
1 Introduction
Numerous authors (for example, see Berger and Snell, 1957; Theil, 1972, page 281;
Bishop et al, 1975, page 287; Andersen, 1990, page 323) have observed various
spatial flows, mobility tables, or opinion-shift data njk to be well described by the
quasi-symmetric model, njk � ajbk gjk , with gjk � gkj .

As a matter of fact (theorem 1 below), quasi-symmetry precisely enables us to
parameterize flows as fng � fr, g, ug, where frg are the trivial size effects, fgg are
the size-independent accessibilities quantifying the distance-deterrence effect, the sym-
metric component of migration, and fug are the size-independent utilities quantifying
the places' attractivities or push ^ pull drive, the antisymmetric component of migration.

The above ingredients are those of gravity modelling, or more precisely constitute its
endogenous aspect (the quasi-symmetry condition). Its exogenous aspect relates (typi-
cally by a multiple regression) the accessibilities fgg to travel costs between places, on
one hand, and the utilities fug to local socioeconomic conditions, on the other hand.

In this paper, I seek to derive or to reveal utility and accessibility parameters from
the observation of flows, in the same sense that the sole observation of purchases for
a given budget level reveals consumers' utility. As such, this approach is thus also of
potential relevance for other nonspatial domains such as the study of mobility tables
or opinion shifts. My study is endogenous in that I limit myself to study the theoreti-
cal properties of the parameters fg, ug so defined. I do not address the predictive,
exogenous part of the program, namely the confrontation of the parameters with
socioeconomic and effective distance data.

More general, non-quasi-symmetric gravity models can indeed be considered, as,
for example, in the work of Sen and Smith (1995), where the symmetry assumption on
the accessibilities fgg is dropped. Although perfectly acceptable in a traditional pre-
dictive approach, and in particular testable (Smith, 1984), such an enlargement of the
class of models under consideration is not feasible in the revealed approach : without
quasi-symmetry, the `revealed' parameterization fr, g, ug of flows does not hold any
more, and the question of how to construct a mathematically rigorous, behaviorally
interpretable parameterization in the general, non-quasi-symmetric case remains open.
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The parameter-identifiability question is not the only issue on which spatial
interaction analysis could benefit substantially from accurately identifying the
quasi-symmetric component in gravity modelling:
1. Typical gravity features such as the transitivity of flows (Smith and Clayton, 1978)
or the absence of aggregation invariance (Schwab and Smith, 1985) are consequences
of the quasi-symmetry condition only, irrespective of the exogenous conditions;
making the former explicit would thus help characterize, classify, and maybe generate
new spatial interaction models (see section 2.3).
2. Splitting gravity calibration into a first phase devoted to the quasi-symmetric esti-
mation of flows followed by the adjustment of utility or mobility parameters relative to
the exogenous variables would permit us to determine if an observed violation of the
gravity model (4) below is a result of the nonobservation of the endogenous condition,
or of the exogenous condition, or both.
3. Identifying the quasi-symmetric component (when present) in various interaction
theories constitutes a good starting point for comparing those theories and assessing
their differences and resemblances. For instance, Wilson's (1974) maximum entropy
approach to gravity modelling automatically insures quasi-symmetry of the predicted
flows (theorem 4 below); the Weidlich ^Haag interregional migration model (Haag and
Weidlich, 1984; Weidlich and Haag, 1988), presented by its contributors as an alternative
to traditional gravity modelling, turns out to contain an implicit quasi-symmetric
assumption (see section 4).
4. Quasi-symmetry amounts to the reversibility of weights wjk (theorem 1 below; see also
Bavaud, 1998), that is, to the phenomenological identity between the Markov process
and its time-inverted associated process. Analogous results also hold for more general
`interactive' Markov processes (Smith and Hsieh, 1997a), where the stability of the
stationary flows is guaranteed again by quasi-symmetry (Smith and Hsieh, 1997b).
Also, quasi-symmetric weights possess real eigenvalues, which considerably simplifies
the study of their time evolution, not addressed here.

In section 2 I focus on interregional migration data in relation to the many
statistical or behavioral aspects of quasi-symmetry (theorem 1), in particular the
(r, g, u)-parameterization of flows, as well as with their relationship with other models
(flows equilibrium, symmetry, and independence: see theorems 2 and 3 below). In
section 3 I address the question of approximating non-quasi-symmetric empirical flows
by quasi-symmetric parameters, and present different estimation methods (Wilson,
1974; Cressie and Read, 1984; Weidlich and Haag, 1988; Fotheringham and O'Kelly,
1989) under a unifying formalism. In section 4 some aspects of the Weidlich ^Haag
model are compared with the present work. I have attempted to alleviate the difficulty
of a first reading by transferring most of the mathematical details in the appendices.

The paper contains existent material, often fairly scattered in the literature, which
I have tried to present in a systematic, self-contained way, as well as new analytic
tools and concepts. For the sake of space, short-time properties of quasi-symmetric
models, in particular their `jump' parameterization, eigenvalue decomposition, and their
connection to the definition of global mobility indices, are deferred to another paper.

2 Quasi-symmetric flow and its parameterization
2.1 Empirical and stationary profiles
Flow data consist of the (m�m) contingency table, njk (T ), counting the number
of units (people, goods, or news) initially (t � 0) in region j and finally in region k
after time t � T; intermediate states for 0 < t < T, if any, are not recorded. The same
set of labels is used for departure and arrival regions: j, k � 1, .::, m. Immigration
and emigration outside the total region are not considered, nor are aging phenomena
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or birth and death events. Total population is not disaggregated into age, gender, or
socioeconomic status subgroups. Finally, exogenous socioeconomic conditions,
although not explicitly used here, are assumed to stay constant. Thus the class of
models presented here describes conserved flows of featureless, identically built indi-
viduals, and pretensions of realism, if any, must necessarily be confined to short
observation times T.

The export (or import) empirical profiles are given by r �j :� nj�=n�� (or
rk :� nj� =n�� ). The weight (export) matrix, wjk � wjk (T ) :� njk (T )=nj� (T ), consists of
the normalized pattern of migration profiles; because wjk 5 0, and wj� � 1, the weight
matrix is, formally, the transition matrix of a Markov chain.(1) Unless the observation
period, T, is extremely short, the chain so defined is generally irreducible and aperi-
odic, and thus ergodic; that is, there exists a unique stationary distribution, pj , satisfy-
ing pj 5 0, p� � 1, and

P
j pj wjk � pk . Similarly, the normalized pattern

of immigration profiles are the import weights, w �kj :� njk=n�k � r �j wjk=rk , with
stationary distribution p �k .

By construction, empirical and stationary distributions satisfyX
j

pj wjk � pk ;
X

j

r �j wjk � rk

9>=>; , (1)X
k

p �kw
�
kj � p �j ,

X
k

rkw
�
kj � r �j .

The second equation above shows the import profile, rk , to be the weighted average of
the emigration profiles, wjk , over all origins, j � 1, .::, m. Similarly, the last equation
above shows the export profile, r �j , to be the mean immigration profile, w �kj , across all
destinations, k � 1, .::, m.(2)

If the fiction of a constant transition matrix rate,

rjk :� limt!1 (wjk ÿ djk )=t � [wjk (T )ÿ djk ]=T ,(3)

is taken seriously (at least for analytic, if not realistic, reasons) then the spatial weight
matrix W(T ) can be extended to arbitrary time t 6� T by W(t ) :� exp (Rt ), where R is
the associated transition matrix rate and the occupation profile fk (t ) at time t can be
computed as

fk �t � �
Xm
j � 1

r �j wjk �t � , (2)

with the results

fk �0� � r �k , fk �T � � rk , fk �1� � pk , fk �ÿ1� � p �k . (3)

2.2 Reversible cinematic: quasi-symmetry and the gravity model
Newton's law of gravitation expresses the attraction force between two bodies of
masses Mj and Mk at mutual distance Djk as Fjk � GMjMkD

ÿ2
jk , where G is the

universal gravitation constant. Newton's law results from the conjunction of two
distinct statements:

(1) The material used here about Markov chains is standard, and can be found, for example, in
Feller (1966), Kemeny and Snell (1967), Collins (1974) or Kijima (1997).
(2) This fact (as well as considerations on rectangular flow matrices, not developed here) has
motivated the notations r � and r as well as the choice of indices.
(3) Here and what follows, the Kronecker delta, djk , denotes the ( j, k)-th component of the unit
matrix.
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1. the gravitational force Fjk is expressed as ajbk gjk , where aj depends solely on body j,
bk depends solely on body k, and gjk � gkj is symmetric;
2. aj is proportional to the body mass Mj , bk is proportional to the body mass Mk , and
gjk is inversely proportional to the square of the distance D 2

jk .
Contemporary spatial interaction modelling, as expressed, for example, in the work

of Fotheringham and O'Kelly (1989) or Sen and Smith (1995), still refers to the model

njk �T � � aj �origin socioeconomic conditions�
� bk �destination socioeconomic conditions�
� gjk �effective originÿ destination distance� (4)

as the gravity model ; the latter results from the conjunction of two distinct statements:
1. the structural or endogenous condition, that is, the flows njk are of the form ajbk gjk ,
with gjk � gkj ;
2. the exogenous conditions:
(a) the local exogenous condition: the `propulsiveness' aj (or `attractivities' bk ) depend
solely on characteristics of region j (or k), such as its density, area, climate, socio-
economic conditions, and so on;
(b) the pair exogenous condition: the `distance-deterrence function', gjk , depends solely
on some effective symmetric distance between regions j and k, such as the travel
length, travel time, travel cost, and so on.
Endogenous condition 1 is known as the quasi-symmetry condition in the statistical
literature (for example, see Bishop et al, 1975; Andersen, 1990):

Definition 1: The flow njk is quasi-symmetric if it can be written as njk � ajbk gjk ,
with gjk � gkj .

Pair exogenous condition 2(b) is the only one to be specifically spatial, and thus
proper to geography. The three components appearing in the reformulation

gravity model � quasi-symmetry� local exogenous condition

� pair exogenous condition

have received unequal attention: with some exceptions [for example,Willekens (1983) or
Nijkamp et al (1985) and references therein], the quasi-symmetry property is hardly
alluded to in geography, whereas exogenous conditions 2(a) and 2(b) have been exten-
sively studied in the preference and choice-modelling literature. This state of things
may partially be explained by theorem 4 presented below: namely, maximum-entropy
gravity modelling involving symmetric effective distances, djk , automatically yields
quasi-symmetric flows, njk , thus making the explicit requirement of the quasi-symmetry
condition unnecessary.

Quasi-symmetric parameterization fa, b, gg of flows fng is unique up to a multi-
plicative vector and a multiplicative constant: ajbk gjk � aj bk cjk , iff aj � aj hj ,
bk � dbk hk , and cjk � gjk=(dhj hk ), for some nonzero vector h and nonzero constant d.

Theorem 1: The following statements are equivalent (see the proof in appendix):
(a) njk is quasi-symmetric, that is, representable as njkajbk gjk for some components aj , bk ,
and gjk , with gjk � gkj ;
(b) njk is representable as njk � aj cjk , with cjk � ckj (or equivalently njk is representable
as njk � cjk bk , with cjk � ckj );
(c) ln njk � m� Ej � Zk � ojk, with E� � Z� � oj� � o�k � 0, and ojk � okj ;
(d) njk nkl nlj � njl nlk nkj, for any three (distinct or not) regions j, k, and l;
(e) wjkwkl wlj � wjl wlk wkj, for any three (distinct or not) regions j, k, and l;
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(f ) njk is representable as njk � n g
jk exp�uk ÿ uj �, with n g

jk :� �njk nkj �1=2 � n g
kj ;

(g) wjk is representable as wjk � w g
jk exp�vk ÿ vj �, with w g

jk :� �wjkwkj �1=2 � w g
kj ;

(h) the Markov chain is time reversible, that is, pj wjk � pk wkj ;
(e0 ) w �kj w

�
jl w

�
lk � w �kl w

�
lj w

�
jk, for any three (distinct or not) regions k, j, and l;

(f 0 ) nkj is representable as nkj � n g
jk exp�ÿuk � uj �, with n g

jk :� �njk nkj �1=2 � n g
kj ;

(g 0 ) w �kj is representable as w �kj � w �gkj exp�v �j ÿ v �k �, with w �gkj :� �w �kj w �jk �1=2 � w �gjk ;
(h 0 ) the dual Markov chain is time reversible, that is, p �kw

�
kj � p �j w

�
jk .

Property (f ), upon which we shall mainly focus in the sequel, is behavioristically
attractive: it permits us to decompose a quasi-symmetric flow, njk , into a symmetric
part, n g

jk � (njk nkj )
1=2 (the geometric mean of the direct and backward transition

counts), and into an antisymmetric part, exp (uk ÿ uj ) � 1= exp (uj ÿ uk ), expressing
differences in relative preferences, uj and uk , for places j and k ; we shall refer to uj
as the utility of region j. Utilities, which are defined up to an additive constant, materi-
alize possible departures from symmetry: uj � c, iff flows are symmetric (see theorem 3
below). If one imposes the normalizationXm

j � 1

uj � 0 ,

one finds

uj �
1

2m

Xm
k � 1

ln
nkj
njk
� 1

2
ln

pj

r �j
ÿ 1

2m

Xm
k � 1

ln
pk

r �k
� 1

2
ln

rj

p �j
ÿ 1

2m

Xm
k � 1

ln
rk

p �k
. (5)

These equations follow from nkj =njk � r �kpj=r
�
j pk � rjp

�
k=rkp

�
j , themselves a con-

sequence of the reversibility of wjk and w �kj : utilities provide a measure of the empirical
profiles ^ stationary profiles imbalance. Conversely, and this constitutes a fact notable
in itself, quasi-symmetry enables stationary profiles to be expressed in closed form,
that is,

pj � nj�
Ym
k � 1

�
nkj
njk

�1
m
�Xm

l � 1

nl�
Ym
k � 1

�
nkl
nlk

�1
m

� r �j exp�2uj �Xm
k � 1

r �k exp�2uk �
, (6)

p �j � n�j
Ym
k � 1

�
njk
nkj

�1
m
�Xm

l � 1

n�l
Ym
k � 1

�
nlk
nkl

�1
m

� rj exp�ÿ2uj �Xm
k � 1

rk exp�ÿ2uk �
. (7)

The symmetric part, n g
jk , defined in condition (f ) contains both size and distance-

deterrence (dependency) effects. To disentangle them, we define the independence
quotient, qjk :� njk =n

th
jk � njk n=nj�n�k � njk=nr

�
j rk . Then

n g
jk �

�
njk
n th
jk

nkj
n th
kj

�1=2

�n th
jk n

th
kj �1=2 � n�qjk qkj �1=2�r �j rj �1=2�r �krk �1=2 , (8)

and therefore, as announced,

njk � n|{z}
absolute size

r g
j r

g
k|�{z�}

relative size

gjk|{z}
distance deterrence

exp�uk ÿ uj �|���������{z���������}
pushÿpull

, (9)
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where

r g
j :� �r �j rj �1=2 �geometric relative size�,

)
(10)

gjk :� �qjk qkj �1=2 � gkj � q g
jk �pairwise accessibility� .

The accessibilities, gjk , provide the size-independent parameterization revealed by the
symmetrized flow: gjk > 1, iff regions j and k exchange more units than expected by
the independence model, that is, iff the relative accessibility between regions j and k is
higher than average.

Conditions (a) or (b) of theorem 1 introduce the concept of quasi-symmetry in most
expositions; condition (c) constitutes its log ^ linear formulation (for example, see
Christensen, 1990). Condition (d) mirrors the so-called Kolmogorov condition (e),
which makes the proportion of units carried in a closed loop independent of the
orientation of the loop. Equivalently, the time-reversibility condition for weights (h)
in the theory of Markov chains (for example, see Feller, 1966) states that direct wjk and
time-reversed, ŵjk :� pkwkj =pj , transition matrices are identical, thus making the
direction of time indiscernible. The equivalence

quasi-symmetry of flows , reversibility of weights

has been noted by an anonymous referee in McCullagh (1982). Conditions (e0 ) to (h0 )
reproduce the same properties for reversed flows, nkj , or import weights, w �kj .

Under time reversal, t! ÿt, parameters transform as u! ÿu [compare, for
example, conditions (f) and (f 0 )], g! g, r � ! r, r! r �, and r g ! r g. Parameters
v and v � appearing in conditions (g) and (g0 ) do not possess comparable simple
transformation laws (see also section 4).

2.3 Other models
Further properties and parameterization fr, g, ug of quasi-symmetric (QS) flows are
best understood in comparison with other models, quasi-symmetric or not. First, flow
equilibrium describes the situation where no net transfer of units occurs during the
observation time T :

Definition 2 (MH): The flow, njk , is in equilibrium if r �j � rj , for all j � 1, .::, m; this
situation is referred to as the marginal homogeneity condition in the statistical liter-
ature (for example, see Bishop et al, 1975; Andersen, 1990).

Marginal homogeneity can hold or not irrespective of quasi-symmetry: that is, the
gravity model can indifferently describe equilibrium as well as nonequilibrium situa-
tions. By contrast, the symmetric, independent, and (for completeness' sake) trivial
models, defined below, constitute particular quasi-symmetric models:

Definition 3 (SYM): The flow, njk , is symmetric if njk � nkj .

Definition 4 (IND): The flow, njk , is independent if njk � ajbk .

Definition 5 (TRI): The flow, njk , is trivial if njk � ajaj .

Figure 1 summarizes the structural relationship between models, in particular
the equivalences QS �MH � SYM (Caussinus, 1966; Bishop et al, 1975) and
SYM� IND � TRI.

The following theorems characterize the models in terms of their empirical and
stationary distributions, on the one hand, and in terms of their utility ^ accessibility
parameters, on the other; parallel characterization in terms of weights properties can
be found in Bavaud (1998).
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Theorem 2:
1. �QS� ) r �j rj � cp �j pj , for some c > 0, 8j � 1, .::, m;
2. �MH� , rj � r �j � pj � p �j , 8j ;
3. �SYM� ) rj � r �j � pj � p �j , 8j ;
4. �IND� ) �rj � pj and r �j � p �j �, 8j .
Moreover, any of the conditions r �j � rj , r

�
j � pj , or rj � p �j implies that the four

distributions r �, r, p, and p � coincide. By contrast, the condition rj � pj implies
r �j � p �j and vice versa, but not necessarily the coincidence of the four distributions,
as illustrated by the independence model. Also, the constant, c, relating empirical to
stationary distributions for the QS model is 1 for the models MH, SYM, and IND.
Finally, models MH (and thus SYM) and IND are aggregation invariant, as well as QS
(Bavaud, 1998).

Theorem 3:
1. �SYM� , uj � constant�� 0�;
2. �IND� , gjk � constant�� 1�.
Recall that parameters fg, ug are defined for quasi-symmetric flows only: they are not
defined for the MH model in general.

2.4 Behavioral interpretation
Decomposition (9) can be behaviorally interpreted as follows: a typical individual
originally in region j chooses an available opportunity located in destination region k
with probability proportional to gjk exp (uk ). The number of available opportunities in
region k is itself proportional to the size, r g

k , of k ; thus

r g
k gjk exp�uk �X

l

r g
l gjl exp�ul �

� njk
nj�
� wjk (11)

is the probability for a migrant initially in region j to move into region k. This simple
decision scheme conforms to the Bradley ^ Terry ^ Luce (BTL) formalism (for example,

General interaction njk

QS
njk � ajbk gjk , gjk � gkj
gjk , uj defined

MH
nj� � n�j
rj � r �j � pj � p �j
gjk , uj not defined

SYM
njk � nkj
rj � r �j � pj � p �j
uj � 0

IND
njk � ajbk

rj � pj , r
�
j � p �j

gjk � 1

TRI
njk � aj ak
rj � r �j � pj � p �j
uj � 0, gjk � 1

Figure 1. Nesting relationship between models for flows, and their associated parameters and
profiles properties. Models are increasingly structured downwards. The bottom models inherit
the properties of linked top models.
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Luce and Suppes, 1965; Ben-Akiva and Lerman, 1985, pages 43 ^ 55), whose restriction
to pairwise choices is expressed as

Pj
kk0 :� prob�a migrant from region j chooses region k over region k 0 �

� wjk

wjk � wjk0
� 1

1ÿ exp�ÿ�Uj
k ÿUj

k0 ��
, (12)

where

Uj
k :� ln r g

k � ln gjk � uk

� total attractivity of destination k for a migrant from region j. (13)

The total attractivity, Uj
k (defined up to an additive constant), additively decomposes

into a size attractivity component, ln r g
k , measuring the opportunities availability, a

proximity attractivity component, ln gjk , betraying the distance deterrence, and an
intrinsic utility, uj , component taking into account all remaining size-independent and
distance-independent effects. By construction, wjk 5 wjk 0 , iff Uj

k 5 Uj
k0 . While one

certainly expects gjj 5 gjk , for all k 6� j, one could well observe wjj < wjk , if region j
is simultaneously sufficiently small, close, and unattractive with regard to region k, so
that, ln r g

j � ln gjj � uj < ln r g
k � ln gjk � uk .

The last formula in equation (12) is one of the many equivalent forms of the
Bradley ^ Terry ^Luce model, namely the binary logit parameterization (for example,
Ben-Akiva and Lerman, 1985, pages 70 ^ 72). Another equivalent condition is the
product rule, Pj

kk0P
j
k0k00P

j
k00k � Pj

kk00P
j
k00k0P

j
k0k (Luce and Suppes, 1965, page 341). Despite

its analogy to conditions (d) or (e) of theorem 1, the product rule is a consequence of
equation (12) solely, irrespective of the possible quasi-symmetric nature of wjk .

3 Poisson-like quasi-symmetric models and their calibration
3.1 Poisson models
Real observed flows, njk , never exactly obey the quasi-symmetry condition,
njk � ajbk gjk ; thus quasi-symmetry qualifies at best theoretical parameters, l, associ-
ated with a probabilistic model defined by a distribution of the form P(njl), where
n � fnjkg stands for the m 2 complete observed flows. Postulating, in addition, inde-
pendence between identically distributed individual migratory decisions, one gets the
complete Poisson model with parameters l � fljkg:

PPoisson �njl� :�
Ym

j; k � 1

exp�ÿljk �
l njk
jk

njk !
. (14)

In view of the well-known Poisson property, E(njk ) � ljk , it is natural to require the
quasi-symmetry property to hold for the ljk , that is, to impose the 1

2
(mÿ 1)(mÿ 2)

constraints, ljk � aj cjk , with cjk � ckj . From now on, the notation ljk will denote the
quasi-symmetric theoretical flows, as opposed to the empirical ones, njk .

Export and import theoretical weights, wjk and w �kj , as well as the cell distribution,
pjk , defined below, occur naturally from equation (14) when constraining (in order) the
origin outflows, the destination inflows, and the total flow. Indeed, if count config-
urations, n � fnjkg, are restricted to a fixed row total, nj� , for each origin j � 1, .::, m,
then, using Bayes rule together with

PPoisson �fnj� gjl� �
Ym
j � 1

1

nj� !

Ym
k � 1

exp�ÿljk �l njk
j� �

Ym
j

1

nj� !
exp�ÿlj� �l nj�

j� (15)
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operates the transformation of the Poisson model (14) into the fixed outflows model:

Pfixed outflows �njl, fnj� g� �
PPoisson �njl�

PPoisson �fnj� gjl�
�
Ym
j � 1

nj� !
Ym
k � 1

w
njk
jk

njk !
, with wjk :� ljk

lj�
.

(16)

Analogously, when count configurations, n, are restricted to a fixed column margin,
n�k , for each destination k � 1, .::, m, the Poisson model (14) then turns into the fixed
inflows model:

Pfixed inflows �njl, fn�kg� �
Ym
k � 1

n�k !
Ym
j � 1

w
�njk
jk

njk !
, with w �kj :� ljk

l�k
. (17)

Next, the Poisson model turns into the multinomial model when the total flow, n�� ,
is fixed:

Pmultinomial �njl, n�� � � n�� !
Ym

j; k � 1

p
njk
jk

njk !
, with pjk :� ljk

l��
. (18)

Finally, the fixed inflows and outflows model has both margins fnj� g and fn�kg
fixed. The resulting model is a noncentral hypergeometric distribution [for example,
see McCullagh and Nelder (1983) or Agresti (1990) and references therein], whose
functional expression is rather awkward. In the simplest case, m � 2, the knowledge
of a single cell (say n11 ) suffices in determining the remaining ones (by n12 � n1� ÿ n11,
n21 � n�1 ÿ n11 , and n22 � n�2 ÿ n1� � n11 ). The resulting distribution is then

Pnoncentral hypergeometric �n11 jl, fnj� g, fn�kg� �

� n1�
n11

�� n2�
n�1 ÿ n11

�
y n11

Xb
m � a

� n1�
m

�� n2�
n�1 ÿm

�
ym

, (19)

where a :� max (0, n1� ÿ n�2 ), and b :� min (n1� , n�1 ). The noncentrality parameter, y,
stands for the odds ratio, y � l11l22=l12 l21 . Equation (19) turns into the ordinary
hypergeometric distribution when y � 1.

3.2 Parameter estimation
We now expose the motivations and computational details of the main approaches
governing the determination of quasi-symmetric theoretical complete flows, ljk (or
their partial descriptions wjk , w

�
kj , or pjk ), from empirical ones, njk . Numerous methods

have been used by many authors for different purposes in various contexts; I seek to
unify them by presenting six procedures, all defining l � fljkg as the best quasi-
symmetric approximations of the observed flows, n � fnjkg, that is, as the solution
of the minimization problem

minimize
l; l quasi symmetric

F�l, n� , (20)

where F(l, n) 5 0 is a nonnegative dissimilarity functional satisfying F(l, n) � 0,
iff l � n, that is, iff the flows, njk , are quasi-symmetric. Associated proofs and mathe-
matical details can be found in the appendix. A summary is given in table 1 (see over).
(A) Maximum-likelihood estimates, lML, of the parameters, l � fljkg, are solutions to
the problem

maximize
l; l quasi symmetric

PPoisson �njl� � PPosson �njlML� , (21)
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and satisfy (see appendix)

lML
j � nj� , lML

jk � lML
kj � njk � nkj . (22)

Instead of working with counts, cell distributions,

pjk �
ljk
l��
�theoretical cell distribution�,

fjk :� njk
n��
�empirical cell distribution� , (23)

can also be used. As a matter of fact (see appendix), the solution, lML
jk , of problem (21)

can be expressed as

lML
jk � n��p

ML
jk , (24)

where pML is the solution of the minimum-divergence problem

minimize
p; p quasi symmetric

K� f jj p� � K� f jj pML� �: KML . (25)

Here and in the rest of this paper, K(gjjh) :� Pjk gjk ln gjk=hjk is the Kullback ^ Leibler
divergence between the cell distributions, g and h (obeying gjk , hjk 5 0, and
g�� � h�� � 1).
(B) The minimum-discrimination-information procedure (Kullback, 1959) consists in
estimating parameters ljk as(4)

lMDI
jk � n��p

MDI
jk , (26)

where pMDI is the solution to the problem

minimize
p; p quasi symmetric

K� pjj f � � K� pMDIjj f � �: KMDI . (27)

They satisfy (see appendix)X
k

lMDI
jk ln

lMDI
jk

njk
� KMDIlMDI

j� ,

9>>>>>=>>>>>;
(28)

lMDI
jk ln

lMDI
jk

njk
� lMDI

kj ln
lMDI
kj

nkj
� KMDI�lMDI

jk � lMDI
kj � .

Table 1. Some properties of the estimates.

Property Estimatea

s > 0 s < 0b s � 0c ML MEc LS LLS

ljj � njj NO NO yes no yes yes
(negative bias) (positive bias)

lj� � nj� , l�k � n�k no no yes yes no no
l�� � n�� yes yes yes yes no no
Zero-flows consistency yes no yes yes yes no

a ML, maximum likelihood; ME, maximum entropy; LS, least squares; LLS, logarithmic least
squares. s-estimates are the generalized power divergence estimates, including ML (s � 0) and
MDI (s � ÿ1).
b Including MDI, maximum discrimination information.
c Under fixed margins and trace.

(4) Some authors call MDI-estimates what we call here ML-estimates (Fotheringham and O'Kelly,
1989, page 60), and MMDI-estimates our MDI-estimates (Bishop et al, 1975, page 346).
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(C) Maximum-entropy estimation (Jaynes, 1957; Wilson, 1974) determines a theoretical
distribution pME solution of

minimize
p; p quasi symmetric; hA aip�hA aif

K� pjj p 0 � � K� pMEjj p 0 � . (29)

Here p 0 stands for a prior distribution representing a first, fairly rough, guess of the
distribution expected by the researcher. Furthermore, and more specifically, the
researcher can in addition compel the theoretical average values of a set of q quantities,
A a

jk , to coincide with the empirical average values observed in the data, namely to fix
the q constraintsX

jk

A a
jk pjk �

X
jk

A a
jk fjk , for a � 1, .::, q . (30)

In the absence of the quasi-symmetric constraint, pME, is well known to be of the form
(for example, see Cover and Thomas, 1991, page 267):

pME
jk � exp

�
m0 �

Xq
a � 1

maA
a
jk

�
p 0
jk , (31)

where m0 , m1 , .::, mq are real numbers chosen so that pME satisfies the constraints,
namelyX

jk

pME
jk � 1, and

X
jk

pME
jk A a

jk �
X
jk

fjk A
a
jk , 8a .

(D) Generalized-power-divergence minimization (Cressie and Read, 1984) leads to an
estimate of parameters as

l s
jk � n��p

s
jk , (32)

where ps is the solution to the problem

minimize
p; p quasi symmetric

Is� f : p� � Is� f : ps� �: Is , (33)

and where Is(g : h) :� [s(s� 1)]ÿ1
P

jk gjk [(gjk =hjk )
s ÿ 1] is the generalized-power-diver-

gence functional, indexed by the real number s. Using limx! 0 (a
x ÿ 1)=x � ln a, for

a > 0, shows that I0(g : h) � K(gjjh), and Iÿ1(g : h) � K(hjjg). Thus the generalized
power divergence generalizes both the ML and the MDI procedures. The parameters
satisfy (see appendix)X

k

njk

�
njk
l s
jk

�s

� Bsl
s
j� , njk

�
njk
lsjk

�s

� nkj

�
nkj
lskj

�s

� Bs �l s
jk � l s

kj � , (34)

where Bs :� s(s� 1)Is � 1.
(E) Least squares (LS) estimation consists in minimizing

minimize
l; l quasi symmetric

X
jk

�ljk ÿ njk �2 �
X
jk

�lLS
jk ÿ njk �2 . (35)

Solutions lLS
jk satisfy (see appendix)

�lLS
jk �2 � �lLS

kj �2 � lLS
jk njk � lLS

kj nkj ,
Xm
l � 1

�lLS
jl �2 �

Xm
l � 1

lLS
jl njl . (36)

This in particular shows the value of the minimum (35) to be
P

jk [n
2
jk ÿ �lLS

jk �2 ] 5 0.
(F) Logarithmic least squares (LLS) estimation yields parameters lLLS solutions of

minimize
l; l quasi symmetric

X
jk

�ln ljk ÿ ln njk �2 �
X
jk

�ln lLLS
jk ÿ ln njk �2 . (37)
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They satisfy (see appendix)

lLLS
jk lLLS

kj � njk nkj ,
Ym
k � 1

lLLS
jk �

Ym
k � 1

njk . (38)

The main virtue of LLS estimation is the existence of a closed-form solution (rather
than an iterative one as in ML, MDI, and LS-estimation), apparently new, namely

lLLS
jk � �njk nkj �1=2

Ym
l � 1

�
njl nlk
nkl nlj

� 1
2m

. (39)

It is straightforward to verify equation (38) as well as condition (d) of the theorem 1,
the latter insuring that parameters defined by equation (39) are quasi-symmetric. Also,
lLLS
jk � njk , iff njk is quasi-symmetric: iterating equation (39) keeps producing the fixed
point, ljk � lLLS

jk , because ljk � (ljklkj )
1=2(ljk=lkj )

1=2, and (ljlllk )=(lklllj ) � ljk=lkj , by
condition (d) of theorem 1.

3.3 Comments
The divergence, K(gjjh), can be interpreted as the measure of the information gained
(or the surprise generated) when the distribution g replaces the prior distribution h.
Assuming g to represent the true hypothesis, K(gjjh) also measures the mean informa-
tion for discrimination in favor of hypothesis (g) against hypothesis (h) (Kullback,
1959). Its main property is K(gjjh) � 0, iff g � h, and K(gjjh) > 0, for g 6� h.

Equation (25) thus shows the maximum-likelihood estimate, pML, to be the prior
quasi-symmetric distribution, making the observed data, f, as little surprising as
possible or, precisely most likely: the likelihood of the data under an (unquestioned)
quasi-symmetry assumption is at stake here. Conversely, questioning the quasi-
symmetric origin of (unquestioned) data, as expressed by equation (27), yields the
minimum-discrimination-information estimation, pMDI: the prior distribution consists
here of the data themselves, which now play a model-like role in reference to the
classical ML procedure. To that extent, MDI estimation constitutes a rather radical
and bold strategy which typically can, as shown later, yield inconsistencies whenever
some categories have not been observed ( fjk � 0), as in the cases of a small sample
or/and small observation period, T.

Maximum-entropy estimation can be considered as a flexible (through the freedom
of choice of the prior p 0 and of the constraints A a

jk ) and safe (as long as p 0
jk > 0

everywhere) extension of MDI estimation; particularly popular is the uniform prior,
p 0
jk � constant. Wilson (1974) showed the different variants of the gravity model to be
essentially recoverable from the maximum-entropy formalism involving constraints
bearing upon
(1) the average trip length [with Ajk :� djk , or, more generally, Ajk :� f(djk )],
(2) the average profile of origins (with A a

jk :� dja , for a � 1, .::, m),
(3) the average profile of destinations (with A a

jk :� dak , for a � 1, .::, m).
Precisely, constraints (1) yield the so-called unconstrained interaction model, constraints
(1) and (2) the production-constrained, constraints (1) and (3) the attraction-constrained
and constraints (1), (2), and (3) the doubly constrained interaction model (Wilson, 1974;
Fotheringham and O'Kelly, 1989). Other constraints of possible relevance in gravity
modelling are
(4) the average proportion of stayers constraint (Ajk :� djk ),
(5) the marginal homogeneity constraint (A a

jk :� dja ÿ dak , for a � 1, .::, m).
In contrast to the above constraints, the quasi-symmetry condition, pjk � aj cjk ,

with cjk � ckj , is not expressible in the form (30). However, and this constitutes a
crucial (although unnoticed) fact for gravity modelling, the quasi-symmetry of the
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maximum-entropy estimate pME is automatically satisfied under any of the constraints
(1) ^ (5) above or a combination of them [provided f(djk ) � f(dkj )]. More generally, the
following, easily proved, result holds:

Theorem 4 (maximum-entropy lemma for quasi-symmetry): if the prior p 0
jk is quasi-

symmetric, so is pME
jk in equation (31), provided the constraints A a

jk satisfy
A a

jk ÿ A a
kj � T a

j ÿ T a
k , for some T a

j , for all a � 1, .::, q.

In my opinion, this lemma explains why maximum-entropy gravity modelling (C)
[proposed in geography by Wilson (1974) and following a well-established practice
(Jaynes, 1957) initiated in statistical mechanics] did not witness special interest in the
identification and study of the quasi-symmetric, endogenous side of gravity in itself.
To be complete, it should be added that maximum-entropy formalism is nowadays
increasingly recognized as an offspring of central-limit theorems for dependent varia-
bles gathered through the theory of large deviations label (for example, Bucklew, 1990)
rather than as a first principle: for instance, a rigorous proof of the procedure (31) can
be found in Van Campenhout and Cover (1981).

As mentioned, both ML and MDI estimates (A) and (B) are particular cases of the
power-divergence estimates (D), l s

jk , in equation (32). Actually, Cressie and Read (1984)
have observed the divergence, Is(g : h), to yield other well-known functionals for
particular values of s, namely (in order) the ordinary w 2, the Freeman ^Tuckey statistic
(or Hellinger dissimilarity) and the Neyman w 2:

I1�g : h� � 1

2

X
jk

�hjk ÿ gjk �2
hjk

, Iÿ1=2�g : h� � 2
X
jk

�h 1=2
jk ÿ g 1=2

jk �2,
9>>>>=>>>>; (40)

Iÿ2�g : h� � 1

2

X
jk

�hjk ÿ gjk �2
gjk

The statistical properties of Is(g : h) (concerning, for example, its robustness or its
asymptotic behavior when the null model is false) generally strongly depend upon the
value of s : the reader is referred to Cressie and Read (1984) for guidelines about
the choice of s. However, all power-divergence functionals, Is(g : h), are `H0-equivalent'
in that, irrespective of the value of s, and provided data g follow the null model
H0 expressed by h, the quantity 2n�� Is(g : h) asymptotically follows a w 2-distribution,
with 1

2
(mÿ 1)(mÿ 2) degrees of freedom when H0 constitutes the quasi-symmetry

hypothesis.
In contrast to the procedures (A), (B), and (D), LS and LLS estimates (E) and (F)

[whose close variants can be found in Weidlich and Haag (1988)] constitute plain
optimal-fit parameters, and do not allow proper model selection. In particular, and
contrary to a common practice, the squared Pearson correlation, r 2, between empirical
and estimated counts, whose value is typically close to one(5) should not be interpreted
as a goodness-of-fit measure aimed at confirming of the model. A large r 2 indicates
only a strong correlation between observed and estimated values, which is to be
expected in virtually any situation but the most desperate.

An important practical issue (particularly for small regions and/or small observa-
tion times) is the question of the zero-flows consistency of the estimate, namely the
behavior of ljk when a count, njk , is zero. The most threatening situation arises when
njk � 0, for some off-diagonal component, while nkj > 0; in this case, generalized
divergence estimates for s < 0 and LLS estimates become inconsistent, in that their
associated functionals (33) and (37) become infinite, and makes the minimization
(5) For example, r 2 � 0:998 for LLS estimates (lLLS

jk ) or see r 2 � 0:98 in Weidlich and Haag (1988,
pages 45 ^ 48) for a comparable problem.
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problem indefinite. A commonly used remedy to the zero-flows problem, although
lacking theoretical justification and control, consists in adding one to every null
empirical flow.

The marginal estimates, lj� and l�k , are generally biased, except for ML estimates,
and for ME estimates when explicitly required. Moreover, the bias pattern associated
to off-diagonal estimates is systematically antisymmetric for all methods, that is,
satisfies ljk > njk , iff lkj < nkj , for all j 6� k. Finally, l s

�� � n�� by construction, but
lLS
�� 5 n�� , and lLLS

�� 5 n�� ; analogous behaviors, explainable in terms of Jensen's or
arithmetic mean ^ geometric mean inequalities, have been noticed in similar contexts
(Fotheringham and O'Kelly, 1989, pages 44, 48). Similarly, convexity properties of the
generalized power divergence make l s

jj 5 njj , for s < 0 (stayers' overestimation),
l s
jj 4 njj , for s > 0 (stayers' underestimation), and l s

jj � njj , for s � 0.

4 The Weidlich ^ Haag model
Weidlich, Haag, and other authors (Haag and Weidlich, 1984; Weidlich and Haag, 1988)
developed a theory of interregional migration inspired from nonequilibrium statistical
mechanics (master equation and synergetics). They present their approach, which
describes migratory transition rates, rjk , rather than migratory transition probabilities,
wjk , as an alternative to traditional gravity modelling, more general and flexible, and
able to deal in particular with nonequilibrium and nonstationary situations. They
also propose a utility ^mobility parameterization of the transition rates, and work
out their statistical estimation by methods very close to (E) and (F) above (LS and
LLS estimates). While acknowledging the interest and merit of the Weidlich ^Haag
approach and the collective work it has inspired in general, I found two points turned
problematic; I hope to clarify them in the short discussion below.
(1) I have some doubts about the proclaimed greater generality of the Weidlich ^Haag
approach with respect to traditional gravity modelling. On one hand, the utility ^
mobility parameterization used by the authors is based upon the equation (Weidlich
and Haag, 1988, page 19)

rjk �t� � vjk �t� exp�vk �t� ÿ vj �t��, with vjk �t� � vkj �t� , (41)

which is nothing but the quasi-symmetry condition for instant transition rates, rjk (t).
Yet, the authors involved in the Weidlich ^Haag approach do not mention the latter
constraint as such, but seem instead to consider equation (41) as a universally
applicable parameterization. If transition rates, rjk (t) are constant (stationarity), the
quasi-symmetry of the latter exactly amounts in the quasi-symmetry of the transition
probabilities, wjk , as in the classical gravity model. On the other hand, the consider-
ation of time-varying transition rates, rjk (t), of course makes the model more flexible,
but exactly the same kind of flexibility can be attained by the gravity model when
considering time-varying pull ^ push and distance-deterrence effects, uj (t), gjk (t).
Finally, we have seen (figure 1 and theorem 2) QS and MH to be independent as
models, which implies that gravity models can indifferently tackle equilibrium as
well as nonequilibrium situations. In conclusion, as far as parameters estimation and
model fitting is concerned, the Weidlich ^Haag approach seems very close, if not
equivalent, to a purely endogenous gravity modelling (that is, taking into account
the quasi-symmetry constraint only). Complete gravity modelling (that is, incorporat-
ing in addition exogenous constraints) is therefore bound, as observed, to possess a
systematically lower goodness of fit than the Weidlich ^Haag model.(6)

(6) See Pumain (1988) for a comparison of the two models on French interregional migration data.
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(2) In the stationary case, rjk (t) � rjk (0), the Weidlich ^Haag contributors correctly
estimate vj in equation (41)(7) as (Weidlich and Haag, 1988, page 38)

vj �
1

2m

Xm
k � 1

ln
nkj nj�
njk nk�

. (42)

The problem is that the `utilities', vj , so defined are strongly size dependent. In fact,
comparison of equations (5) and (42) shows that

vj � uj �
1

2
ln nj� ÿ

1

2m

Xm
k � 1

ln nk� , (43)

where uj represent the size-independent utilities. In the Weidlich ^Haag approach, the
behavioral status of this size effect remained uncertain, ranging from an interpretation
in terms of an `agglomeration ^ saturation' genuine behavioral effect [`̀ ... the population
prefers high density living, but only up to a certain level'' (Weidlich and Haag, 1988,
page 91)] to the status of a purely geometric artifact, leading the authors to compare
`regional preferences', defined as the residuals, vj ÿ anj� ÿ bn 2

j (where a and b are
adjusted by a multiple regression), rather than utilities, vj , themselves. The second
interpretation nowadays seems routinely adopted by workers in the domain,(8) and
produces `regional preferences' numerically close to the size-independent utilities, uj ;
however, one can simply point out that using evaluation (5) directly is conceptually and
computationally much simpler.

5 Conclusion
Modelling spatial flows is a major and durable activity in geography, which has
attracted many workers and inspired many methods. Focusing upon quasi-symmetry,
as I have done in this paper, permits us to compare and partially unify different styles
and traditions, as, for example, expressed in the books of Weidlich and Haag (1988),
Fotheringham and O'Kelly (1989), and Sen and Smith (1995). It also permits a sharp
discrimination between two sources of possible misfit for gravity models, namely the
endogenous misfit (occurring when flows are not quasi-symmetric) and the exogenous
misfit (occurring when utilities are not expressible by local socioeconomic conditions,
or when accessibilities are not expressible by generalized distances between regions).
Also, it helps characterizing and situating the gravity model in relation to other well-
known probabilistic models (Markov chains), statistical models (marginal homogeneity,
symmetry, and independence) and behavioral models (the Bradley ^ Terry ^Luce deci-
sion scheme). Finally, the quasi-symmetry property allows us to parameterize flows
by uniquely defined utilities and accessibilities, whose size invariance makes them
comparable across different aggregation levels. The logical next task, namely the
comparison of flows with differing observation periods, will be covered in another
paper.
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APPENDIX
Proof of theorem 1
(b) ) (a) is trivial. Defining aj :� aj=bj , and cjk :� bjbk gjk shows (a) ) (b).
Conversely, suppose (b) holds and define n g

jk :� (njk nkj )
1=2 and uj by equation (5).

Direct substitution gives n g
jk exp (uk ÿ uj ) � njk , thus showing (b) ) (f). Also

(f) ) (a) by construction. (b) ) (g) and (g) ) (a) is shown analogously. The definition
wjk :� njk=nj� entails the equivalence (d) , (e). To show (f) ) (h), one can check
that pj , as defined in equation (6), is a normalized distribution satisfyingXm

k � 1

pj wjk � pk ,

with wjk :� njk=nj� , and pj wjk � pk wkj . The equivalence (e) , (h) is known as
Kolmogorov's reversibility criterion in the study of reversible Markov chains (for a
proof, see, for example, Kijima, 1997, page 60). Finally, the proof of the log ^ linear
expression (c) for quasi-symmetry is standard (for example, see Bishop et al, 1975,
page 286; Andersen, 1990, page 322). Statements (e 0 ) to (h 0 ) are proved in an analogous
way.

Proof of theorem 2
1. By construction, njk � nr �j wjk . Thus, njk=nkj � r �j pk=r

�
kpj , using the quasi-symmetric

property wjk=wkj � pk=pj. Proceeding similarly with njk � nrkw
�
kj yields alternatively

njk=nkj � rkp
�
j =rjp

�
k . Thus

r �j pk

r �kpj

� rkp
�
j

rjp
�
k

, and therefore
pjp

�
j

rjr
�
j

� pkp
�
k

rkr
�
k

� cst �: c > 0 . (A1)

2. The proof follows from (1) as well as the unicity of the stationary distributions. For
instance, suppose pj � p �j . Then pj can be shown to be the stationary distribution of
the transition matrix, ajk=aj� , where ajk :� Pj 0 r

�
j 0wj 0j wj 0k � akj , and aj� � rj . On the

other hand, ajk being symmetric, aj�=a�� � rj is a stationary distribution of ajk=aj� as
well. Unicity thus implies rj � pj � p �j , yielding in turn p �j � pj .
3. Setting njk � ajbk and applying the definitions of section 2.1 shows njk � nr �j rk

and, therefore, rk � pk . Then w �kj � r �j , which shows p �j � r �j .

Proof of theorem 3
1. Equation (9) makes it clear the push ^ pull term is the only source of asymmetry in
the representation of flows. Thus, njk � nkj , iff uj � cst � 0, 8j.
2. Similarly, the accessibilities, gjk , are the only terms in equation (9) which do not
decompose as a product of the form ajbk . Thus gjk � constant � 1, 8j, k whenever
flows njk are independent.

ML estimation
Writing the quasi-symmetric parameters as ljk � aj cjk yields together with the Poisson
distribution (14) the log-likelihood expression

ln P�njl� �
X
jk

�ÿaj cjk � njk ln aj cjk � ÿ
X
jk

ln�njk !� . (A2)

Maximization of equation (A2) under the constraint cjk � ckj is performed by incor-
porating the Lagrange multiplier,

X
jk

Ejk cjk � 0, where Ejk � ÿEkj . The result is

aj �
nj�
cj�

, cjk �
njk � nkj
aj � ak

, (A3)
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or equivalently

lML
j� � nj� , lML

jk � lML
kj � njk � nkj . (A4)

Thus the solution, lML
jk � a �1�j c �1�jk , can be obtained numerically by iteration:

a �r�j :� nj�

c �r�j�
, c �r�1�jk � njk � nkj

a �r�j � a �r�k

, (A5)

with some initial condition such as a �0�j � 1=m.
The log-likelihood w 2 is

ÿ 2 ln
ln P�njlML �
ln P�njlmax � � 2n��K� f jj pML � , (A6)

where lML (or lmax ) represent the maximum-likelihood parameters with (without) the
quasi-symmetry constraint. The last identity follows from the definition pjk :� ljk=l�� ,
and the properties lmax

jk � njk , and lML
�� � n�� ; it demonstrates the equivalence

between problem (21) [maximizing P(njl) over all quasi-symmetric l] and problem
(28) [minimizing K( f jj p) over all quasi-symmetric p ].

MDI estimation
The MDI estimate is lMDI

jk � n��p
MDI
jk , where pMDI

jk solves problem (27) under the
constraint pMDI

�� � 1. Writing pjk � aj gjk and proceeding as before yieldsX
k

pjk ln
pjk
fjk
� KMDIpj� , pjk ln

pjk
fjk
� pkj ln

pkj
fkj
� KMDI� pjk � pkj � , (A7)

where fjk :� njk=n�� , and KMDI 5 0 is the minimum value of equation (27), satisfying
KMDI � 0, iff fjk is quasi-symmetric, in which case pMDI

jk � fjk is, of course, the
solution.

Equation (50) suggests that we should define qjk :� pjk exp (ÿ KMDI ). By quasi-
symmetry, qjk is of the form qjk � aj cjk , with cjk � ckj . Equation (50) yields

aj �
Y
k

�
fjk
cjk

�cjk
cj�
, cjk �

�
fjk
aj

� aj
aj�ak

�
fkj
ak

� ak
aj�ak

. (A8)

The solution lMDI
jk � n�� exp (K

MDI ) a �1�j c �1�jk can be obtained iteratively as

a �r�1�j �
Y
k

�
fjk

c �r�jk

�c �r�
jk

c �r�
j� , c �r�1�jk �

�
fjk

a �r�j

� a �r�
j

a �r�
j
�a �r�

k

�
fkj

a �r�k

� a �r�
k

a �r�
j
�a �r�

k , (A9)

with KMDI :� ÿ ln
X
jk

a �1�j c �1�jk [because
P

jk q
�1�
jk � exp (ÿ KMDI )], together with an

initial condition such as a �0�j � 1=m.

Maximum-entropy estimation
Minimizing equation (29) under the marginal constraints pME

j� � fj� [constraint (2)] and
pME
�j � f�j [constraint (3)] as well as the trace constraint tr( p

ME ) :�
X

j

pME
jj � tr( f )

[constraint (4)] with uniform prior, p 0
jk , yields a solution of the form (31), repara-

metrizable as pME
jk � (A� Bdjk )ajbk , with a� � b� � 1. As predicted by the

maximum-entropy lemma for quasi-symmetry, pME
jk is automatically quasi-symmetric.

The conditions to be satisfied by the new parameters are aj (A� Bbj ) � fj� ,
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bk (A� Bak ) � f�k , and (A� B)(a, b) � tr( f ). Solutions can be obtained iteratively as

A �r� � 1ÿ tr� f �
1ÿ �a �r�; b �r��, B �r� � 1ÿ A �r�

�a �r�; b �r�� , (A10)

a �r�1�j � fj�

A �r� � B �r�b �r�j

, b �r�1�k � f�k
A �r� � B �r�a �r�k

, (A11)

with initial conditions a �0�j � fj� , and b �0�k � f�k .

Generalized s-divergence estimation
The generalized s-divergence estimate is l s

jk � n��p
s
jk , where ps

jk solves problem (33)
under the constraint ps

�� � 1. Writing pjk � aj cjk and proceeding as before yields
equation (34), or equivalently

as�1
j � 1

Bs cj�

X
k

f s�1jk

c s
jk

, cs�1
jk � 1

Bs �aj � ak �
�
f s�1
jk

a s
j

� f s�1
kj

a s
k

�
. (A12)

The solution l s
jk � n �1��� c �1�jk can be obtained iteratively as

a �r�1�j �
�

1

B �r�c �r�j�

X
k

f s�1
jk

c �r�
s

jk

�1=�s�1�
,

c �r�1�jk �
�

1

B �r��a �r�j � a �r�k �

�
f s�1
jk

a �r�
s

j

� f s�1
kj

a �r�
s

k

��1=�s�1�
, (A13)

where B �r� :� s(s� 1) Is( f : p �r�)� 1, and p �r�jk :� a �r�j c �r�jk .
Note the estimation of the diagonal parameters to be generally not trivial, because

equation (A12) yields ps
jj � fjj B

ÿ1=�s�1�
s : as Bs > 1, for s > 0, or s < ÿ1, one gets

ps
jj < fjj , for s > 0, and ps

jj > fjj , for s < ÿ1. Similarly, ps
jj > fjj , for ÿ1 < s < 0. In the

case s � 0, one recovers the ML result pML
jj � fjj . For s � ÿ1, one gets

pMDI
jj � fjj expK

MDI , which could have been obtained directly from equation (A7).

Least squares estimation
Proceeding as before, minimizing equation (35) under the constraint ljk � aj cjk , with
cjk � ckj , yields

�aLS2

j � aLS2

k �cjk � aLS
j njk � aLS

k nkj , aLS
j

Xm
l � 1

cLS2

jl �
Xm
l � 1

cLS
jl njl , (A14)

which demonstrates equation (36). The solution lLS
jk � a �1�j c �1�jk can be obtained

iteratively as

aLS�r�
j �

Xm
l � 1

cLS�r�
jl njlXm

l � 1

cLS�r�2
jl

, cLS�r�1�
jl � aLS�r�

j njk � aLS�r�
k nkj

aLS�r�2
j � aLS�r�2

k

. (A15)

Logarithmic least squares estimation
Proceeding as before, minimizing equation (37) under the constraint ljk � aj cjk , with
cjk � ckj , yields

ln lLLS
jk � ln lLLS

kj � ln njk � ln nkj ,
Xm
k � 1

ln lLLS
jk �

Xm
k � 1

ln njk , (A16)

which demonstrates equation (38).
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