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Abstract Habitat destruction and fragmentation are
known to strongly affect dispersal by altering the quality of

the environment between populations. As a consequence,

lower landscape connectivity is expected to enhance
extinction risks through a decrease in gene flow and the

resulting negative effects of genetic drift, accumulation of

deleterious mutations and inbreeding depression. Such
phenomena are particularly harmful for amphibian species,

characterized by disjunct breeding habitats. The dispersal

behaviour of amphibians being poorly understood, it is cru-
cial to develop new tools, allowing us to determine the

influence of landscape connectivity on the persistence of

populations. In this study, we developed a new landscape
genetics approach that aims at identifying land-uses

affecting genetic differentiation, without a priori assump-
tions about associated ecological costs.We surveyed genetic

variation at seven microsatellite loci for 19 Alpine newt

(Mesotriton alpestris) populations in western Switzerland.
Using strips of varyingwidths that define a dispersal corridor

between pairs of populations, we were able to identify land-

uses that act as dispersal barriers (i.e. urban areas) and
corridors (i.e. forests). Our results suggest that habitat

destruction and landscape fragmentation might in the near

future affect common species such as M. alpestris. In addi-
tion, by identifying relevant landscape variables influencing

population structure without unrealistic assumptions about

dispersal, our method offers a simple and flexible tool of
investigation as an alternative to least-cost models and other

approaches.
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Introduction

Fragmentation and destruction of the habitat are among the

main threats to biodiversity on a regional and global scale

(Opdam et al. 1993; Fahrig 2003), leading to a decrease in
suitable habitat areas and to isolation of remaining popu-

lations (Hanski and Gilpin 1997). In a metapopulation

context (Levins 1969; Hanski and Gilpin 1991), local
populations subjected to stochastic extinctions may persist

as long as landscape connectivity is sufficient to enable

individuals to disperse and recolonise extinct patches
(Opdam 1990; Wiens 1997; Hanski 1998, 1999). In addi-

tion, connectivity reduces local genetic drift and prevents

the accumulation of deleterious mutations in small and
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isolated patches (Keller and Waller 2002). Because land-

scape and habitat features between patches largely deter-
mine dispersal (Wiens et al. 1993; Ricketts 2001;

Kindlmann et al. 2005), they can have critical conse-

quences on the population genetic structure (Frankham
1996; Keyghobadi et al. 1999; Arnaud 2003; Bockelmann

et al. 2003; Geffen et al. 2004). Because increasing frag-

mentation tends to reduce the quality of the environment
between patches (Fahrig et al. 1995; Carr and Fahrig 2001),

landscape connectivity can strongly decline, leading to
higher mortality rates within fragmented populations.

Accordingly, such phenomenon is of major concern in

conservation biology, since endangered species are char-
acterized by small and fragmented populations, and suffer

from elevated extinction risks.

In order to reduce the effect of increasing fragmentation,
it is crucial to develop new tools of investigation able to

determine the influence of landscape connectivity on the

persistence of populations. In this context, the emerging
discipline of landscape genetics aims to examine the extent

to which landscape variables act on the population genetic

structure through dispersal (Manel et al. 2003). In partic-
ular, it seeks to provide information about interactions

between land-uses and evolutionary forces, such as gene

flow, genetic drift and selection. It usually proceeds in two
steps: (i) detecting genetic discontinuities with suitable

molecular approaches and (ii) estimating the correlation of

these genetic discontinuities with environmental land-uses,
such as dispersal barriers or corridors. Currently, simula-

tion models of varying degree of complexity are increas-

ingly used in landscape genetics (Jepsen et al. 2005).
Recent studies contrasted cost-distance models to genetic-

based dispersal rates (Stevens et al. 2006), compared

hypothetical dispersal routes to a straight-line distance
model (Spear et al. 2005), or combined different models

(e.g. barriers, isolation by distance, and landscape effects;

Cushman et al. 2006). Most of these approaches tested the
effects of barriers, such as mountain ridges and elevation

(Funk et al. 2005), of agricultural activities (Johansson

et al. 2005) or of urbanization pressure (Hitchings and
Beebee 1996) on genetic differentiation. However, these

approaches suffered from some limitations in statistical

significance (e.g. through non-independency of pairwise
FST estimations). In addition, the lack of knowledge about

the dispersal behaviour of certain model species could

result in misleading interpretations.
Pond-breeding amphibians can be particularly influ-

enced by the loss and increased isolation of important

habitat types (e.g. wetlands) induced by anthropogenic
activities (Blaustein et al. 1994), as they are generally

characterized by strong annual population fluctuations

(Meyer et al. 1998; Trenham et al. 2003), high site fidelity
(Smith and Green 2005) and poor ground-dispersal abilities

(Sinsch 1990). Studies conducted on anurans (Vos et al.

2001; Funk et al. 2005; Johansson et al. 2005; Stevens et al.
2006) and urodeles (Spear et al. 2005; Marsh et al. 2005)

have shown a strong impact of the landscape on the dis-

tribution of the genetic diversity, and particularly a nega-
tive effect of anthropogenic land-uses (e.g. roads, railways,

urban areas). Nevertheless, through their biphasic life his-

tory (aquatic larval phase vs. terrestrial adult phase) and
their regular migrations between terrestrial and aquatic

habitats, amphibians dispersal behaviour is still poorly
understood, due primarily to low probability of capture on

land (MacKenzie et al. 2002; Semlitsch 2003). It is worth

noting that landscape variables are likely to play a role in
every stage of their life cycle, pointing out the necessity to

conduct broad analyses into the relative influence of spe-

cific landscape variables on amphibian population
structure.

To overcome issues of unknown dispersal behaviour, we

present a new information-theoretic approach that enables
a broad landscape genetics insight without unrealistic

assumptions on species dispersal, and identifies the rele-

vant landscape variables. To illustrate such an approach,
we have examined the population genetic structure of the

alpine newt Mesotriton alpestris, a widespread species in

western Switzerland. The species can be considered as a
good model because it is an ecological generalist, occu-

pying different habitats ranging from gardens to forested

areas (Grossenbacher 1988) and thus could be influenced
by a wide array of land-uses. In addition, this species

shares many ecological characteristics with some threa-

tened amphibians such as Lissotriton vulgaris or Triturus
cristatus. For this reason, information concerning land-

scape influence on M. alpestris genetic structure could be

of general interest for other amphibian species, and for the
development of conservation and management plans

(Semlitsch 2002). This study had two main objectives. The

first was to provide insights on the population genetic
structure of M. alpestris at a regional scale in western

Switzerland. According to the occurrence of M. alpestris in
this area (Grossenbacher 1988), we expected a low genetic
differentiation among populations, due to relatively high

density. Second, we aimed at testing a novel landscape

genetics procedure, using straight-line strips of varying
width among each pair of populations. Based on simple and

realistic scenarios of cryptic dispersal systems like those

found in amphibians, these strips define a dispersal corridor
(expected to cover the successful dispersal paths of each

individual) between each pair of populations, and in which

the land-uses influencing population genetic structure can
be detected efficiently. We hypothesized that a standard

isolation-by-distance model is not sufficient to explain the

observed distribution of allelic frequencies among
M. alpestris populations (pairwise FST), and that adding

Conserv Genet

123



some landscape variables significantly improves the pre-

diction power of this standard model.

Materials and methods

Sampling

Fieldwork was conducted during spring 2005 in western

Switzerland. A total of 365 individuals were sampled
during the breeding season in 19 ponds within a 672-km2

study area (Figure 1, Table 1). The average distance

between ponds was 10.6 km, ranging from 0.67 to
26.2 km. In 17 ponds, adults were trapped and morpho-

logically sexed, while larvae were sampled in the addi-

tional two ponds (PY (site 18) and MDS (site 19)).
Non-destructive samples (Pidancier et al. 2003) were taken

from adults, using sterile buccal swabs (Copan), whereas

tail clips were taken from larvae. Samples were then stored
dry at -20"C before genetic analysis. Buccal swabbing in

amphibians has proved to be a very efficient approach,

allowing good quality DNA retrieval and very low allelic
dropout rates (Broquet et al. 2007).

Microsatellite analysis

Genomic DNA was extracted using a QIAGEN DNeasy#

Tissue Kit (QIAGEN), following the manufacturer’s

instructions. Some additional steps were performed when

using buccal swabs: following overnight incubation (lysis
step), swabs were centrifuged through a QIA Shredder

filter (QIAGEN) and buffer volumes were doubled, except

for AW1, AW2 and AE (QIAGEN). DNA was finally
eluted twice in a 100 ll volume and then stored at -20"C.
Seven specific microsatellite markers (di- and tetra-nucle-

otides) were used in this study (Ta1Ca1, Ta3Ca8, Ta4Ca4U,
Ta1Caga4, Ta2Caga3, Ta3Caga1, Ta3Caga2; Garner et al.

2003). PCRs were performed in a 25 ll final volume. Each

amplification reaction contained 2 ll extraction product,
0.2 mM dNTPs, 0.5 lM of both forward and reverse

primers, 19 QIAGEN PCR Buffer and 1U QIAGEN Taq
polymerase. PCR conditions were the same as in Garner
et al. (2003), except for the number of cycles (34–45

cycles) and a final elongation step for 7 min at 72"C. PCR
products were run on an ABI Prism 3100 automated DNA
sequencer (Applied Biosystems). Scoring of alleles for

each locus was performed with Genemapper 3.1.2 (Applied

Biosystems).

Fig. 1 The study area is located
in western Switzerland, on the
north shore of Lake Geneva.
The map shows forests in light
gray and urban areas in dark
gray. Sampling locations codes
are as in Table 1
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Genetic structure analyses

All possible pairs of microsatellite loci were tested for
genotypic linkage disequilibrium (Goudet et al. 1996),

using Fstat 2.9.3. (Goudet 2001). Standard indices of

genetic diversity, i.e. total number of alleles, allelic rich-
ness (number of alleles corrected for sample size), allelic

frequencies, observed and expected heterozygosities (Ho

and Hs; Nei 1987), as well as the F-statistics (FIS and FST;
Weir and Cockerham 1984) were calculated. The signifi-

cance of FST values was estimated over all loci, not

assuming random mating within samples (Goudet et al.
1996). Pairwise FST values were estimated for all popula-

tions. Significance was tested with 2,000 randomisations in

Fstat 2.9.3. (Goudet 2001).
Spatial structure was investigated using a Mantel test, by

testing whether the regression coefficient between pairwise

FST and geographic distances was significantly different
from zero (Manly 1997). Pattern of isolation by distance

was also tested between pairwise FST/(1-FST) values and

the natural logarithm of geographic distances between all
pairs of populations (Rousset 1997).

Landscape structure analysis

Our investigation of the effects of the landscape on genetic
differentiation consisted of three main steps: (i) mapping in

each cell of a grid overlaid on the study area the occurrence

of land-uses that potentially affect dispersal; (ii) measuring
the density of each land-use within a rectangular strip

between all population pairs and (iii) assessing how much

of genetic variance (pairwise FST) can be explained by
either distance alone or the relative density of land-uses.

Landscape data originated from the vector format of the

1:25,000 topographical map of Switzerland. The precision
of the data is *10 m (Swisstopo 2003). We used a subset

of the complete coverage aggregated into 14 land-uses

(Agriculture, Bush, Forest, Hedgerow, Marsh, Mineral,
Orchard, Ponds, Railroad, River, Road1class, Road2class,

Urban, and Vine) that could potentially affect newt dis-

persal. Their occurrence was mapped on 14 10-by-10 m
grids using Idrisi 32.2 (Eastman 2002). Spearman’s cor-

relation coefficients were calculated in order to verify that

only uncorrelated land-uses variables were used for
interpretations.

Table 1 Sampling locations, coordinates (Swiss planar coordinate
system), number of sampled individuals (Ns), number of alleles (k),
allelic richness (RA), average FIS values, average pairwise FST

values, mean expected heterozygosity (Hs) and mean observed
heterozygosity (Ho) for each of the 19 populations

Site nr. Site name (code) Coordinates

X Y Ns k RA FIS FST Hs Ho

1 University of Lausanne (UN) 533895 152718 25 39 4.77 0.139 NS 0.052 0.638 0.549

2 Ballens forest (MY) 519038 153688 20 43 5.45 0.037 NS 0.04 0.704 0.678

3 Bois de chêne (BC) 507539 143868 20 49 5.76 0.145 NS 0.031 0.673 0.575

4 EPFL (BAS) 533130 152829 20 33 4.22 0.003 NS 0.103 0.531 0.530

5 Boiron (BO) 525532 150089 20 39 4.85 0.095 NS 0.059 0.647 0.585

6 Echandens (EH) 531315 155400 12 43 5.95 -0.007 NS 0.043 0.722 0.727

7 Arboretum (ABM) 517899 151334 20 56 6.36 0.061 NS 0.026 0.677 0.635

8 Mossières (MOS) 517689 154219 19 54 6.31 0.244* 0.03 0.706 0.534

9 Colombier (RC) 525985 155906 18 53 6.14 0.271* 0.044 0.707 0.515

10 Bremblens (BR) 529543 154516 20 48 5.76 0.091 NS 0.06 0.703 0.639

11 Vaudalle (VA) 520072 150149 15 33 4.3 -0.04 NS 0.055 0.595 0.618

12 Gravière de Ballens (GB) 517959 155889 20 52 5.83 -0.018 NS 0.045 0.624 0.635

13 Prévondavaux (PR) 511921 150527 20 53 6.22 0.034 NS 0.025 0.694 0.670

14 Bursinel (BL) 512622 143959 20 37 4.58 0.026 NS 0.08 0.642 0.626

15 Breguettaz (BGT) 517922 168557 16 52 6.41 -0.063 NS 0.028 0.676 0.718

16 Vufflens-le-Château (VF) 525536 153286 20 46 5.57 0.047 NS 0.05 0.636 0.606

17 Saubraz (SZ) 514049 152532 22 47 5.33 0.052 NS 0.038 0.642 0.609

18 Pampigny (PY) 522748 160831 20 55 6.19 0.008 NS 0.068 0.627 0.627

19 Les Monods (MDS) 519346 158631 17 59 7.18 0.034 NS 0.035 0.721 0.697

* Significance levels were adjusted for multiple statistical testing with nominal level at 5%

Conserv Genet

123



Between each pair of populations, a rectangular area or

strip was delineated symmetrically astride the straight line
connecting the centres of the two populations. Such

graphical representation delimited a ‘‘dispersal corridor’’

between two populations, which is expected to cover the
dispersal routes of each individual that successfully

migrated between these two populations. A major advan-

tage of our approach is the possibility to vary the width of
the strip, according to the dispersal properties of the model

species. Dispersal strategy is highly dependent on the dis-
tance at which the species can perceive its environment,

also known as perceptual range in dispersal studies. We can

easily imagine that short-sighted species (like the alpine
newt) have lower perceptual range, resulting in less direct

dispersal path, and inversely for large animals (e.g. mam-

mals). Based on the realistic assumption that alpine newts
should have a larger width:length ratio than larger species,

we tested two classes of width strips (fixed vs. ratio). First,

three models of strips were generated with a fixed width of
110, 210 and 510 m. Secondly, five others models of strips

were produced with different width:length ratio (1:1, 1:3,

1:5, 1:7, 1:9). These latter defined strips of varying widths,
depending on the distance between the two populations

considered. In order to avoid dependence on strip length,

we computed Df as the frequency of each land-use per
strip. This provided for each population pair a set of

landscape feature frequencies, which were used as pre-

dictors in the subsequent analyses. These analyses were
automated with the computer program Frictionnator 1.9.6

(Hirzel and Fontanillas 2007, unpublished; available at: http://

www.unil.ch/biomapper/frictionnator/frictionnator.html).
The first Generalized Linear Model (with Gaussian error

distribution and identity link function) was run to estimate

percent variation in pairwise FST explained by geographic
distance (d) alone. This null model corresponded to the

traditional isolation-by-distance model, commonly used in

analyses of genetic population structure (Slatkin 1987).
Since our fundamental assumption states that landscape

heterogeneities and spatial arrangements of landscape

features may strongly affect dispersal success, genetic
distance between populations must be better explained by

the estimate of a model which considers these factors.

Subsequently, this null model was extended with one of the
landscape-feature densities (FST * d ? Df) to test whe-

ther the latter independently contributed to the null model

predictions. A separate model was built for each landscape
variable. We conducted univariate analysis of variance

(ANOVA) to test individual response variables.

Owing to the non-independence of pairwise FST, the
significance of these models was unreliable and, conse-

quently, cannot be considered in the results. Previous

landscape genetics studies have frequently dealt with this
issue by using Partial Mantel (Cushman et al. 2006; Spear

et al. 2005), despite its controversy (Raufaste and Rousset

2001; Castellano and Balletto 2002; Rousset 2002). In
this study, we adopted the parsimonious framework of

Burnham and Anderson’s (2002) for model comparison

that aimed to rank the candidate models and to select the
most plausible model of land-use influence on the genetic

structure. This information-theoretic approach is not based

on significance, but on the calculated value of Akaike’s
information criterion (AIC; Akaike 1974) as a measure of

model fit (Burnham and Anderson 2002). The lowest AIC
value, the closer a candidate model is to the true model.

The probability that any given model is actually the best

fit out of those tested was measured by its Akaike weight
(wAIC; Anderson et al. 2001), the relative-likelihood of

the model compared to all others. Whereas the non-

independence of pairwise FST have a strong impact on the
model significance, the sign of the regression coefficient

(Si) and the squared multiple correlation coefficient (R2)

are considered unbiased, because both indicators are not
based on independence assumptions. The indicator Si
estimated whether the landscape feature limits (?) or

favours (-) gene flow, i.e. acted as a dispersal barrier or
corridor, respectively, while the indicator R2 provided the

proportion of explained variation. All statistical analyses

were performed in R 2.2.1 (R development Core Team
2005).

Results

Genetic structure

A total of 365 adults from 19 ponds were genotyped. Like

in Pabijan and Babik (2006), marginally significant linkage
disequilibrium was detected between one pair of loci

(Ta3Ca8 and Ta4Ca4U) after Bonferroni correction

(P\ 0.001). Genetic diversities are provided in Table 1.
Overall, 112 alleles were found across the seven micro-

satellite markers. Allele frequencies are provided in S.

Table 1. The averaged expected heterozygosity per locus
(Hs) was 0.66 whereas the averaged observed heterozy-

gosity (Ho) was 0.62. The inbreeding coefficient FIS was

assessed for each population (Table 1). At the population
level, two FIS values were significant (sites 8 and 9;

Table 1). Overall FIS was 0.066, significantly different

from 0 (P = 0.001). Of the seven loci, three of them were
significantly in HW disequilibrium (Ta3Caga1, Ta1Caga4
and Ta1Ca1).

Pairwise FST were relatively low, indicating substantial
gene flow (S. Table 2). Mean pairwise FST values calcu-

lated for each population varied from 0.025 to 0.103

(Table 1). The global FST value estimated across all loci
was low, but significant (0.049, P = 0.001).
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Isolation by distance and landscape effect

Regression between pairwise FST/(1-FST) values and the

natural logarithm of geographic distances was not signifi-
cant (R2 = 0.016, P = 0.106). Moreover, the Mantel test

between pairwise FST values and geographic distances (d)
was not significant (P = 0.13). The standard isolation-
by-distance model (FST * d) showed weak AIC values

(-680.41) and suggested a low relation between both

variables (R2 = 0.9%), regardless of the strip variant
(S. Table 3).

According to the different kind of strips, Spearman’s

correlation coefficients were on average very low
(0.011 ± 0.01) and did not exceed 80%. Most importantly,

no important correlation was detected between the most

relevant predictors (e.g. Forest and Urban, mean coeffi-
cient: -0.44 ± 0.021). When comparing the two classes of

strips, the ratio strips revealed generally greater values of
AIC and R2 than the fixed-widths strips (Table 2 and S.

Table 3). Specifically, the 1:1 width:length ratio strip

showed the best AIC score for a single variable (Forest :
-722.4) and R2 value (Forest : 23.7%, S. Table 3),

whereas the 1:3 width:length ratio strip showed the highest

averaged values (AIC = -694.78, R2 = 10%, Table 2).
Among the 14 landscape-based models, three of them were

consistently identified by the different widths strips meth-

ods as most important (Forest, Urban and to a lesser extent
Orchard), accounting for more than 99% of the accumu-

lated Akaike weight (see for example Table 3). Added as

explanatory variables, these landscape variables could
individually explain up to 23.7, 20.5 and 20.3% of the FST

variation, respectively (S. Table 3). All other models,

including the most parsimonious one that included distance
alone (d), performed much worse (AIC and R2 in Table 3

and S. Table 3). Interestingly, the sign of the regression

between the landscape variables and the pairwise FST was
consistent among the different models of our method

(Table 3 and S. Table 3). More importantly, the results

confirmed the expected impacts of the land-uses. For
instance, Orchard and Urban displayed positive relation-

ships with population differentiation, whereas Forest

showed a negative correlation with pairwise FST.

Discussion

Genetic structure

In panmictic populations, neutral genetic markers (e.g.

microsatellites) are expected to show neither an excess nor

a deficit of heterozygotes (Hardy–Weinberg equilibrium).
However, in the present study three markers (Ta3Caga1,
Ta1Caga4, and Ta1Ca1) showed significant departures from

Hardy–Weinberg expectations (overall FIS = 0.066,
P = 0.001). The observed deficit in heterozygotes might be

due to several reasons including the presence of allelic

dropouts, founder effects, substructure within populations
(Wahlund effect), inbreeding, or null alleles (polymor-

phism in the priming sites of the microsatellite locus). A

recent study including samples of M. alpestris (Broquet
et al. 2007), performed with the same microsatellite

Table 2 Comparison between our two classes (class) of strip models
(fixed vs. ratio)

Class Width Mean AIC SD AIC Mean R2 (%) SD R2 (%)

Fixed 110 m -688.99 11.43 7 6

210 m -689.60 11.43 7 6

510 m -692.28 13.57 8 7

Ratio 1:1 -690.25 13.57 7 7

1:3 -694.78 13.47 10 7

1:5 -693.48 13.90 9 7

1:7 -692.26 13.64 8 7

1:9 -691.26 12.94 8 7

A total of eight different models of width strip were analyzed: three
models of strips were generated with a fixed width of 110, 210 and
510 m, the five others models were characterized by different
width:length ratio (Width). For each variant, the average Akaike
Information Criterion among the 15 predictors (Mean AIC) and its
standard deviation (SD AIC) were calculated, as well as the average
proportion of explained variation (Mean R2) and its standard devia-
tion (SD R2)

Table 3 Results of the 1:3 width:length ratio strip model

Variable Si AIC wAIC R2 (%)

Forest - -716.26 0.495 21

Urban ? -715.28 0.303 20

Orchard ? -714.44 0.199 20

Road1class ? -706.09 0.003 16

Railroad ? -700.19 0.000 13

Road2class ? -699.84 0.000 13

Vineyard ? -695.77 0.000 11

Mineral - -692.03 0.000 9

Hedgerow - -690.98 0.000 8

Ponds - -686.12 0.000 5

Agriculture - -685.83 0.000 5

Marsh - -680.80 0.000 2

d -680.41 0.000 1

Bush ? -679.16 0.000 1

River ? -678.50 0.000 1

Each glm was performed between FST and one landscape variable
(Variable), corrected by the geographical distance (d). Sign Si of the
predictor coefficients, Akaike Information Criterion (AIC), AIC
weights (wAIC) and the percentage of explained variation (R2) are
given for each predictor
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markers employed in our study, showed that buccal

swapping is a very efficient approach allowing reliable
genotyping with negligible allelic dropouts rates. The

presence of substructure was investigated in the present

study (by Bayesian clustering analysis; Pritchard et al.
2000), but could not be detected (results not shown). Fur-

thermore, influence of founder effect, substructure, and

inbreeding should be similar across all loci in terms of
heterozygote deficit, which is not the case (data not

shown). The presence of null alleles can be responsible for
the deficit in heterozygotes found in our dataset, because

such phenomenon is likely to be encountered in popula-

tions with a large effective size (Chapuis and Estoup 2007).
This hypothesis was confirmed by analysis with Micro-

checker 2.2.3 (Van Oosterhout et al. 2004; results not

shown), corroborating with previous studies (Pabijan and
Babik 2006). The impact of microsatellite null alleles on

the estimates of population differentiation has been inves-

tigated using simulations by Chapuis and Estoup (2007).
These authors concluded that FST estimates in the presence

of null alleles were unbiased in the absence of population

substructure and overestimated in cases of significant
population differentiation. Given the low global FST value

across populations (0.049, P = 0.001), we consider that,

although suffering from some limitations, the information
provided by the whole set of loci remains relevant and

allows more powerful investigation of the effects of land-

uses on genetic differentiation.
In contrast to studies in other amphibian species (Funk

et al. 2005; Johansson et al. 2005), we found that Alpine

newt populations across western Switzerland were char-
acterised by high genetic variation, but low genetic dif-

ferentiation (overall FST = 0.049), and no significant

isolation by distance. Mesotriton alpestris inhabiting the
entire landscape, the high density of this species in the

study area can explain to some extent such outcomes.

Interestingly, populations dwelling in urbanized area did
not exhibit higher FST values than the forest belt ones

(Table 1), but showed generally significant differentiations

(S. Table 2), suggesting extensive gene flow over the forest
area and, conversely, a barrier effect of urban area. Gen-

erally, our conclusions corroborated with the study of

Pabijan and Babik (2006), conducted across a much larger
area (up to 160 km between sampling sites). Similarly,

these authors found low population differentiation, using

the same subset of microsatellite markers. Altogether, these
data are congruent with studies suggesting either high

dispersal ability (Jehle and Sinsch 2007), or high connec-

tivity in a metapopulation structure (Gill 1978). In addition,
these results are concordant with the recent suggestion that

the dispersal of amphibians among contiguous populations

is not as limited as formerly considered (Smith and Green
2005).

Evaluation of the strip-based approach

The choice of an appropriate and realistic model for
assessing effects of landscape on genetic diversity needs

ideally to involve species characteristics and thus factors

affecting their movement. One major dilemma of most
landscape studies on amphibian species is the lack of

knowledge about the dispersal behaviour of the studied

organism (e.g. cryptic species), forcing modellers either to
over-simplistic scenarios (i.e. straight-line ‘isolation-by-

distance’ models) or to more complex models based on

a priori assumptions (i.e. least-cost models or stepping-
stone models). In an attempt to overcome these limitations,

we developed a straightforward and flexible procedure

based on strips between populations (Vos et al. 2001;
Arens et al. 2007). As the optimal width:length ratio of the

strips depends on the species dispersal strategy and the

distance at which it perceives its environment, our land-
scape genetics methodology presents the major advantage

to allow for width variation of the strip. By doing so, our

alternative approach enables ecologists to identify the land-
use(s) mainly affecting dispersal in a landscape modified

by anthropogenic activities and without any a priori

assumptions.
Overall, the various variants of our method showed little

discrepancy in the results, indicating the presence of a

strong signal, which our approach was able to extract.
Nevertheless, regarding to the AIC and R2 values, there

was a tendency for ratio strips to provide a higher expla-

nation power than constant width strip models (Table 2). In
particular, the 1:1 ratio strip appeared to be the most par-

simonious strip shape, showing the best AIC and R2 values

(S. Table 3). Based on averaged AIC and R2, the 1:3 ratio
strip variant showed, however, better overall scores

(Table 2), as well as good Akaike weights for three distinct

variables (Table 3). The strong performance of these large
variants supported our assumption that alpine newts need

wider ‘‘dispersal corridors’’ than larger species. Indeed,

amphibians are unlikely to travel along a straight line and
one predicts that the farther the destination is, the farther

from the direct path the individuals will wander. Based on

the presence of pineal gland that attracts amphibians to wet
habitats, their dispersal strategies could then involve large

detours from a simple straight-line path. According to these

biological reasons, we advocated that large strip variants
should be preferred in our specific case.

Picking up the best model is a critical and delicate

process and statistically more robust methods are strongly
required in a near future. However, we considered that

land-uses comparisons were only possible within a given
strip variant, because the selection of the best strip variant

for each landscape variable could lead to hardly inter-

pretable results. Although less parsimonious than the 1:1
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ratio strip variant, we argued that the 1:3 ratio strip model

displayed overall a better shape (e.g. less overlapping).
Therefore, we decided to focus on this particular variant

(Table 3) in the following section.

Landscape variables as correlates to gene flow

Although FST is unreliable as exact estimate of gene flow or
dispersal (Bossart and Prowell 1998), it is effective for

estimating genetic differentiation (Whitlock and McCauley
1999) and therefore our results are best described as the

effect of landscape on this differentiation. However, our

land-uses are expected to impact amphibian genetic struc-
ture by favouring or restricting newts dispersal, which in

turn would affect genetic differentiation (FST) through the

process of gene flow. Then, our results could be interpreted
as the effect of landscape on dispersal (Spear et al. 2005).

As compared to the null model of straight-line distance,

all alternative models that integrated landscape variables
explained a higher proportion of variation of FST. Forest,

Orchard and Urban were clearly identified as land-uses

providing a significantly better explanation of pairwise FST

in almost all models (S. Table 3). It should be noted that

prevalence did not seem to affect the inclusion of landscape

features in the genetic model. Indeed, among the four most
explanatory variables, Forest is one of the more common

land-use, while Orchard is much less prevalent in the study

area. Incidentally, it seems that it is rather the spatial dis-
tribution of these land-uses than their prevalence that

affects the genetic differentiation in the models.

As expected, two anthropogenic land-uses, Orchard and
Urban areas, showed a significant positive relationship with

pairwise FST (Si in Table 3, see also S. Table 3). Although

their respective effects were not reliably quantifiable, the
percentage of pairwise FST variation explained by these

land-uses models suggested that both variables could be a

hindrance to dispersal. Despite their lower Akaike weight,
four others anthropogenic stressors (Railroad, Road1class,

Road2class and Vine) interestingly showed the same neg-

ative response (Table 3 and S. Table 3). Hence, our results
are concordant with recent landscape genetics studies on

Rana arvalis (Vos et al. 2001) or R. temporaria (Hitchings

and Beebee 1996; Johansson et al. 2005), and reinforce the
assumption that habitat fragmentation caused by recent

anthropogenic modifications of the landscape can have

harmful effects on wild amphibian populations in inten-
sively urbanized regions (Pellet et al. 2004). The relatively

high density of settlements in our study area makes it

possible to study the effects of anthropogenic activities on
M. alpestris populations. The mechanisms hindering gene

flow can unfortunately only be guessed, our analysis being

strictly correlational. Roadkill, road pollution, winter salt-
ing, unsuitability of road surfaces, agrochemicals

(pesticides or fertilizers), and other factors probably act in

conjunction and are likely decreasing the quality of
amphibian habitats.

Conversely, models implemented with the variable

Forest confirm our hypothesis of negative relationship with
pairwise FST (Table 3 and S. Table 3). As suggested

above, this relation gives more evidence that forests are

good predictor variables of gene flow and are favourable
surfaces for the dispersal of newts, with reduced amounts

of barriers or disturbances. According to Perret et al.
(2003), colonization is not necessarily restricted to juve-

niles, but adult dispersal represents a strong component of

dispersal among populations. Adults overwinter in forests
and are, as such, more prone to start and spend a migration

journey in such habitats, underlying the importance of

forest habitat for M. alpestris. Although this result is
intuitive to the majority of amphibian studies, it cannot be

excluded that the increase in timber production (following

the recent raise in wood prices) might diminish the
attractiveness of over-exploited forest areas (Waldick et al.

1999). It is also worth noting that elevation difference did

not appeared to drastically increase population differenti-
ation, as suggested in other studies (Funk et al. 2005; Spear

et al. 2005). Indeed, the elevated population BGT (alt:

1,080 m) showed similar differentiation values than lower
population. One interpretation of this observation is that the

Jura mountain ridge in-between can facilitate migration via

some landscape elements. This ridge being mainly com-
posed of forest areas, this result points out the importance

of an accurate management of such element in western

Switzerland, in order to maintain sufficient gene flow
between amphibian populations inhabiting both valleys and

mountain ridges.

Low population differentiation and weak isolation by
distance characterise Alpine newt populations in western

Switzerland. Despite the high populations density and the

good dispersal ability of M. alpestris, favouring substantial
gene flow, our landscape-based analysis suggested that the

alpine newt could be affected by habitat destruction and

landscape fragmentation. The approach described in this
study showed unambiguously that distance alone was far

from sufficient in explaining genetic differentiation at the

regional scale of the studied area. Our knowledge of the
system has been greatly enhanced with the addition of

other factors. Indeed, three predominant land-uses (urban

areas, orchards and forest) explained a relatively high
proportion of population differentiation and presumably act

as dispersal barriers and corridors, respectively. Our anal-

ysis raises important questions relative to landscape ele-
ment management and species conservation. This study

provides some evidence that even widespread and highly

tolerant species, such as M. alpestris, are at risk to suffer
from anthropogenic activities and landscape management
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in the next future. Our results are in line with the view that

habitat fragmentation caused by land conversion to
anthropogenic use has a negative impact on gene flow

between local populations. Thus, the ever-increasing

landscape modification through anthropogenic activities
will likely affect all amphibian species, whereas the most

threatened ones might get extinct. As a result, incorporat-

ing landscape variables in studies of population genetic
structure and developing statistical analyses that are able to

rigorously quantify the impact of the landscape variables
are of major conservation priority in the near future.

Finally, it is worth noting that the landscape genetics

methodology developed herein can be useful in some
particular cases (especially with cryptic species), as an

alternative approach to other methodologies (e.g. least-cost

models).
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