and acceleration capacity (AC),20 98 

heart rate fragmentation (HRF; measured as the percentage of inflection point [PIP])21 and 99 

heart rate turbulence (HRT; quantify by turbulence onset [TO] and turbulence slope [TS]).22, 100 

23 101 

 102 

Clinical Assessment 103 

Information on sociodemographic characteristics, medical and treatment history was 104 

obtained by trained interviewers using standardized questionnaires during the first follow-up 105 

of CoLaus|PsyCoLaus (corresponding to the baseline of HypnoLaus).14, 15 Detailed 106 

anthropometric measures and definition of comorbidities (diabetes, hypertension, 107 

dyslipidemia, depression) are available in Supplementary Appendix. 108 

 109 
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Outcomes 110 

The incidence of a composite cardiovascular disease variable was established based on all 111 

the fatal and non-fatal cardiovascular disease events adjudicated by a local expert committee 112 

including a panel of cardiologists and neurologists according to international 113 

recommendations.24 Fatal events were defined as death from myocardial infarction or stroke. 114 

Non-fatal outcomes included the occurrence of non-fatal myocardial infarction, stroke, acute 115 

coronary insufficiency (>50% stenosis) needing percutaneous coronary intervention or 116 

coronary artery bypass grafting, and peripheral arterial disease defined by angiological 117 

examination (US-doppler) and/or revascularization (by peripheral bypass surgery or 118 

stenting).  119 

 120 

Exclusion criteria 121 

Participants with a prior CVD and participants loss to follow-up were excluded (n=198) 122 

(Figure 1). Exclusion criteria also included recordings with insufficient ECG quality or 123 

technical failure as well as participants with frequent ectopic beats (percentage of 124 

supraventricular and ventricular extrasystoles >20% of the recording), atrial fibrillation or 125 

flutter, pacemaker, bundle branch block and ≥10% RR corrected due to their known influence 126 

on HRV (n=149) (Figure 1).  127 

 128 

Statistical Analysis 129 

All statistical analyses were performed using IBM SPSS Statistics version 26.0 for Macintosh 130 

(IMB Corp, Armonk, NY, USA). Baseline characteristics are presented as mean ± SD, 131 

median (interquartile range) or as n (percentage) unless otherwise state. Baseline 132 

characteristics and HRV indices between “incident CVD events” and “no incident CVD 133 

events” groups were compared using Student’s t-test, Mann Whitney U test or Chi-square 134 

test as appropriate. Normality was checked with Q-Q plots. Non-normal HRV parameters 135 

were log transformed (log10) prior to analysis. A two-tailed p-value <0.05 was considered 136 

statistically significant. To determine the associations between HRV indices and CVD events 137 
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incidence, univariate and multivariable-adjusted COX regressions were used with each HRV 138 

parameter tested separately. Model 1 was adjusted for age, sex and body mass index (BMI). 139 

Model 2 was additionally adjusted for smoking status, education, depression, hypertension, 140 

dyslipidemia, diabetes, sleep drugs, beta-blockers, apnea-hypopnea index (AHI) and periodic 141 

leg movement during sleep (PLMSI). Model 3 was additionally adjusted for self-reported 142 

treatment for sleep-disordered breathing during the follow-up. Results are expressed as 143 

hazard ratio (HR) with 95% CI per one SD increase for each HRV parameter tested. To avoid 144 

type 1 error, we corrected for multiple testing using the false discovery rate (FDR) 145 

approach.25 To facilitate interpretation, continuous HRV parameters that were statistically 146 

significant in the fully adjusted model were also dichotomized according to their median.  147 

Predictive power of these metrics was compared to a base model including age, BMI, 148 

diabetes, hypertension, smoking status and dyslipidemia. Discrimination performance of 149 

these latter models was assessed with area under the receiver operating characteristic curve 150 

(AUROC) while concordance was assessed using Harrell’s C index and goodness of fit with 151 

Akaike information criterion (AIC) and Bayesian information criterion (BIC). 152 

Additional analyses were done to determine: (1) the association of HRV during NREM and 153 

REM sleep with incident CVD events; (2) the association of HRV during sleep epochs in 154 

NREM and REM without sleep events (arousals, apnea-hypopnea or periodic leg 155 

movements) with incident CVD events; (3) the association of HRV with both incidence and 156 

recurrence of CVD events; (4) the association between the inability to measure HRV due to 157 

frequent ectopic beats, atrial arrhythmia, pacemakers, bundle branch block or lots of 158 

corrected RR intervals (≥10 %) and incident CVD events.  159 

 160 

RESULTS 161 

Population Characteristics 162 

Of the 2162 participants from HypnoLaus, 1784 without any CVD at baseline were included 163 

in the present study. Detailed exclusion criteria are shown in Figure 1. The mean age was 58 164 

years (range 40-84), 46.4% were men and the mean BMI was 26.0±4.3 kg.m-2. 165 
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Sixty-seven (3.8%) participants developed a CVD event during follow-up (mean 4.1±1.1 166 

years). Of these, 26 (1.5%) had a stroke, 30 (1.7%) developed coronary heart disease 167 

(including 1 fatal event), and 11 (0.6%) developed PAD. The mean time to incident CVD 168 

event was 2.6±1.4 years. Clinical and sleep characteristics of the participants with and 169 

without incident CVD events are shown in Table 1. Participants who developed a CVD event 170 

were older, had a higher BMI, were more often smokers, and had a higher prevalence rate of 171 

hypertension, dyslipidemia and diabetes. They were also more frequent users of sleep drugs 172 

and beta-blockers, and had higher AHI and PLMSI at baseline. 173 

 174 

Association between HRV and incident CVD 175 

Bivariate analysis for heart rate variability parameters according to cardiovascular status are 176 

shown in Table A.1. Numerous HRV indices were significantly associated with incident CVD 177 

events in unadjusted analysis and most of them remained significant after adjustment for 178 

age, sex and BMI (Model 1) (Table 2). In the Model 2 (additionally adjusted for smoking 179 

status, education, depression, hypertension, dyslipidemia, diabetes, sleep drugs, beta-180 

blockers, AHI and PLMSI), AC, DC and PIP were the only significant predictors of incident 181 

CVD events after FDR correction. After additional adjustment for self-reported sleep-182 

disordered treatment during follow-up (Model 3), none remains significantly associated with 183 

incident CVD events after FDR correction.  184 

When AC, DC and PIP were dichotomized according to their median, we found that 185 

participants with low AC, low DC and high PIP were at higher risk of incident CVD events 186 

compared to those with high AC, high DC and low PIP respectively (Figure 2).  187 

 188 

Predictive value of HRV metrics 189 

Performance metrics of the risk prediction models are summarized in Table 3. Results 190 

showed a minimal improvement in discrimination (AUROC), concordance (Harrell’s C), and 191 

goodness of fit (AIC and BIC) when AC, DC or PIP were added to the base model. 192 

 193 



 8 

Secondary analysis 194 

When considering HRV during NREM and REM sleep separately, results remained 195 

consistent although associations between incident CVD events and AC, DC as well as PIP 196 

were only significant in NREM sleep after FDR correction (Table.A.2.). Moreover, DFA α2 197 

was significantly associated with incident CVD events during NREM sleep.  198 

When considering only stable epochs without sleep events (arousals, apnea-hypopnea or 199 

periodic leg movements), only PIP during NREM remained significantly associated with CVD 200 

events after FDR adjustment (Table.A.3.).  201 

When considering both incidence and recurrence of CVD (n=86 events), results remained 202 

consistent for AC and DC but PIP was no longer associated with the occurrence of CVD 203 

events during the follow-up (Table A.4).  204 

Lastly, patients excluded from the primary analysis due to the inability to measure HRV 205 

because of frequent ectopic beats, atrial arrhythmia, pacemakers, bundle branch block or 206 

lots of corrected RR intervals were at higher risk of incident CVD events after adjustment for 207 

age, sex and BMI (HR: 1.86 [1.01–3.42]; p=0.046).  However, this was no longer significant 208 

in the fully adjusted model (1.85 [0.98–3.48]; p=0.059). 209 

 210 

 211 
DISCUSSION 212 

To our knowledge, this study is the first to assess the predictive value of a comprehensive 213 

panel of linear, non-linear and novel nocturnal HRV indices based on a large population-214 

based sample of middle-to-older age participants. Our findings showed that only novel 215 

nocturnal HRV metrics were independently associated with incident fatal and non-fatal CVD 216 

events over 4 years of follow-up. By contrast, traditional HRV parameters during sleep were 217 

not associated with incident CVD event. Although widely used in both research and clinical 218 

practice, nocturnal SDNN, rMSSD, HF and oldest non-linear indices (DFA, entropy) did not 219 

provide consistent results in the fully adjusted model after FDR-correction. However, our 220 

findings corroborate one recent study performed in the community-based MESA cohort26 and 221 
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provide further evidence that nocturnal traditional HRV indices are not as accurate in 222 

participants without CVD as they can be in the cardiac populations in which they were 223 

originally developed.3, 6 The discrepancy may be due to the paradoxical increase in short-224 

term variability (rMSSD, HF) for some participants at high risk of CVD, which is actually not 225 

attributable to vagal tone modulation but rather to erratic sinus rhythms,27, 28 and by the fact 226 

that they had been developed on 24-h measurement. Moreover, some nocturnal metrics 227 

such as VLF may be influenced by sleep disordered breathing. Even though the analysis was 228 

adjusted for the AHI, we cannot exclude that this interference could influence its predictive 229 

value.29  230 

In contrast, some more novel metrics such as nocturnal PIP, AC and DC appear to be better 231 

predictors of incident CVD events. Nocturnal HRF already showed promising results as a 232 

predictor of CVD events at 3 years in the MESA cohort26  with an adjusted hazard ratio for 233 

PIP in that community-based sample similar to the one obtained in our population-based 234 

cohort (HR values of 1.43 and 1.42, respectively), providing additional support for this novel 235 

approach. Surprisingly, our results showed that, in addition to DC, AC was strongly 236 

associated with incident CVD events whereas previous studies investigating these metrics 237 

only found DC to have prognostic value after myocardial infarction.30 These HRV indices 238 

likely reflect cardiac dysautonomia not clearly captured by other HRV parameters during 239 

sleep but further studies are needed to elucidate the exact underlying physiological 240 

mechanisms. Furthermore, unlike previous studies in CVD populations,22 we found no 241 

association between HRT indices and the incidence of CVD events in our sample, 242 

suggesting that HRT is a better predictor in cardiac populations than in general population. 243 

Lastly, secondary analysis showed that HRV during NREM sleep did not improve the 244 

prediction of cardiovascular risk compared to HRV during the whole night. This suggests that 245 

respiratory polygraphy recordings without sleep stage scoring and with a single-lead ECG 246 

may be used in clinical practice to analyze HRV and predict cardiovascular risk.  247 

 248 

Strengths and Limitations 249 
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This study has several strengths including its prospective design in a large population-based 250 

cohort with CVD events adjudicated by an expert panel. Moreover, sleep was analyzed using 251 

gold-standard in-home PSG and the most commonly used HRV metrics were analyzed and 252 

adjusted according to comorbidities, CVD risk factors and treatments.  253 

Nonetheless several limitations should be mentioned. First, we used a composite CVD 254 

events endpoint to evaluate CVD risk and therefore could not determine whether HRV 255 

parameters were better able to predict the incidence of cardiovascular or cerebrovascular 256 

diseases due to a relatively low number of events at four years. Further studies with more 257 

events are needed to shed light on CVD subgroup analysis. Second, this study might not be 258 

applicable to participants with arrhythmia, frequent ectopic beats and/or an implanted cardiac 259 

pacemaker because participants with these characteristics were excluded due to the 260 

alteration of the cardiac autonomic response. However, these subjects are known to be at 261 

risk of CVD and our findings confirmed that the inability to measure HRV may be a predictor 262 

of CVD events per se. Third, although we found significant prospective associations between 263 

some HRV metrics and incident CVD events, the predictive capacity of HRV appears to be 264 

relatively low when added to the base risk prediction model, but further studies are needed to 265 

confirm these results. 266 

 267 

Conclusions 268 

Our study showed that “novel” HRV indices are probably better predictors of incident CVD 269 

events than traditional HRV indices. In particular, low acceleration and deceleration capacity 270 

as well as high heart rate fragmentation showed the strongest associations with incident 271 

CVD events in our population-based cohort. Such features can be easily captured by HRV 272 

analysis of the PSG ECG channel. Further experimental studies are needed to shed light on 273 

the putative underlying physiological mechanisms of these novel HRV parameters.  274 

 275 

 276 
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Figure legends 392 

 393 

Figure 1. Study flow chart. Afib indicates atrial fibrillation; CV, cardiovascular; CVD, 394 

cardiovascular disease; ECG, electrocardiogram; HRV, heart rate variability; SVES, 395 

supraventricular extrasystoles; VES, ventricular extrasystoles. *Frequent VES and SVES 396 

were defined by a rate >20% of the recording.  397 

 398 

 399 
Figure 2. Adjusted risk curves for the incidence of cardiovascular disease (CVD) according 400 

to high and low: A) acceleration capacity (AC); B) deceleration capacity (DC); and C) 401 

percentage of inflection points (PIP).  402 

Curves were obtained after adjustment for age, sex, body mass index, education, smoking, 403 

depression, hypertension, dyslipidemia, diabetes, sleep drugs, beta-blockers, apnea-404 

hypopnea index and periodic leg movement index during sleep. High and low values for each 405 

parameter was determined according to the median in the whole population.  406 

HR: hazard ratio; Ref, reference. 407 

  408 
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Table 1. Population characteristics according to cardiovascular status at 4 years 409 

  No incident CVD 
events (N=1717) 

Incident CVD 
events (N=67) 

p-value 

Age (years) 56.1 (40.5-84.1) 67.6 (55.4-72.9) <0.001 
BMI (kg.m-2) 25.5 (23.0-28.3) 26.6 (24.3-29.2) 0.022 
Male (%) 790 (46.0%) 38 (56.7%) 0.085 

Education (years) 13.8 ± 4.0 12.8 ± 4.0 0.054 
Alcohol, units/week 4 (1-9) 4 (0-10) 0.128 
Coffee (mL/day) 156 ± 100 148 ± 95 0.502 

Smoking status (%)   <0.001 
  Current smoker 301 (17.7%) 24 (35.8%)  

  Former smoker 669 (39.4%) 27 (40.3%)  

Depression (%) 327 (19.0%) 18 (26.9%) 0.112 
Hypertension (%) 625 (36.4%) 45 (67.2%) <0.001 
Dyslipidemia (%) 448 (26.1%) 25 (37.3%) 0.042 
Diabetes (%) 133 (7.8%) 14 (20.9%) <0.001 
Medication (%)    
  Sleep drugs (%) 133 (7.7%) 13 (19.4%) 0.001 
  Beta-blockers (%) 101 (5.9%) 10 (14.9%) 0.003 
  ACE inhibitors 83 (4.8%) 11 (16.4%) <0.001 
  Angiotensin receptor blockers 190 (11.1%) 12 (17.9%) 0.083 

  Calcium channel blockers 76 (4.4%) 7 (10.4%) 0.022 
  Diuretics 96 (5.6%) 13 (19.4%) <0.001 
  Antiarrhythmic† 4 (0.2%) 0 (0%) 1.000 
Sleep characteristics    
  Total sleep time (min) 403 ± 71 402 ± 83 0.882 

  Sleep efficiency (%) 88.5 (81.0-93.0) 83.4 (77.2-89.1) 0.002 
  N1 (%) 10.1 (7.2-14.4) 12.2 (8.5-16.5) 0.020 
  N2 (%) 46.2 ± 10.2 50.1 ± 11.1 0.002 
  N3 (%) 20.1 ± 8.4 16.2 ± 8.5 <0.001 
  REM (%) 22.1 ± 6.0 20.3 ± 6.9 0.018 
  AHI (events/h) 9.4 (3.9-19.0) 16.3 (6.5-26.8) <0.001 
  ODI (events/h) 9.4 (4.1-18.2) 15.1 (7.1-27.1) 0.001 
  Mean SpO2 (%) 94.2 ± 2.9 93.4 ± 1.6 0.021 
  PLMSI (events/h) 1.8 (0-17.2) 13.5 (0.9-37.6) <0.001 
  OSA treatment (%)†† 116 (7.2%) 15 (27.3%) <0.001 
 410 

Values are presented as mean ± standard deviation or median (interquartile range) for normal and 411 
non-normal continuous data, respectively. Categorical data are presented as number of patients (%). 412 
P-values <0.05 are in bold. 413 
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ACE indicates angiotensin-converting enzyme; AHI, apnea-hypopnea index; ODI, oxygen desaturation 414 

index; OSA: obstructive sleep apnea; PLMSI, periodic leg movement during sleep; SpO2, oxygen 415 

saturation. Detailed definitions of anthropometrics and comorbidities are presented in the 416 

supplementary method. 417 

†Antiarrhythmic drugs include amiodarone (C01BD01) and flecainide (C01BC04). ††Self-reported OSA 418 

treatment was available in only 1645 participants. 419 
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Table 2. Nocturnal heart rate variability predictors of incident fatal and non-fatal adjudicated cardiovascular disease events 

 
Crude (n=1717/67) Model 1 (n=1711/64) Model 2 (n=1686/64) Model 3 (n=1593/52) 

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value 

Mean RR (ms) 0.83 (0.65-1.07) 0.154 0.78 (0.60-1.02) 0.068 0.90 (0.69-1.18) 0.448 0.91 (0.67-1.23) 0.529 

SDNN (ms) 0.69 (0.52-0.91) 0.008 0.76 (0.56-1.02) 0.064 0.85 (0.63-1.14) 0.280 0.84 (0.60-1.16) 0.286 

RMSSD (ms) 0.46 (0.32-0.67) <0.001 0.57 (0.39-0.84) 0.005 0.66 (0.45-0.98) 0.037 0.69 (0.45-1.05) 0.082 

VLF (ms2/Hz) 0.64 (0.46-0.91) 0.011 0.69 (0.48-1.01) 0.055 0.77 (0.54-1.10) 0.154 0.77 (0.51-1.15) 0.195 

LF (ms2/Hz) 0.51 (0.34-0.77) 0.001 0.67 (0.44-1.01) 0.056 0.75 (0.50-1.13) 0.169 0.80 (0.52-1.22) 0.296 

HF (ms2/Hz) 0.29 (0.14-0.57) <0.001 0.43 (0.22-0.84) 0.013 0.53 (0.28-1.00) 0.049 0.61 (0.32-1.16) 0.135 

LF/HF ratio 1.17 (0.95-1.44) 0.129 1.11 (0.88-1.39) 0.396 1.09 (0.84-1.40) 0.526 1.09 (0.82-1.45) 0.573 

SD1 (ms) 0.47 (0.32-0.68) <0.001 0.57 (0.39-0.84) 0.005 0.67 (0.46-0.98) 0.039 0.69 (0.46-1.06) 0.087 

SD2 (ms) 0.71 (0.54-0.94) 0.015 0.78 (0.58-1.04) 0.041 0.87 (0.65-1.16) 0.337 0.85 (0.61-1.17) 0.312 

SD1/SD2 ratio 0.50 (0.35-0.70) <0.001 0.63 (0.45-0.89) 0.008 0.69 (0.49-0.98) 0.036 0.73 (0.50-1.06) 0.100 

DFA α1 1.37 (1.05-1.79) 0.020 1.30 (0.98-1.71) 0.067 1.25 (0.94-1.67) 0.128 1.20 (0.87-1.66) 0.269 

DFA α2 1.58 (1.23-2.04) <0.001 1.30 (1.01-1.67) 0.044 1.26 (0.98-1.63) 0.074 1.25 (0.93-1.67) 0.140 

AC (ms) 2.31 (1.75-3.04) <0.001 1.89 (1.39-2.57) <0.001 1.58 (1.16-2.16) 0.004 1.53 (1.09-2.15) 0.015 

DC (ms) 0.44 (0.33-0.57) <0.001 0.53 (0.39-0.72) <0.001 0.63 (0.47-0.85) 0.002 0.64 (0.46-0.88) 0.006 

ApEn 0.76 (0.60-0.96) 0.022 0.90 (0.70-1.16) 0.396 0.93 (0.71-1.21) 0.589 0.92 (0.68-1.25) 0.610 

SampEn 0.81 (0.63-1.04) 0.099 0.95 (0.74-1.22) 0.707 0.99 (0.76-1.29) 0.950 0.97 (0.72-1.31) 0.839 
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PIP (%) 1.64 (1.31-2.05) 0.001 1.46 (1.15-1.85) 0.002 1.42 (1.11-1.82) 0.005 1.39 (1.06-1.81) 0.016 

TO (%)* 0.89 (0.70-1.14) 0.350 0.74 (0.56-0.98) 0.037 0.75 (0.55-1.01) 0.057 0.72 (0.52-0.99) 0.040 

TS (ms/RR)* 0.50 (0.33-0.75) 0.001 0.68 (0.45-1.04) 0.076 0.82 (0.54-1.25) 0.353 0.94 (0.61-1.44) 0.785 

HRT severity      0.896  0.992 

  Normal Ref - Ref - Ref - Ref - 

  TO or TS 

abnormal 
1.66 (0.97-2.84) 0.065 1.13 (0.64-2.00) 0.683 1.15 (0.64-2.08) 0.642 

0.98 (0.51-1.90) 0.954 

TO & TS 

abnormal 
2.69 (1.32-5.46) 0.006 1.25 (0.59-2.65) 0.565 1.09 (0.51-2.32) 0.827 

0.94 (0.37-2.38) 0.903 

Values presented are standardized hazard ratios (HR) per one-standard deviation (SD) increase in the independent variable, with 95% confidence intervals 

(CI). n indicates number of participants free of events / number of participants with incident cardiovascular disease in each model.  

Model 1 was adjusted for age, sex and body mass index. Model 2: Model 1 + adjustment for educational level, smoking, depression, hypertension, 

dyslipidemia, diabetes, sleep drugs, beta-blockers, apnea-hypopnea index and periodic leg movement index during sleep. Model 3: Model 1 + adjustment for 

self-reported sleep-disordered treatment at follow-up. Detailed definitions of confounding factors are presented in the supplementary method. 

False discovery rate (FDR) corrected significant results are in bold.  

AC indicates acceleration capacity; ApEn, approximative entropy; DC, deceleration capacity; DFΑ α1, detrended fluctuation analysis describing short term 

fluctuations (4 to 11 beats); DFΑ α2, detrended fluctuation analysis describing long-term fluctuations (>11 beats); HF, high frequency power; LF, low 

frequency power; PIP, percentage of inflection points; rMSSD, square root of mean squared differences between successive NN intervals; SampEn, Sample 

entropy; SD1, Poincaré plot standard deviation perpendicular the line of identity; SD2, Poincaré plot standard deviation along the line of identity; SDNN, 

standard deviation in normal-to-normal (NN) RR intervals; TO, turbulence onset; TS, turbulence slope; VLF, very-low frequency power.  
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For TO and TS, n=1069/57 for crude; n=1067/55 for model 1, n=1056/55 for model 2 and n=993/45 for model 3.  
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Table 3. Predictive risk metrics for the model with cardiovascular risk factors (base model) and the model with cardiovascular risk factors plus 

HRV markers. 
 AUROC Harrell’s C AIC BIC 

Base model† 0.752 (0.690 - 0.814) 0.772 (0.709 - 0.835) 848.0 891.9 

  + PIP 0.764 (0.705 - 0.823) 0.779 (0.719 - 0.840) 843.4 892.8 

  + AC 0.763 (0.698 - 0.828) 0.780 (0.713 - 0.846) 840.8 890.2 

  + DC 0.766 (0.701 - 0.831) 0.783 (0.718 - 0.849) 839.9 889.3 

Results are presented as value and (95% confidence interval). AUROC, area under the receiver operating curve; AIC, Akaike’s information criterion; BIC, 

Bayesian information criterion. PIP: percentage of inflection point; AC: acceleration capacity; DC: deceleration capacity.  

†Base model included age, body mass index, diabetes, hypertension, smoking status and dyslipidemia. 

 

 

 


