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Abstract:	

Contact	sensitization	is	common	and	affects	up	to	20%	of	the	general	population.	The	clinical	

manifestation	 of	 contact	 sensitization	 is	 allergic	 contact	 dermatitis.	 This	 is	 a	 clinical	

expression	which	 is	 sometimes	 difficult	 to	 distinguish	 from	 other	 types	 of	 dermatitis,	 e.g.	

irritant	and	atopic	dermatitis.	Several	studies	have	examined	the	pathogenesis	and	severity	

of	allergic	contact	dermatitis	by	measuring	the	absence	or	presence	of	various	biomarkers.	

In	this	review	article,	we	provide	a	non-systematic	overview	of	biomarkers	which	have	been	

studied	 in	 allergic	 contact	 dermatitis.	 These	 include	 genetic	 variations	 and	 mutations,	

inflammatory	 mediators,	 alarmins,	 proteases,	 immunoproteomics,	 lipids,	 natural	

moisturizing	 factors,	 tight	 junctions,	 and	antimicrobial	 peptides.	We	conclude	 that	despite	

the	enormous	amount	of	data,	convincing	specific	biomarkers	for	allergic	contact	dermatitis	

are	yet	to	be	described.		

	

Keywords:	Allergic	contact	dermatitis,	Biomarkers,	contact	allergy,	contact	sensitization	
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List	of	abbreviations.	

ACD	 Allergic	contact	dermatitis	

ACE	 Angiotensin-converting	enzyme	

AD	 atopic	dermatitis		

AMP	 antimicrobial	peptide		

ARE	 antioxidant	response	element	

CLA	 cutaneous	leukocyte	antigen,		

CLDN1	 claudin-1		

COST	 Cooperation	in	Science	and	Technology		

CS	 contact	sensitization		

DAMP	 damage	associated	molecular	pattern		

DCs	 dendritic	cells		

DNCB	 2,4-dinitrochlorobenzene	

FLG		 filaggrin	gene	

GST	 glutathione-S-transferase		

HMGB1	 high-mobility	group	box-1	protein	

HSA	 human	serum	albumin		

ICD	 irritant	contact	dermatitis	

IFN	 interferon	

IL	 interleukin	

LC	 Langerhans	cell		

LCE3	 late	cornified	envelope		

LEKT-I	 Lympho-epithelial	Kazal-type-related	inhibitor	

MCI	 methylchloroisothiazolinone		

MI	 methylisothiazolinone	

MMP-12	 metalloproteinase-12	

MR	 mannose	receptor	

NAT	 N-acetyltransferase	

NMF	 natural	moisturizing	factors		

PAR-2	 protease-activated	receptor	
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PELI-1	 pellino	homolog		

PPD	 p-phenylenediamine		

RaGE	 receptor	of	advanced	glycation	end	products		

SC	 stratum	corneum		

SNP	 single	nucleotide	polymorphism	

SERPIN	 serine	protease	inhibitors	

TEWL	 transepidermal	water	loss		

TJ	 tight	junction		

TLRs	 Toll	like	receptors		

TNBS	 2,4,6-trinitrobenzenesulfonic	acid		

TNF	 tumor	necrosis	factor		

Tregs	 regulatory	T	cells		

ZO	 zonula	occludens	
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1.		Introduction	

Contact	 sensitization	 (CS),	 the	 underlying	 pathomechanism	 of	 allergic	 contact	 dermatitis	

(ACD),	 is	 highly	 prevalent,	 affecting	 up	 to	 20%	 of	 the	 general	 population	 in	 European	

countries	(1).	When	a	sensitized	 individual	 is	re-exposed	to	the	culprit	contact	sensitizer	 in	

sufficient	concentrations,	ACD	occurs	at	the	site	of	skin	exposure.	While	numerous	contact	

sensitizers	 exist,	 they	 have	 different	 physico-chemical	 properties,	 resulting	 in	 a	 different	

ability	 to	 penetrate	 the	 epidermal	 barrier,	 bind	 to	 proteins,	 and	 elicit	 an	 inflammatory	

response	(2).		

	

Little	 is	 currently	known	about	 individual	 factors,	which	can	affect	 the	clinical	 response	 to	

contact	 sensitizers	 (3,	 4).	 However,	 exposure	 to	 some	 allergens	 is	 very	 common,	 e.g.	 to	

preservatives	and	fragrances,	but	only	causes	CS	in	a	minority	of	exposed	persons,	whereas	

exposure	to	other	contact	sensitizers	such	as	poison	Ivy	causes	CS	in	most	individuals	(5,	6).	

Obviously,	to	increase	understanding,	the	mechanisms	underlying	CS	needs	to	be	elucidated	

for	a	 range	of	contact	 sensitizers	with	different	physico-chemical	properties	and	allergenic	

potencies.	 Ideally,	such	insight	may	result	 in	development	of	biomarker	profiles,	which	can	

be	used	to	differentiate	between	the	various	contact	sensitizers,	and	possibly,	even	between	

the	 response	 to	 a	 contact	 sensitizer	 and	 an	 irritant	 substance.	 Traditionally,	 biomarker	

research	 in	CS	has	been	focused	on	 immune	mediators	such	as	cytokines	and	chemokines,	

and	 only	 recently	 studies	 on	 proteins	 involved	 in	 skin	 barrier	 homeostasis,	 xenobiotic	

metabolism	and	cellular	stress	responses	have	been	conducted.		

	

This	 non-systematic	 review	 article	 on	 biomarkers	 was	 initiated	 by	 a	 working	 group	 of	

international	 experts	 who	 met	 over	 on	 several	 occasions	 to	 discuss	 the	 aetiology	 and	

susceptibility	 to	 occupational	 skin	 disease,	 including	ACD.	 The	 framework	was	 based	 on	 a	

grant	 donated	 by	 the	 European	 Cooperation	 in	 Science	 and	 Technology	 COST	 Action	

StanDerm	(TD-1206)	 to	 increase	research	 in	occupational	skin	disease	 (www.standerm.eu).	

In	this	article,	we	provide	an	extensive	overview	of	the	pathogenesis	of	ACD	by	summarizing	

the	main	findings	on	the	phenotypic	and	genotypic	biomarkers	 in	ACD,	which	in	the	future	

may	 be	 used	 for	 diagnostic	 purposes,	 identification	 of	 susceptible	 individuals,	 and	
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development	 of	 more	 tailored	 prevention	 and	 therapy.	 A	 biomarker	 was	 defined	 by	 the	

WHO	 international	 program	 on	 chemical	 safety	 biomarkers	 in	 risk	 assessment	 “as	 any	

substance,	 structure,	 or	 process	 that	 can	 be	 measured	 in	 the	 body	 or	 its	 products	 and	

influence	or	predict	the	incidence	of	outcome	or	disease”	(7).		

		

2.		Inflammatory	mediators	

While	 the	 induction	 and	 elicitation	 of	 ACD	 normally	 represent	 two	 distinct	 and	 separate	

phases	of	the	disease,	they	may	sometimes	occur	during	the	same	exposure.	For	clarity,	the	

phases	are	here	described	separately.		

2.1		Sensitization	phase	

An	essential	step	in	the	sensitization	process	is	the	activation	of	the	innate	immune	system	

by	 contact	 sensitizers.	 Due	 to	 their	 low-molecular	 weight	 and	 polarity,	 and	 sometimes	

facilitated	 by	 pre-existing	 skin	 barrier	 dysfunction,	 contact	 sensitizers	 can	 penetrate	 the	

stratum	corneum	(SC)	of	the	epidermis	and	either	covalently	bind	to,	or	in	the	case	of	metal	

ions,	 form	 complexes	with	 endogenous	 proteins.	 The	 formation	 of	 such	 sensitizer-protein	

complexes	 (see	“immunoproteomics”	 for	 further	details)	 is	crucial	 for	 the	activation	of	 the	

innate	immune	system	as	well	as	for	the	efficient	priming	of	T	cells	(8,	9).	Another	signal	for	

efficient	 sensitization	 is	 the	 generation	 of	 alarmins,	 danger	 signals	 that	 induce	 immune	

responses.	These	include	damage	associated	molecular	patterns	(DAMPs),	which	are	sensed	

by	so-called	pattern	recognition	receptors	(PRRs)	such	as	the	Toll-like	receptors	(TLRs)	(see	

alarmin	 section	 for	 further	 details).	 Interestingly,	 recruited	 Th1	 cells	 have	 been	 found	 to	

release	significant	quantities	of	the	DAMP	molecule,	extradomain	A+	fibronectin,	which	is	an	

endogenous	 ligand	 of	 TLR4.	 This	 triggers	 a	 positive-feedback	 mechanism	 that	 further	

reinforces	immune	activation	in	ACD	(10,	11).		

	

Keratinocytes	are	key	players	in	the	sensitization	phase	as	they	contain	enzymes	required	for	

the	 conversion	 of	 pro-haptens	 into	 biologically	 active	 haptens,	 thereby	 facilitating	 their	

binding	 to	 endogenous	 proteins	 and	 making	 them	 immunogenic	 (12).	 Keratinocytes	 also	

provide	sets	of	alarmins	and	cytokines	that	generate	a	pro-inflammatory	microenvironment	
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in	the	skin,	which	is	necessary	for	innate	immune	system	activation.	Some	alarmins	activate	

TLRs	2	and	4	and	the	NLRP3	 inflammasome	of	skin	dendritic	cells	 (DC)	such	as	Langerhans	

cells	(LC)	and	dermal	DCs,	leading	to	their	activation	(2).	

	

TLR2	 and	 TLR4	 activation	 induces	 the	 production	 of	 NF-κB	 dependent	 pro-inflammatory	

cytokines	and	chemokines	such	as	interleukin(IL)-6,	IL-12,	tumor	necrosis	factor	(TNF)-α	and	

of	pro-IL-1β	and	pro-IL-18.	The	activated	NLRP3	inflammasome	complex	activates	caspase-1	

that	cleaves	pro-IL-1β	and	pro-IL-18	into	their	mature	and	secreted	forms	IL-1β	and	IL-18	(2,	

13).	Mice	that	 lack	components	of	the	 inflammasome	complex,	or	the	ATP-triggered	P2X7-

receptor	which	can	activate	the	inflammasome,	fail	to	develop	ACD.	In	the	same	context,	the	

IL-1	 receptor	 antagonist	 ‘anakinra’	 has	 been	 shown	 to	 prevent	 contact	 sensitization	 (14)	

(15).	 Notably,	 P2X7R	 deficient	 mice	 became	 susceptible	 again	 following	 injection	 of	

recombinant	 IL-1β	 (15),	 implying	 that	 IL-1β	 and	 the	 inflammasome	 are	 crucial	 in	 priming	

adaptive	immunity.		

Secreted	 IL-1β	 and	 IL-18	 induce	 keratinocytes	 to	 release	 IL-1α,	 TNF-α	 and	 GM-CSF	 and	

promote	 LC	migration	 from	 the	 epidermis	 (16).	 IL-1α	 has	 been	 shown	 to	 have	 a	marked	

effect	on	skin	sensitization,	as	ear	swelling	in	response	to	2,4,6-Trinitrobenzenesulfonic	acid	

(TNBS)	is	impaired	in	IL-1α	deficient	mice,	but	not	in	IL-1β	deficient	mice	(17).	Whereas	IL-1β	

is	 mainly	 produced	 by	 Langerhans	 cells,	 keratinocytes	 are	 the	 main	 source	 of	 IL-1α.	 This	

implies	that	IL-1α	is	required	for	the	induction	of	skin	sensitization,	whereas	IL-1β	plays	an	

important	role	in	LC	migration.	

Activated	 DCs	 upregulate	 co-stimulatory	 molecules.	 Exposure	 to	 sensitizers	 [nickel,	

chromium,	 copper	 and	2,4-dinitrochlorobenzene	 (DNCB)]	upregulates	CD83,	CD86	and	 the	

chemokine	 CXCL8	 (IL-8)	 in	 monocyte-derived	 DCs,	 whereas	 irritant	 exposure	 leads	 to	

decreased	CXCL8	production	(18).	DC	activation	as	measured	by	induction	of	CD86,	CXCL8	or	

CD54	is	used	in	 in	vitro	assays	for	CS	 identification	such	as	human	Cell	Line	Activation	Test	

(hCLAT,	THP-1	cells)	(OECD	guideline	test	442E)	and	peripheral	blood	monocyte-derived	DC	

(PBMDC)	assay	(19,	20).	

Activated	DCs	migrate	 to	 the	 skin-draining	 lymph	nodes	and	present	 contact	 sensitizers	 in	

the	context	of	MHC	molecules	to	naïve	T	cells.	In	the	dermis,	endothelial	and	lymphatic	cells	
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produce	 CCL19	 and	 CCL21.	 These	 chemokines	 are	 recognized	 by	 the	 upregulated	 CCR7	

chemokine	receptor	of	sensitizer	activated	DCs,	which	migrate	to	afferent	lymphatic	vessels	

(21,	22).	DC	migration	has	been	measured	in	MUTZ3-LCs	in	vitro.	While	migration	of	irritant	

treated	 MUTZ-LC	 was	 dependent	 on	 CCR5,	 contact	 sensitizer	 treatment	 induced	 CXCR4	

upregulation	 and	 CXCL12	 dependent	 dermal	 migration.	 CXCL12	 can	 be	 secreted	 by	 e.g.	

keratinocytes	(23,	24).	

The	activation	of	sensitizer-specific	naïve	T	cells	by	activated	DCs	in	the	skin-draining	lymph	

nodes,	is	the	crucial	step	and	concludes	the	sensitization	phase	(21,	22).	Upon	activation,	T	

cells	produce	IL-2,	which	is	a	T	cell	growth	factor,	resulting	in	abundant	T	cell	expansion	(22).	

Moreover	they	receive	instructive	signals	from	the	skin	DCs	resulting	in	the	expression	of	a	

combination	 of	 homing	 receptors,	 i.e.	 chemokine	 receptors	 and	 adhesion	molecules,	 that	

directs	them	to	the	skin.	

The	immunological	microenvironment	(comprising	the	amount	of	sensitizer,	danger	signals,	

and	other	soluble	mediators)	determines	the	final	phenotype	of	effector	T	cells.	In	the	skin-

draining	 lymph	 nodes,	 sensitizer-activated	 DCs	 produce	 IL-12	 and	 interferon	 (IFN)-γ	

promoting	 the	differentiation	of	 Th1	and	Tc1	 cells,	which	 release	 IFN-γ	 and	TNF	 (25)	 (22).	

The	microenvironment	containing	IL-6,	tumor	growth	factor	(TGF)-β,	IL-21,	IL-23,	IL-1β	leads	

to	 Th17/22	 polarization	 and	 production	 of	 IL-17	 and	 IL-22.	 Presence	 of	 IL-4	 leads	 to	 Th2	

polarization	 and	 subsequent	 IL-4,	 IL-5	 and	 IL-13	 production.	 IL-2	 and	 TGF-β	 in	 the	

microenvironment	 promote	 differentiation	 of	 Tregs,	which	 secrete	 immunosuppressive	 IL-

10,	an	important	cytokine	limiting	extent	and	duration	of	ACD	and	promoting	tolerance(22,	

26,	27)	Moreover,	 in	addition	 to	driving	 the	cytokine	polarization	of	T	 cells,	DCs	 from	skin	

induce	 the	 expression	 of	 a	 skin-specific	 T	 cell	 homing	 receptor	 profile	 [e.g.	 cutaneous	

leukocyte	antigen,	(CLA),	CCR4	and	CCR10]	in	skin	draining	lymph	nodes	(25,	28).	CLA	binds	

to	 E-selectin	 on	 dermal	 endothelial	 cells	 while	 CCR4	 and	 CCR10	 receptors	 promote	 T	 cell	

migration	 to	 the	 epidermis	 where	 keratinocytes	 produce	 the	 corresponding	 chemokines	

CCL17,	CCL27	as	well	as	CXCL8,	CXCL9,	CXCL10	and	CXCL11	and	adhesion	molecules	(ICAM-1)	

(22).	As	a	result	primed	T	cells	will	home	into	the	tissue	of	origin	of	the	corresponding	DCs,	

i.e.	 the	skin.	 In	addition,	 these	chemokines	attract	more	 immune	cells	 to	 the	exposed	skin	

area	 thereby	 strengthening	 the	 immune	 responses	 (29).	 It	 has	 been	 speculated	 that	 the	

strength	of	 the	 innate	 inflammation	caused	by	the	contact	sensitizer	 is	 responsible	 for	 the	
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immunogenic	or	tolerogenic	state	of	DCs	and	the	subsequent	effector/memory	T	cell/Treg–

ratio	(13).	Both	sensitizing	and	tolerising	pathways	are	induced	during	sensitization	and	the	

balance	of	these	pathways	determines	the	final	outcome(27).	

2.2		Elicitation	phase	

Effector	T	cells	specific	for	a	contact	sensitizer	are	recruited	into	the	skin	upon	contact	with	

the	 same	 sensitizer.	 Upon	 re-exposure	 to	 the	 contact	 sensitizer,	 the	 innate	 inflammatory	

response	 triggers	 the	 release	of	 cytokines	 (IL-1β,	TNF-α,	 IL-18)	 from	keratinocytes	and	LCs	

(21,	22).	In	fact,	keratinocyte	activation	can	be	measured	by	IL-18	production	in	the	human	

keratinocyte	cell	 line	activation	test	(NCTC2544)	(30).	 IL-18	causes	activated	DCs	to	mature	

and	 migrate.	 Endothelial	 cells	 are	 activated	 (expressing	 e.g.	 E-selectin),	 and	 the	 contact	

sensitizer-specific	 T	 cells	 (expressing	 e.g.	 CLA)	 infiltrate	 the	 skin	 (13,	 22).	 T	 cell-attracting	

chemokines	(CXCL9/10,	CCL17,	CCL20,	CCL27)	are	produced	by	keratinocytes.		

Keratinocytes	are	important	in	the	elicitation	phase	of	ACD	as	well,	since	upon	re-exposure	

they	upregulate	costimulatory	molecules	such	as	CD80	and	are	able	to	function	as	antigen-

presenting	cells,	 facilitating	activation	of	hapten-specific	effector	T	cells	 (22).	On	the	other	

hand,	 keratinocytes	 also	 suppress	 the	 immune	 response	 by	 secreting	 LL-37	 (cathelicidin),	

which	 inhibits	 hyaluronan-induced	 cytokine-release,	 and	 the	 immunosuppressive	 cytokine	

IL-10	(21,	25).		

Skin-infiltrating	 T	 cells	 release	 IFN-γ,	 IL-4,	 IL-17	 and	 TNF-α	 (21,	 25,	 31).	 IFN-γ	 activated	

keratinocytes	upregulate	their	adhesion	molecules	and	cytokines/chemokines	increasing	the	

recruitment	 of	 T	 cells,	NK	 cells,	macrophages,	mast	 cells	 and/or	 eosinophils	 to	 the	 site	 of	

sensitizer	 exposure	 promoting	 the	 killing	 of	 sensitizer-bearing	 cells	 (31).	 With	 time	 and	

repeated	contact	sensitizer	exposure	a	Th2	response	begins	to	dominate	the	ACD	reaction	

(22).	

The	identification	of	specific	combinations	of	cytokines	and	chemokines	as	biomarkers	that	

are	 unique	 to	 ACD	 is	 challenging.	 These	 mediators	 are	 commonly	 found	 also	 in	 other	

inflammatory	 conditions.	 However,	 it	 is	 tempting	 to	 hypothesize	 that	 the	 distinction	

between	 irritant	 contact	 dermatitis	 (ICD)	 and	ACD	 could	 be	made	 based	 on	 T	 cell	 related	

factors	 since	 ICD	does	not	 involve	antigen	specific	T	cells	 (32,	33).	 Interestingly,	CXCL9,	10	
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and	11	were	 recently	 found	 to	be	 selectively	upregulated	 in	human	 skin	 in	nickel-induced	

ACD	as	compared	to	atopic	dermatitis	(AD)	(34).	

3.		Alarmins	

In	addition	to	secretion	of	cytokines,	skin	keratinocytes	and	other	skin	cells	have	the	capacity	

to	regulate	immune	responses	through	the	production	of	alarmins;	molecules	which	activate	

the	 immune	system	and	represent	danger	signals.	These	 include	DAMPs	(35,	36).	Alarmins	

include	 structurally	 diverse	 and	 evolutionary	 unrelated	 multifunctional	 endogenous	

molecules,	including	DNA,	RNA,	uric	acid,	ATP,	ROS,	mitochondria	derived	molecules,	heme	

and	several	 intracellular	proteins	 [high-mobility	group	box-1	protein	 (HMGB1),	 interleukins	

IL-33	and	IL-1α,	heat	shock	proteins,	S100	proteins	and	antimicrobial	peptides	(AMPs)]	(37).	

Many	of	the	alarmins	are	passively	released	upon	cellular	stress,	damage,	or	by	necrotic	cell	

death.	 Once	 released	 extracellularly,	 some	 alarmins	 promote	 activation	 of	 both	 innate	

immune	 cells	 including	 antigen	 presenting	 cells	 through	 PRRs,	 such	 as	 TLRs,	 and	 other	

receptors.	 Interestingly,	alarmins	are	able	to	 initiate,	amplify	and	sustain	the	 inflammatory	

responses	even	in	absence	of	external	pathogens,	causing	sterile	inflammation	(38).		

Alarmins	play	a	key	role	in	the	pathogenesis	of	different	inflammatory	skin	diseases	including	

ACD	(35,	39).	One	route	in	the	sensitization	phase	is	the	generation	of	low	molecular	weight	

alarmins	 (ROS,	 uric	 acid)	 in	 keratinocytes	 upon	 exposure	 to	 contact	 sensitizers	 (40).	 The	

stressed	 keratinocytes	 start	 to	 express	 a	 set	 of	 alarmins	 such	 as	 HMGB1,	 calgranulins	

(S100A8/S100A9)	 and	 LL-37	 (41-43).	 Upon	 continuous	 exposure	 to	 cellular	 stress,	 these	

primary	 intracellular	 proteins	 are	 released	 and	 continue	 to	 amplify	 the	 innate	 immune	

responses	 via	 activation	 of	 TLR2,	 TLR4,	 TLR9	 and	 receptor	 of	 advanced	 glycation	 end	

products	(RAGE),	leading	to	generation	of	IL-1	family	cytokines	(IL-1α,	IL-1β,	IL-18,	IL-33	and	

IL-36)	 (44).	 The	 balance	 between	 pro-	 and	 anti-inflammatory	 cytokines	 of	 IL-1	 family	

members	 is	 crucial	 in	 human	 ACD	 pathogenesis	 (44).	 Interestingly,	 for	 more	 efficient	

stimulation	of	cells,	some	of	the	alarmins	can	undergo	post-translational	modifications	and	

can	 form	 immunostimulatory	 complexes	 with	 cytokines	 and	 other	 endogenous	 and	

exogenous	factors,	including	self-DNA	(45).		
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Despite	 the	 well-established	 role	 of	 alarmins	 in	 the	 pathogenesis	 of	 ACD,	 their	 usage	 as	

biomarkers	 to	 distinguish	 different	 types	 of	 skin	 inflammatory	 conditions	 is	 questionable,	

since	most	of	 these	markers	 are	 common	 inflammatory	mediators	 and	 cannot	be	used	as	

specific	disease	associated	markers.	However,	 the	 level	of	alarmins	correlates	with	disease	

activity,	and	they	can	be	used	as	reliable	markers	to	detect	local	inflammatory	activities	and	

to	predict	the	disease	outcome	(46,	47).	

4.		Proteases		

Proteases	 are	 currently	 classified	 into	 six	 broad	 groups	 based	 on	 their	 catalytic	 domain:	

serine	 proteases,	 cysteine	 proteases,	 aspartate	 proteases,	 threonine	 proteases,	 glutamic	

acid	 proteases,	 and	 metalloproteases	 (48).	 In	 the	 skin,	 various	 proteases	 contribute	 to	 a	

protease-/protease	 inhibitor	 balance.	 Exogenous	 proteases	 derive	 from	 bacteria,	 fungi	 or	

viruses.	Local	endogenous	proteases	comprise	e.g.	kallikreins,	caspase-14	and	prostasin,	and	

are	tightly	controlled	by	local	serine	protease	inhibitors	like	e.g.	LEKT-I,	SERPINs,	or	cystatins	

(49).	 Identified	protease	 targets	 include	structural	proteins	such	as	 filaggrin,	cytokines	and	

receptors	 that	 are	 involved	 in	 the	 epidermal	 barrier	 function,	 immune	 response	 and/or	

antimicrobial	 defence	 mechanisms.	 More	 specifically,	 serine	 proteases	 are	 critical	 for	

epidermal	 barrier	 homeostasis,	 and	 aberrant	 expression	 and/or	 activity	 have	 been	

associated	with	AD	in	human	studies	(50).	Airborne	proteins	such	as	the	cysteine	peptidase	

Der	p1	produced	by	house	dust	mites	and	cockroaches	have	the	ability	to	penetrate	into	the	

epidermis	and	exacerbate	AD	(51,	52).	Those	exhibit	 innate	proteolytic	activity	on	the	skin	

and	 can	 thus	 directly	 contribute	 to	 barrier	 impairment	 and	 increased	 local	 inflammation	

(53).	A	role	for	mannose	receptor	(MR)-positive	M2	macrophages	are	demonstrated	 in	the	

development	of	 contact	hypersensitivity	by	producing	 the	metallo-proteinase	MMP12(54).	

The	 authors	 suggest	 that	 MMP12	 activity	 is	 required	 to	 trigger	 skin	 inflammation	

presumably	through	the	induction	of	chemokine	expression.	The	cysteinyl-aspartate-specific	

proteinase	caspase	14	expression	is	reduced	in	skin	biopsies	from	patients	with	ACD	further	

supporting	 its	 role	 in	 inflammatory	 skin	 conditions	 (55).	Mouse	models	 of	 experimentally	

induced	ACD	demonstrate	a	regulatory	role	of	the	protease-activated	receptor	PAR-2	during	

skin	 inflammation	 and	 immune	 response	 (56,	 57).	 Disruption	 of	 tight	 junction	 (TJ)	

morphology	 associated	 with	 cleavage	 of	 zonula	 occludens	 (ZO)-1	 and	 occludin	 has	 been	

reported,	although	a	second	study	rather	revealed	initiation	of	apoptosis	independently	of	TJ	
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proteolysis	 (58,	 59).	 Overall,	 although	 the	 implication	 of	 proteases	 in	 ACD	 becomes	

increasingly	 evident,	 their	 role	 as	 promising	 biomarkers	 for	 ACD	 still	 remains	 to	 be	

confirmed.		

5.		Genetic	markers		

Despite	 similar	 exposures	 to	 contact	 sensitizers,	 some	 individuals	 develop	 CS	 resulting	 in	

ACD,	 while	 others	 are	 spared.	 Genetic	 factors	 may	 modify	 this	 individual	 susceptibility.	

Polymorphisms	 in	 several	 candidate	 genes	 have	 been	 studied	 (3,	 60,	 61)	 as	 they	 may	

influence	the	individual	 immune	responses,	skin	barrier	function	or	metabolizing	capacities	

(Table	 1).	 The	 TNFA-308A	 allele	 confers	 an	 increased	 production	 of	 the	 pro-inflammatory	

cytokine	 TNF-α	 and	 was	 found	 more	 frequently	 in	 patients	 with	 CS	 against	 a	 para-

substituted	 aryl	 compound	 and	 at	 least	 one	 more	 unrelated	 contact	 sensitizer	 (62).	 This	

single	 nucleotide	 polymorphism	 (SNP)	 was	 additionally	 associated	 with	 increased	 risk	 of	

irritant	contact	dermatitis	(63-65)	and	thus	could	have	an	impact	on	development	of	CS	via	

unspecific	 trigger	 factors	 as	 suggested	by	 the	 ‘danger	model’	 (66).	 It	was	also	 significantly	

linked	 to	 the	 risk	 for	 severe	generalized	dermatitis	 to	 trichloroethylene	as	well	as	CS	 to	p-

phenylenediamine	(PPD)	(67,	68)	and	chromium	(69).	However,	no	effect	on	susceptibility	to	

CS	to	a	para-substituted	aryl	compound	and	at	least	one	more	unrelated	contact	sensitizer	

was	found	for	polymorphisms	in	the	genes	encoding	IL-1β,	IL-1	receptor	antagonist	(RA)	and	

IL-6	 (62).	 In	 contrast,	 the	 IL16-295*C/C	 genotype	was	 significantly	overrepresented	among	

individuals	with	 CS	 to	a	 para-substituted	 aryl	 compound	 and	 at	 least	 one	more	 unrelated	

contact	 sensitizer	 (70),	 while	 the	 CXCL11*A/A	 genotype	 (rs6817952)	 was	 associated	 with	

polysensitization,	defined	as	reaction	to	three	or	more	unrelated	sensitizers	(71).	A	link	was	

found	 between	 SNPs	 in	 the	 gene	 encoding	 the	 immunosuppressive	 cytokine	 IL-10	 (IL10-

1082G→A	and	IL10-819C→T)	and	CS	to	parthenium	(72).	No	association	was	found	between	

IL4-590	 polymorphism	 and	 CS	 to	 chromium	 (69).	 Angiotensin-converting	 enzyme	 (ACE)	

cleaves	substance	P,	β-endorphins	and	other	peptides	with	immunomodulatory	function	and	

thus,	 modulates	 the	 inflammatory	 response	 to	 allergens,	 but	 not	 to	 irritants.	 Insertion	

polymorphisms	in	the	ACE	gene	were	associated	with	an	increased	risk	of	CS	to	PPD	(73).		

	

An	 impaired	 skin	barrier	 function	may	 facilitate	 the	penetration	of	 contact	 sensitizers	 and	

thus,	the	development	of	CS	(3,	60,	61).	Molin	et	al.	reported	an	association	between	ACD	
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on	the	hands	and	combined	deletions	in	genes	encoding	the	late	cornified	envelope	(LCE3B	

and	LCE3C)	(74).	Moreover,	SNPs	in	the	gene	encoding	the	tight	junction	claudin-1	(CLDN1)	

were	associated	with	CS	 to	 fragrances	 and	nickel	 in	 individuals	without	ear	piercings	 (75).	

The	 effect	 of	 filaggrin	 gene	 (FLG)	 loss-of-function	mutations	 on	 the	 development	 of	 CS	 is	

controversial.	Mutations	 in	 FLG	 have	 been	 associated	with	 combined	 ICD	 and	 ACD	 of	 the	

hands	 in	dermatitis	patients	 (76).	However,	no	association	between	FLG	mutations	and	CS	

was	found	in	a	small	twin	sample	and	in	patients	with	multiple	allergies	(77-79).	In	contrast,	

in	a	 cohort	of	 individuals	with	AD	and	 recurrent	hand	eczema,	FLG	mutations	 conferred	a	

strongly	 increased	 risk	 for	CS	 to	 sensitizers	other	 than	nickel,	 likely	 indicating	 that	 chronic	

and/or	 severe	 dermatitis	 is	 associated	 with	 barrier	 deficiency	 and	 increased	 topical	

exposures	(80).	An	association	between	FLG	mutations	and	CS	to	nickel	has	been	reported	in	

individuals	 with	 a	 history	 of	 intolerance	 to	 fashion	 jewellery	 and	 in	 individuals	 without	

piercing	(81,	82).	In	a	cohort	of	patients	with	occupational	contact	dermatitis	of	the	hands,	

FLG	mutations	were	associated	with	CS	to	lanolin	alcohol	(83).	Similarly,	compared	to	wild-

type	carriers	without	AD,	individuals	with	AD	and	FLG	mutations	have	a	higher	prevalence	of	

CS	to	ethylenediamine	and	neomycin	(84).	However,	the	high	prevalence	of	CS	to	substances	

commonly	 found	 in	 topical	 preparations	 could	 be	 related	 to	 an	 increased	 use	 of	 such	

products	by	FLG	mutation	carriers	due	to	dry	or	inflamed	skin.		

	

Individuals	may	 differ	 in	 their	 ability	 to	 activate	 or	 detoxify	 contact	 sensitizers	 upon	 skin	

exposure,	which	may	be	due	to	polymorphisms	 in	genes	encoding	xenobiotic	metabolizing	

enzymes	 (3,	 60,	 61).	 Several	 studies	 investigated	 SNPs	 in	 the	 gene	 encoding	 the	 enzyme	

glutathione-S-transferase	 (GST).	 A	 higher	 risk	 of	 CS	 to	 chromium	was	 found	 in	 individuals	

with	 the	 GST-T1	 null	 genotype	 (69).	 The	 prevalence	 of	 combined	 GST-T1	 and	 GST-M1	

deletions	was	more	 frequent	 in	 individuals	with	 CS	 to	 thiomersal	 than	 in	 healthy	 controls	

(85).	However,	others	could	not	confirm	associations	between	SNPs	in	the	GST	gene	and	CS	

(75,	86).	Some	studies	have	focused	on	SNPs	in	genes	encoding	the	metabolizing	enzymes	N-

acetyltransferase	 (NAT)	1	and	2,	which	have	been	 linked	with	 ‘rapid’	and	 ‘slow’	acetylator	

phenotypes	 (3,	 60,	 61).	 Carriers	 of	 the	 rapid	 NAT2*4	 allele	 showed	 an	 increased	

susceptibility	 to	 CS	 to	 para-substituted	 aryl	 compounds,	 including	 PPD	 (87).	 The	 slow	

acetylator	phenotype	associated	with	NAT2*5b/2*6a	was	 significantly	 less	 common	 in	 the	
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disease	group.	Smaller	studies	on	the	effect	of	SNPs	in	the	NAT2	gene	supported	the	notion	

that	a	rapid	acetylator	phenotype	may	increase	the	risk	for	CS	to	PPD	(88,	89).	Even	though	

N-acetylation	 is	 generally	 regarded	 as	 a	 detoxifying	 reaction,	 it	 may	 also	 result	 in	

transformation	 of	 para-substituted	 aryl	 compounds	 or	 their	 intermediates	 into	 stronger	

haptens	which	may	explain	the	reported	increased	risk	of	sensitization	in	‘rapid’	acetylators.		

However,	others	reported	that	the	rapid	acetylator	NAT1*10	allele	was	less	frequent	in	CS	to	

PPD	(90).	No	association	was	found	between	two	polymorphisms	(ALA-9Val	and	Ile58Thr)	in	

the	 gene	 encoding	manganese	 superoxide	 dismutase	 (MnSOD)	 and	 the	 risk	 for	 CS	 to	 PPD	

(91).		

Even	though	the	results	of	the	reviewed	studies	indicate	the	influence	of	genetic	factors	on	

the	 susceptibility	 for	 CS,	 several	 limitations	 should	 be	 addressed	 (3,	 60,	 61).	 The	

pathogenesis	of	CS	is	complex	and	not	completely	understood.	Most	likely,	a	combination	of	

environmental	and	genetic	 factors	 is	 involved,	which	may	differ	depending	on	 the	contact	

sensitizer.	 Thus,	 the	 results	 can	 likely	 not	 be	 generalized.	 Many	 studies	 are	 further	

compromised	by	their	small	sample	size.	Moreover,	an	 inadequate	definition	and	selection	

of	 cases	 and	 controls	may	 limit	 the	 value	 of	 the	 results.	 The	 candidate	 gene	 approach	 is	

based	 on	 a	 pathogenic	 hypothesis,	 which	 may	 be	 misleading.	 The	 functional	 role	 of	 the	

selected	polymorphisms	is	not	always	proven.	Moreover,	it	is	possible	that	the	investigated	

genetic	 variation	may	not	 be	 directly	 involved	 in	 CS,	 but	 is	 rather	 genetically	 linked	 to	 an	

unknown	 susceptibility	 factor	 or	 to	 a	 concomitant	 disease	 such	 as	 AD.	 Therefore,	 further	

studies	in	much	bigger	cohorts	are	warranted	where	stratification	by	other	linked	disorders	

is	better	accounted	 for.	 	An	overview	of	all	genetic	biomarkers	can	be	 found	 in	our	online	

supplementary	table	1.	

5.2	Gene	expression	in	contact	sensitizer	identification	

Contact	 sensitizers	 are	 being	 tested	 using	 cell	 lines	 and	 reconstructed	 human	 epidermis	

models	to	develop	 in	vitro	assays	for	contact	sensitizer	identification	(92,	93).	For	example,	

DCs	 derived	 from	 CD34+	 cord	 blood	 progenitors	 MUTZ-3	 DC	 progenitor	 cells,	 HaCaT	

keratinocytes	and	the	Episkin	model	are	being	used	in	gene	expression	profiling	studies	(94-

97).	These	studies	give	 insight	 into	the	early	events	 in	 the	sensitization	process.	Metabolic	

processes,	oxidative	 stress	and	cell	 cycling	are	 triggered	by	contact	 sensitizers.	One	of	 the	

most	 prominent	 pathways	 that	 has	 been	 identified	 in	 this	 and	 other	 studies	 is	 the	
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Keap1/Nrf2	dependent	antioxidant	phase	2	response	which	 is	present	 in	all	cell	types	(98).	

Contact	 sensitizers	 can	covalently	bind	 to	 critical	 cysteine	 residues	 in	 the	cytosolic	protein	

Keap1;	 a	 sensor	 for	 oxidative	 and	 electrophilic	 stress.	 Keap1	 normally	 ubiqitinylates	 the	

transcription	 factor	Keap1	and	 thereby	marks	 it	 for	degradation	by	 the	proteasome.	Upon	

modification	 by	 contact	 sensitizers,	 Nrf2	 is	 no	 longer	 degraded	 and	 translocates	 into	 the	

nucleus	 where	 it	 drives	 the	 expression	 of	 antioxidant	 response	 element	 (ARE)	 containing	

genes	after	 its	association	with	cofactors.	These	include	genes,	which	regulate	glutathione-

mediated	 redox	 homeostasis.	 Knockout	 mice	 lacking	 Nrf2	 can	 be	 sensitized	 with	 lower	

concentrations	 of	 contact	 sensitizers	 and	 ACD	 can	 even	 be	 induced	 with	 weak	 contact	

sensitizers	which	do	not	induce	sensitization	in	wildtype	mice	(99).	

Biomarkers	related	to	this	contact	sensitizer-triggered	response	can	be	identified	e.g.	in	DCs	

and	 may	 be	 very	 useful	 (100).	 An	 in	 vitro	 test	 for	 contact	 sensitizer	 identification,	 the	

Keratinosens	 assay,	 has	 been	 developed	 and	 was	 recently	 validated	 (OECD	 guideline	 test	

442D)	(101).	

One	 important	 information	 that	 is	 still	missing	 is	 the	 extent	 of	 the	overlap	of	 the	 contact	

sensitizer-induced	 gene	 expression	 profiles	with	 irritants,	 some	of	which	may	 also	 engage	

pathways	 triggered	 by	 contact	 sensitizers.	 The	 extent	 of	 specificity	 of	 these	 profiles	 for	

contact	sensitizers	will	only	become	evident	when	a	 large	panel	of	sensitizers	and	 irritants	

has	 been	 tested.	 It	 may	 well	 be	 that	 it	 is	 difficult	 to	 identify	 a	 general	 gene	 profile	 that	

unequivocally	 identifies	 all	 contact	 sensitizers.	 Due	 to	 the	 different	 physicochemical	

properties	and	reaction	mechanisms	of	the	few	thousands	of	chemicals	that	can	cause	ACD,	

there	may	be	the	need	to	identify	“class-specific”	profiles.	

Recent	studies	have	addressed	the	changes	in	gene	expression	by	RNA	microarrays	in	human	

skin	treated	with	contact	sensitizers	or	affected	by	inflammatory	skin	diseases	such	as	atopy	

or	psoriasis.	Dhingra	et	 al.	 analysed	 skin	biopsies	 from	petrolatum-	 and	 sensitizer-reactive	

patches	of	24	individuals	72	h	after	application	of	different	contact	sensitizers	in	a	patch	test	

(102).	They	identified	a	common	ACD	transcriptome	that	comprised	149	genes	for	all	tested	

sensitizers	 compared	 to	 petrolatum.	 Even	more	 genes	 relating	 to	 innate	 immunity,	 T	 cell	

trafficking	and	T	cell	subset	polarisation	were	differentially	expressed	when	different	contact	

sensitizers	were	compared.	The	authors	emphasized	different	types	of	immune	polarization	

with	 respect	 to	 Th1/Th17,	 Th22	 and	 Th2	 components	 for	 nickel,	 fragrance	 and	 rubber.	
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Quaranta	 et	 al.	 performed	 gene	 expression	 profiling	 with	 human	 skin	 samples	 from	 24	

individual	 patients	 simultaneously	 affected	 by	 psoriasis	 and	 non-atopic	 or	 AD	 lesions	

avoiding	 problems	 of	 inter-individual	 variability	 (34).	 In	 addition,	 eczematous	 skin	 from	

nickel-induced	ACD	was	included.	Lesional	skin	was	compared	to	autologous	unaffected	skin.	

Differentially	expressed	genes	were	associated	with	the	immune	response,	AMP,	skin	barrier	

and	 epidermal	 differentiation,	 and	 metabolism.	 Identified	 single	 genes	 and	 signalling	

pathways	were	common	to	the	different	skin	diseases	as	well	as	disease-specific	ones.	A	set	

of	15	selected	genes	was	then	tested	as	a	disease	classifier	for	diagnosis	in	an	independent	

patient	 cohort.	 RT-PCR	 analysis	 was	 performed	 using	 biopsies	 from	 the	 lesional	 skin.	 The	

classifier	was	able	to	correctly	diagnose	the	relevant	skin	disease.	When	comparing	naturally	

occurring	 AD	 and	 nickel-induced	 ACD,	 172	 genes	 were	 only	 regulated	 in	 ACD,	 28	 only	 in	

naturally	 occurring	 eczema	 and	 33	 genes	were	 regulated	 in	 both	 types	 of	 eczema.	While	

epithelial	antimicrobial	response	genes	(S100	family,	some	keratin)	were	regulated	similarly,	

genes	regulating	epithelial	differentiation	such	as	genes	of	the	SPRR	(small	proline-rich)	and	

late	cornified	envelope	(LCE)	families	were	regulated	differently,	and	genes	associated	with	

an	 acute	 immune	 response	 were	 significantly	 regulated	 only	 in	 ACD.	 These	 were,	 for	

example,	 inflammasome-related	genes	such	as	 IL-1β,	AIM2	as	well	as	neutrophil-attracting	

and	 Th1-associated	 chemokines.	 Most	 interestingly,	 NOS2	 and	 CCL27	 were	 identified	 as	

molecular	classifiers	that	allow	differentiation	between	psoriasis	and	eczema	(103).	

These	 interesting	 studies	 reveal	 that	 there	 are	 disease-specific	 gene	 signatures	 and	 gene	

signatures	common	to	different	 inflammatory	skin	diseases.	For	ACD	common	and	contact	

sensitizer-specific	 gene	 signatures	 have	 been	 found.	However,	 a	 larger	 panel	 of	 chemicals	

must	be	tested	before	general	conclusions	can	be	drawn.	Nevertheless,	these	studies	can	be	

used	to	identify	disease	specific	classifiers	for	improved	molecular	diagnosis.	

6.		Immunoproteomics	

As	 stated	 previously,	 the	 current	 concept	 of	 ACD	 implies	 direct	 sensitizer-protein	

interactions	followed	by	antigen	processing	and	immune	recognition.	This	process	is	known	

as	 haptenation	 or	 hapten	 binding	 to	 self-proteins,	 or	 immunotoxicologically	 as	 molecular	

initiating	 event	 (2,	 104-107).	 This	 emphasizes	 that	 human	 self-proteins	 are	 essential	

sensitizer	 targets	 and	 important	 co-regulators	 in	 the	 disease’s	 pathogenesis.	 Even	 though	

self-proteins/peptides	may	significantly	 trigger	 sensitizer-specific	T	cell	epitope	generation,	



	 18	

only	 little	 is	 known	 so	 far	 about	 sensitizer-specific	 T	 cell	 epitopes.	 Thus,	 it	 is	 still	 unclear	

which	role	cryptic	self-epitopes,	cross-reactions	or	the	p-I	concept	may	have	in	this	process	

(108,	 109).	 Specifically	 for	metal	 sensitizers	 like	 nickel	 and	 beryllium,	 several	 clonal	 T	 cell	

epitopes	 have	 been	 described	 (110-113).	 Yet,	 since	 reactions	 are	 of	 polyclonal	 nature,	 a	

higher	number	of	molecular	epitopes	for	each	single	sensitizer	has	to	be	taken	into	account.		

	

One	potential	physiological	sensitizer-target	protein	is	represented	by	human	serum	albumin	

(HSA),	 a	 multifunctional	 high	 molecular	 weight	 blood	 protein	 (69	 kD)	 also	 occurring	 in	

human	 sweat	and	 skin	 (114).	Many	 important	 skin	 sensitizers	have	been	demonstrated	 to	

interact	 specifically	 with	 HSA,	 such	 as	 nickel,	 DNCB,	 PPD	 and	 methylisothiazolinone	 (MI)	

while	 fragrances	 like	 cinnamal,	 citronellol	 and	eugenol	have	been	 shown	 to	 interfere	with	

the	 related	 xenogeneic	 bovine	 serum	 albumin	 (115-122).	 Furthermore,	 some	 of	 these	

sensitizer-carrier-albumin	 molecules	 may	 become	 immunologically	 active	 and	 affect	

sensitizer-specific	human	T	cell	clone	activation	e.g.	by	transferring	nickel	 to	 the	TCR/MHC	

interface	 or	 by	 generating	 still	 unknown	 MI-specific	 T	 cell	 epitopes	 (120,	 122)	 (123)It	 is	

remarkable	 that	 similar	 results	 were	 obtained	 with	 nickel	 bound	 to	 human	 transferrin,	

usually	 known	 as	 iron	 carrier,	 indicating	 several	 distinct	 parallel	 mechanisms	 in	 nickel-

specific	polyclonal	T	cell	activation	(124).		

To	 further	determine	 sensitizer-protein	 interactions	 in	human	 skin	 and	elucidate	potential	

early	mechanisms	of	haptenation	and/or	direct	or	 indirect	 sensitizer-dependent	metabolic	

disproportion,	we	have	investigated	nickel-protein-interactions	in	human	antigen	presenting	

cells	and	human	keratinocytes	by	proteomic	technologies	(Ohnesorge	et	al.,	in	preparation)	

(125).	 By	 applying	 	 the	 database	 for	 annotation,	 visualization	 and	 integrated	 discovery	

(DAVID)	 	 6.7	 to	 nickel-interacting	 proteins	 detectable	 in	 human	 keratinocytes,	 functional	

annotation	 clustering	 revealed	 24	 annotation	 clusters,	 and	with	 cluster	 1	 showing	 similar	

terms	 like	stress	response,	chaperone	and	unfolded	protein	binding	or	ATP	and	nucleotide	

binding	 associated	 with	 one	 sub-group	 of	 nickel-binding	 skin	 molecules	 (see	 figure	 1)	

(Ohnesorge	 et	 al.	 in	 preparation)	 (126).	 Thus,	 combining	 immunoproteomic	 interaction	

analyses	 with	 nickel-specific	 human	 T	 cell	 clone	 reactions	 and	 nickel-specific	 activated	

keratinocytes	 will	 give	 new	 molecular	 insights	 into	 basic	 mechanisms	 of	 ACD,	 including	
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hapten	 epitope	 generation,	 and	 innate	 inflammatory	 responses	 or	 metabolic	 pathways	

affected	by	reactive	small	molecules	or	sensitizing	metals	like	nickel.	

	

Figure.	1:	Potential	protein	targets	of	human	contact	allergen	nickel	in	human	skin	possibly	

co-triggering	 the	 immune	 response	 e.g.	 by	 affecting	 epitope	 generation	 and/or	metabolic	

processes.	Functional	annotation	cluster	of	nickel-binding	proteins	from	human	keratinocytes	

(y-axis)	displays	relationship	to	 functionally	similar	 terms	(x-axis;	enrichment	score	9.93,	all	

with	 significant	 p-values)	 like	 stress	 responses,	 chaperone	 and	 unfolded	 protein	 binding	 or	
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ATP	 binding	 and	 nucleotide	 binding	 (green	 -	 corresponding	 protein/gene-term	 association	

positively	reported;	black	-	corresponding	protein/	gene-term	association	not	reported	yet).	

7.	Structural	elements	of	the	epidermis	

7.1		Lipids	

The	 sensitization	 and	 elicitation	 phase	 of	 ACD	 are	 concentration-dependent	 phenomena,	

and	the	skin	barrier	possibly	influences	the	threshold	concentration	of	a	contact	sensitizer	to	

provoke	an	 immune	response	 (127).	The	permeability	 function	of	 the	skin	 largely	depends	

on	the	spatial	organization	and	composition	of	the	three	major	SC	lipid	classes;	ceramides,	

free	fatty	acids	and	cholesterol	(128).	The	depletion	or	alteration	of	the	relative	composition	

of	 these	 lipid	 classes	 results	 in	 a	 reduced	 skin	 barrier	 function	 (129).	 In	 addition	 to	 their	

barrier	function,	SC	lipids	and	their	precursors	and	metabolites	also	play	an	important	role	in	

epidermal	signalling	and	modulation	of	innate	immunity	(130).	It	is	likely	that	aberrant	lipid	

composition	may	 facilitate	 skin	 penetration	 of	 sensitizers,	 in	 particular	 if	 these	 are	water	

soluble.	However,	 studies	addressing	a	 relationship	between	SC	 lipids	and	ACD	are	scarce.	

Jungersted	 et	 al.	 found	 no	 difference	 in	 ceramide	 profile	 in	 non-lesional	 skin	 between	

patients	 with	 ICD	 and	 ACD	 on	 the	 hands	 and	 patients	 with	 hyperkeratotic	 hand	 eczema	

(131).	 So	 far,	 there	 are	 no	 other	 studies	 which	 have	 investigated	 the	 SC	 lipids	 as	 a	

susceptibility	parameter	for	ACD.	Therefore,	future	studies	are	needed	to	shed	more	light	on	

the	role	of	the	skin	lipids	for	ACD,	including	their	contribution	to	the	barrier	function	as	well	

as	epidermal	signalling.		

7.2		Natural	moisturizing	factors		

Filaggrin	 and	 its	 degradation	 products	 which	 are	 contributing	 to	 a	 pool	 of	 hygroscopic	

compounds	 collectively	 called	 natural	moisturizing	 factors	 (NMF)	 affect	 the	 structure	 and	

composition	of	the	SC,	the	principal	barrier	of	the	skin	(132).	The	levels	of	NMF	in	the	SC	can	

be	affected	by	both	genetic	and	environmental	factors	with	the	loss-of-function	mutations	in	

FLG	as	a	major	determinant	(133).	Theoretically,	NMF	deficiency	can	influence	development	

of	ACD	in	different	ways.	The	enhanced	skin	permeability	will	increase	the	likelihood	that	the	

threshold	concentration	of	the	contact	sensitizer	to	induce	sensitization	or	elicitation	will	be	

reached.	The	percutaneous	absorption	can	also	be	affected	by	the	binding	of	a	sensitizer	to	

the	 SC.	 It	 has	 recently	 been	 shown	 that	 filaggrin	 chelates	 nickel,	 which	 might	 lower	 the	
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amount	 of	 nickel	 that	 penetrates	 across	 the	 SC	 into	 viable	 epidermis	 (134).	 Increased	 SC	

penetration	 of	 trivalent	 chromium	 was	 shown	 in	 filaggrin	 deficient	 mice	 skin	 (135),	 and	

carriers	of	FLG	mutations	have	an	increased	risk	of	nickel-induced	sensitization	compared	to	

wild-type	carriers	(81,	136,	137).	However,	Ross-Hansen	et	al.	did	not	find	a	difference	in	the	

dose-response	relationship	in	Ni-elicitation	between	FLG	mutation	carriers	and	non-carriers	

in	a	small	pilot	study	(134).	Another	limitation	of	that	study	was	that	the	sensitization	dose	

which	 is	 known	 to	 largely	 influence	 dermatitis	 reaction	 has	 not	 been	 taken	 into	 account	

(138).	

In	 contrast	 to	 ICD	and	AD,	 little	 is	 known	about	 the	effect	of	 the	cytokine	and	chemokine	

milieu	 in	 ACD	 on	 the	 epidermal	 filaggrin	 and	 NMF	 levels.	 Howell	 et	 al.,	 showed	 that	 the	

expression	of	filaggrin	is	downregulated	in	AD,	due	to	Th2	mediated	inflammation	(139-143).	

Kezic	 et	 al.	 (143)	 showed	 also	 that	 NMF	 levels	 are	 lower	 in	 AD	 patients	 as	 compared	 to	

healthy	 controls	 and	 that	 the	 decrease	 in	 NMF	 was	 associated	 with	 disease	 severity.	 As	

many	contact	sensitizers	show	(also)	Th2	inflammatory	responses,	it	might	be	expected	that	

the	NMF	levels	 in	ACD	are	reduced	(144).	 In	a	study	by	Koppes	et	al.,	the	NMF	levels	were	

decreased	 after	 patch	 testing	 with	 methylisothizolinone/methylchloroisothiazolinone	

(MI/MCI),	 but	 not	 after	 nickel,	 PPD	 and	 chromium	 although	 all	 investigated	 contact	

sensitizers	induced	similar	clinical	responses	(145).	As	skin	irritants	markedly	decrease	NMF	

levels,	 it	 might	 be	 speculated	 that	 the	 NMF	 reduction	 after	MI/MCI	 is	 caused	 by	 irritant	

properties	of	this	sensitizer	(140-142,	145).	

To	summarize,	there	are	very	few	studies	which	have	addressed	the	role	of	NMF	in	ACD.	As	

the	 effect	 of	 sensitizers	 on	 the	 NMF	 levels	 proved	 to	 be	 sensitizer-specific	 it	 might	 be	

interesting	to	further	investigate	this	phenomenon	with	more	contact	sensitizers.		

7.3		Tight	Junctions		

TJs	are	cell-cell	junctions	that	are	composed	of	transmembrane	proteins	(e.g.	claudins	1-24,	

occludin,	 tricellulin,	 junctional	 adhesion	 molecules	 A-C)	 and	 cytoplasmic	 plaque	 proteins	

(e.g.	 ZO	 proteins	 1-3,	 cingulin).	 The	 definite	 composition	 depends	 on	 the	 cell	 type,	

differentiation	state	and	physiologic	and	non-physiologic	stimuli	(146).	TJs	have	been	shown	

to	form	a	functional	paracellular	barrier	to	hydrophilic	molecules	≥557	Da	and	lanthanum	in	

the	granular	cell	layer	of	the	epidermis	(147).	For	molecules	smaller	than	557	Da	and	other	

ions	 experimental	 data	 are	 still	 missing,	 however,	 because	 of	 the	 barrier	 function	 to	
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lanthanum	a	barrier	also	 for	 these	molecules	 /	 ions	 could	be	hypothesized.	 In	addition,	TJ	

proteins	are	also	found	in	other	epidermal	layers,	which	means	outside	of	TJ	structures,	with	

a	 characteristic	 distribution	 pattern	 for	 each	 protein	 (147).	 Besides	 barrier	 function,	 TJs	

and/or	 TJ	 proteins	 have	 been	 shown	 to	 be	 involved	 in	 proliferation,	 differentiation,	

apoptosis	and	cell-cell	adhesion	(148).		

Little	 is	 known	 about	 TJs	 in	 ACD.	 A	 general	 population	 study	 demonstrated	 a	 genetic	

correlation	 of	 CS	 and	 Cldn-1	 SNPs	 (75).	 In	 a	mouse	model	 of	 allergic	 dermatitis,	 Cldn-1	 is	

downregulated.	 In	 this	 study	an	 increase	of	TJ	permeability	 could	be	 shown	 for	molecules	

from	 557-5000	Da	while	 there	was	 no	 change	 for	molecules	 around	 30	 kDa	 (149).	 Again,	

smaller	molecules	have	not	been	tested.	In	conclusion,	more	research	on	TJ	proteins	in	ACD,	

including	the	proof	of	barrier	function	for	molecules	smaller	than	557	Da	and	other	ions	than	

lanthanum,	 is	 needed	 to	 elucidate	 their	 role	 in	 this	 cutaneous	 disease.	 In	 general,	 TJ	

dependent	and	TJ	independent	functions	of	TJ	proteins	are	of	interest.	In	addition,	it	will	be	

of	 special	 interest	whether	 different	 patterns	 of	 TJ	 protein	 alterations	 can	 be	 seen	 in	 the	

different	 kinds	 of	 dermatitis	 and	 thus	 whether	 these	 proteins	 may	 help	 to	 distinguish	

between	the	different	entities	AD,	ACD	and	ICD.		

8.		Antimicrobial	peptides		

AMPs	 are	 small	 cationic	 peptides,	 produced	 predominantly	 in	 the	 epidermis,	 and	

transported	 to	 the	 SC,	 where	 they	 play	 a	 vital	 role	 in	 the	 skin	 barrier.	 They	 act	 as	

multifunctional	effector	molecules,	with	a	broad	antimicrobial	activity	(150,	151)	as	well	as	

immune	modulating	properties,	linking	the	innate	and	adaptive	immune	response	(152-154).	

In	 healthy	 skin,	 a	 low	 constitutive	 level	 of	 AMPs	 provides	 a	 defence	 against	 microbial	

pathogens.	During	 infection	or	 injury	 to	 the	 skin,	 up-regulation	will	 take	place	 to	 create	 a	

stronger	antibacterial	shield	as	well	as	modulate	the	immunological	response.		 	

Increased	 levels	 of	 AMPs	 are	 found	 after	 tape-stripping	 of	 healthy	 skin	 as	well	 as	 of	 non-

lesional	skin	of	AD	(155-157).	Furthermore,	the	expression	of	LL-37	is	 important	for	barrier	

recovery	 in	murine	 studies,	where	 knockout	mice	missing	murine	 LL-37	 display	 significant	

delay	in	barrier	recovery	(158).		

Not	much	is	known	about	the	role	of	AMPs	in	relation	to	CS.	In	vivo	expression	of	AMPs	from	

skin	 biopsies	 have	 shown	 increased	 protein	 levels	 of	 LL-37	 in	 ACD	 compared	 to	 healthy	



	 23	

controls	 and	AD	 (159),	 and	decreased	protein	 levels	of	 elafin	 and	human	beta	defensin-2,	

but	higher	mRNA	 levels,	 in	ACD	 compared	 to	AD	 (160).	 Interestingly,	murine	 studies	have	

found	LL-37	to	have	‘anti-inflammatory’	properties	that	down-modulate	ACD	in	vivo.	Using	

knockout	mice,	ACD	response	was	enhanced	in	the	absence	of	LL-37	(161,	162).		

Despite	few	studies	on	the	expression	of	AMPs	in	ACD,	a	role	for	AMPs	in	modulating	skin	

inflammation	as	well	as	 in	recovery	of	barrier	 function	seems	plausible.	The	 importance	of	

AMPs	in	skin	conditions	like	AD	and	psoriasis	is	well	reported	(156,	163-165),	and	their	use	

as	 biomarkers	 for	 local	 inflammation	 and	 disease	 severity	 is	 credible.	 To	 fully	 understand	

their	role	in	inflammatory	skin	conditions	like	ACD	and	their	role	in	maintaining	an	optimal	

skin	barrier	and	modulating	the	immune	response,	more	research	is	needed	in	this	field.		

9.		Bioengineering	parameters	

ACD	is	characterized	by	cellular	infiltration	and	reactivity	in	the	skin.	The	responsiveness	and	

degree	of	sensitization	in	the	individual	to	whom	a	contact	sensitizer	is	applied	on	the	skin	is	

also	 an	 important	 factor	 determining	 the	 magnitude	 of	 the	 response.	 Contact	 sensitizers	

penetrate	 the	 epidermis,	 most	 often	 without	 harming	 the	 barrier	 significantly,	 and	 then	

induce	an	 inflammatory	 response	which	 leads	 to	 secondary	 skin	barrier	 impairment	 (166).	

The	 barrier	 defect	 measured	 as	 increased	 transepidermal	 water	 loss	 (TEWL)	 in	 ACD	 is	

primarily	 explained	by	 the	 inflammatory	 response.	As	 stated	before,	 impaired	 skin	 barrier	

function	will	necessarily	increase	the	risk	of	sensitization	and	elicitation	of	ACD.	In	line	with	

this,	 combined	 exposure	 to	 irritants	 and	 sensitizers	 is	 known	 to	 significantly	 augment	 the	

response	as	assessed	by	measurement	of	TEWL	and	erythema	(167).	

	

Bioengineering	methods	are	useful	 for	quantification	of	allergic	skin	reactions,	and	may	be	

used	to	follow-up	on	reactions	over	time	in	experimental	studies,	and	to	quantitatively	study	

the	kinetics	of	the	pathophysiology	of	ACD	reactions	in	vivo	(168).	Although	the	response	to	

some	 irritants	 with	 direct	 barrier-harming	 effects	 like	 detergents	 may	 easily	 be	

differentiated	 from	 allergic	 reactions	 by	 measurement	 of	 TEWL,	 bioengineering	 methods	

cannot	generally	differentiate	between	allergic	and	irritant	skin	reactions	(169).	ACD	mainly	

causes	 inflammation	and	bioengineering	methods	directed	at	assessment	of	blood	 flow	or	

oedema	may	be	even	more	suitable	than	TEWL	for	assessment.		
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Measurement	 of	 both	 TEWL	 and	 erythema	 may	 be	 useful	 for	 quantification	 of	 ACD,	 in	

particular	patch	test	responses,	and	both	methods	have	been	widely	used	for	this	purpose	

(167,	170,	171).		

10.		Concluding	remarks	

The	prevalence	of	ACD	 in	the	general	population	 is	high.	 In	the	framework	of	COST	Action	

StanDerm,	we	have	reviewed	several	potential	biomarkers	such	as	inflammation	mediators,	

skin	 barrier	 function	 and	 genetic	 susceptibility	 markers,	 and	 methods	 to	 be	 used	 in	 the	

quantification	 of	 ACD	 (for	 overview	 see	 online	 supplement	 Table	 2).	 Even	 though	 the	

biomarkers	presented	can	can	be	used	in	certain	ways	in	the	diagnosis	of	ACD,	to	assess	the	

severity	of	ACD	or	to	identify	ACD	susceptible	individuals,	the	latter	being	very	challenging,	

our	review	also	highlights	the	need	for	future	research.	For	several	promising	biomarkers	for	

ACD	 there	 are	 few,	 and	 in	 some	 cases,	 no	 studies.	 The	 vast	 majority	 of	 the	 potential	

biomarkers	mentioned	here	will	most	likely	characterize	inflammatory	conditions	in	general.	

Specificity	for	eczematous	reactions	may	be	associated	with	skin-related	biomarkers,	and	for	

T	 cell–mediated	eczema	with	biomarkers	 related	 to	T	 cell	 immunity.	 The	most	 challenging	

question	 is	 if	 there	 are	 biomarkers	 that	 are	 specific	 for	 ACD.	 These	 should	 relate	 to	 the	

unique	 triggering	mechanisms	based	on	 the	protein-reactivity	of	 contact	 sensitizers.	Here,	

technologies	 such	 as	 genomics	 and	 proteomics	 should	 be	 most	 useful,	 and	 promising	

research	 in	 this	 field	 is	 ongoing.	With	 increasing	 knowledge	we	will	 potentially	 be	 able	 to	

provide	 a	 mapping	 of	 biomarkers	 to	 enhance	 ACD	 diagnosis	 and	 identify	 susceptible	

individuals,	maybe	applicable	also	for	everyday	clinical	practice.	Our	review	addresses	topics	

to	be	investigated	further	in	the	goal	of	preventing	development	of	ACD.		
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