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Key Points

• Protein tyrosine
phosphorylation is lost
during the storage of
RBCs for transfusion
purposes.

• The use of KIs pointed
out that different
phosphoproteins alter
the stability of
membrane proteins
and cytoskeleton
linkage.
The process of protein phosphorylation is involved in numerous cell functions. In

particular, phosphotyrosine (pY) has been reported to play a role in red blood cell (RBC)

functions, including the cytoskeleton organization. During their storage before transfusion,

RBCs suffer from storage lesions that affect their energy metabolism and morphology. This

study investigated the relationship between pY and the storage lesions. To do so, RBCs were

treated (in the absence of calcium) with a protein tyrosine phosphatase inhibitor

(orthovanadate [OV]) to stimulate phosphorylation and with 3 selective kinase inhibitors

(KIs). Erythrocyte membrane proteins were studied by western blot analyses and

phosphoproteomics (data are available via ProteomeXchange with identifier PXD039914)

and cell morphology by digital holographic microscopy. The increase of pY triggered by OV

treatment (inducing a global downregulation of pS and pT) disappeared during the storage.

Phosphoproteomic analysis identified 609 phosphoproteins containing 1752 phosphosites,

of which 41 pY were upregulated and 2 downregulated by OV. After these phosphorylation

processes, the shape of RBCs shifted from discocytes to spherocytes, and the addition of KIs

partially inhibited this transition. The KIs modulated either pY or pS and pT via diverse

mechanisms related to cell shape, thereby affecting RBC morphology. The capacity of RBCs

to maintain their function is central in transfusion medicine, and the presented results

contribute to a better understanding of RBC biology.
Introduction

During ex vivo aging, red blood cells (RBCs) suffer from lesions1-4 that are characterized, among other
parameters, by changes in cell morphology and increased cell rigidity.5,6 Alterations of cell shape and
deformability result from different features influenced by vesiculation, osmolarity, and ion transport, as
well as membrane proteins/lipids reorganization in active or passive events.7-9

The membrane/cytoskeleton interactions (rupture of which is observed in several diseases)7 regulate
the RBC shape change in an adenosine triphosphate (ATP)-dependent manner.10 To soften its
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cytoskeleton, RBCs expend energy in the form of ATP, which
induces enhanced membrane fluctuations and cell shape
change.11 The nonequilibrium dynamism is due to the dissociation
of the cytoskeleton at the spectrin junctions powered by ATP.
Once dissociated from the cytoskeleton, the membrane fluctua-
tions are thermally governed.12 Several groups evoked the
hypothesis of protein phosphorylation in the regulation of mem-
brane deformability.10,11,13-16

Phosphorylation (eg, band 3) is known to regulate enzymatic activity
in RBCs,17,18 and the phosphorylation of cytoskeleton and mem-
brane proteins has been reported to modulate protein-protein
interactions.15,16 These modifications involve adducin, β-spectrin,
protein 4.1, as well as band 3. A few proteomic studies focusing on
Plasmodium falciparum–infected RBCs and sickle cell disease
identified several phosphoproteins.19-21 They pointed out their roles
in signaling and RBC deformability (through the phosphorylation of
proteins belonging to the junctional complex).22 Lately, another one
highlighted the role of a set of phosphoproteins involved in
deformability experiments.23 As for transfusion medicine, Rinalducci
et al quantified by label-free phosphoproteomics a few membrane
phosphoproteins, including β-spectrin, ankyrin-1, α-adducin, dema-
tin, glycophorin A, and glycophorin C, and observed the upregulation
of targeted phosphoserines during storage.24

Phosphorylation of band 3 has been studied since the 1980s.25

Low et al detected the presence of 2 kinases in RBCs, p72syk

(Syk) and p56/53lyn (Lyn), and demonstrated that Syk was
responsible for band 3 phosphorylation under pervanadate treat-
ment.26 Later, Brunati et al reported the sequential phosphorylation
of band 3 by Syk on Tyr8 and Tyr21 and Lyn on Tyr359 and Tyr904
(independent of Syk in the case of chorea-acanthocytosis).27,28

They also discovered the role of SHP-2 protein tyrosine phos-
phatase (PTP) in the dephosphorylation of band 3 and Syk-
mediated phosphorylation.29

Protein phosphorylation could favor morphological changes in
response to stress.15,23,30,31 Ferru et al proposed a
phosphorylation-induced oxidation mechanism in which Syk binds
to oxidized band 3, phosphorylates it, and causes the weakening of
the cytoskeleton and the formation of band 3 clusters. Those
aggregates are released in microvesicles in thalassemia and G6PD
deficiency.30,31 Conversely, Minetti et al suggested that band 3
phosphorylation was not a prerequisite in Ca2+/ionophore-induced
microvesicles.32 Under blood banking conditions, in which oxida-
tive processes play a central role,33-37 microvesicles accumulate
during storage. So far, the link to phosphorylation remains
unknown.

Several questions remain open regarding all these mechanisms of
regulation. Indeed, the phosphorylation of proteins along the stor-
age of RBCs has mainly been explored regarding band 3. Our goal
here was to investigate both the Tyr-phosphorylation (pY)–
dependent shape change as well as to relate them to the effect of
aging under blood banking conditions. For this purpose, RBC
morphology was studied by digital holographic microscopy
(DHM)38-40 using inhibitors of PTPs and protein tyrosine kinases. In
addition, protein phosphorylation was quantified and characterized
by Western blot (WB) and phosphoproteomics. This multidisci-
plinary approach comprehensively depicts the role of protein
phosphorylation on RBC morphology and the impact of storage on
this mechanism.
2 BARDYN et al
Methods

RBC concentrate (RCC)

Blood collected from healthy donors was prepared in top-bottom
bags system (CompoFlow CQ32250, Fresenius Kabi). A total of
450 ± 50 mL of whole blood mixed with 63 mL of CPD (citrate-
phosphate-dextrose) anticoagulant was centrifuged, the compo-
nents were separated, RBC fraction was filtrated to remove
residual leucocytes, and 100 mL of SAGM (saline-adenine-
glucose-mannitol) additive solution was added for storage. RCCs
were kept at 4◦C for up to 6 weeks. Six RCCs were used for the
phosphoproteomic and WB experiments under orthovanadate
(OV) treatment, 6 others to evaluate the effect of kinase inhibitors
(KIs), and 3 more for DHM with KIs. The project was accepted by
the institutional review board of Transfusion Interrégionale Croix-
Rouge suisse (CRS), in compliance with local legislation, and was
conducted according to the Declaration of Helsinki.

Treatment of RBCs

Samples were drawn from RCC using sterile needles and syringes
through a sampling site. To retrieve RCC supernatant for hemolysis
measurement, samples were centrifuged for 10 minutes at 2000g
and 4◦C. RBC pellets were washed 1 to 2 times in 0.9% NaCl and
resuspended in HEPA buffer (15 mM Hepes, 1 g/L bovine serum
albumin, 130 mM NaCl, 5.4 mM KCl, 0.5 mM MgCl2⋅6H2O, 10 mM
glucose, and pH 7.4). Chemicals were purchased from Sigma-
Aldrich (Steinheim, Germany), MSD Merck Sharp & Dohme
(Luzern, Switzerland), Laboratorium Dr. G. Bichsel (Interlaken,
Switzerland), and MP Biomedicals (Illkirch, France). KIs were from
Selleckchem (Houston, TX).

RBCs were treated with 2 mM of phosphatase inhibitor sodium OV
(Na3VO4, OV)15 or dH2O (control) for 1 hour or 4 hours at 37◦C
either in tubes (under agitation) or in a 96-well plate for microscopy
experiments (see below). To test the impact of KIs, RBCs were first
treated with 10 μM of KI (Saracatinib, S1006, against Src;
PRT062607, S8032, against Syk; bafetinib, S1369, against Lyn;
PD153035, S6546, against EGFR; H89, S1582, against protein
kinase A [PKA]; Go 6983, S2911, against PKC; and D4476,
S7642, and Silmitasertib, S2248, against casein kinase) or
dimethyl sulfoxide (DMSO; control) for 1 hour at 37◦C before
incubation with OV.

Hematological parameters

Hematological data were recorded with an automated hematology
analyzer (KX-21N, Sysmex). Microvesicles were quantified by flow
cytometry (FACScalibur flow cytometer with CellQuest pro soft-
ware; BD Biosciences, Franklin Lakes, NJ).40 Supernatant hemo-
globin concentration was determined according to the Harboe
method41 by spectrophotometry (NanoDrop 2000c, Thermo Sci-
entific, Wilmington, DE). Samples were diluted in dH2O if required
(ie, A415 above 1.5 arbitrary unit (A.U.)).

Membrane proteins extraction

For WB and phosphoproteomic analyses, RBCs were lysed by
incubation in hypotonic buffer (0.1× phosphate-buffered saline) for
1 hour at 4◦C on a roller, in the presence of 2 mM OV or dH2O
(control) plus 10 μM KI or 0.1% DMSO (control). Cell lysates were
centrifuged at 21 500g in 4◦C for 75 minutes to isolate mem-
branes. Membranes were washed in 0.1× phosphate-buffered
9 JANUARY 2024 • VOLUME 8, NUMBER 1



saline (centrifugation cycles of 30 min) until white pellets were
obtained. Aliquots were saved at −80◦C.

Phosphoproteomics

Membrane proteins were extracted in 4 volumes of 8 M urea, 2 M
thiourea, 0.5% sodium dodecyl sulfate (SDS), and 10 mM
dithioerythritol (DTE). Each sample was in-solution digested with
Lys-C (1:50 enzyme/protein) and then with trypsin gold (1:50
enzyme/protein). Phosphopeptides were desalted and enriched on
titania tips42 and analyzed by liquid chromatography (Dionex Ulti-
mate 3000 RSLC nanoUPLC system; Thermo Scientific, Rockford,
IL) coupled to an Orbitrap Q-Exactive HF (Exploris 480 Mass
spectrometer for KIs, Thermo Scientific). Raw data were treated
using MaxQuant 1.6.0.16 (1.6.10.43 for KIs)43 with Andromeda as
an internal database search engine.44 Fragmentation spectra were
searched against the human UniProt database (July 2017; 71 567
sequences). A t test analysis was performed using Perseus
1.6.0.7,45 and graphs were generated with homemade programs
(R environment).46 Class 1 phosphosites with intensities in mono-
phosphopeptides (multiplicity = 1), with at least 12 valid values in at
least 1 group (OV or Control), were kept for the analysis (3 valid
values in at least 1 group for KIs). The significantly differentially
quantified phosphosites were defined according to a permutation-
based multiple-testing analysis (250 permutations; false discovery
rate (FDR) = 0.05; S0 = 1; and S0 = 0.1 for the KIs).

WB analysis against phosphotyrosines

Membrane/cytoskeleton proteins were extracted from pelleted
membranes with 4 to 6 volumes of deoxycholate (DC) buffer: 1%
DC in 50 mM Tris-HCl, 150 mM NaCl, and pH 8.1.34 Ten μg of
proteins from each sample and 10 μL of BenchMark Pre-Stained
Protein Ladder (Invitrogen, ThermoFisher Scientific) were loaded
on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE, Mini-PROTEAN TGX gels, 4%-15%; BIO-RAD). WB were
performed on polyvinylidene fluoride (PVDF) membranes against
pY-containing proteins (pY PY99 1/6000 from Santa Cruz
Biotechnology, Dallas, TX). Washing and incubation with primary
and secondary antibodies were done in tris-buffered saline (TBS-T:
1× TBS + 0.05% Tween-20) and Top Block buffer (Sigma-Aldrich,
4% in TBS-T), respectively. Secondary antibody (polyclonal goat
antimouse immunoglobulins HRP, Dako) was diluted at 1/6000 or
1/10 000 in Top Block buffer. Bands of interest (from WB and
Ponceau red staining) were quantified by densitometry (ImageQuant
TL software 7.0; GE Healthcare, Uppsala, Sweden) and expressed
as “volume.” pY signals were normalized by total protein loading.

Morphology analysis

Quantitative phase images were acquired using a DHM T1000
(Lyncée Tec SA, Lausanne, Switzerland). DHM provides label-free
measurements of the optical path difference (OPD), a parameter
proportional to the refractive index and thickness of the sam-
ple.38,47 For imaging, RBCs were seeded (80 000 per well) in a
96-well plate coated with 0.1 mg per mL Poly-L-ornithine.40 To
speed up cell sedimentation, the plate was centrifuged at room
temperature for 2 minutes at 140g. Then, the plate was placed in a
Chamlide WP Incubator System (LCI Live Cell Instrument, Seoul,
South Korea) set at 37◦C with high humidity and 5% CO2. Four
images, obtained at a 20× magnification (Leica 20×/0.40 NA
objective; Leica Microsystems GmbH, Wetzlar, Germany), were
9 JANUARY 2024 • VOLUME 8, NUMBER 1
taken in each well, with 4 wells per condition. First, 4 baseline
images were acquired at a 5-minute interval. The RBCs were then
treated with 0.1% DMSO (control) or 10 μM KI and incubated for
45 minutes (10 acquisitions, each 5 minutes). Finally, the RBCs
were treated with 2 mM OV or dH2O (control). Timelapse images
were recorded every half hour for ~20 hours.

Images were analyzed in 2 different ways. A population analysis was
performed by calculating the spatial standard deviation of the OPD
(SD-OPD) value.40 Single-cell phenotypic analysis was also per-
formed using CellProfiler (Broad Institute, www.cellprofiler.org, 2.1.0
rev 0c7fb94)48 and CellProfiler Analyst (2.0 r11710)49 to sort RBCs
as: “discocytes,” “echinocytes,” “spherocytes,” and “errors.” For
analysis of timelapse experiments, the area under the curve (AUC)
parameter was selected because it integrates information about the
behavior of the RBCs during the whole timelapse period.

Data analysis

GraphPad Prism (version 8.4.2 [464], GraphPad Software, LLC, San
Diego, CA) was used for data presentation and statistical analyses.

Results

Phosphoproteomics of RBC membrane under OV

treatment

A label-free quantitative phosphoproteomic analysis of RBC mem-
brane proteins treated or not with OV was carried out to identify and
quantify phosphoproteins. It revealed the presence of 1949 phos-
phopeptides (1752 Class 1 phosphosites, ie, localization probability
> 0.75, and 801 quantified Class 1 monophosphosites) distributed
over 609 phosphoproteins (Figure 1A; supplemental Material 2, SM-
2; additional data available ProteomeXchange).50 The proportion of
pS, pT, and pY Class 1 monophosphosites is 84.3%, 8.1%, and
7.6%, respectively. Upon OV treatment (PTP inhibition), 41 of 61
pY-sites belonging to 22 different proteins were significantly upre-
gulated (Figure 1B) and 2 downregulated (see list in supplemental
Material 3, SM-3). The first 20 upregulated pY-sites belong to pro-
teins mainly involved in the cell structure: band 3 (gene name
SLC4A1), α- and β-spectrin (SPTA1 and SPTB), α- and β-adducin
(ADD1 and ADD2), protein 4.1 (EPB41), ankyrin-1 (ANK1), dematin
(DMTN), and tensin-1 (TNS1), which is coherent with WB pre-
sented in Figure 2A. A network analysis (String-db.org, version 11.5,
December 2022; Figure 1C) shows a cluster of these proteins
involved in band 3–ankyrin and junctional complexes, in connection
to kinase activities with nonspecific protein tyrosine kinase (YES1,
LCK, SRC, or FYN, shared identified peptide) and Lyn kinase (LYN),
as well as other proteins including flotillin-2 (FLOT2), aquaporin-1
(AQP1), receptor protein tyrosine kinase (EPHB4) and phosphati-
dylinositol 3,4,5-trisphosphate 5-phosphatase 1 (INPP5D).

In addition to pY modifications triggered by OV, pS and pT were
also significantly regulated (see black dots; Figure 1B). Altogether,
60 and 123 phosphosites were significantly upregulated and
downregulated, respectively, which indicated a global down-
regulation when pY were upregulated.

Response to OV according to RCC aging

Accumulation of pY under OV treatment was confirmed by WB
analyses. Figure 2A shows the pY signal after 1 or 4 hours of OV
treatment in RBCs stored for 1, 21, or 42 days. The pY signals
PROTEIN PHOSPHORYLATION OF STORED RED BLOOD CELLS 3
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Figure 1. Phosphoproteomics of OV-treated RBC membrane proteins. RBCs from RCCs at day 2 of storage (n = 6) were analyzed. (A) Phosphoproteome-depth: number

of identified phosphoproteins, phosphopeptides, phosphosites, and class 1 phosphosites. The number of phosphosites (class 1 or quantified class 1) are presented in different

colors of blue. (B) Comparison of phosphosites after 1 hour of OV treatment vs without any treatment. Volcano plot showing t test P values (log10) vs phosphosite fold changes

(log2). Blue points correspond to class 1 phosphosites (multiplicity 1) differentially quantified, and unchanged phosphosites are in gray. Significant pY are highlighted in red and

nonsignificant in light red. The black curves correspond to a FDR < 0.05 and a S0 = 1. (C) Protein-protein interactions of upregulated and downregulated (the 2 on the bottom

left) phosphoproteins.
were observed on specific protein bands, corresponding to (top to
bottom) α-spectrin, β-spectrin, ankyrin-1, α-adducin, β-adducin,
band 3, and protein 4.1. Two bands around 70 kDa could corre-
spond to Lyn and Syk kinases. During RBC storage, the effect of
OV decreased progressively (Figure 2A, right). At day 42, only a
weak signal was detected.
4 BARDYN et al
OV treatment induced the release of microvesicles and hemolysis
(Figure 2B). This effect is visible after 4 hours of incubation but not
after 1 hour. Consistent with the phosphorylation levels, RBCs
stored for 1 day released a higher number of microvesicles and
hemolyzed more (not significant) than RBCs stored for 21 or
42 days.
9 JANUARY 2024 • VOLUME 8, NUMBER 1
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Impact on cell morphology

In the control group (0.1% DMSO), the SD-OPD signal (linearly
correlated to the percentage of spherocytes)40 slightly increased
throughout the 20-hour timelapse, whereas it increased rapidly until
reaching a plateau for OV-treated RBCs (Figure 3A). The AUC
value, corresponding to integration of SD-OPD over time, was
equivalent in both storage age of RCCs, with an upward trend at
storage day 40.

Analysis of single-cell phenotype by automated analysis of phase
images (Figure 3C) confirmed that the increase of SD-OPD signal
was due to the rapid formation of echinocytes (intermediate shape)
and spherocytes, concomitant to a drop-down of discocytes
(Figure 3B). Morphological changes after OV treatment appeared
sooner in older RCCs that were also more sensitive to the exper-
imental conditions, even in the control samples.
9 JANUARY 2024 • VOLUME 8, NUMBER 1
Despite a limited number of replicates, the data were consistent
with the literature and preliminary data.15 It has to be noticed that
the same phenomena were present with Ca2+-containing HEPA
buffer. OV treatment transformed RBCs into spherocytes, and the
phosphorylation level in membranes also decreased during storage
(supplemental Figures 1 and 2 in SM-1, respectively).51

Inhibition of specific kinases

Based on the top-overexpressed phosphoproteins and the litera-
ture, the effect of 8 KIs was investigated on the morphology of
stored RBCs using a DHM-based screening. Different variations of
the SD-OPD were reported during the incubation in the presence
of OV+KIs compared with that of OV only and control (SM-1,
supplemental Figure 4). Only 3 appeared to decrease SD-OPD
values and therefore counteracting the effect of OV. The
advanced analyses are presented in Figure 4.
PROTEIN PHOSPHORYLATION OF STORED RED BLOOD CELLS 5
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The incubation with PRT062607 and bafetinib before the OV
treatment drastically abolished the pY process (Figure 4A). How-
ever, it was not the case with H89, in which only a weak effect on
band 3 was observed. The level of pY on bands corresponding to
α-adducin and spectrins was slightly affected.

Phosphoproteomics of KI- and OV-treated RBCs confirmed the
differences at the protein level (SM-4). Expressions of phospho-
sites show shifts in favor of OV, meaning both KIs inhibited the
effect of OV treatment (Figure 5). Notably, not only pY sites were
significantly downregulated (red dots) when treated with KIs
compared with OV, but also pS and pT (blue and gray dots) (SM-5
to 7). As expected, PRT062607 and bafetinib behaved the same,
with 12 phosphosites in common, of which 9 were pY. As for H89,
pY were not significantly downregulated, and the main modulations
concerned pS and pT. Of note, pT378 on protein 4.1 was the only
site commonly regulated site to both KIs.

When examining cell morphology, the effects of KIs can be seen
through the AUC calculated from the integration of SD-OPD over
time (Figure 4B). The presence of KIs on their own increased the
AUC value because they favored the stomatocyte phenotype, as
shown by image-analysis (Figure 4C). On day 6 of storage, the
addition of KIs counterbalanced the effect of OV with a baseline
level (Figure 4B). Nonetheless, the inhibitory effect of KIs was less
pronounced with increasing storage time (SM-1, supplemental
Figure 5). The OV + KIs conditions favored the presence of echi-
nocytes compared with OV only (Figure 4C) and decreased the
proportion of spherocytes, suggesting that the KIs delayed the
transition from one phenotype to the other.

In summary, the 3 KIs enabled relative cell shape recovery after
stimulation of pY, but only bafetinib and PRT062607 entirely
abolished the pY phosphorylation, and H89 affected pS and pT.

Discussion

Effect of OV on the RBC phosphoproteome

Two-thousand proteins are known in mature RBCs.52,53 In their
study on RBC deformability, Moura et al detected 63 and 226
phosphoproteins in mature RBCs and reticulocytes, respectively.23

Phosphoproteomics on sickle cells identified 155 phosphoproteins
and 527 phosphosites,19 and in the case of infected RBCs by P
falciparum, 1083 phosphosites were detected on 553 proteins.21

Our data are consistent with these previous sets of data. The
higher number of phosphosites in this study is most likely related to
the use of a phosphatase inhibitor that exacerbated pY formation.

Several phosphoproteins were remarkably upregulated upon OV
treatment, of which a few have already been studied.26,29 Band 3,
α- and β-spectrin, α- and β-adducin, protein 4.1, ankyrin-1, dematin,
tensin-1, aquaporin-1, and plasma membrane calcium–transporting
ATPase 4 are present within a shared cluster. Indeed, these pro-
teins are part of the well-known band 3–ankyrin and junctional
complexes.54 In addition, Fyn and Lyn were identified. The latter is
known to participate in the sequential phosphorylation of band 3 in
Figure 3. Timelapse analysis by DHM of the morphological changes triggered by

imaged at 20× original magnification, mean values ± SD are displayed. P values, Tukey mult

signal for 3 RCCs over a 15-hour timelapse analysis; (A, right) AUC obtained by integratio

phenotype. (C) Single-cell analysis with CellProfiler and CellProfiler Analyst. RBCs were c
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which Lyn phosphorylates Tyr359 and Tyr904, in a second phase
227; both pY modifications were reported here. Consistently, no
phosphorylation on band 3 Tyr8 and Tyr21was detected, which
could be explained by direct phosphorylation on Tyr359 and 904.28

In addition, deletions or modifications (ie, methylation) near tyrosine
residues such as aspartate and glutamate in the N-terminal part55

might affect the detection of phosphosites. Alteration of band 3 is
associated with storage lesions and changes RBC properties.56 As
for Fyn, this enzyme is known to phosphorylate spectrins and
β-adducin.

Regarding pS and pT, 12 phosphosites are known to be upregu-
lated during RBC storage.24 Over these phosphosites, 6 were
detected in this study (only 2 presenting significant variations).
pS122 in glycophorin C was increased in both studies, whereas
pS152 in dematin was downregulated here.

Effect of OV on morphology

Concomitant to the OV-induced phosphorylation, a transition from
discocytes to spherocytes was observed (Figure 3). The phos-
phorylation of membrane proteins, particularly band 3 complexes,
probably induced a rupture in the cytoskeleton-integral membrane
proteins link, initiating shape change. In addition, the binding to
protein 4.1 could be inhibited by the phosphorylation on band 3
Y359.54 Moreover, the Y660 phosphorylation on protein 4.1 is
known to disturb the spectrin/actin/4.1 complex.57 These modifi-
cations trigger the formation of spherocytes, similar to spher-
ocytosis with a rupture of the vertical link. The phenotype observed
here is similar to previously reported OV-treated RBCs.15,58 In both
studies, the authors showed the formation of echinocytes after 20
or 60 minutes of incubation. In these data, ~30% of echinocytes
were detected after 1 hour of treatment. At the end of the incu-
bation period (~20 hours), RBCs were mostly spherocytes. The
formation of the spicules could be due to band 3 phosphorylation
and clustering, as described by Turrini at al.15,30,31

The morphological analyses of OV-treated RBCs showed that the
addition of KIs resulted in the enrichment of echinocytes
(Figure 4C). The final stage of cell transformation was not reached.
It might be explained by the downregulation of phosphorylation on
proteins, involved in cell structure, that preserve the link between
integral membrane complexes and the cytoskeleton. Therefore, in
this timelapse, the formation of spherocytes is partly inhibited.

The 3 KIs had a similar impact on the morphology, even though
they caused varying phosphorylation levels. The 2 targeting band 3
(PRT062607 and bafetinib) abolished the pY signals on all pro-
teins, including band 3, protein 4.1, ankyrin-1, and spectrins. In this
situation, the similar effect on morphology may be attributed to
shared pathways. Bafetinib targets Lyn, which is directly involved in
Y359 and Y904 phosphorylations. As for PRT062607, its lower
inhibition activity on Lyn could be enough to stop band 3 phos-
phorylation. In addition, and despite the absence of Syk-induced
phosphorylation of band 3 in our proteomic data set, phosphory-
lation on Syk kinase (pY296) was downregulated (detected but not
2 mM OV treatment. RBCs from RCCs (n = 3) stored for 6, 19, and 40 days were

iple comparison test: ns P > .05. (A) Population analysis: (A, left) evolution of SD-OPD

n of the SD-OPD over time. (B) Phase images illustrating the changes of RBC

lassified as “Stomatocytes,” “Discocytes,” “Echinocytes,” or “Spherocytes.”
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Figure 5. Regulation of the membrane phosphoproteome of OV-treated RBCs with specific KIs. Comparison of phosphosites expression after treatment of RBCs taken

in RCCs (3-day-old; n = 6) with KIs ([A] PRT062607, [B] bafetinib, [C] H89) and OV vs an OV treatment only. Volcano plot showing t test P values (log10) vs phosphosite fold

changes (log2). Blue points correspond to class 1 phosphosites (multiplicity 1) differentially quantified and unchanged phosphosites are in gray. Significant pY are highlighted in

red and nonsignificant in light red, common pY are highlighted in blue, and the common phosphosite in green. The black curves correspond to an FDR <0.05 and an S0 = 0.1. (D)

Venn diagram between the 3 KIs.

Figure 4. Effect of the inhibition of specific kinases on membrane proteins tyrosine phosphorylation and morphology of OV-treated RBCs. RBCs from RCCs (n =

3) were analyzed on day 6. Mean values ± SD are displayed. (A) WB analysis against pY-containing membrane proteins of RBCs treated with 2 mM OV and 10 μM KI. (A, left)

Images of the blots; (A, right) total relative pY signal (ie, sum of pY-positive bands normalized by total protein loading [ponceau red]). (B) Morphology analysis by DHM. AUC was

obtained by integration of the SD-OPD over time. P values, Dunnett multiple comparison test: ns P > .05; *P ≤ .05; **P ≤ .01. (C) Single-cell analysis with CellProfiler and

CellProfiler Analyst. RBCs were classified as “Stomatocytes,” “Discocytes,” “Echinocytes,” or “Spherocytes.” (C, top) Evolution over time per cell type; (C, bottom) integration

over time. P values, Šidák multiple comparison test: ns P >.05; *P ≤ .05; **P ≤ .01; ***P ≤ .001, ****P ≤ .0001.
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significantly in the case of bafetinib) and might also inhibit band 3
phosphorylation. The total decrease in pY was also observed on
other proteins involved in band 3 complexes, such as protein 4.1.
Indeed, the pY660 (detected as pY627 from a truncated form in
the KI experiments) was downregulated by both bafetinib and
PRT062607. On the contrary, H89 targets PKA involved in addu-
cins and proteins 4.1 and 4.2 phosphorylations but not on Tyr
residues, which explains the weak impact on WB.59 The regulation
of other phosphosites (as shown by the phosphoproteomic data,
Figure 5C) might significantly impact cell morphology. Although
protein 4.1 is expected to be phosphorylated on Y660 by
epidermal growth factor receptor (EGFR), it has been reported that
PKA can interact with EGFR. Y660 was not affected by H89, but 2
other phosphosites were downregulated by H89 (pS85 and
pT378). Therefore, the KI H89 could also counteract the OV-
induced phosphorylation of protein 4.1. Suppressing protein 4.1
phosphorylation could protect against the dissociation of spectrin/
actin/4.1 complexes. Therefore, it can be speculated that the
modifications of PKA-dependent proteins (such as the protein 4.1
and ankyrin-1) have an equivalent impact on morphology but
through pS and pT phosphorylations. Additional experiments will
be required to investigate such mechanisms.

Effect of storage

The capacity of RBCs to phosphorylate proteins decreases with
storage time. A rejuvenation process (that stimulates ATP pro-
duction)60-62 restores the ability of protein phosphorylation
(supplemental Figure 3 in SM-1).51 It demonstrates that the
enzymes are still functional and that the decrease in phosphoryla-
tion is a metabolic issue. Indeed, during storage, RBCs exhibit
energy metabolism shifts in which ATP is produced during the first
week and then decreases constantly.4,63,64

OV is known to induce protein phosphorylation and the formation
of spherocytes.15,58 Nevertheless, the morphology of long-stored
RBCs was impacted by the OV treatment (Figure 3A), although
no phosphorylation of proteins was detected (Figure 2A). In that
case, the effect of OV could be related to (1) the impact of incu-
bation conditions on weakened RBCs65 or (2) side effects
because OV can also inhibit different enzymes.66,67 OV is a Ca2+

pump inhibitor that alters cell morphology in addition to phos-
phorylation events. Although these experiments were carried out
without extracellular Ca2+, it cannot be excluded that changes in
intracellular Ca2+ induce shape modification, especially in older
RCCs.68 Therefore, the impact on morphology is probably due to
pY on short-term stored RBCs (because of phosphorylation
capacity, Figure 2A) and ion issues in long-term stored RBCs
(absence of phosphorylation capacity). The same effects on
morphology and phosphorylation in function of storage time were
observed in Ca2+-containing HEPA buffer (SM-1).51

As mentioned in the “Introduction,” the release of micro-
vesicles40,69 results from different mechanisms such as phos-
phorylation, Ca2+ entry, and oxidative stress during storage.
According to these data and the decrease of phosphorylation
capacity proportionally to storage time, the microvesiculation pro-
cess is probably independent of phosphorylation events in stored
RBCs. This effect is consistent with the negative correlation
between ATP concentration and microvesiculation70 as well as the
band 3 phosphorylation-independent vesiculation process reported
10 BARDYN et al
by Minetti et al.32 However, their microvesicles were Ca2+ induced,
which is known to recruit specific proteins and have a different
composition than storage microvesicles.71

The loss of protein phosphorylation ability might be an issue in the
transfusion of long-stored RCCs.3,72 Indeed, it was recently shown
on RBCs, especially on reticulocytes, that inhibiting band 3 phos-
phorylation (using bafetinib and without chemical stimulation)
decreases the cell velocity in a microfluidic system.23 Therefore,
problems in pY may render RBC less efficient in crossing capil-
laries and oxygenating tissues, and in the worst case, it may trigger
phagocytosis and RBC clearance.73,74 Even though this ATP-
dependent mechanism was restored in vitro and will be restored
in vivo a few hours after transfusion, it is essential to maintain a high
phosphorylation capacity to ensure transfusion efficiency. This
capacity could be conserved by boosting metabolism (particularly
the lower part of glycolysis and the pentose phosphate pathway,
because RBCs are devoid of mitochondria).75

The data presented here focused on phosphorylation events of
RBC membrane proteins and their relation to cell morphology. The
membrane phosphoproteomics highlighted many phosphoproteins
and phosphosites directly involved in cell morphology. Using KIs
pointed out the central role of band 3 and other membrane pro-
teins, such as protein 4.1, in the stability of integral membrane
proteins and cytoskeleton linkage. The impact of phosphorylation
(even exacerbated here) is central in transfusion medicine,
because it is associated with RBC aging in blood bags and, when
dysregulated, is known to be involved in many diseases. Metabolic
pathways and kinase activity must be investigated further to deci-
pher the reactions controlling these phosphorylation events. The
reported results and the further studies they suggest will contribute
to enriching our knowledge in hematology.
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