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S U M M A R Y
A popular idea is that accretion of sediment at a subduction zone commonly leads to the
formation of a subduction channel, which is envisioned as a narrow zone located above a
subducting plate and filled with vigorously circulating accreted sediment and exotic blocks.
The circulation can be viewed as a forced convection, with downward flow in the lower part
of the channel due to entrainment by the subducting plate, and a ‘backflow’ in the upper part
of the channel. The backflow is often cited as an explanation for the exhumation of high-
pressure/low-temperature metamorphic rocks from depths of 30 to 50 km. Previous analyses
of this problem have mainly focused on the restricted case where the walls bounding the flow
are artificially held fixed and rigid. A key question is if this configuration can be sustained
on a geologically relevant timescale. We address this question using a coupled pair of corner
flows. The pro-corner accounts for accretion and deformation directly above the subducting
plate, and the retro-corner corresponds to a deformable region in the overlying plate. The
two corners share a medial boundary, which is fully coupled but is otherwise free to rotate
and deform. Our results indicate that the maintenance of a stable circulating flow in a narrow
pro-corner (<15◦) requires an unusually large viscosity ratio, μretro/μpro > 103. For lower
viscosity ratios, the medial boundary would rotate rearwards, converting the initially narrow
pro-corner into an obtuse geometry. For a stable narrow corner, we show that the backflow
within the corner is caused by downward convergence of the incoming flow and an associated
downward increase in dynamic pressure, which reaches a maximum at the corner point. The
total pressure is thus expected to be much greater than predicted using a lithostatic gradient,
which means that estimates of depth from metamorphic pressure would have to be adjusted
accordingly. In addition, we show that the velocity fields associated with a forced corner flow
and a buoyancy-assisted channel flow are nearly identical. As such, structural geology studies
are not sufficient to distinguish between these two processes.

Key words: Numerical approximations and analysis; Numerical modelling; Continental mar-
gins: convergent; Dynamics of lithosphere and mantle; Subduction zone processes.

1 I N T RO D U C T I O N

1.1 Subduction, mélanges and channel flow

The modern Earth has about 92 000 km of convergent-plate bound-
aries (Bird 2003). About 56 per cent of that length involves sub-
duction of oceanic lithosphere and about 25 per cent of that length
involves subduction of continental lithosphere. Continental sub-
duction was first proposed by Ampferer & Hammer (1911) and
Argand (1916, 1924) for the Alps and the Himalaya. The idea was
greatly expanded during the middle 1900s with the discovery of

Wadati–Benioff zones, indicating large-scale subduction of oceanic
lithosphere. We start with this history because we find it useful
to use the term subduction zone in a generic sense to indicate a
lithosphere-scale boundary where one plate is carried beneath an-
other, regardless of the composition of the subducting plate.

A subduction zone must start with the formation of a sharp fault
boundary. The subducting plate commonly includes a sedimentary
cover, which can have a thickness ranging from 0 to 10 km. If
present, part or all of the sedimentary cover can be carried deep
into the subduction boundary. There has been much research, spec-
ulation, and debate about the deformation that occurs within this
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boundary zone. Some authors favor a view that the deformation
occurs mainly by thrust imbrication, and others argue for a more
mobile and chaotic style of deformation, as represented by the term
mélange (e.g. Ring & Brandon 1999; Krohe 2017). We expand
on this topic because the idea of tectonic mixing has long been
a motivating factor for the idea of a channel flow associated with
subduction.

A mélange is a regional-scale mappable body, characterized by
a chaotic block-and-matrix structure (Cowan 1985). In some cases,
the blocks can be shown to be ‘exotic’, in that they were introduced
into the matrix during the formation of the mélange. The classic ex-
ample is the mudstone-matrix mélanges of the Franciscan Complex,
which locally contain blueschists and eclogites with metamorphic
pressure up to ∼1.5 GPa (Wakabayashi 2015).

There has been a long debate about the origin of this defor-
mational style. Starting in the 1970s, many geologists considered
mélanges to be a distinctive and diagnostic feature of deformation
within an active subduction zone. Many mélanges display a scaly
foliation, which has been taken as evidence that the mixing process
was associated with shearing. High pore-fluid pressures are com-
monly invoked as well to account for the pervasive and fluid-like
mixing observed in most mélanges. It is useful to note that scien-
tific drilling at modern subduction zones has yet to find an actively
forming tectonic mélange (Lundberg & Moore 1986). Perhaps this
discovery will require drilling to much greater depths than is cur-
rently possible.

An alternative interpretation is that the chaotic and highly mixed
structure observed in mélanges was formed by mass wasting in the
surface environment, rather than by tectonic processes at depth. Im-
provements in seafloor imaging over the last several decades have
lead to the recognition that mass wasting is common at subduc-
tion zones, due to the tectonically oversteepened topography above
the subduction thrust (e.g. Claussmann et al. 2021). Mass-wasting
deposits are known to commonly accumulate in trench basins and
thus should be expected to be part of the sedimentary cover that is
carried into the subduction zone. Relevant near-modern examples
of subducted mass-wasting deposits include the Lichi mélange of
Taiwan (Page & Suppe 1981; Chang et al. 2001) and the Argille
Scagliose of the northern Apennines in Italy (Camerlengi & Pini
2009).

We introduce here a modified corner-flow solution, which pro-
vides a generalized framework for assessing the mechanics and evo-
lution of a narrow shear zone filled with a weak material. However,
we make no assumptions about the possibility of chaotic mixing
within the zone.

1.2 Corner flow

Our study is motivated by the original corner flow model of Cloos
(1982, 1984), which was proposed as an explanation for the co-
occurrence of mélange and exotic high-pressure/low-temperature
(HP/LT) blocks in the Franciscan Complex of California. Cloos
envisioned that much of the Franciscan was ‘processed’ by flow
within a narrow angular region, with an opening angle of about 15◦,
which tapers down to a corner point located at a depth of about
40 km (Fig. 1a). In his original work, Cloos (1982) coined the term
‘flow mélange’ to emphasize the mixing that might occur within a
narrow corner flow. In that original model, the upper boundary of
the proposed corner region is held fixed, and the lower boundary is
assigned a downward velocity oriented parallel to the boundary and
equal to the velocity of the subducting plate.

Our focus here is to investigate the mechanical conditions and the
long-term stability of flow in corner regions. The corner flow prob-
lem is one of the few cases in fluid dynamics where the flow field
can be fully specified in analytical form, in terms of velocity, stress,
and pressure. Fig. 1 illustrates tectonic settings that are amenable
to analysis using the corner flow solution. Many applications have
emphasized the velocity field but we show the significance of the
pressure and stress field as well. Given Cloos’ boundary condi-
tions (1982; see also Fig. 1a), the material in the lower part of
the corner is entrained downward with the subducting plate, but
the convergence of flow within the narrow corner causes the flow
to reverse and ascend within the upper part of the corner. Cloos
(1982, 1984) argued that this backflow was responsible for carry-
ing HP/LT metamorphic blocks of the Franciscan Complex back
to the surface. As a result, Cloos (1982, 1984) viewed Franciscan
mélanges to be diagnostic of the mixing associated with corner
flow.

England & Holland (1979) had already proposed a similar model
for the exhumation of HP/LT metamorphic rocks in the Austrian
Alps. Their model involved a channel parallel to the subducting
plate and extending to depths of ∼50 km, where the Austrian eclog-
ites were thought to have originated. The low-density materials
inside the channel are entrained downward with the subducting
plate, which results in backflow within the upper part of the channel
caused by positive buoyancy relative to the surrounding crust and
mantle. In contrast, the backflow associated with the classic corner
flow model is entirely driven by boundary velocities and buoyancy
effects are notably ignored.

Shreve & Cloos (1986) and Cloos & Shreve (1988a,b) modified
the original corner flow idea to account for a more arbitrary chan-
nel/corner geometry, and to include buoyancy forces as well. The
term subduction channel was coined by Cloos & Shreve (1988a,b),
and that term is now widely used in the literature. More recent
studies have considered the effects of inclined and/or deformable
walls (Mancktelow 1995; Raimbourg & Kimura 2008). Our analysis
includes these possibilities.

The concept of a subduction channel was further advanced by
numerical modeling. In particular, Gerya et al. (2002) created a
detailed simulation of a narrow channel with a circulating flow, ex-
tending to depths of ∼50 km and in some cases even 100 km. The
internal geometry and rheologies used in their study were selected
to match a ‘consensus view’ of what a subduction zone might look
like. The two-way flow was once again envisioned as a possible
mechanism for returning HP/LT metamorphic rocks back to the
surface. Their simulations included cases where the flow field de-
veloped local vortices, but this result was not an emergent feature
of the simulation, but instead was imposed by placement of a large
re-entrant into the upper boundary of the channel.

As highlighted by Mancktelow (1995), the subduction-channel
model can be viewed as a corner flow with a very narrow open-
ing angle. At the other extreme, the wedge models of Cowan &
Silling (1978), Willett et al. (1993), Beaumont & Quinlan (1994)
and Jamieson & Beaumont (2013) can be viewed as corner flows
with very large opening angles. Cowan & Silling (1978) demon-
strated this point by showing the similarity of the velocity field
observed in their scaled analogue model of a wedge with a 90◦

corner geometry, and that for a corner flow with the same velocity
boundaries and a 90◦ geometry.

We consider the corner-flow solution as providing a general me-
chanical representation of a wide range of models, from channels,
narrow corners and wide wedges. Our analysis here is based on two-
corner flows that are coupled across a common medial boundary
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(a) (b)

(c) (d)

Figure 1. Schematic geometries that illustrate the essential parts of various corner-flow models (modified after Tovish et al. 1978; Cloos 1982; Spiegelman
& McKenzie 1987; Willett et al. 1993). The dark grey regions depict rigid plates. The dashed arrows indicate flow lines. The scales are approximate and the
sections have no vertical exaggeration.

(Fig. 2). The pro-corner is equivalent to the channel/corner dis-
cussed above. The retro-corner lies rearward of the pro-corner, and
corresponds to what many authors would call the ‘upper plate’. Note
however that the introduction of a retro-corner allows this ‘upper
plate’ region to deform if the loads become large enough. The pro-
and retro-corners have different viscosities, as represented by μ1

and μ2, respectively. Following the notation as shown in Fig. 2, the
corner point is designated by an ‘S’, which highlights the fact that
the boundary conditions are the same as the S-point boundary con-
dition introduced by Willett et al. (1993), and Beaumont & Quinlan
(1994). Following their convention, the retro-boundary is assigned
to the Moho in the overriding plate. This decision accounts for the
fact that the upper-plate mantle that underlies this boundary should
be much stronger (higher viscosity) than the overlying crust. Thus
θ2 is set to 150◦, which implies that the subducting plate dips at
30◦ relative to a horizontal upper-plate Moho. The pro- and retro-
boundaries are held fixed in space, and are assigned uniform veloc-

ities
⇀

V 0 and
⇀

V 2 (Fig. 2). For the analysis here, the retro-boundary is

assigned a zero velocity (
⇀

V 2 =
⇀

0 , i.e. no slip on the boundary), but
the retro-corner is otherwise free to deform internally. The velocities
are all specified relative to a fixed corner (S-point fixed reference
frame). The velocity on the pro-boundary accounts for entrainment
and basal accretion, as represented by the radial and circumferential

components of
⇀

V 0 relative to the pro-boundary. For simplicity, we

focus exclusively on the case of entrainment, which means that
⇀

V 0

is parallel to the pro-boundary and |
⇀

V 0| = −U .
In previous corner-flow models, the parameter U was often as-

sumed to be equal to the velocity of the subducting plate, but this
assumption overlooks the fact that discrete slip on the subduction
thrust accounts for much of the subduction velocity. For the Casca-
dia subduction zone, Pazzaglia & Brandon (2001) showed that the
long-term velocities at the base of the Cascadia wedge in Washing-
ton State are about an order of magnitude smaller than the subduc-
tion velocity. Thus, for a typical subduction velocity of ∼50 mm a−1,
we might expect an entrainment velocity U ≈ 5 mm a−1. Note that

if the pro-boundary were fully decoupled from the subducting plate,
then U = 0 and there would be no flow within the pro-corner.

1.3 Organization of the paper

The paper is organized into three parts. The first part reviews so-
lutions for a single corner (Section 2.1) and shows the derivation
of an analytical solution for coupled corner flows (Section 2.2).
In addition, we describe a numerical method that we use for com-
parison with the analytical approach (Section 2.3). In the second
part (Sections 3.1 and 3.2), we present results from the analytical
two-corner solution to assess the conditions necessary for mainte-
nance of a stable corner geometry. We focus on the backflow, as
this part of the flow field is thought to be important for exhumation
of HP/LT rocks. Our results show that, for narrow corners where
the backflow is strongest, the dynamic pressure within the corner is
typically of the same order as the lithostatic pressure. The third part
uses numerical results (Section 3.3) to understand the rate at which
the pro-corner evolves towards a stable geometry. We finish with
a discussion regarding the implications of our results for structural
and metamorphic studies of subduction zones.

2 M E T H O D S

2.1 Analytical solutions for corner flow in geodynamics

Analytical models provide a way to reduce a problem to a simpler
form and a smaller set of controlling variables (e.g. Fletcher 1977;
Emerman & Turcotte 1983; Medvedev 2002; Schmalholz 2011;
Ribe & Xu 2020). Corner-flow solutions have been widely used in
geodynamics, with applications to orogenic wedges (Figs 1a and b;
Cowan & Silling 1978; Cloos 1982), and for the study of mantle
flow associated with subduction (Fig. 1c; Stevenson & Turner 1977;
Tovish et al. 1978), spreading centers (Fig. 1d; McKenzie 1969;
Spiegelman & McKenzie 1987), and backarc spreading (Ribe 1989).
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Figure 2. Schematic illustration of two coupled corner flows. The pro-corner is equivalent to the ‘subduction corner’ or ‘subduction channel’ considered in
previous models. The retro-corner represents a deformable region within the overriding plate. This configuration allows us to test the long-term stability of the
pro-corner. The pro-and retro-corners are assigned different viscosities μ1 and μ2, respectively, where μ2 > μ1.

In our opinion, Batchelor (1967), Dean & Montagnon (1949),
McKenzie (1969) and Moffatt (1964) provide good introductions to
this topic. These papers generally focus on the simple case where the
material in the corner has a uniform viscosity, and one of the bound-
aries has uniform cirumferential velocity and the other boundary is
stationary. However, the corner-flow problem has been extended to
include more complex boundary conditions (Moffatt 1964; Sprittles
& Shikhmurzaev 2011), more complex configurations (coupled cor-
ner flows: Anderson & Davis 1993; leaky corner: Rieder & Schnei-
der 1983) and nonlinear rheologies (Tovish et al. 1978; Riedler &
Schneider 1983; Henriksen & Hassager 1989; Ribe 2015, 2018).
This last development is important because it has shown that the
kinematics of a corner flow are relatively insensitive to the specifics
of the rheology. In fact, the assumption of constant viscosity is com-
mon invoked in studies of subduction zones, shear zones, wedges,
glaciers, and mantle convection (e.g. McKenzie 1969; Spiegelman
& McKenzie 1987; England & Wilkins 2004; Pollard & Fletcher
2005; Moulas et al. 2014). Based on this background, we too have
decided that constant viscosity is an appropriate approximation for
a first-order analysis of corner flow. Of course, numerical methods
allow the use of more realistic rheologies, and this capability may
be useful for situations where simulations can be directly compared
with observations.

2.2 Analytical solution for the two-corner region

Herein, we develop a two-corner solution for our analysis of cor-
ner flow in subduction zones. Anderson & Davis (1993) provide
a general development of two-corner solutions as relevant to fluid
dynamics.

The stream function ψ provides a method for setting up a general
solution for a slow incompressible viscous flow (i.e. Stokes flow)
in a single corner. The stream function can be written in polar
coordinates as

ψ (r, θ ) = r f (θ ) , (1)

where r is the radial coordinate and θ is the angular coordinate
relative to the corner point. The function f (θ ) is selected so that the
stream function satisfies the biharmonic equation, ∇4ψ (r, θ ) = 0,

which ensures a full solution for velocities and stresses inside the
corner region and extending to r = +∞. For the classic corner-flow

solution with kinematic boudary conditions, the angular function in
eq. (1) has the general form

f (θ ) = A cos (θ ) + B sin (θ ) + Cθ cos (θ ) + Dθ sin (θ ) . (2)

The constants A, B, C, D are determined by setting constant
velocities on each of the two boundaries of the corner, located
at θ0 and θ1. The two velocity components for each of the two
boundaries means that there are four boundary equations, which are
solved to get the four unknown constants A, B, C, D. Velocities and
stress components for the flow field inside the corner are obtained
by differentiation of the stream function (c.f., McKenzie 1969,
p. 15–16). The radial Vr and circumferential Vθ components of
the velocities are given by

Vr = 1

r

∂ψ

∂θ
, Vθ = −∂ψ

∂r
, (3)

where a positive radial velocity indicates motion outward from the
corner, and a positive circumferential velocity indicates a counter-
clockwise motion.

The components of the deviatoric stress tensor τi j in polar coor-
dinates are given by

τrr = 2μk
∂Vr

∂r
, (4a)

τθθ = 2μk

(
1

r

∂Vθ

∂θ
+ Vr

r

)
, (4b)

and

τrθ = μk

(
1

r

∂Vr

∂θ
+ ∂Vθ

∂r
− Vθ

r

)
, (4c)

where μk is the dynamic viscosity and the subscript k is used to
designate between two corners. For the single corner case discussed
here, k = 1.

The radial symmetry of the corner flow indicates that normal
deviatoric stresses, τrr and τθθ , are identically zero, which means
that τrθ is the only non-zero component of the deviatoric stress
tensor (McKenzie 1969, p. 15; Tovish et al. 1978). The total stress
tensor σi j is related to the deviatoric stress tensor τi j by

σ i j = − Pδ i j + τ i j , (5)

which indicates that the total pressure P is equal to the negative
mean stress (δi j is the Kronecker delta). The total pressure P is the

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/227/1/576/6309899 by U

niversité de Lausanne user on 15 July 2021



580 E. Moulas et al.

Figure 3. Convention used the for two-corner flow problem. The corner
regions require specification of uniform velocity components (Vr , Vθ ) in
the radial and circumferential directions for each boundary.

sum of the static pressure Ps, which is defined as the pressure in the
static state (i.e. zero flow), and the dynamic pressure Pd, which is
associated with an active flow. In geodynamics, Ps = ρgz where
ρ is the density, g is the gravitational acceleration, and z is depth
relative to the Earth’s surface. Small corrections to this formula
apply in the case where the material is compressible and where
the pressure at the surface is not exactly zero (e.g. Moulas et al.
2019). Note that the corner-flow solution is dependent on Pd, but is
entirely independent on Ps. The dynamic pressure Pd is determined
by integrating the following stress-equilibrium equation,

− ∂ Pd

∂r
+ 1

r

∂τrθ

∂θ
= 0, (6)

in the radial direction (e.g. Tovish et al. 1978).
Our discussion of results is assisted by normalizing (or ‘non-

dimensionalizing’) field variables relative to characteristic values
for the subduction problem. Velocities are normalized by the en-
trainment velocity at the base of a typical accreting subduction
wedge, which we estimate to be Uc ≈ 5 mm a−1. Note that the
radial velocity component, Vr0 , at the base of the pro-corner be-
comes Vr0/Uc = −1 when converted into a non-dimensional form.
The negative indicates that entrainment draws material downwards
to the corner point. Given the radial geometry of the corner-flow
problem, there is no characteristic length-scale. Thus, we select a
length-scale, Lc = 10 km, that is representative of the region of
interest adjacent to the corner point. A characteristic timescale for
flow in the vicinity of the corner point is given by tc = Lc/Uc =
2 Ma. The characteristic viscosity is set to μc = 1019 Pa s, which
is about 100 time less than the viscosity of the upper mantle
(∼1021 Pa s). All stresses and pressure are normalized by the
characteristic viscous shear stress, which is defined by τc =
μcUc/Lc ≈0.16 MPa. Note that the solution for the velocity field in
a corner flow problem does not require specification of a viscosity.
Viscosity is only needed when calculating stresses and pressure. In
addition, the non-dimensional approach ensures that our stress and
pressures are only sensitive to the relative variation in viscosity, not
the absolute values.

The two-corner problem (Fig. 3) is solved using two coupled
stream functions,

ψk (r, θ ) = r (Ak cos (θ) + Bk sin (θ) + Ckθ cos (θ) + Dkθ cos (θ)) , (7)

where the subscript k = 1,2, representing the pro- and retro-corners,
respectively. The paired stream functions now contain eight un-
known constants, Ak, Bk, Ck, Dk with k accounting for the two
corners. The boundary conditions provide eight equations, which
are used to solve for these constants. Four of these equations are:

Vr (r, θ0) = Vr0 , (8a)

Vθ (r, θ0) = Vθ0 , (8b)

Vr (r, θ2) = Vr2 , (8c)

and

Vθ (r, θ2) = Vθ2 . (8d)

For the remaining four equations, we consider the continuity of
velocity and traction along the medial boundary, θ = θ1 . How-
ever, since τrr = τθθ = 0, the total stress components normal to the
medial boundary are equal to Pd. Therefore, the continuity of ve-
locity and the stress balance at the medial boundary provides the
remaining four equations, and they reduce to

Vr (r, θ1)retro = Vr (r, θ1)pro, (9a)

Vθ (r, θ1)retro = Vθ (r, θ1)pro, (9b)

Pd(r, θ1)retro = Pd(r, θ1)pro, (9c)

and

τrθ (r, θ1)retro = τrθ (r, θ1)pro. (9d)

The medial boundary is marked by a discontinuity in viscos-
ity, and typically this would cause a discontinuity in the Pd field.
However, the derivation above shows that the two-corner problem is
special in that the Pd field is continuous across the medial boundary,
as concluded by eq. (9c).

The polar velocity coordinates can be converted into Cartesian
coordinates using the following transformation:

Vx = Vr cos (θ ) − Vθ sin (θ ) , (10a)

and

Vy = Vr sin (θ ) + Vθ cos (θ ) , (10b)

where x and y are oriented at θ = 0◦ and 90◦, respectively.
The electronic supplement contains a computer-algebra (wxMax-

ima) script that was used to find the analytical solution for the eight
unknown constants, and two MATLAB programs that were used to
calculate and visualize the full analytical solution.

2.3 Numerical calculations

We compare our analytical two-corner solution with numerical so-
lutions produced by the open-source finite-difference code M2Di
(Räss et al. 2017), which solves the incompressible Stokes equations
using finite difference on a staggered grid. M2Di has been exten-
sively benchmarked and tested for problems that involve viscos-
ity discontinuities, folding/necking instabilities, and general geo-
dynamic calculations (Schmid & Podladchikov 2003; Adamuszek
et al. 2016).

One common problem with numerical modeling is the inability of
the mesh to remain conformal with material interfaces, which causes
discretization errors. This problem can be treated by increasing the
grid resolution as shown in Fig. 4(a). In addition, we have added
a semi-Lagrangian, backward-characteristic method (cf. Beuchert
& Podladchikov 2010) to M2Di to ensure better performance with
advection of material. This approach has been tested in cases of
folding in the presence of heterogeneities for large strains (Moulas
& Schmalholz 2020).

The numerical solutions were run with the two-corner problem
set to θ2 = 180◦, which provides an easier geometry for implement-
ing the boundary conditions. Fig. 4 shows benchmark comparisons
of the numerical solutions. For these cases, we used a square domain
and applied boundary velocities determined from the analytical so-
lution. Figs 4(b) and (c) shows that the Pd field calculated by the
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Figure 4. Comparison of analytical and numerical solutions for a pro-corner with opening angle of 30◦ and μ2
μ1

= 103. The remaining parameters are
θ0 = 0, θ2 = 180◦, Vr0 = −1, Vθ0 = 0, Vr2 = 0, Vθ2 = 0. (a) Error for dynamic pressure Pd, and the horizontal Vx and the vertical Vy velocity
components plotted as a function of the uniform grid increment (1/dx). The solid lines indicate linear fits to the actual numerical results (indicated by symbols)
and they show that the results are ∼1 order of magnitude more precise for an order of magnitude greater spatial resolution. The error is the average of the
absolute difference between the analytical and the numerical solutions for the square domain shown in the right panels. See Duretz et al. (2011) and Räss et al.
(2017) for more details about error analysis. Comparison of (b) analytical and (c) numerical solutions show that the Pd fields around the corner are match
closely and are continuous across the medial boundary, which is indicated by the magenta dashed line.

numerical method is very similar to that given by the analytical
solution. Other observations that support the success of the numer-
ical method are that the Pd field is continuous across the medial
boundary, as required by eq. (9c), and varies smoothly around the
corner point, which is a singularity and thus a potential source of
numerical instability.

Later in the paper, we use the numerical method to evaluate
the time evolution of the medial boundary. For those cases, the
numerical domain is rectangular, with free-slip conditions for all
sides except for the bottom side (y = 0) where a Dirichlet condition
is used, with a constant horizontal velocity used for x > 0 and zero
horizontal velocity for x ≤ 0, and zero vertical velocity for all x.

3 R E S U LT S

3.1 Flow patterns as a function of geometry and viscosity
ratio

The predicted flow pattern is fully defined by the location of the
pro, medial and retro boundaries at θ0, θ1, θ2; the boundary velocity
components Vr0 , Vθ0 , Vr2 , Vθ2 ; and the viscosity ratio between the
two regions μ2/μ1. For the subduction problem, all of the boundary
velocity components are set to zero, except for Vr0 = −U , which
accounts for entrainment above the subduction thrust (Fig. 2). The
geometry of the subduction zone relative to the upper-plate Moho

is set to θ2 = 150◦ (i.e. a subduction zone with a 30◦ dip passing
beneath a flat upper-plate Moho). We now consider how the ve-
locity field changes as a function of the orientation of the medial
boundary, and the viscosity ratio, over the range μ2/μ1 = 1 to 103

(Figs 5–7).
We start with the case where the pro-corner has an acute opening

angle (θ1 = 30◦) with μ2/μ1 increasing from 1 to 103. (Note that
μ2/μ1 = 1 is equivalent to a solution for a single corner, given that
μ2 = μ1 .) The resulting velocity fields show a gradual transition
from a single obtuse corner flow when μ2/μ1 = 1 (Fig. 5a) to a
single acute corner flow as μ2/μ1→∞ (Fig. 5d). However, when
μ2/μ1 is small, the velocity vectors adjacent to the medial bound-
ary are generally oblique to that boundary, which means that the
boundary will migrate rearward with time. In turn, Fig. 5(d) shows
that when μ2/μ1 is sufficient large, the medial boundary becomes
approximately stable, in that the flow no longer crosses the medial
boundary. This simple observation leads to one of our main conclu-
sions, that an acute pro-corner can only be sustained when there is a
very large viscosity ratio, such as μ2/μ1 > 1000. For comparison,
consider that the viscosity ratio for a subducting slab relative to the
upper mantle is estimated to be less than 1000, and most likely in
the range of 100–300 (Schellart 2008).

We now consider the case (Fig. 6) where the pro-corner has an
obtuse opening angle (θ1 = 130◦). The examples show the same
range in μ2/μ1, from 1 to 103. Note that for the smallest vis-
cosity ratio (Fig. 6a), the velocities decrease to very small values
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Figure 5. Velocity fields for a two-corner flow with θ1 = 30◦ and θ2 = 150◦, and with different viscosity ratios μ2/μ1, ranging from 1 to 103. The medial
boundary is marked by a magenta dashed line. The grid of arrows shows the velocity field, and the colour map shows the magnitude of the radial velocity
component, with positive values indicating flow away from the corner.

adjacent to the retro-boundary, but they are sufficient to cause the
medial boundary to slowly migrate rearward with time. For all of
the remaining examples, the velocity vectors adjacent to the medial
boundary are zero or subparallel to that boundary, so the boundary is
stable.

Fig. 7 shows examples for a very narrow pro-corner, where θ1 =
10◦. The first example (Fig. 7a) shows that pro-corner is unstable
even with a very large viscosity ratio μ2/μ1= 103. Also note that
there is no backflow in this example. Instead, the high dynamic
pressure inside the corner causes the medial boundary to migrate
rearward. Fig. 7(b) shows that a viscosity ratio of μ2/μ1 > 104 is

able to maintain a stable pro-corner for this case. Thus, our overall
conclusions from these examples are: 1) a stable pro-corner requires
either a large viscosity ratio or an obtuse opening angle, and 2)
backflow only occurs in a pro-corner with an acute opening angle
and a very strong retro corner.

3.2 Dynamic pressure

One of the features of the analytical solution for the corner flow is
the prediction of large dynamic pressure in the vicinity of the corner
point. The dynamic pressure for the two-corner problem is given
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Figure 6. Velocity fields for a two-corner flow with θ1 = 130◦ and θ2 = 150◦. See Fig. 5 for further details.

by

Pk
d / τc = 2

(
μk

μ1

)
Ck cos (θ ) + Dk sin (θ )

r/Lc
, (11)

where k indicates the corner domain. Fig. 8 shows Pd fields for an
acute pro-corner, with μ2/μ1 varying from 1 to 103. Note that Pd

is continuous across the medial boundary, as required by eq. 9c.
Numerical simulations by van Keken et al. (2008) indicate that for
a single narrow corner with rigid walls, the high in Pd is centered
on the corner, and can reach values of 100 MPa. For our two-corner
solutions, we find that the Pd high is influenced by the viscosity
ratio. In all examples, the Pd high is offset rearward relative to
the symmetric arrangement reported by van Keken et al. (2008).

The largest offset is found for the first example (Fig. 8a), which
is equivalent to a single obtuse corner given that μ2/μ1 = 1, and
the offset decreases with increasing μ2/μ1. We speculate that it
would become increasingly symmetric within an acute pro-corner
as μ2/μ1→∞, which approximates the case considered by van
Keken et al. (2008).

Fig. 9(a) shows Pd in the pro-corner as a function of the radial
distance along a section that follows the bisector of the pro-corner.
Fig. 9(b) shows Pd at a fixed radial distance, r/Lc = 1 along the
medial boundary, and as a function of varying pro-corner angles,
θ1. These plots show that within a specific two-corner problem,
Pd increases with decreasing r/Lc, and reaches a maximum at the
corner point. And when considered as a function of configuration,
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Figure 7. Velocity fields for a two-corner flow with θ1 = 10◦ and θ2 = 150◦ for viscosity ratios μ2/μ1 equal to 103 (a) and 104 (b). See Fig. 5 for further
details.

Figure 8. Dynamic pressure Pd field for a two-corner flow. The value of
dynamic pressure has been normalized to the characteristic stress (τc). See
Fig. 5 for further details.

the overall magnitude of Pd increases with increasing μ2/μ1 or with
decreasing θ1.

3.3 Maintaining the corner geometry

A consequence of the analytical solution of the two-corner region
(eqs 1–3) is that the circumferential velocity Vθ (i.e. normal to the
radial direction) only depends on θ and otherwise remains constant
as a function of r. This situation means that the motion of material
points along a specified direction, θ , will include a rotation around
the corner point that decreases in rate with increasing r (i.e. ω =
Vθ /r where Vθ (θ ) = constant).

This feature of the analytical solution indicates that there will
always be some circumferential shearing of the medial boundary.
More specifically, Vθ at the medial boundary will increase with
decreasing μ2/μ1 or decreasing θ1. As Vθ increases, so does the
rearward migration and distortion of the medial boundary. In other
words, increasing values of Vθ for the medial boundary indicate
increasing instability for the pro-corner.

This conclusion is supported by numerical simulations in Fig. 10,
which show the effect of this circumferential shearing after
about 2tc ≈ 4 Ma of flow (assuming characteristic values for Uc

and Lc). The left and right set of examples are for acute pro-
corners that start with opening angles θ1 = 30◦ and 10◦, respec-
tively. All of the examples show various developments of a large
rearward-directed bulge in the medial boundary near the corner
point. The examples show that pro-corner becomes more sta-
ble with an increasing viscosity ratio or an increasing opening
angle.

Fig. 11 shows the normalized circumferential velocity, Vθ /Uc,
as a function of θ1 and μ2/μ1, as determined from our two-corner
analytical solution. The plot summarizes the conditions required to
maintain a stable pro-corner. The white dashed line corresponds to
Vθ /Uc = 2 per cent, which we use to distinguish between stable and
unstable corners.

3.4 Comparison to the England and Holland channel-flow
model

An important aspect of the channel-flow models of England & Hol-
land (1979) and Shreve & Cloos (1986) is that they account for
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Figure 9. (a) Non-dimensional dynamic pressure Pd versus r for a pro-corner with an opening angle θ1 = 30◦. The values are for a transect along the centre
of the pro-corner (θ = θ1/2). (b) Non-dimensional dynamic pressure Pd at r/Lc = 1 on the medial boundary and as a function of difference opening angles,
θ1, for the pro-corner.

buoyancy, an effect that is otherwise ignored in the corner-flow so-
lutions considered above. Buoyancy becomes important when there
is a significant contrast between the density of the material in the
channel, and that of the adjacent walls (�ρ = ρc − ρw). A positive
density contrast would enhance downward flow within the channel,
and a negative density contrast might activate a backflow in the up-
per part of the channel. We have seen above that backflow in forced
corner flows is limited to the case of a stable narrow corner, and the
driving force is a large dynamic pressure gradient created by the
downward convergence of the flow. We show here that it is difficult
to use the velocity fields associated with backflow to distinguish the
driving force, whether buoyancy or dynamic pressure.

Here, we develop an approximation for a channel that has both
(1) a dynamic pressure gradient parallel to the channel, as present in
a narrow corner, and (2) a buoyancy gradient parallel to the channel,
as is present in a buoyancy-driven channel flow. The layout for the
comparison is shown in Figs 12(a) and (b). Two narrow corner
geometries are considered, with opening angles of 5◦ and 15◦.

The approximate relationship for the channel-parallel velocity Vx

is developed in the Appendix. The final equation is

Vx = 1

2μ

[
dPd

dx
+ �ρgx

] (
y2 − H y

) + U
( y

H
− 1

)
, (12)

where μ is the viscosity of the material in the channel, H is the
thickness of the channel, x is distance upward along the channel,
and U is the entrainment velocity at the lower boundary of the flow.
The gravitational acceleration vector is downward and oblique to
the lower boundary (as expected for a dipping subduction zone).
The constant gx is the component of the gravitational acceleration
parallel to the channel.

The similarity of the corner and channel velocity fields is indi-
cated by the arrangement of the two terms in the square bracket of
eq. (12). The first term, dPd/dx , is the dynamic pressure gradient
parallel to the channel. The second term, �ρgx , is the buoyancy-
related pressure gradient parallel to the channel. Eq. (12) shows
that these two gradient terms have a similar influence on the Vx

field.
This conclusion is illustrated by the results in Figs 12(c) and (d),

which shows Vx/Uc across the channel for the two examples. The
solid lines show the corner-flow solutions for Vx/Uc for the corner
geometries in Figs 12(a) and (b). The plus and diamond symbols

show results for the channel-flow approximation (eq. 12) for Vx/Uc

using a dynamic-pressure gradient and a buoyancy gradient, both
oriented parallel to the channel. These examples demonstrate that
the velocity fields alone are not sufficient to distinguish between
a backflow driven by a dynamic pressure gradient or a buoyancy
gradient, or a combination of the two.

4 D I S C U S S I O N

An essential feature of the classic corner-flow model is the occur-
rence of backflow in acute corners (Fig. 1a). The backflow provides
an interesting way in which HP/LT metamorphic rocks might be
returned to the surface in subduction-zone settings. In the corner-
flow model, the backflow is caused by convergence of the incoming
flow. Our two-corner solution reveals that the maintenance of a sta-
ble pro-corner requires a large viscosity ratio (μ2/μ1 ≥ 103, Fig. 5),
and/or a relatively large opening angle (θ1 > 90◦, Figs 10 and 11).
Conversely, a pro-corner with a narrow opening angle (θ1 < 30◦)
and a viscosity ratio μ2/μ1 < 102 will evolve towards a larger
opening angle, and the medial boundary will likely become dis-
torted during this evolution. Nonetheless, we envision that as the
pro-corner evolves towards this wider geometry, flow will cause
material to move across the corner point, in a fashion similar to
that shown for S-point models for wide wedges (Willett et al. 1993;
Buck & Sokoutis 1994; Allemand & Lardeaux 1997; Medvedev
2002).

These observations suggest the following idea for evolution of
subduction zones. When a subduction zone is first initiated, the
resulting shear zone can be approximated by a pro-corner that has,
by definition, a zero-opening angle, given that there has been no
time to fill the corner with subducted sediment. We infer that most
subduction zones lack the viscosity contrast required to sustain a
narrow corner. Thus, the initially narrow pro-corner will evolve
towards an opening angle that is in balance with the viscosity ratio
μ2/μ1 for the subduction zone. More complex geodynamic models
have also illustrated this behavior when an initial narrow subduction
channel evolves into an orogenic wedge (Pfiffner et al. 2000). If our
argument is correct, then the opening angle of the pro-corner at
a mature subduction zone could be used to estimate an effective
viscosity ratio, μ2/μ1, for a real subduction zone.
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Figure 10. Numerical solutions showing the deformation of the medial boundary after a time interval of about 2tc ≈ 4 Ma. The initial and final locations
of the medial boundary are marked by dashed and solid magenta lines, respectively. Plots (a)–(d) focus on a pro-corner that starts with an acute geometry
(θ1 = 30◦), and plots (e)–(h) focus on a pro-corner that starts with very narrow geometry (θ1 = 10◦). The colour map shows the non-dimensional horizontal
component of velocity; positive values (brown colour) indicate backflow in the pro-corner. The calculations were done using the M2Di program (see details in
Section 2.3).

Another interesting conclusion is that flow in a narrow channel
or corner must be accompanied by a significant dynamic pressure
high. This is an important issue in that metamorphic pressure is no
longer a simple function of depth (Petrini & Podladchikov 2000;
Moulas et al. 2013; Schmalholz & Podladchikov 2013; Bauville
& Yamato 2021). A possible counter argument is that this dy-
namic pressure high might be reduced if the material inside the
pro-corner were very weak. However, our analysis shows that an
increase in the viscosity ratio (which is equivalent to ‘weakening’
the pro-corner materials) will cause an increase, not decrease, in the
dynamic pressure high (Fig. 8). Thus, if the HP/LT blocks found
in paleo-subduction settings like the Franciscan Complex were in
fact exhumed within a narrow subduction channel, then the total
pressure, P, must have been significantly greater than the lithostatic
pressure, Ps. A rough estimate is that that Pd can reach values sim-
ilar to Ps, which means that P would be about twice that of the

lithostatic pressure, Ps. As noted above, the blueschists and eclog-
ites found in the Franciscan Complex have metamorphic pressures
that range up to ∼1.5 GPa (Wakabayashi 2015). If the dynamic
pressure effect were zero, then these pressures would indicate max-
imum depths of 55 km (average density is taken as 2800 kg m−3).
If the dynamic pressure Pd achieves values comparable to the static
pressure, Ps, then this maximum depth would be reduced by half, to
∼27 km.

Another interesting feature of our corner flow solutions is that
the dynamic pressure high extends across both the pro- and retro-
corners. This result counters a common inference that HP/LT
metamorphism is somehow related to strong shearing within the
subduction zone. There are many examples, however, of HP/LT
metamorphic rocks that show little to no deformation. To highlight
this, we point to an eclogite sequence in the Zermatt-Sass-Fee zone
of the Swiss Alps made famous by Bearth (1959). He discovered
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Figure 11. Non-dimensional circumferential velocity, Vθ /Uc, of the medial
boundary as a function of the opening of the corner, θ1, and the logarithm of
the viscosity ratio, μ2/μ1. The white dashed line corresponds to a contour,
where Vθ /Uc = 1/50, and is used to distinguish stable and unstable pro-
corners. The magenta labels show the viscosity ratio needed to sustain a
stable corner for some representative tectonic settings on the Earth.

that this unit preserved the outlines of pillow basalts, and, in many
places, the outlines were essentially undeformed (see fig. 1 in Ernst
2010, for a picture from this unit).

Our analysis overlooks the actual processes associated with ac-
cretion. This point is made clear by the fact that the accreted sed-
iments of the pro-corner are already located above the subduction
thrust. Accretion marks the transfer of material across the sub-
duction thrust, and it is known to occur adjacent to the trench, as
indicated by the term offscrapping (or frontal accretion) and also
by more deep-seated accretion, which called underplating (or basal
accretion) (Sample & Fisher 1986). For our analysis, we have set
Vθ0 = 0 on the pro-boundary, which indicates that we have assumed
that underplating is not a significant issue. However, our analysis
can be easily extended to include underplating simply by adjusting
Vθ0 to a positive value consistent with the rate of mass transfer into
the pro-corner by this accretionary process. We infer that, with all
other factors equal, the addition of an accretionary flux by under-
plating would further destabilize a narrow pro-corner, and it would
probably affect the dynamic pressure as well. However, more work
is needed to properly test these inferences.

Another result of this study is relevant for the case where the
acute corner is approximated by a typical channel-flow geometry.
The results provided by the two solutions (forced vs buoyant channel
in Fig. 12) are indistinguishable and both solutions would predict
the same velocity for a reasonable set of parameters. The similarity
of the two solutions shows, in fact, that structural observations alone
are probably not sufficient to distinguish between a buoyancy-driven
backflow or a pressure-driven backflow.

At this point, we would like to emphasize that the most important
factor for the maintenance of the corner geometry and the genera-
tion of backflow is the viscosity ratio between the pro-corner and
the overriding plate. Large viscosity ratios can be expected in nature
as a consequence of the different lithologies and the variety of phys-
ical conditions (temperature, fugacity of volatiles, lithology, etc.).
However, there are two competing phenomena that occur in associ-
ation with metamorphism during subduction. On the one hand, the
subduction of material, and the associated pressure and temperature

increase leads to devolatilization and densification within the pro-
corner. On the other hand, this devolatilization might also lead to
the hydration and weakening of the overriding plate. For both cases,
the viscosity ratio decreases and the pro-corner would become less
stable and more transient.

Finally, we end with a comment about mélanges. In Cloos’ (1982)
view, mélange formation is intrinsically related to corner flow, as
emphasized by his term ‘flow mélange’. However, Cloos (1982)
also recognized that the mixing observed in mélanges cannot be di-
rectly related to corner flow since the velocity field is laminar (low
Reynolds number), and not turbulent. Therefore, he proposed that
the mixing was caused by plucking of dense HP/LT blocks from
the hanging wall, which then settled at variable rates through the
actively flowing material in the pro-corner. The idea of blocks dis-
persing by ‘Stokes settling’ within an active corner flow is entirely
plausible. However, our analysis indicates that the maintenance of
active flow in a narrow corner requires that the material in the pro-
corner is exceptionally weak, or the upper plate (i.e. the retro-corner)
is exceptionally strong. This requirement provides an approach to
test the viability of the subduction channel idea.

5 C O N C LU S I O N S

A new analytical solution for the study of viscous incompressible
flow in corner regions has been developed. The analytical solution
shows that the activation of a strong backflow requires a narrow
corner, which is the expected situation shortly after initiation of a
subduction zone. The convergence of accreted materials into a nar-
row pro-corner creates a large dynamic pressure. As such, HP/LT
metamorphism can occur in such settings at depths much shallower,
by as much as a factor of two, than that predicted by the common
assumption that the total pressure is equal static pressure. Our infer-
ence is that the overlying retro-corner is generally not strong enough
to sustain a narrow pro-corner, which means that the medial bound-
ary above the pro-corner will migrate rearward into the overriding
plate. Thus, with time, an initially narrow pro-corner will evolve to
an obtuse geometry. This wider configuration is consistent with the
observation of widespread uplift and deformation across the forearc
high at most actively accreting subduction zones.

Much of the discussion about accretion, HP/LT metamorphism,
and exhumation at subduction zones is framed by the idea of a
confined flow inside a narrow corner or a thin channel. The basic
forcing for the flow is thought to be entrainment of accreted ma-
terials that overlies the subducting plate. The corner-flow problem
is based solely on this kinematic forcing. The channel flow prob-
lem includes both kinematic and buoyancy forcing. Some authors
have argued that structures in the field may be able to distinguish
between these two kinds of forcings. We show that, in fact, the
velocity fields associated with kinematic and buoyancy forcings
are remarkably similar, and thus would be difficult to diagnosis by
structural observations alone.
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Figure 12. Comparisons of narrow corner flows with forced flows and buoyant flows in channels with similar equivalent thicknesses. Panels (a) and (c) show
results for a very narrow case (θ1 = 5◦), and panels (b) and (d) show results for a narrow case (θ1 = 15◦). The viscosity ratios are adjusted to ensure a stable
corner. Panels (a) and (b) show the layout for the corner and the equivalent channel for each example. The lower boundary corresponds to the top of the
subducting plate, and the barbed arrows indicate the direction for entrainment at the base of the flow field. Panels (c) and (d) show various estimates for Vx/Uc,
as measured across the corner or channel at x/Lc = 1. The solid lines show the Vx/Uc profiles for the corner-flow solutions, and the symbols show the Vx/Uc

profiles as estimated by eq. (12) for specified along-channel gradients in pressure (plus symbols) and buoyancy (diamond symbols). The rest of the model
parameters are: the density difference is -300 kg m−3, velocity is 5 cm a-1, and the channel viscosities are ∼1.5 × 1017 and 1.2 × 1018 Pa s for (a) and (b),
respectively.
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wxMaxima and MATLAB scripts are provided in the Supporting
Information. These files can be used for the calculation and visual-
ization of the analytical solution presented in this work.
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Gerya, T.V., Stöckhert, B. & Perchuk, A.L., 2002. Exhumation of high-
pressure metamorphic rocks in a subduction channel: a numerical simu-
lation, Tectonics, 21, 6–1-6-19.

Henriksen, P. & Hassager, O., 1989. Corner flow of power law fluids, J.
Rheol., 33, 865–879.

Jamieson, R.A. & Beaumont, C., 2013. On the origin of orogens, Bull. geol.
Soc. Am., 125, 1671–1702.

Krohe, A., 2017. The Franciscan Complex (California, USA)—the model
case for return-flow in a subduction channel put to the test, Gondwana
Res., 45, 282–307.

Landau, L.D. & Lifshitz, E.M., 1987. Course of Theoretical Physics, Vol. 6,
Fluid Mechanics, 2nd edn, Pergamon.

Lundberg, N. & Moore, J.C., 1986. Macroscopic structural features in Deep
Sea Drilling Project cores from forearc regions, in Structural Fabrics in
Deep Sea Drilling Project Cores From Forearcs, Vol. 166, ed. Moore,
J.C., Geological Society of America.

Mancktelow, N.S., 1995. Nonlithostatic pressure during sediment subduc-
tion and the development and exhumation of high pressure metamorphic
rocks, J. geophys. Res., 100, 571–583.

McKenzie, D.P., 1969. Speculations on the consequences and causes of plate
motions, Geophys. J. R. astr. Soc., 18, 1–32.

Medvedev, S., 2002. Mechanics of viscous wedges: modeling by analytical
and numerical approaches, J. geophys. Res., 107, ETG 9–1-ETG 9-15.

Moffatt, H.K., 1964. Viscous and resistive eddies near a sharp corner, J.
Fluid Mech., 18, 1–18.

Moulas, E., Burg, J.-P. & Podladchikov, Y., 2014. Stress field associated
with elliptical inclusions in a deforming matrix: mathematical model and

implications for tectonic overpressure in the lithosphere, Tectonophysics,
631, 37–49.

Moulas, E. & Schmalholz, S.M., 2020. The importance of interfacial in-
stability for viscous folding in mechanically heterogeneous layers, Geol.
Soc. Lond. Spec. Publ., 487, 45–58.

Moulas, E., Podladchikov, Y.Y., Aranovich, L.Y. & Kostopoulos, D.K., 2013.
The problem of depth in geology: when pressure does not translate into
depth, Petrology, 21, 527–538.

Moulas, E., Schmalholz, S.M., Podladchikov, Y., Tajčmanová, L., Kostopou-
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A P P E N D I X : C O M PA R I S O N O F C O R N E R
A N D C H A N N E L F L OW

Here, we derive the equations that are used to compare a channel
flow between two parallel walls and a corner flow with a small
angle. The channel flow is derived from the equations for slow in-
compressible viscous flow (Landau & Lifshitz 1987, p. 52; Turcotte
& Schubert 2014, p. 270). The coordinates are Cartesian with x is
directed upward and parallel to the channel (θ = θ0 ) and y is per-
pendicular to the channel (θ = θ0 + 90◦). The governing equation
for the total pressure P (equal to the negative mean stress) is

μ
d2Vx

dy2
= dP

dx
− ρgx , (A1)

where Vx is the channel-parallel velocity, ρ and μ are the density and
viscosity of the material in the channel and gx is the x-component of
gravitational acceleration (parallel to the channel). Eq. (A1) is mod-
ified by separating the total pressure P into static Ps and dynamic
Pd components, and then simplifying, which give

μ
d2Vx

dy2
= dPd

dx
+ �ρgx , (A2)

where �ρ = ρc − ρw is the density difference between the channel
material and the surrounding wall rock. The solution is

Vx = 1

2μ

(
dPd

dx
+ �ρgx

)
y2 + c1 y + c2, (A3)

where c1 and c2 are integration constants determined by the bound-
ary conditions. By setting Vx = −U at y = 0 and Vx = 0 at
y = H , we obtain

c1 = U

H
− 1

2μ

(
dPd

dx
+ �ρgx

)
H, (A4a)

and

c2 = −U. (A4b)
We assume that, for the region of interest, the dynamic pres-

sure gradient, dPd/dx , is approximately constant and the channel-
parallel velocity gradient, dVx/dx , is approximately zero. A con-
stant pressure gradient is a reasonable assumption for regions away
from the corner (r/Lc > 1; see also Fig. 9a).

Eqs (A3) and (A4) can now be used to approximate the radial
component in a narrow corner, as shown in Fig. 12. Inspection of eq.
(A3) reveals that there are two quadratic terms related to the back-
flow component of the velocity field. The first is related to Pd, which
is caused by downward convergence associated with the forced flow,
and the second is related to the buoyancy forces associated with the
density contrast between the channel and surrounding walls. In other
words, eq. (A3) is a more general form of the channel-flow solution,
and is also similar to the general solutions developed by Shreve &
Cloos (1986) and Mancktelow (1995).

The corner-flow solution is represented by setting �ρ = 0,
which means that buoyancy effects are turned off. Eqs (A3) and
(A4) indicate that in the absence of buoyancy forces, the only way
to drive a backflow is by a negative gradient in the dynamic pressure
dPd/dx , as needed to drive the flow upward. We can now consider
a narrow corner region (with θ2 = 150◦) at a location x/Lc = 1
(x coincides with the radial direction, r , as in Figs 12a and b).
The pressure gradient can be approximated at the limit of small
angles (cos(θ1) ≈ 1, sin(θ1) ≈ 0). Thus, the dynamic pressure gra-
dient within the corner can be approximated from eq. (11) as

dPd

dr
≈ −2

C1

r 2
τc Lc, (A5)

where C1 is an integration constant from the two-corner analytical
solution. By inserting the result of eq (A5) into eqs (A3) and (A4),
we obtain the solution shown in Figs 12(c) and (d) (forced channel).
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