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Macrophages are essential effector cells of innate immunity that play a pivotal role in the recognition and

elimination of invasive microorganisms. Mediators released by activated macrophages orchestrate innate and

adaptive immune host responses. The cytokine macrophage migration inhibitory factor (MIF) is an integral

mediator of the innate immune system. Monocytes and macrophages constitutively express large amounts of

MIF, which is rapidly released after exposure to bacterial toxins and cytokines. MIF exerts potent proinflam-

matory activities and is an important cytokine of septic shock. Recent investigations of the mechanisms by

which MIF regulates innate immune responses to endotoxin and gram-negative bacteria indicate that MIF

acts by modulating the expression of Toll-like receptor 4, the signal-transducing molecule of the lipopolysac-

charide receptor complex. Given its role in innate immune responses to bacterial infections, MIF is a novel

target for therapeutic intervention in patients with septic shock.

The innate immune system is the first line of host de-

fense against infection [1–3]. Detection of invasive mi-

croorganisms by the innate immune system is mediated

by soluble factors, such as the lipopolysaccharide

(LPS)–binding protein (LBP) and by pattern-recogni-

tion receptors expressed on immune cells (e.g., CD14

and the Toll-like receptors [TLRs]). Binding of path-

ogens or microbial toxins to these receptors activates

the signal transduction pathways and transcription of

immune genes, resulting in the release of multiple ef-

fector molecules in the extracellular milieu, including

cytokines. Cytokines promote inflammation and or-

chestrate the host’s cellular and humoral responses that
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are aimed at the elimination or walling off of invasive

pathogens.

The cytokine macrophage migration inhibitory fac-

tor (MIF) was discovered nearly 40 years ago during

studies of delayed-type hypersensitivity reactions. MIF

was identified as a soluble nondialyzable factor released

by activated lymphocytes that inhibited the random

migration of peritoneal exudate cells—hence its name

[4, 5]. Over the ensuing 20 years, MIF was found to

exert macrophage activation functions, such as cell ad-

hesion, phagocytosis, and killing of tumor cells and

intracellular parasites [6]. However, the biologic activ-

ities attributed to MIF remained questionable, because

all studies were done with cell culture supernatants of

activated T cells containing numerous effector mole-

cules in addition to MIF. A human MIF cDNA was

cloned in 1989 [7], and shortly thereafter MIF was

rediscovered as a protein released in a hormone-like

fashion by anterior pituitary cells stimulated with en-

dotoxin (i.e., LPS) [8]. Invigorated by this observation,

investigations of MIF’s biochemical properties and bi-

ologic activities progressed rapidly once purified mouse
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and human recombinant MIF proteins and neutralizing anti-

MIF antibodies became available [8, 9].

MIF GENE AND PROTEIN: STRUCTURE,
HOMOLOGIES, AND BIOLOGIC ACTIVITIES

The human Mif gene is located on chromosome 22 (22q11.2)

and is composed of 3 exons separated by small introns [7, 9–11].

In all tissues examined by Northern blotting, a single MIF mRNA

was identified. Baseline MIF mRNA levels are elevated in several

organs including kidney, liver, and brain. In the mouse, the Mif

gene has been mapped to chromosome 10 [12]. More than 9

Mif pseudogenes have been identified in the mouse genome [13,

14]. In contrast, there are no Mif pseudogenes in the human

genome. Analyses of the sequences of the exons of mouse and

human Mif show a high degree of homology (70%–86%). Until

now, D-dopachrome tautomerase has been the only other human

gene found to share some degree of homology (∼30%) with Mif

[15]. This suggests that MIF does not belong to any of the well-

characterized cytokine superfamilies.

At the amino acid level, mouse and human MIF are 90%

identical. There is also 180% homology between mouse, rat,

gerbil, chicken, calf, and human MIF proteins, indicating that

MIF is highly conserved across species. Of note, MIF is identical

to a protein known as glycosylation-inhibiting factor, which

suppresses IgE synthesis by inhibiting the N-glycosylation of

IgE-binding factors and is associated with antigen-specific sup-

pressor activity [16]. As indicated, MIF shares a 33% aa se-

quence homology with D-dopachrome tautomerase [17].

Bioinformatic searches for MIF homologues in genome data-

bases have revealed the presence of MIF-like molecules in Cae-

norhabditis elegans and Arabidopsis thaliana and in filarial

parasites such as Wuchereria bancrofti, Brugia malayi, and Onch-

ocerca volvulus.

Crystallographic analyses of human and rat MIF strongly sug-

gest that MIF is a trimer with structural similarity to dopachrome

tautomerase and 3 microbial enzymes: 4-oxalocrotonate tauto-

merase, 5-carboxymethyl-2-hydroxymuconate isomerase, and

chorismate mutase [17–21]. In agreement with these observa-

tions, MIF exerts tautomerase activity and catalyzes the conver-

sion of 2-carboxy-2,3-dihydroindole-5,6-quinone (dopachrome)

into 5,6-dihydroxyindole-2-carboxylic acid [22, 23].

Other catalytic properties have been ascribed to MIF, in-

cluding the enolization of phenylpyruvate and the ketonization

of p-hydroxyphenylpyruvate [23] and a thiol-protein oxido-

reductase activity linked to a conserved Cys57-Ala-Leu-Cys60

(CALC) motif [24]. Although these findings suggest that MIF

is an enzyme, the physiologic relevance of these MIF enzymatic

activities remains unclear. Deletion or replacement of the N-

terminal proline of MIF abolished the tautomerase activity [25]

but not the capacity of MIF to inhibit monocyte migration

[26]. However, insertion of an alanine between the Pro-1 and

Met-2 of MIF abolished both the catalytic dopachrome tau-

tomerase activity and the glucocorticoid overriding activity of

MIF [27]. In contrast, the first 6 N-terminal residues were not

essential for the insulin-reducing oxidoreductase activity assay,

yet appeared to be required for full expression of 2-hydroxy-

ethyldisulfide activity, another assay for testing oxidoreductase

activity [28]. Chromosomal mapping indicates that the Mif and

dopachrome tautomerase genes are located in close proximity,

which suggests the possibility that both genes are duplications

of a common ancestral gene and have evolved to exert different

biologic functions.

CELLULAR SOURCES AND TISSUE
DISTRIBUTION OF MIF

MIF mRNA and protein are constitutively expressed by many

organs and cells, including brain (neurons of the cortex and

cerebellum, hypothalamus, hippocampus, pons, glial cells, and

ependyma), pituitary gland (corticotrophic and thyrotropic

cells), kidneys (mesangial and epithelial cells of the proximal

tubules, collecting ducts, glomeruli, and Bowman capsule),

lungs (alveolar macrophages and epithelial cells of the bronchi),

liver (Kuppfer cells, hepatocytes, and endothelium of the central

venules), spleen (white and red pulp), adrenal glands (zona

glomerulosa and zona fasciculata), skin (keratinocytes, seba-

ceous gland, and outer root sheet of the hair follicle), endo-

thelial cells, and fibroblasts [29].

MIF is also found in b cells of the islets of Langerhans of

the pancreas, where its production is regulated by glucose in

time- and concentration-dependent manners [30]. In turn, MIF

potentiates insulin secretion induced by glucose. Within the

immune system, MIF has been detected in monocytes, mac-

rophages, dendritic cells, T and B lymphocytes, eosinophils,

mast cells, basophils, and neutrophils. After administration of

LPS to rats, preformed MIF was rapidly released from all tissues

examined. The initial depletion phase was followed by the

strong induction of MIF mRNA, de novo synthesis of MIF

protein, and reconstitution of the intracellular MIF pool [29].

MIF AND INNATE IMMUNITY

Although MIF was first described as a T cell cytokine of the

adaptive immune system, it serves important functions within

the innate immune system. For 12 decades, the macrophage

was considered a major target of MIF action; therefore, it was

surprising to discover that monocytes and macrophages con-

stitutively express large amounts of MIF mRNA and protein

[31, 32]. Macrophage MIF is released after stimulation with

microbial products that include bacterial endotoxin (LPS) and

exotoxins (toxic shock syndrome toxin [TSST]–1 and strep-
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tococcal pyrogenic exotoxin A [SPEA]), malaria pigment, and

after exposure to gram-negative and gram-positive bacteria,

mycobacteria, and proinflammatory cytokines, such as tumor

necrosis factor (TNF)–a and interferon-g [31, 33, 34]. Many

of these stimuli induce a typical “bell-shaped” release of MIF

by macrophages with minimal production at the far end of the

dose-response curve.

Another unusual feature of MIF is that its secretion is in-

duced rather than inhibited by glucocorticoid hormones, as

with most cytokines [32, 35]. The dose-response curve of mac-

rophage MIF production induced by dexamethasone or cortisol

is also bell shaped, with the greatest release occurring at very

low glucocorticoid concentrations (10�12–10�14 M). Other in-

vestigators have made similar observations with synoviocytes

[36]. At first, this observation appeared to contradict the proin-

flammatory properties of MIF. However, MIF was subsequently

found to override the immunosuppressive effects of glucocor-

ticoids [32]. In vitro, MIF reverses glucocorticoid-induced in-

hibition of TNF-a and interleukin (IL)–1, -6, and -8 synthesis

by peripheral blood mononuclear cells and of cytosolic phos-

pholipase A2 activity and arachidonic acid release by fibroblasts

[37]. Likewise, in vivo, recombinant MIF reverses the protective

effects mediated by glucocorticoids in an experimental model

of lethal endotoxemia [32]. Supported by a rapidly growing

body of data [32, 37], a concept has emerged that MIF acts as

a physiologic antagonist of glucocorticoid activity and that MIF

and glucocorticoids operate in concert to regulate innate and

acquired immune responses.

During investigations into the role played by MIF in the

activation of the arachidonic acid–prostaglandins-leukotrienes

pathway in acute inflammation and sepsis, Mitchell et al. [37,

38] observed that the proinflammatory function and viability

of LPS-stimulated MIF-deficient macrophages was impaired,

compared with wild-type macrophages. In the absence of MIF,

macrophage survival was reduced as a result of the activation

of p53-mediated apoptosis, a finding in agreement with the

observation by Hudson et al. [39] of an inhibition of the tumor

suppressor p53 by MIF. MIF-mediated inhibition of p53 in

macrophages was found to be dependent on the induction of

arachidonic acid metabolism and cyclooxygenase-2 expression.

Thus, excessive production and release of MIF during inflam-

mation and sepsis may help sustain inflammation by prolong-

ing the lifespan of macrophages that would otherwise go into

apoptosis.

Studies conducted with antisense MIF macrophages and

macrophages from MIF knockout (MIF�/�) mice revealed an

important role for MIF in host responses to LPS and gram-

negative bacteria [40]. Compared with wild-type cells, MIF-

deficient macrophages were hyporesponsive to endotoxin and

gram-negative bacteria, as shown by a profound reduction of

NF-kB activity and cytokine production. In contrast, MIF-de-

ficient macrophages exhibit normal responses to gram-positive

bacteria (group A streptococci, Staphylococcus aureus, or Strep-

tococcus mitis), peptidoglycan, the yeast particle zymosan, and

phorbol 12-myristate 13-acetate plus calcium ionophore, which

indicates that the defective response is restricted to LPS and

gram-negative bacteria.

Impairment of the host defense capacity of MIF-deficient

macrophages is linked to a down-regulation of TLR4, the sig-

nal-transducing molecule of the LPS receptor complex. In con-

trast, expression of TLR2 is preserved in MIF antisense mac-

rophages, a finding that is congruous with normal responses

to gram-positive bacteria and yeast particles. Studies of the

molecular mechanism by which MIF modulates TLR4 expres-

sion indicate that reduced expression of MIF in macrophages

impairs basal activity of members of the Ets family of tran-

scription factors, which are critical for the transcription of the

mouse TLR4 gene, and results in reduced expression of TLR4

protein and defective innate immune response to LPS and

gram-negative bacteria. The results also provide a mechanism

whereby MIF�/� mice are resistant to endotoxic shock and a

rationale for the intriguing observation that MIF is expressed

constitutively by macrophages and by tissues in close proximity

with our natural environment. As shown in figure 1, by up-

regulating the basal expression of TLR4 in resting macrophages,

MIF facilitates the recognition of endotoxin-containing bacteria

and enables innate immune cells to rapidly release proinflam-

matory cytokines that are essential for mounting the host de-

fensive response.

MIF IN SEPSIS

The fact that MIF exerted potent proinflammatory activities

and served an important function in innate immune responses

of macrophages to microbial products strongly suggested a role

for MIF in sepsis. This hypothesis was verified in experimental

models of septic shock and in humans with bacterial sepsis.

Although the administration of large quantities of recombinant

MIF protein was not lethal when given alone, coinjection of

MIF and LPS increased mortality, compared with LPS alone

[8]. In contrast, neutralization of MIF activity with anti-MIF

antibodies attenuated TNF-a production and saved mice from

endotoxic shock. Similar results were obtained with MIF�/�

mice [41].

Resistance to lethal endotoxemia was associated with reduced

circulating concentrations of TNF-a and delayed appearance

of blood IL-12. MIF is also implicated in the pathogenesis of

gram-positive toxic shock syndromes. Low concentrations of

TSST-1 or SPEA stimulated MIF production from macro-

phages, and prophylactic administration of anti-MIF antibodies

prevented death from toxic shock syndrome caused by the

administration of TSST-1 to d-galactosamine–sensitized mice
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Figure 1. Role of the cytokine migration inhibitory factor (MIF) in recognition of endotoxin and gram-negative bacteria by macrophages. MIF, a
trimeric molecule by crystallography, promotes the recognition of endotoxin-containing elements by up-regulating the basal expression of Toll-like
receptor (TLR) 4 mRNA and protein. MIF is constitutively expressed by quiescent macrophages and may exert its effects via a direct intracellular
pathway or by being first released from macrophages to then act in an autocrine fashion by binding to an unidentified putative MIF receptor. TLR4
is a signal-transducing molecule of the lipopolysaccharide (LPS; a gram-negative bacteria) receptor complex. MIF effects on Tlr4 gene transcription
are mediated by transcription factors of the Ets family. CD14, surface antigen expressed on myeloid cells that binds LPS-LBP complexes; LBP, LPS-
binding protein; MD-2, protein associated with TLR4 extracellular domain that amplifies responses to LPS

[33]. Likewise, compared with wild-type mice, MIF�/� mice

were resistant to exposure to lethal doses of staphylococcal

enterotoxin B [41]. Taken together, these results show that MIF

is an important mediator of the pathogenesis of toxic shock

syndrome induced by gram-negative endotoxin and gram-pos-

itive exotoxins.

MIF contributes to the pathogenesis of experimental sepsis

induced by live bacteria. MIF concentrations were increased in

the peritoneal fluid and in the systemic circulation of mice

infected with Escherichia coli, and polymicrobial peritonitis and

neutralization of MIF activity with anti-MIF antibodies pro-

tected mice from septic death [42]. Of note, in the cecal ligation

and puncture (CLP) model, mice were protected even when

treatment was started 8 h after the onset of bacterial peritonitis.

The fact that mice could be rescued despite delayed adminis-

tration of anti-MIF therapy is an important finding if one

contemplates the possibility of using anti-MIF treatment strat-

egies in humans. Indeed, antisepsis therapies will always be

initiated after the onset of infection in patients who are ad-

mitted with severe sepsis and septic shock.

In previous studies, mice with compromised innate immune

responses (e.g., those treated with anti-LBP, anti-CD14 anti-

bodies, or with deletion of the TNF-a gene or type 1 TNF

receptor) had increased susceptibility to bacterial sepsis [43–

47]. As anticipated, TNF-a knockout mice were very sensitive

to CLP and succumbed quickly to uncontrolled infection. Re-

markably, treatment with a single dose of anti-MIF monoclonal

antibodies given after CLP protected mice from death and in-

creased survival from none to 62%. Thus, blocking MIF activity

saved these severely immunocompromised mice from lethal

septic shock. Treatment with anti-MIF antibodies was associ-

ated with a reduction of plasma TNF-a concentrations and

circulating bacterial counts in the E. coli peritonitis model.

However, TNF-a and E. coli were not primary targets of anti-

MIF therapy in these sepsis models. Indeed, anti-MIF therapy

protected mice from death, even in the absence of TNF-a, and

the possibility of a direct causal relationship between blockade

of MIF activity and reduction of circulating bacteria was ruled

out by in vitro studies [42].

Similar to findings in the endotoxic shock model, increasing

the levels of MIF with a bolus injection of recombinant MIF

at the onset of infection increased the mortality in the E. coli

peritonitis model (21% in mice exposed to E. coli alone vs.

62% in mice coinjected with recombinant MIF and E. coli;

). Thus, elevated tissue or circulating MIF concentra-P p .008

tions is harmful during the course of an acute infection.

Consistent with this hypothesis, high MIF concentrations

have been detected in the circulation of patients with severe

sepsis or septic shock caused by gram-negative and -positive

bacteria. Moreover, sicker patients had the highest MIF plasma
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concentrations. Median plasma MIF levels were 17.8 ng/mL

(range, 6.6–154.4 ng/mL) in patients with septic shock and 12.2

ng/mL in patients with severe sepsis (range, 6.2–141.8 ng/mL),

compared with only 3 ng/mL in healthy persons (range, 1.9–5.4

ng/mL; ) [42]. Similarly, MIF serum levels measuredP p .001

on admission to an intensive care unit were higher in patients

with septic shock ( ) ( ng/mL) than inmean � SD 14.3 � 4.5

trauma patients ( ng/mL) or control patients (3.1 � 1.7 2.5 �

1 ng/mL; ) [48]. In patients with septic shock, MIF2. P ! .01

concentrations were ng/mL in nonsurvivors and18.4 � 4.8

ng/mL in survivors ( ). Likewise, MIF con-10.2 � 4.2 P p .001

centrations were higher in patients with adult respiratory dis-

tress syndrome (ARDS) than in those without ARDS (19.4 �

vs. ng/mL, respectively; ). By logistic re-4.7 9.2 � 4.2 P p .12

gression analysis, the serum concentrations of MIF are a better

parameter than ARDS for predicting a patient’s outcome. In

addition, in patients with sepsis, MIF levels are correlated with

cortisol or IL-6 [48], a finding that is in agreement with our

previous observations of parallel increases of MIF and gluco-

corticoids in the systemic circulation during inflammation, in-

fection, and stress [32, 42].

CONCLUSIONS

As anticipated because of its potent proinflammatory proper-

ties, MIF is an important mediator of sepsis in experimental

models of infection and in humans with severe sepsis or septic

shock. Immunoneutralization of MIF or deletion of the Mif

gene protected mice against lethal endotoxemia, gram-positive

toxic shock syndromes, and experimental bacterial peritonitis;

however, administration of recombinant MIF increased the

mortality of endotoxemia and bacterial sepsis. Likewise, high

concentrations of MIF were detected in the systemic circulation

of patients with severe sepsis and septic shock and were as-

sociated with patient outcome. During sepsis, MIF may en-

danger life when expressed in large quantities. Anti-MIF strat-

egies, which interfere either with MIF production or with MIF

activity once it is released in the extracellular milieu, may have

a role in the care of patients with septic shock.
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resolution of human macrophage migration inhibitory factor. Proc Natl
Acad Sci USA 1996; 93:5191–6.

19. Suzuki M, Sugimoto H, Nakagawa A, Tanaka I, Nishihira J, Sakai M.
Crystal structure of the macrophage migration inhibitory factor from
rat liver. Nat Struct Biol 1996; 3:259–66.

20. Subramanya HS, Roper DI, Dauter Z, et al. Enzymatic ketonization of
2-hydroxymuconate: specificity and mechanism investigated by the
crystal structures of two isomerases. Biochemistry 1996; 35:792–802.

21. Swope MD, Lolis E. Macrophage migration inhibitory factor: cytokine,
hormone, or enzyme? Rev Physiol Biochem Pharmacol 1999; 139:1–32.
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