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Abstract: The max-stable Hiisler-Reiss distribution which arises as the limit distribution of maxima of
bivariate Gaussian triangular arrays has been shown to be useful in various extreme value models. For
such triangular arrays, this paper establishes higher-order asymptotic expansions of the joint distribution
of maxima under refined Hiisler-Reiss conditions. In particular, the rate of convergence of normalized
maxima to the Hiisler-Reiss distribution is explicitly calculated.
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1 Introduction

The fact that the componentwise maxima of bivariate Gaussian random vectors possess asymptotic independent
components (see e.g., [7]) has been seen as a drawback in extreme value theory since for modeling asymptotically
dependent risks the classical and tractable Gaussian framework is inadequate. In the seminal paper [16] this draw-
back was removed by considering triangular arrays where the dependence may increase with n. Specifically, let
{(Xnks Ynr), 1 <k <n,n > 1} be a triangular array of independent standard (mean-zero and unit variance) bivariate
Gaussian random vectors with correlations {p,,n > 1} and joint distribution function F,_ . The principal finding of
[16] is

lim sup |F)! (z/bp + bn, y/by +bn) — Ha(z,y)| =0, (1.1)
n— o0 z,yGR

provided that the so-called Hiisler-Reiss condition

1
lim §bi(1 —pp) =A% with A € [0, 0] (1.2)

n—oo
holds with b,, given by
n(l —®(b,)) =1 (1.3)

or nb,, 1p(b,) = 1, where ® denotes the N (0, 1) distribution function and p(x) = ®’(z); see [16] for more details. The
max-stable Hiisler-Reiss distribution H) is given by

Yy—x _ r—y _
H = —® () Y R
)\(l',y) eXp( <>\+ 2\ )6 <>\+ 2\ >6 )7 T,y € K,

with Ho(z,y) = exp(—e~ ™n@)) and H,,(z,y) = A(x)A(y), where A(z) = exp(—e™®),z € R is the Gumbel distribu-
tion.

In fact, the bivariate Hiisler-Reiss distribution appeared in another context in [1], see for recent contribution in this
direction [4, 17, 20, 2]. Related results for more general triangular arrays can be found in [9, 5, 6, 8, 11, 13, 14, 15,



10, 3, 12]; an interesting statistical applications related to the Hiisler-Reiss distribution is presented in [6].

For both applications and various theoretical investigations, it is of interest to know how good the Hiisler-Reiss
distribution approximates the distribution of the bivariate maxima. So, a natural goal of this paper is to investigate
the rate of convergence in (1.1), i.e., the speed of convergence to 0 as n — oo of the following difference

A(E  Hy;w,y) = Fp (un(), un(y)) — Ha(2,y),

where u,,(s) = s/b,, + b, with norming constant b,, given by (1.3). In the literature the only available results concern
the univariate problem, namely in [19] it has been shown that

hmbﬂﬁ@ﬂ@“@)—M@)—q@A@ﬂ—(M@+;§@OA@% (1.4)

n— oo

with b, given by (1.3) and s(z), t(x) defined as
s(z) =27 a? +2zx)e™® and t(x) = -8 ' (z* + 423 + 82% 4 162)e . (1.5)

In order to derive the rate of convergence of A(F oy Has @, y) to 0 we shall introduce a refinement of the Hiisler-Reiss
condition (1.2), namely we shall suppose that
lim B2Z(A—\,) =a€R (1.6)
n—oo
holds with A, = (b2 (1 — p,)/2)'/? and X € (0,00). By assuming further that d,, = b2 (A — \,) — « also converges to 0
with a speed determined again by b2, we are able to refine the second-order approximation significantly. The analysis
of the two extreme cases A = 0 and A = oo are more complicated and more information related to p,, is needed. Two
special cases p, = 1 and p,, € [—1,0] for all large n are explicitly solved.
The rest of the paper is organized as follows. In Section 2 we present the main results . All the proofs are relegated
to Section 3.

2 Main Results

In the following we shall denote throughout by b,, the constants defined in (1.3) and further A shall always be defined
with respect to the Hiisler-Reiss condition (1.2). Next, we derive the second-order expansions of bivariate extremes
under the second-order Hiisler-Reiss condition (1.6).

Theorem 2.1 If (1.6) holds with A, = (b2 (1 — p,)/2)/? and \ € (0,00), then for all x,y € R we have

nh—>nolo biA(F;ln,H)\,fE,y) = FC(OZ,)\,{I?7y)H)\(.’L',y)7 (21)
where
K \z,y) = s@)d (A + ‘”2;) +5(y)® <A + Z;’) + (20— MM a4y +2)e % (A + y%x) ,

where s(z2),z € R is defined by (1.5).

If the second-order Hiisler-Reiss condition is further refined to a third-order one, a finer result than that stated in
(2.1) can be obtained. Indeed, this can be achieved by introducing a restriction on the difference d,, := b2 (A —\,,) — a,
namely

lim b26, =B ER. (2.2)

Utilising further condition (2.2) we derive below a third-order expansion of the joint distribution of extremes. For
simplicity we shall omit the expression of the function 7 below, it is specified in (3.17).



Theorem 2.2 If (2.2) holds with A € (0,00), then for all x,y € R we have

n—00

1
lim bi <b$LA(F;n7H)\a xvy) - H(O(, )‘a xz, y)H)\(il'7y)> = (T(O[,ﬂ7 )\7x,y) + 5/12(0[, )‘71'7y)> H)\(il'7y) (23)

For the two extreme cases A = 0 and A = oo we first consider two special cases satisfied for all large n, namely
pn € [-1,0] and p,, = 1 including components of each Gaussian vector with independence (p, = 0), complete negative
dependence (p, = —1) and complete positive dependence (p,, = 1), respectively.

Theorem 2.3 Let s(z) and t(z) be those defined as in (1.5) and set u,(z) = by, + 2/by, z € R.
(i). For p, € [-1,0],n > 1 and any =,y € R we have

n— oo

i 02 [12 A Hoci9) = (50) 4 5(0) How )] = (1(0) 4 20) + 560) 4 50 ) Hr) ()
(ii). If pn = 1,m > 1, then for any x,y € R we have

1
lim b2 {biA(F{L, Hy; x,y) — s(min(z, y))HO(x,y)} = (t(min(m,y)) + 2(s(min(x7y)))2> Hy(z,y). (2.5)
n—oo

We consider next the other cases of p, € (0,1) such that A, — 0 or A\, — oo. With more information on the
asymptotic behavior of p,, we obtain below upper bounds for the convergence rates of F)' to Ho or He.

Corollary 2.1 For some C > 0 and R(x,y) = C(exp(2|z|) + exp(2|y|)) we have:
(i). Suppose that p, € (0,1),n > 1 and (1.2) holds with A = oo. If further 3((1 — pn)Inn — (2+ p,)Inlnn) — v €
(—o00,00] as n — oo, then for all z,y € R

lim sup b2
n—oo

A, i) | < (50)] + 500 Hosl:) + ¢ o).
(ii). If (1 — pp)(Inn)® — 72 € [0,00) as n — oo, then for all z,y € R

lim sup b2
n—oo

A(an,Ho;x,y)‘ < |s(min(z,y))|Ho(x,y) + TR(x,y).

Remark 2.1 For the Hiisler-Reiss model the rates of convergence of F)! (un(z),un(y)) to its ultimate maz-stable
distribution Hy(xz,vy) is proportional to O(1/lnn) for all cases studied in this paper.

3 Proofs

Recall that we set up(z) = by, + /by, x € R with b, satisfying equation (1.3). Define further below
P(z) =1-0(x), Pn(s) =nd(un(s))

e T —2z
Ik::/ (p()\Jr)ezzkdz’ k=0,---,3.
y 2\

The following formulas obtained by partial integration will be used in the proofs below:

and

e y—x
Iy, = 2Xe " (A 1
o = e (A 1T, (3.1)
— A3~ TH y—x 2 g y—x
I = (2 \x—4X)e <I><)\+ X >+4>\e <p<A+ o >, (3.2)
5 3 3 2\, —z y—x 4 2 2 N\, —x y—x
I, = (8N —8X°x+8X° +2\x%)e <I><)\+2)\>+(—8/\ + 4\ z + 4 %y)e <p(/\—|— N ) (3.3)
I = (24X%2 — 120322 + 24032 + 202 — 1677 — 48)%)e %@ (A +Y 2—;)
+(16A° — 16X*x — 8%y + 320" + 4\22? + 4\22y + AN2y?)e "o </\ + y;;”) . (3.4)



Lemma 3.1 If (X,Y) is a bivariate normal vector with correlation p € (—1,1), then

nP (X > un(2),Y > un(y))

- B(y) - /yoocp (“7’(%(2)> e* {1 + (1 - Z;) éJr <284 - g - 2) H dz + O(b; )

~ Ty - /yoo ® <w> e {1 4 (1 - Z;) bl?j dz + O(b; %),

PROOF OF LEMMA 3.1 First note that

2 3 4
e—w—<1—x+x>’<x+x

for > 0, which implies

h w 2)dz = bt ~ M e i 274 . 6
/un(y)<I>< ﬂ)SD( Ydz = b, Sﬁ(bn)[/y <I>< 2 ) (1 2b2+8b4>d +0(b,°)

for large n. Hence

2b2  8bk
= Blunly)) — by (b /OO@(“‘””"”‘“> (1_%) dz + O(by (b)),

According to the definition of b,, we have

= Blunly) — by 0n) [ B (m)_pu"(z)> e (1 _Z 4) dz + O(b;, " (b))

n~t=3(b,) = b o(by)(1 — b2+ 3,1 + 0(0;%))

for large n thus the claim follows.
For notational simplicity hereafter we set

1
A2\ P 1

— 12 n _ 2

Aln_bn<)‘_)‘n(1_b%> ), A2n_§bn

)\2 _%

Lemma 3.2 Under the conditions of Theorem 2.1, we have

li bQ/OO (A_'_ Z)_q) un(x)—pnun(z) —zd _ ,)\’ U )s
novoe ™ f ( 2\ JI-2 e7idz = (@A 2, y,)

ri(on N z,y) = (201 = 20%2)e " ® ()\ + 2)\x> + (20— 3X\%)e "y ()\ + 4 m) .

1 2\ "2
(%)
bn

/
> =
|

|
~

and

where

PROOF OF LEMMA 3.2 Using the assumption (1.6) we have

1 1
lim Aln = lim b2 ()\ - >\n - 7}\3 + O(b_4)> = — 5)\3,

n—00 n—00 262" n




1 Ap — A 1 1 1
lim Ay, = lim =b? (= ——\n b)) = —Zax?— -
e oo 2 "( YT R )) 2 1™
lim Az, = lim A\, (1+0(b,?)) =\
n—oo n—oo
Hence since .

Un (T) — prtn(2) T—2z A2 A2\ 2 x—2z

Undl) — Polind®) _ (), + 22 4 2% —n A+ =, , :
N T TR B) AT o (37)

then we obtain

2 > \ T—z Un () — prun(z) T —z —
n/y ( + o\ T 2 ol A+ N e *dz
= (A + Agnw)ly — (Agy + Azn)

1, 1 ., 1 3.1 .,
— (a 2)\ 2a)\ x 4)@) Iy <4)\ 2aA >I1

= (23— 2)20)e "D (/\ + 3’2;) + (20— 3X%)e 7y <>\ + y%m) (3.8)

as n — 0o. Using Taylor’s expansion with Lagrange remainder term, we have

! (W) N ¢<A+$2—>\2) +‘p()‘+x;)\z> on (2, y, )

— 5l (6w, 2))03 (2,2, ) (39)

with v, (z, 2, \) := (u"(m)p"""(z) - $Z) and some &, (z, z) between L”T‘Z"(z) and A + Z-2. Moreover, by

1—p2 2 /1—p2 2

arguments similar to (3.8), combining with (3.7) we have
o0
8 [ ok e el 2)e
y
R / (Atn + Aznt — (Azn + Asn)2)% 6n (@, 2) (60, 2))e 2
y

= 0(b,?),

n

which together with (3.8) and (3.9) established the proof. O

Lemma 3.3 Under the conditions of Theorem 2.2, we have

o0
lim b}, bi/ ‘I)(/\+$_Z>—‘I’ M e *dz — ki(a, M\, z, =7(a, B, A 2,y),
m l , ( oX m 1( Y) 1(a, B Y)

where k1 (o, A\, x,y) is defined in Lemma 3.2 and

(BN a,y) = (208 + 8\ — 40z + 2342 — ANtz — 8a3 + dadz)e D <>\ + y;;)
23 3 3 1 1 1 7
2 49 5 933 . y2 9 o9 L oogy39 1l oogy39 o L o (.7
+ (25—1—9&)\ 1 A 8)\ Ty — aX‘T + 1 T g A%y 1 ATz — a\y 107 4)\
7.1 3 9 1 1. . B y—z
Z)\° *7A3 2 )\4 2)\ 7)\5 77}\3 2 - - 2)\ 3 T A A I
R A T A A M A TR A S s S ) GRS )Y
PROOF OF LEMMA 3.3 By assumption (2.2) we have
1 3 3
lim bi (Aln—a—l—)\?’) = B4 -ar?— )\,
n—o0 2 2 8



1 1 1 1 1
. 2 L oy— 1 _ _lpy-2_ 1 o2y-3 1 943
bergobn <A2n+ 2a)\ + 4)\> 25)\ 2a AT+ 4a 16)\
lim b2(As, —A) = lim b2 |\ +)\—3+O(b‘4)—)\ — ot

Hence, using further (3.1), (3.2) and (3.7) we obtain

(vt - B ) (1 25) ]
Y ~ FPn

1 1 1
= bi [Aln + Agpx — (a — §A3 - ia)\_QJ; - 4)@)} Iy

b2

—b2 {A% + As, — (iA — 104)\_2)] I

2
L6 4 2) —= _ y—z
— <2>\ + 20dx — Az 2a>e <1 <I><)\+ N >>
+ (2ﬂ +202A7 + 300 — Zx”) ) <>\ + y%“’) (3.10)

as n — oo. Consequently, using (3.3), (3.4), (3.7) and combining with the limits of A;,,7 = 1,2,3 we have

1 > T —z r—z
~pt 2 A) (A A |
zn/y ”"(x’z’)<+ 2A>‘P<+ 2 >e i

A T
= (A, + Agz)? (2 + 4A> Iy

1 xr
_ |:(A1n + AQnaj)Qa + (Aln + A2n$)(A2n + ASn) ()‘ + 2)\):| I

1 A T
+ [(z‘hn + Agpx)(Agpn + A3n)ﬁ + (Agp + Azn)? (2 + 5Y } I

1
—(Agp + As)?—1I
(2'1'3)4)\3

15 _ _
= (2)\8 + A% = 8aX? 4202 = 8Mz — 4X°z + 200 + 2)\4:102) e "D ()\ + y%m)
3 3 a?y? %2 olay 1 7 7 1 9
_7A3 _ )\2 e 2 _ _ )\2 - 2_7)\7 7)\5 _7)\3 2_7)\5
+< R s C D C H C S K K T
3 9 202 1 y—x

_ 4 2 N5, Y 3,2 2_ == _ = —x J 11
a\ +a)\+2)\y 16)\y + 6\ \ any)e Lp()\—l— N ),n—>oo (3.11)

where v, (x, z, A) is as in the previous lemma. Using Taylor expansion with Lagrange remainder term, we have

o (W) - @ (A n x;;) +o (/\+ x2—)\z) (@, \) [1 _ % (/\+ w2—>\z) on(, y, A)}

5 o(6nlm )€, 2) ~ Ve, ) (312

2

for some &, (x, 2) between M and A 4 %%, Since further
-2

3
o Unp\T) — PpUn 2z r—z —z —
o [ (%p” - ) (E(.9) — Dpleale. 9)edz = O(b;?) (3.13)
y — FPn
the desired result follows by (3.10)-(3.13). O

PROOF OF THEOREM 2.1 Define

hp(z,y,A) = nlnF, (u,(z),un(y)) + P ()\ + x;}\y) e V1P ()\ + yQ_)\QT) e~




In view of (1.4), (3.6) and Lemma 3.2 we have
n
bnha(z,y, ) = by [—n(l = B (un (@), un(y))) = 5 (1= Fp, (un(2), un()))* (1 + o(1))
+<1><)\+2)\ >e +<I>()\+ o >e ]
— 1m2+w e "+ kr(x )\a)—/ooé I P 1—Z2 dz
2 1T, Y, A, Y 2\ 9
as n — oco. By partial integration we have
e —z z
A Fll-—)d=z
[ r0e5 )@ ( : )
= - 1y2—|—y e Yo —Y 201 — x—i—ac—&—lxg e )\—|— —*
2 2/\ 2 2A

+(=2X3 + Az + Ay +2\)e” ¢<A+ )

Further as n — oo

hn(z,y,A) =0 and 3 w < exp(hn(z,y,A)) — 1. (3.14)
i=2 ’
Hence,
02 (. (un(@) un(®)) = Ha(,9)) = 02 (explha(z,y.0) = 1) Ha(2,)
= bihn(x, Y, A) (1 + hy(z,y, ) i W) Hy(z,y)
= ko, A\, z,y)Ha(z,y) -
as n — 0o, where
kla, \z,y) = 27422 + 22)e %® (/\ + 2)\) + 27 y? + 2y)e VD < xﬂy)
+(2a — A% = Xz — Ay — 2\)e %y ()\ + y2—)\x> i
The proof is complete. O

PROOF OF THEOREM 2.2 By arguments similar to that of Lemma 3.2, we have

bi/yoo <<1> (A+ 2;) ~% (W))w (1—222> dz

1 1
= (Aln + Aan) <IO - 212> - (A2n + A3n) (Il - 213) + O<b;2)

A ar Az 1 3 « 1
A A Y S N Y
- (0‘ 2 2 4)(0 22> (4A 2)\2>(1 23)

= 2\ — 4oz — 2)\%z + 8X\02 — 5A12? 4+ 100Nz + A%2® + 8a® — 408 — 16)5)e 7D ()\ + x)

2\
+ <2a F AT H 1205 — 303 — 60 %z + 20322 — ay® + 20 3xy — 200y + %)\SyQ — 8a)\2) e %y ()\ + y2—)\x>
= (e 5,y) (3.15)

as n — o0o. By partial integration we get

0 z 2t 22
Y E
/y ()\—i— 2)\)6 (8 5 )dz




= syt s 16y)e e (A ) C b [T (N T2 ) et 4 458 4 822 1 162)d
ax ) 16x ), )

= 8 My +4y® + 8y + 16y)e VP </\ + w;;’)

1 1 — —
z— 3\ 2+ A%% — 208 —8\6 — §x4 — 2% — 5333 + 22 + 60\t — 22 — 23@) e TP (/\ + y x)

4 6
(4 o
7 13 5 L3 o 3 5 330 1y3 1.5 1 2 3 2 3
+(2)\—1)\z —/\y+§)\y +)\zy73/\x+f/\:z:—ZAy—ZAyx—Z)\yx — Xy — Ayt — Ay — Nz
—A? =407 4 607 — 2 — 20y — A e </\+ 2;)
= w3\ 2,y). (3.16)

Hence, using (1.4), (3.5) and Lemma 3.3 we have

b2 [bihn()\, z,y) — ko, A\, x, y)}

_ bi<bi<—n(1—Fpn(un(x) un () — 201~ Fy, (un (), (4))(1 4 0(1)) + q)(Hx_y)e_y
+@(A+2A$>M>_M“y>
= B[ [Ba(e)+e ] - (2+x> ]
[ (o (e 55) -2 (292250)) i)
[ (o) () o 7)o
+

_ / i </\ i 2;) (8 - 2) dz+ 0(6) — S8hn(1 ~ By, (un (@), un (1)1 + o(1)

— _8_1('1:4 + 4333 + 81‘2 + 16x)€_z + Tl(aaﬁa /\,x,y) + 7'2(04, )\,x,y) - 7-3(/\v~ra y)
= 7(0476,/\’%3/)7 n — 090, (317)

where 74,4 < 3 are given by Lemma 3.3, (3.15) and (3.16), respectively. Hence, (3.14) entails

2 02 (Fp (un (@), un(9) = Ha(@1)) = w0 A2, y) Ha(a, )|

02 [82 (explln (.5, 0) = 1) = s, A, )| ()

1 o i3 A
= lbi [bihn(w7y, N) = s\, y)} + byl (2,9, A) (2 +hn(2,9,0) > "(x,y)ﬂ Hy(z,y)
7!
i=3
1
=+ (HaBm) + 3 ) Hao)
as n — oo establishing the proof. (]

PROOF OF THEOREM 2.3 (i) For the case of p, € [—1,0], we first consider that the bivariate Gaussian are either
complete independent (p, = 0) or complete negative dependent (p, = —1). Both imply A = co. Let h,(x,y) =
nln Fy(un (), un(y)) + e + e ¥ and hy(x,y) = nln F_y(uy(x), un(y)) + e % 4+ e Y. In view of Lemma 2.1 in [19]

Viho(z,y) = B[~p(x) +e ]+ b2[~Bpn(y) +e7Y]

+ 20 ()P (y ) = 2B2n(1 = Fo(un(e), ua(1))2(1 + o(1))



and

bpha(z,y) = bp[~Bu(2) +e 7]+ b5 [~Buly) + 7]
P (un(2) < X < —un(y)) — %bin(l = For(un(2), un(y)))* (1 + o(1))
= s(z) +s(y)

as n — oo, where X is a standard normal variable. By Lemma 2.1 in [19] once again we have

lim 2 [62h (,y) = (s(2) + s(y))| = (@) + t(y)

and
Tim 52 [02h (,9) — (s(2) + s(y))| = t(x) + t(w).
Consequently,
i B [BAGE, Hoir) ~ (s(0) 4 s() Hox2.9)] = (10) 4100) + 5660 + )P ) Hulor)  (18)

holds with p, = —1 and p,, = 0 (for all n large), respectively. Consequently, by using Slepian’s Lemma and (3.18),
the claimed result (2.4) holds for p, € [—1,0].
(i4) For the complete positive dependence case, without loss of generality, assume that = < y. Hence

Fy(un (), un(y)) = ®(un(x)), Ho(z,y) = Az)

(1.4) follows and thus the proof is complete. O
PROOF OF COROLLARY 2.1 (i) Obviously, n(1 — ®(b,,)) = 1 implies
Z b,
by ~ (2In0)Y2, e F o2
n

for large n. For the case of A = oo, according to Berman’s inequality (see e.g., [21]), with some positive constant which
may change from line to line C and all n large we have

2| By (0 (2), (1)) = B (1 (2), 0 ()|

w2 (z) +u(y)
< Cn(lnn)p, exp (_2(1+Pn))

u; () u; (y)
< Cn(lnn) (exp <—") + exp (—"))
(1+pn) (1+pn)
_1l-pn 14— —
< (C(exp(2\m|) + exp(2\y|)>n Fon (Inn) " TFen
1
< C((exp@lal) +exp(2ly])) exp (= 5 (1= pa)lin = (24 py) Inlnn) )
— (Ce‘”(exp(2|x|) + exp(2|y\)), n — 00
since by the assumption lim,, ., %((1 —pn)Inn — (24 p,)Inlnn) = +. By Theorem 2.3 we have

1imsupbiA(Ff? JHosyy) < lim B2A(FY, Hoos ,y) + lim b2
" n— 00 n—oo

n— oo

Ep (un (@), un(y)) = Fg' (un(2), un(y))

AN

(1s(@)] + [sw)]) oo () + Ce™ (exp(2fz) + exp(2ly]))-

(i) The condition lim,, (1 — p,)(Inn)? = 72 € [0,00) implies A = 0 and lim,, o p, = 1. By using Berman’s
inequality in [18] we have

Uz () + uz (y) )

b2 FY (un (), un(y)) — F' (un (), un(y))| < Cn(lnn) (g - arcsin(pn)) exp (— 1



< C(exp(2|m|) + exp(2|y|)) (g — arcsin(pn)> (1nn)%
< C(exp(2la]) +exply))) (1= pu)* (lnn)

— T(C(eXp(Q‘Z‘D‘FeXp(z‘yD)’ n— o0

wlw

since lim,, o0 (1 — pp,) (Inn)3 = 72 which also implies lim,, 5 —arcsin(pn) _ V2. Hence Theorem 2.3 yields

(1—/771)1/2

limsupbiA(F;fl,Ho;x,y) < lim B2PA(F!, Hy;z,y) + lim b2
n—oo

n—oo n—oo

Ep (un (@), un(y)) — FY' (un (), un(y))

[s(min(e,y)) | Ho(z, ) + 7C(exp(2e]) + exp(2ly)

establishing the claim. |
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