72DFRWS

DIGITAL FORENSIC RESEARCH CONFERENCE

Extracting Windows Command Line
Details from Physical Memory

By
Richard Stevens and Eoghan Casey

From the proceedings of
The Digital Forensic Research Conference
DFRWS 2010 USA
Portland, OR (Aug 2" - 4t)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics
research. Ever since it organized the first open workshop devoted to digital forensics
in 2001, DFRWS continues to bring academics and practitioners together in an
informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups,
annual conferences and challenges to help drive the direction of research and
development.

http:/dfrws.org

DIGITAL INVESTIGATION 7 (2010) S57—-563

available at www.sciencedirect.com

Digital
ScienceDirect Investigatizn

journal homepage: www.elsevier.com/locate/diin

Extracting Windows command line details from

physical memory

Richard M. Stevens **, Eoghan Casey®

& Information Security Institute, Johns Hopkins University, Baltimore, MD 21218, USA

® emdLabs, Baltimore, MD 21218, USA

ABSTRACT

Current memory forensic tools concentrate mainly on system-related information like
processes and sockets. There is a need for more memory forensic techniques to extract
user-entered data retained in various Microsoft Windows applications such as the
Windows command prompt. The command history is a prime source of evidence in many
intrusions and other computer crimes, revealing important details about an offender’s
activities on the subject system. This paper dissects the data structures of the command
prompt history and gives forensic practitioners a tool for reconstructing the Windows
command history from a Windows XP memory capture. At the same time, this paper
demonstrates a methodology that can be generalized to extract user-entered data on other
versions of Windows.

© 2010 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The Microsoft Windows command prompt (cmd.exe) is often
used by perpetrators of computer crime, and being able to
reconstruct what instructions were executed on the
command line can be important in a digital investigation.
Some computer intruders go so far as to place their own
copy of the command prompt executable on a compromised
system to facilitate their unauthorized activities. The
command history maintained by the Windows command
prompt can contain valuable information such as what
programs were executed with associated arguments, files
and folders that were accessed, and unique information
such as IP addresses, domain names and network shares
(Aculina et al., 2008). If the command history can be
reconstructed during an investigation it can provide signifi-
cant context into how and what occurred on that system
(Carvey, 2008). In some cases the command history might
contain the only retrievable traces of a deleted file or suspect
activity.

* Corresponding author.

The Windows XP command prompt provides command
history functionality through the DOSKEY command. Unlike
UNIX systems that maintain a command history file, the
Windows XP command history is normally only accessible
while the command window is still open. However traces of
these commands can be found in memory and some infor-
mation can be extracted by interpreting the associated data
structures in a memory capture. This paper details how DOS-
KEY stores commands in memory and provides forensic prac-
titioners with a valuable tool that can provide significant
insight and context into what actions were performed on
a target computer. In addition, this paper demonstrates
a methodology that can be generalized to extract user-entered
data from a memory capture from newer versions of Windows.

2. Background

Recent research and development in Windows memory
forensics has provided the forensic practitioner with several

E-mail addresses: rsteve23@jhu.edu (R.M. Stevens), eoghan@disclosedigital.com (E. Casey).
1742-2876/$ — see front matter © 2010 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.diin.2010.05.008

S58 DIGITAL INVESTIGATION 7 (2010) S57-563

valuable tools for investigating a computer crime or intrusion.
Memory forensics offers several advantages over a traditional
live forensics approach because it minimizes the impact on
the target host, the analysis process may be repeated and
verified, and the memory capture may be reanalyzed as new
techniques and approaches are discovered (Walters and
Petroni, 2007). In order to demonstrate the value of memory
forensics as an alternative to traditional incident response
techniques it is necessary to duplicate or exceed the func-
tionality of the standard incident response commands.

Recent work has made significant progress in providing
access tomuch of thisinformation, including running processes
and threads, active network connections, file handles, and open
DLL files (Walters and Petroni, 2007) (Betz, 2005). In addition to
finding active system objects these approaches have proven
successfulin identifying system objects that are associated with
closed or disconnected processes, files and connections
(Schuster, 2006). The ability to identify volatile information that
is no longer accessible through the normal operation of the
system is of substantial value.

There is a need for more memory forensic techniques to
extract user-entered data retained in various Microsoft
Windows applications such as the Windows command
prompt. Deallocated memory pages can remain in memory for
some time and may be a source of forensically useful infor-
mation even after a program has been closed (Solomon et al.,
2007). As a result, memory pages that contain command
history information may be recoverable even after the
Windows command prompt has been closed.

One approach to finding remnants of the command line
history in memory capturesis to search for known commands.
In practice however there may be no known commands that
can be used as a search term and it can be difficult to distin-
guish the command history from the contents of a file or of
a display buffer. This approach also assumes that sequential
commands are in the order they are entered, are not from
several distinct command sessions, and are commands rather
than unrelated command-like strings like a segment of a man
page. Amore useful approach to reconstructing command line
historyis to search the memory capture for the signature of the
data structures used to store the command history.

Dolan-Gavitt took this approach to identify Registry files
stored in memory. This work was able to reconstruct
a significant number of Registry keys that might not otherwise
be recoverable (Dolan-Gavitt, 2008). Dolan-Gavitt’s approach
first identifies a Windows Registry hive by searching memory
for a known header value. Once a Registry hive has been
identified it is possible to identify the HiveList and resolve the
remainder of the Registry hive objects. Kornblum’s work also
shows that the structures surrounding useful objects such as
an encryption key can be used to identify object in memory
(Kornblum, 2009). Both of these approaches demonstrate that
a detailed knowledge of how data are stored in memory by an
application is necessary to facilitate its recovery.

3. Windows command line history

Microsoft operating systems originally provided command
history functionality through the DOSKEY application.

DOSKEY has since been incorporated into the Windows
command prompt as the DOSKEY command and allows the
user to edit commands and access past commands. While
using a Window command prompt the user can access past
commands using the UP and DOWN arrows to cycle back-
wards and forwards through a list of saved commands. The
entire command history can also be displayed by typing the
command DOSKEY/history and the user can press the F7 key
within the command prompt to open the DOSKEY command
history window as shown in Fig. 1.

By default DOSKEY displays at most the last 50 commands
entered in the command prompt. This value can be configured
by the user from a minimum buffer size of one command to
a maximum buffer size of 999 commands. One interesting
feature of the DOSKEY program is that it collapses sequential
commands that are identical into a single DOSKEY history
element. If the same command is entered several times in
a row it will only be displayed once in the command history.
DOSKEY also does not store empty commands.

The command history buffer size can be modified by
accessing the properties of the open command window. This
variable can also be modified for all future command windows
by editing the “HKEY_CURRENT_USER\Console\HistoryBuffer-
Size” Registry key. DOSKEY also allows users to delete the
contents of the command history by using the DOSKEY/reinstall
command, and contains functionality that allows the creation
and execution of DOS command macros (Microsoft, 2007).

The DOSKEY command history is stored entirely in
memory and is not written to the physical disk. The command
history is only accessible when the command prompt is open
and is no longer accessible when the command prompt is
closed. In practice this makes recovering the command
history difficult due to its volatile nature and the low likeli-
hood of finding an open command window during an inves-
tigation (Carvey, 2008). These commands however may be
recoverable from memory for some time after the window has
been closed. In order to extract and reconstruct the DOSKEY
command history, it is necessary to examine how DOSKEY
stores commands in memory and then attempt to identify
a signature or method in which they might be identified from
a memory capture.

4, Data structures

The only available information on how Windows command
line information is stored can be found in functional

‘o C:\WINDOWS' system32'cmd.exe

g Uisio Icons
01,12,2009 84:29 PM UM

1 Filed(s> 1.188 hytes

12 Dirds> 110,263,324,672 hytes free

=10/ x|
[<]

C:\Files>cd private

C:\Files\private>di|s
Uolume in drive : hostname
ipconfig
: netstat

05,13,2009 10:48 AlE]
05/13,2009 18:?61:1? e _account_details.txt
H
2 Dir(s) 118.263,.324.672 hytes free

[C:\Files\private>more account_details.txt
[John Smith acmeBan 12345-001
Password "frog"

(C:\Files\private>

Fig. 1 — DOSKEY F7 History Option.

DIGITAL INVESTIGATION 7 (2010) S57—-563 S59

offset

004F2F38 26 00 65 00 63 00 68 00
gg &.e.c.h.

004F2F40 6F 00 20 00 55 00 6E 00

69 00 71 00 75 00 65 00
0. .U.n.i.q.u.e.

004F2F50 43 00 6F 00 6D 00 6D 00

61 00 6E 00 64 00 31 00
c.o.m.m.a.n.d.1l.

Fig. 2 — A Single Command Element.

explanations of the DOSKEY command on Microsoft TechNet
(Microsoft, 2007). In order to understand more fully the func-
tionality of the DOSKEY application and how it stores the
command history in memory it was necessary to conduct
a number of live experiments. Initial experiments were per-
formed on Windows XP Professional SP3 on VMware Server
1.0.3 configured with 512 MB of RAM. Windows XP was initially
used to facilitate validation using publically available memory
captures as discussed in the Evaluation section of this paper.

Preliminary experiments revealed various remnants of
commands in memory, primarily in Unicode. The majority of
these remnants were from the display buffer of the command
prompt window, or from messages generated when each
command was executed. Each command did have a single
string in memory that was associated with the DOSKEY
command history. Through an analysis of these results the
data structures for the DOSKEY command history element,
the command history buffer and several possible methods for
their identification were found. For example the command
“echo UniqueCommand1” as shown in Fig. 2 is 19 characters
long which requires 38 bytes to store as a Unicode string. The
short integer value stored at Ox4F2F30 that precedes the
command string contains the hexadecimal value of 0x0026
which is equivalent to 38 decimal.

Interestingly, these command elements were not found
within the addressable memory of the command prompt
executable but rather in the memory space of the Windows XP
user run-time environment process (csrss.exe). This process,
which is called the “Client/Server Run-Time Subsystem,”
handles console or character based executables such as the
command prompt executable cmd.exe (Russinovich and
Solomon, 2005).

Multiple experiments confirmed that the command history
element was structured as indicated in Fig. 3.

This data structure is useful for interpreting command
history element that has already been located in memory, but
is not sufficiently unique to be used as a signature. Fortunately
a more distinctive memory structure was found that contains

commandElement {

0x00 short ByteCount;
// Short, Little-Endian

0x02 char Command [ByteCount/2];
// UTF-16

}

Fig. 3 — Command Element Structure.

commandHistory {

0x00 short ElementCount;

0x02 short endOffset;

0x04 short pointerlndex;

0x06 short startOffset;

0x08 short HistoryBufferSize;
0x16 commandHistory* ?

0x20 commandHistory* 7

0x24 commandElementl *;

0x28 commandElement2*;

Oxn commandElementyisioryBuffersize s

Fig. 4 — Command History Structure.

alistof memory addresses, each of which points to acommand
history element. These memory addresses were found to be
stored in sequential order in memory. Through additional
experimentation it was determined that the command line
history list was structured as indicated by Fig. 4.

The most important element in this structure is the Histo-
ryBufferSize. This value has a known default value of 50d or
0x0032 which provides an excellent indicator for a possible
signature. The possible values for this field are between 0 and
999, or 0x0000 and Ox03E7. The ElementCount stores the
number of commands stored in the DOSKEY CommandHistory
structure. This value must be between 0 and the value stored
in the HistoryBufferSize.

The history array structure is fixed and has a maximum
value of HistoryBufferSize. When a user enters more
commands than the buffer can hold it overwrites the earliest
stored entry with the most recent command. DOSKEY uses
startOffset and endOffset to keep track of where the earliest and
most recent commands are stored within the array of com-
mandHistory elements. DOSKEY also maintains an index
variable pointerIndex which stores the index of the comman-
dElement currently selected by the user if they have cycled
within the list using the UP or DOWN keys. In practice, the

DOSKEY Signature {
0x00 short (between 0 and HistoryBufferSize)
0x02 short (between -1 and HistoryBufferSize)
0x04 short (between -1 and HistoryBufferSize)
0x06 short (between 0 and HistoryBufferSize)
0x08 short (default value of 0x32)
Ox16 commandHistory* (Valid Address)
0x20 commandHistory* (Valid Address)

Fig. 5 — DOSKEY Signature.

S60 DIGITAL INVESTIGATION 7 (2010) S57-563

Table 1 — Command history variables.

Table 3 — Command History Variables.

Element End Pointer Start History buffer Element End Pointer Start History buffer
Count offset index offset size Count Offset index offset size
4 3 3 0 50 20 13 13 0 50

pointerIndex is typically 0. The startOffset, endOffset and poin-
terIndex are also within the range of 0 and the value stored by
the HistoryBufferSize.

Of interest are two memory addresses located at offset 0x16
and 0x20 that contain the virtual address of the commandHistory
object. This study was unable to determine the function of
these values. However, research suggests that DOSKEY is
capable of storing multiple history buffers, and these fields
may be part of a double-linked list to additional commandHis-
tory objects. These values may also be related to the DOSKEY
commands macro functionality. In practice however these
values were found to always indicate the address of the con-
taining commandHistory object. The purpose of the values
stored between 0x12 and 0x16 are also unknown. Additional
study is required to determine the purpose of these fields.

Based on these results, the following signature was con-
structed that identifies the DOSKEY command history struc-
ture in memory (Fig. 5).

This signature is distinctive enough to locate any possible com-
mandHistory objects in a memory capture with no prior knowledge
of any possible commands. Once a commandHistory object is
located, each commandElement within the object can be examined.
Performing a brute force signature search across a memory capture
is effective but time-consuming. Manual analysis to convert the
physical to the virtual addresses and rebuild the command struc-
ture was relatively straight-forward but time-consuming. This
process can be greatly aided by a tool that automatically maps out
possible command history structures and their contents.

5. Implementation

The DOSKEY history signature was originally examined
through a Perl script that parsed a memory capture for

Table 2 — Command History Elements.

Virtual Physical Size Command

Address address (bytes)

004E8E88 149cfE88 8 cd\

01283A20 14fbbA20 18 mkdir mem

01283B48 14fbbB48 12 cd mem

004E1FF8 80d6FF8 138 “Z:\emidnight On My Mac
\Downloads\mdd_1.3.exe” -0 sv-
laptop-memo

Add.

Command

012839C0 14fbb9oCO 88 (vxfer.exe X:\Secretplans
\secretplansl.jpg

01283AE8 14fbbAES8 = ocacee exe X:\Secretplans
\secretplans......

01283B48 14fbbB48 12 cd mem

01283BA8 14fbbba8 84 svxfer.exe X:\Secretplans
\secretplans7.jpg

004E1FAO 80d6FF8 2 2

possible DOSKEY signatures and output the results for rela-
tively intensive, manual examination. This process proved to
be useful but did not scale well and was time-consuming. To
improve the process, a plug-in named cmd_history.py was
written for the Volatility framework (Schuster, 2009); this
plug-in both identified possible DOSKEY signatures and
reconstructed the command history array that proved to be
significantly faster and more resilient. The cmdHistoryScanner
module in cmd_history.py was inspired by the cryptoscan
module written by Jesse Kornblum for quickly searching for
known object signatures (Kornblum, 2008).

6. Evaluation

The signature and extraction method detailed in the previous
section were validated using memory dumps made publically
available by the Digital Forensics Research Workshop
(DFRWS) and the National Institute of Standards and Testing
(NIST).

6.1. DFRWS 2008 Rodeo

The Digital Forensics Research Workshop (DFRWS), 2008
Forensics Rodeo created a scenario where a trusted insider
accessed confidential information without authorization. As
part of the scenario a memory capture of the suspect laptop is
provided. The signature-based approach identified a DOSKEY

Table 4 — Command history elements.

Virtual = Physical Size Command
Address address (bytes)

004E1F90 de7fF90 4 dd

004E2CB8 193ecCB8 6 cd\

004E2D18 193ecD18 4 dr

004E2D28 193ecD28 6 ee:

004E2D38 193ecD38 4 e

004E2D48 193ecD48 4 e

004E2D58 193ecD58 4 dr

004E2D68 193ecD68 4 d;

004E2D78 193ecD78 4 d:

004E2D88 193ecD88 4 dr

004E2D98 193ecD98 4 s

004E2Da8 193ecDa8 14 cd Docu

004E2DCO 193ecDCO 68 cd Documents and..................
004E2E58 193ecES8 4 dr

004E2E68 193ecE68 4 d:

O04E2E78 193ecE78 12 cd dd\

004E2E90 193ecE90 34 cd UnicodeRelease
004E2EcO 193ecEcO 4 dr

004E2EDO 193ecEDO 6 dd

004E4100 19588100 132 dd if = \\.\PhysicalMemory of = c:
\xp-2005-07-04-1430.img

conv = noerror

DIGITAL INVESTIGATION 7 (2010) S57-563 S61

Table 5 — Command history variables.

Element End Pointer Start History buffer
Count Offset index offset size
7 6 6 0 50

command history object at offset 0x152F9DB8 within the
memory capture. The command history object indicated that
there are four commands in the array (Table 1). On examina-
tion the array structure appeared to contain ten command
element pointers, several of which resolved to valid command
element objects as shown in Table 2. Several of the recovered
command elements contain partial commands or are missing
the ByteCount variable.

The additional command elements indicate that the slack
space within the command history buffer could be a valuable
source of digital evidence. An examination of these additional
commands led to the identification of several commands
pertinent to the scenario. Further examination of the slack
space at the end of each command element revealed several
indications that earlier command elements were overwritten.

6.2. NIST reference data Set

The DOSKEY history signature was also tested on Windows XP
Memory images from the NIST Computer Forensics Reference
Data Set project. These datasets are provided as reference
data with documented contents that can be used to test tools
and methodologies (NIST). Two memory images are provided
for analysis: xp-laptop-2005-07-04.img and xp-laptop-2005-
06-25.img. Both images were created using a Toshiba laptop
running Windows XP.

xp-laptop-2005-07-04.img: The signature-based approach
identified a DOSKEY command history object at offset
0x19588D98. The command history object indicated that there
are twenty commands in the array (Table 3). Each of the
command elements appeared to be whole and intact (Table 4).

xp-laptop-2005-06-25.img: The signature-based approach
identified a DOSKEY command history object at offset
0x14408DA8. The command history object indicated that
there are seven commands in the array tabulated below (Table
5). The seventh command entry was only partially recovered.
The ByteCount variable however suggests that this command
is the dd command used to take the memory sample (Table 6).
While testing the initial signature it was found that the

Table 6 — Command History Variables.

Virtual Physical Size Command

address address (bytes)

004E2D28 14400D28 4 d:

004E1F78 dcbfF78 12 cd dd

004E2CC8 14400CC8 6 dir

004E2E00 14400E00 34 Cd UnicodeRelease

004E2CB8 14400CB8 6 dir/

004E1F90 dcbfF90 6 dd

004E1FF8 dcbfFF8 88 dd.... (presumably dd memory

image command)

command initiating the memory sample was often only
partially recoverable.

The final command element is an excellent example of the
value of the ByteCount variable. In several instances
throughout this study the ByteCount value remained intact
but was followed by a partial command. It may be possible to
infer the value of the command history element from the
length stored in the ByteCount field and the fragment of the
history item. In this case the ByteCount variable indicates the
command is 44 characters long and started with “dd” — it is
a reasonable assumption that this command relates to the dd
command used to acquire the memory capture.

7. Interesting behaviors

During the research a number of scenarios were examined to
determine how the DOSKEY command stored useful infor-
mation and how that information might be recovered. Several
of the scenarios proved to be quite interesting and signifi-
cantly improved the studies understanding of the DOSKEY
command.

A test scenario was created that tested the effect of the
DOSKEY/reinstall command. This command “installs a new
copy of doskey” and effectively clears the current DOSKEY
command history buffer (Hill, 1998). The test environments
utilized a number of known commands, executed the DOS-
KEY/reinstall command and then examined the resulting
memory capture. In this case the signature failed to identity
a valid DOSKEY command history object within memory.

A manual search for commands within the test command
group failed to identify any intact command history elements
for any of the search terms. A test virtual machine was built to
examine this case. It was determined that when the reinstall
command was performed, the DOSKEY command history
values below are reinitialized to Fig. 6.

This places the endOffset and pointerIndex values outside of
the values specified within the initial search parameters.
Unfortunately this command also appears to reinitialize the
pointers within the commandHistory array and the command
history elements within the array.

In subsequent tests a semi-intact command history and
command history elements were successfully identified after
thereinstall command was performed. In these cases it appears
that portions of memory were reallocated so that orphaned
fragments of the original objects were left intact. On examina-
tion these values appear to be the default values created when

commandHistory {

0x00 short ElementCount = 0x0000;

0x02 short endOffset = OxFFFF;

0x04 short pointerlndex = OxFFFF;

0x06 short startOffset = 0x0000;

0x08 short HistoryBufferSize;
(Default 0x32)

Fig. 6 — Default Command History Signature.

S62 DIGITAL INVESTIGATION 7 (2010) S57-563

anew command window is opened, so the presence of a “blank”
DOSKEY command history buffer is not necessarily indicative of
the reinstall command being performed.

It was also noted that when multiple command prompts
were opened, an independent DOSKEY command history
buffer object was created for each command prompt. This was
verified in a test scenario by opening two command prompts,
entering unique commands into each command prompt,
taking a memory capture and analyzing the resulting memory
dump. The signature correctly identified two command buffer
history structures which contained the command history of
each command prompt respectively. In cases where the
contents of multiple command prompt sessions can be found
in memory, an analysis of the buffer would allow the
commands for each session to be identified and separated.

Several test environments were also created to test the
recovery of DOSKEY command history buffer structures after
a command window had been closed. This scenario involved
opening two command prompts and entering unique
commands into each command prompt. A baseline memory
capture was then taken. One of the two command prompts
was then closed, followed by a second memory capture
shortly afterwards. This allowed for the comparison of allo-
cated memory both before and after the command prompt
had been closed and tested the recovery of a command history
buffer in an ideal situation. In the initial tests of this scenario
the entirety of the command history buffer was successfully
recovered along with the majority of the associated command
elements. In several cases the signature search was unable to
find a valid command history structure because the structure
had partially overwritten in memory. In these cases a manual
analysis revealed partial fragments of the original DOSKEY
history structures but was unable to recover the entire
command history.

8. Conclusions

Data structures such as those used by the DOSKEY command
provide an excellent example of how memory forensics can
provide forensic practitioners with valuable insight into what
occurred on a compromised or suspect system.

The presence of a preceding short value equal to the length
of the following string in bytes could indicate that the stringis
a DOSKEY command. While this signature is useful in veri-
fying that a suspect DOS command is a command history
element it is not sufficiently distinct to be easily identified in
a memory capture. It might be possible to combine this
signature with a frequency analysis of DOS commands (such
as looking for a greater than normal incidence of the “:” and “\”
characters) but it would be difficult to distinguish commands
from surrounding Unicode values.

The DOSKEY command stores the command history in
a relatively simple data structure that exhibits sufficiently
distinct characteristics to be readily identified within
a memory capture. This study has shown that using this data
structure, it is possible to recover the command history from
a memory capture using this signature. The results of this
study also demonstrated that the DOSKEY command buffer
can contain slack space that often contains commands from

earlier command windows or after the DOSKEY history has
been cleared using the DOSKEY/reinstall command.

Both the commandHistory and commandElement objects
contain metadata that could prove to be of forensic value,
even when it is not possible to recover the entire command
history structure. Metadata within these data structures could
allow the forensic examiner to determine the number of
commands typed, determine the presence of missing
commands, determine the order in which commands were
entered and in some cases suggest the contents of a partially
recovered command.

The top—down approach of first identifying the command
history buffer object proved to be highly effective when the
command history structure was intact in memory. In practice
however this structure may be partially overwritten when the
command window is closed. Future approaches based on the
signature of individual element should incorporate a level of
tolerance to identify partial structures where one or more
fields have been overwritten. It is still possible to use a bot-
tom—up approach in these cases if an examiner is able to
successfully identify a command element object.

The success of the DOSKEY signature is based on the
assumption that the examiner can determine the history
buffer size. In most cases this will be the default value and in
many cases the actual value can be determined by examining
the systems registry. Reducing the dependence on the history
buffer size might prove to be useful but could lead to a higher
incidence of false positives. Identifying the purpose of the
memory addresses stored at offsets 0x16 and 0x20 may also
further refine the effectiveness of this signature.

Future work in this area should find substantial value in
examining similar data structures in other operating systems,
and in particular Windows Vista, Windows 7 and the Power-
Shell command prompt replacement. As this work expands it
may be possible to implement a tool capable of carving a wide
variety of such objects from memory. The process of
extracting user-entered data from memory captures would be
aided by the development of a unified signature database
containing details about various data structures in memory.

REFERENCES

Aqulina JM, Casey E, Malin CH. Malware forensics: investigating
and analyzing Malicious Code. Burlington, MA, USA: Syngress
Publishing; 2008. pp 60.

Betz C. DFRWS 2005 Challenge Report, Digital Forensic Research
Workshop 2005 Memory Analysis Challenge; 2005.

Carvey H. Windows forensics analysis: incident response and
Cybercrime investigation Secrets. Burlington, MA, USA:
Syngress Publishing; 2008. pp. 39.

Digital Forensics Research Workshop. 2008 forensics Rodeo.
accessed from, http://dfrws.org/2008/rodeo.shtml; 2008.

Dolan-Gavitt B. Forensic analysis of the windows registry in
memory. Digital Investigation 2008;5(Suppl. 1). The
Proceedings of the Eighth Annual DFRWS Conference.

Hill T. The windows NT command Shell, windows NT Shell
Scripting. accessed from. MacMillan Technical Publishing,
http://technet.microsoft.com/en-us/library/cc750982.
aspx#XSLTsection126121120120; 1998.

Kornblum]. CryptoScanner TrueCrypt Volatility plugin. accessed from,
http://jessekornblum.com/tools/volatility/cryptoscan.py; 2008.

DIGITAL INVESTIGATION 7 (2010) S57-S63 S63

Kornblum J. Practical Methods for Dealing with Full Disk
Encryption, Presented at Department of Defense Cyber Crime
Conference; 2009.

NIST (n.d.). Computer forensic reference data Sets, memory
images. accessed from, http://www.cfreds.nist.gov/mem/
Basic_Memory_Images.html.

Russinovich MR, Solomon DA. Microsoft windows Internals,
Microsoft windows Server 2003, windows XP, and windows
2000. 4th ed. Redmond, WA, USA: Microsoft Press; 2005.
pp 53.

Schuster A. Searching for processes and threads in Microsoft
windows memory dumps. In: Proceedings of the 2006 digital
forensics research Workshop (DFRWS); 2006.

Schuster A. Windows Memory Forensics with Volatility (course
slides), presented at FIRST 2009. accessed, http://computer.
forensikblog.de/files/talks/FIRST2009-Windows_Memory_
Forensics_with_Volatility.zip; 2009.

Solomon J, Heubner E, Bem D, Szeynska M. User data persistence
in physical memory. Digital Investigation June 2007;4(2).

Walters A, Petroni Jr NL. Volatools, integrating volatile memory
forensics into the digital investigation process. Black Hat DC;
2007.

Eoghan Casey is an Incident Response and Digital Forensic
Analyst, responding to security breaches and analyzing digital
evidence in a wide range of investigations, including network
intrusions with international scope. He has extensive experience
using digital forensics in response to security breaches to deter-
mine the origin, nature and extent of computer intrusions, and has
utilized forensic and security techniques to secure compromised
networks. He teaches at the Johns Hopkins University Information
Security Institute and is the author of the widely used text book
Digital Evidence and Computer Crime now in its second edition, is
editor of the Handbook of Computer Crime Investigation. He is also
the editor-in-chief of Elsevier’s Digital Investigation journal.

Richard Stevens is a Senior Systems Security Analyst for T. Rowe
Price, where he is responsible for digital forensics, incident
response and malware analysis. Richard holds a Bachelor of
Computing (Honours) from the University of Tasmania, a Post-
graduate Diploma in Information Security & Intelligence from
Edith Cowan University and a Master of Science in Security
Informatics from Johns Hopkins University. Richard’s research is
primarily focused on how memory forensics and malware anal-
ysis can be applied within the enterprise.

	Extracting Windows command line details from physical memory
	Introduction
	Background
	Windows command line history
	Data structures
	Implementation
	Evaluation
	DFRWS 2008 Rodeo
	NIST reference data Set

	Interesting behaviors
	Conclusions
	References

