
Unicentre 

CH-1015 Lausanne 

http://serval.unil.ch 

Year : 2021 

Characterization of pharmacological modulators and study of 
ASIC activation with cysteine-based cross-linking 

Vaithia Natha Subramanian Anand 

Vaithia Natha Subramanian Anand, 2021, Characterization of pharmacological 
modulators and study of ASIC activation with cysteine-based cross-linking 

Originally published at : Thesis, University of Lausanne 

Posted at the University of Lausanne Open Archive http://serval.unil.ch 
Document URN : urn:nbn:ch:serval-BIB_1910F37FB68D8 

Droits d’auteur 
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les 
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la 
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir 
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou 
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la 
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette 
loi. Nous déclinons toute responsabilité en la matière. 

Copyright 
The University of Lausanne expressly draws the attention of users to the fact that all documents 
published in the SERVAL Archive are protected by copyright in accordance with federal law on 
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the 
author and/or publisher before any use of a work or part of a work for purposes other than 
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose 
offenders to the sanctions laid down by this law. We accept no liability in this respect. 



Département of Biomédicale Sciences 

Characterization of pharmacological modulators 

and study of ASIC activation with  
cysteine-based cross-linking 

Thèse de doctorat ès sciences de la vie (PhD) 

Présentée à la 

Faculté de biologie et de 

médecine de l’Université de 

Lausanne 

par 

Anand VAITHIA NATHA SUBRAMANIAN

Master of Science in Molecular Biotechnology, 

University of Skövde, Sweden 

Jury 

Prof. Romano REGAZZI, Président 

Dr. Stephan KELLENBERGER, Directeur de thèse 

Dr. Roland SCHÖNHERR, Expert 
Prof. Hugues ABRIEL, Expert 

Lausanne (2021) 





Table of Contents 

ACKNOWLEDGEMENT ....................................................................................................................................... 5 

ABSTRACT ......................................................................................................................................................... 6 

RÉSUMÉ ............................................................................................................................................................ 7 

ABBREVIATIONS ................................................................................................................................................ 9 

1. INTRODUCTION ........................................................................................................................................ 10 

1.1. ACID-SENSING ION CHANNELS .................................................................................................................................. 10 
1.1.1. EXPRESSION PATTERN OF ASICS ............................................................................................................................ 11 
1.1.2. BIOPHYSICAL PROPERTIES OF ASICS ....................................................................................................................... 12 
1.1.3. PHYSIOLOGICAL AND PATHOLOGICAL ROLES OF ASICS ............................................................................................... 14 
1.1.3.1. ROLES OF ASICS IN THE CNS ............................................................................................................................. 14 
1.1.3.1.1. ACIDOSIS-ASSOCIATED ASIC ACTIVATION .......................................................................................................... 14 
1.1.3.1.2. SYNAPTIC PLASTICITY AND SPATIAL MEMORY ..................................................................................................... 15 
1.1.3.1.3. FEAR CONDITIONING ..................................................................................................................................... 16 
1.1.3.1.4. ACIDOSIS-INDUCED NEURODEGENERATION ....................................................................................................... 18 
1.1.3.1.5. EPILEPSY ..................................................................................................................................................... 19 
1.1.3.2. ROLES OF ASICS IN THE PNS ............................................................................................................................. 19 
1.1.3.2.1. NOCICEPTION............................................................................................................................................... 19 
1.1.3.2.2. MECHANOTRANSDUCTION ............................................................................................................................. 21 
1.1.4. STRUCTURE OF ASIC ........................................................................................................................................... 22 
1.1.4.1. GENERAL TOPOLOGY ........................................................................................................................................ 22 
1.1.4.2. CRYSTAL STRUCTURE OF ASIC1 .......................................................................................................................... 22 
1.1.4.3. STATE-DEPENDENT CONFORMATIONAL CHANGES IN ASIC1A ................................................................................... 24 
1.1.5. PHARMACOLOGY OF ASICS .................................................................................................................................. 25 
1.1.5.1. SYNTHETIC COMPOUNDS ................................................................................................................................... 25 
1.1.5.2. ENDOGENOUS MODULATORS ............................................................................................................................. 27 
1.1.5.3. ANIMAL TOXINS ............................................................................................................................................... 28 
1.2. TECHNICAL INTRODUCTION TO CROSS-LINKING APPROACHES IN PROTEINS ....................................................................... 29 
1.2.1. OPTICAL CONTROL OF ION CHANNELS USING THIOL-SPECIFIC OPTICAL TWEEZERS............................................................ 29 
1.2.2. BISMETHANESULFONATE-BASED CROSS-LINKING ...................................................................................................... 31 

2. SCIENTIFIC INTRODUCTION TO THESIS PROJECTS ....................................................................................... 34 

3. HYPOTHESES ............................................................................................................................................ 34 

4. AIMS ........................................................................................................................................................ 35 

5. RESULTS ................................................................................................................................................... 35 

5.1. PROJECT 1 - ASSESSMENT OF ASIC1A AND ASIC3 ACTIVITY BY GMQ AND ITS DERIVATIVES ............................................... 36 
5.1.1. MY CONTRIBUTION TO THE ARTICLE ....................................................................................................................... 36 
5.2. PROJECT 2 - INVESTIGATION ON THE DIFFERENCES BETWEEN WT HASIC1A AND ITS RARE MUTANT ..................................... 54 
5.2.1. MY CONTRIBUTION TO THE ARTICLE ....................................................................................................................... 55 



5.3. PROJECT 3: INVESTIGATION OF THE ACTIVATION MECHANISM OF HUMAN ASIC1A CHANNEL BY USING CROSS-LINKERS ........... 71 
5.3.1. MY CONTRIBUTION TO THE ARTICLE ....................................................................................................................... 72 

6. DISCUSSION ............................................................................................................................................ 115 

6.1. MODULATORY EFFECT BY NON-PROTON LIGAND GMQ AND ITS DERIVATIVES ON ASIC1A ................................................ 115 
6.1.1. BLOCKING AND GATING EFFECT BY GMQ DERIVATIVES ON ASIC1A AND ASIC3 .......................................................... 116 
6.1.2. GATING AND BLOCKING EFFECT BY GMQ DERIVATIVES ON HETEROMERIC CHANNELS ................................................... 117 
6.2. DIFFERENCE IN THE BIOPHYSICAL PROPERTIES BETWEEN WT (G212) AND MUTANT (D212) ASIC1A ................................ 118 
6.3. ANALYSIS ON THE STRUCTURE-FUNCTION RELATIONSHIP OF ASIC1A CHANNEL ACTIVATION.............................................. 120 
6.3.1. LIGHT-INDUCED CHANNEL ACTIVATION IN ASIC1A.................................................................................................. 120 
6.3.2. LIGHT-INDUCED SHIFT IN THE PH DEPENDENCE OF ACTIVATION ................................................................................. 121 
6.3.3. SHIFT IN PH DEPENDENCE OF ACTIVATION BY MTS CROSS-LINKERS ........................................................................... 122 

7. CONCLUSION AND PERSPECTIVES ............................................................................................................ 126 

8. REFERENCES ........................................................................................................................................... 127 



5 

ACKNOWLEDGEMENT 

First, I would like to thank Dr. Stephan Kellenberger to offer me a PhD position in his 

group and pursue different projects on my research interest. It was a great journey in this 5 year 

of research work in his lab and for the continuous support and guidance through different projects. 

The projects were by itself challenging and stimulating the curiosity. In the project, I did not only 

illuminate the ASIC channel, but 5 years of research experience in his laboratory has illuminated 

my research career and life. It was a wonderful time to learn a systematic approach and execution 

and to also learn a lot more about science. It was a great pleasure to be in his lab and get guided 

under various circumstances. His continuous support has provided me with a good end to my 

PhD experiences. 

I would like to also thank the lab members Omar, Sabrina, Zhong, Olivier, Nicolas, 

Ophélie, Sophie and Ivan. It was of great help from all my lab members in providing feedback 

and support needed during the projects. Because of them, several wonderful moments were 

possible. Even during a hard time of COVID-19, support by Ivan to obtain Xenopus oocytes was 

highly appreciable that led me to finish my project on time. 

I want to also thank the members of the department who had directly or indirectly provided 

me with their support. A special thanks to Prof. Laurent Schild, Prof. Olivier Staub, Dr. Marie-

Chrisitine, Prof. Edith Hummler, and Dr. Miguel van Bemmelen for motivating my research 

interest. I would also like to thank Dr. Dimitri Frisov and Dr. Dario Diviani for providing inputs 

during my progress report. A special thanks also to my committee members for timely feedback, 

ideas, and suggestions on the progress of my project. 

My thanks do not end here, and I want to thank my parents, family members and friends 

for the moral support and encouragement during hard times. A special thanks to my wife Deepika 

Anand, who stood with me throughout the wonderful journey.  



6 

 

 

ABSTRACT 

Acid-sensing ion channels (ASICs) are proton-gated, voltage-insensitive Na+ channels that 

are localized in the central and the peripheral nervous system participating in a range of 

physiological and pathological functions such as pain sensation, learning and memory, fear, and 

neurodegeneration after stroke. ASICs form homo- or heterotrimeric channels. ASIC structures 

of the closed, toxin-bound open and the desensitized state have been solved. Despite the available 

high-resolution ASIC structures, it is not known exactly how protons activate ASICs. Using 

experimental approaches, the structure-function relationship of ASIC activity was investigated 

here in three sub-projects. 1) 2-guanidine-4-methylquinazoline (GMQ) is a known 

pharmacological modulator of ASIC1a and ASIC3. New derivatives of GMQ were studied. 

Several quniazoline and quinoline derivatives produced a modulatory effect on ASIC activity in 

a sub-type specific manner. Guanidinopyridines strongly inhibited the peak current at pH5 in 

ASIC1a and ASIC3 with 20-fold better potency than GMQ. Interestingly, 2-guanidino-

quinolines and -pyridines produced in ASIC1a a potentiation at low, and an inhibition at high 

concentrations. 2) Comparison of the rare mutation D212 in hASIC1a that was used in many 

laboratories as wild type, with the real wild type human ASIC1a-G212 showed slower current 

decay kinetics, higher current amplitude per surface-expressed channel, increased surface 

expression of the channel, and a stronger dependence of the current decay kinetics on the 

extracellular anion in hASIC1a-G212. 3) To test the effect of distance constraints on channel 

function, the optical tweezer 4,4’-bis(maleimido)azobenzene (BMA) and bis-methane-

thiosulfonate (MTS) cross-linkers were used. In hASIC1a-I428C to which BMA was tethered, 

light-dependent activation by 440nm light was observed, however without the formation of a 

cross-link. A modulatory effect by BMA upon 360nm light illumination was found in three 

double mutants of the extracellular domain. In a second approach, MTS cross-linkers of different 

lengths were used. In comparison to control condition, treatment with MTS-17-MTS produced 

an acidic-shift of the pH dependence of activation in hASIC1a-D237C/I312C, and an alkaline or 

a small acidic-shift in the single mutants, hASIC1a-I312C and -D237C. Further validation of 

cross-linking is required in D237C/I312C. Our findings provide structural insights into ASIC1a 

activity. 
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RÉSUMÉ 

Les canaux ioniques sensibles à l'acide (ASIC) sont des canaux à sodium, proton-

dépendants et insensibles au voltage, localisés dans le système nerveux central et périphérique. 

Ils participent à une gamme de fonctions physiologiques et pathologiques telles que la sensation 

de douleur, l'apprentissage et la mémoire, la peur et sont impliqués dans la neurodégénérescence 

après un AVC. Les ASIC forment des canaux homo- ou hétérotrimériques. La structure du poulet 

ASIC1a a été résolue à l'état fermé, dans l’état ouvert lié à la toxine, et désensibilisé et pour 

l'ASIC1a humaine (hASIC1a) dans l'état fermé. Malgré les structures ASIC haute résolution 

disponibles, on ne sait pas exactement comment les protons activent les ASIC. À l'aide 

d'approches expérimentales, la relation structure-fonction de l'activité ASIC1a a été étudiée. Dans 

ce contexte 1) la 2-guanidine-4-méthylquinazoline (GMQ) est un modulateur pharmacologique 

connu des ASIC1a et ASIC3, et ses dérivés quniazoline et quinoléine ont produit un effet 

modulateur à 1 mM sur l'activité ASIC par sous-type de manière spécifique. Les 

guanidinopyridines ont fortement inhibé le courant de pointe à pH 5 dans ASIC1a et ASIC3 avec 

une puissance 20 fois supérieure à celle du GMQ. Fait intéressant, les 2guanidino-quinoléines 

et -pyridines ont produit un effet d'inhibition ou de potentialisation dépendant de la concentration 

sur le sous-type ASIC et dans les ASIC1a/2a et ASIC3/2a hétéromères, seuls quelques composés, 

y compris le GMQ, ont produit un petit effet modulateur sur l'activité, 2 ) Une comparaison de la 

mutation rare D212 dans hASIC1a qui a été utilisée dans de nombreux laboratoires comme type 

sauvage, avec le vrai type sauvage hASIC1a-G212 a montré une cinétique de décroissance du 

courant plus lente, une amplitude de courant plus élevée par canal exprimé en surface, une 

expression de surface accrue du canal, et cinétique de désintégration actuelle dépendante de 

l'anion extracellulaire dans hASIC1a-G212, et 3) en utilisant l'approche de réticulation et pour 

trouver une paire de résidus impliqués dans les changements de conformation lors de l'activation 

d'ASIC1a, les deux pinces optiques 4,4'-bis (maléimido) azobenzène (BMA) et des agents de 

réticulation bis-méthane-thiosulfonate (MTS) ont été appliqués. Dans hASIC1a-I428C attaché à 

BMA, une activation dépendante de la lumière sous une lumière de 440 nm a été observée sans 

la formation de la réticulation. Un effet modulateur par BMA sur une illumination lumineuse de 

360 nm a été trouvé dans les mutants hASIC1a-D237C/E315C, -D237C/E355C et -

K246C/D347C. Dans une seconde approche, des réticulant MTS de différentes longueurs ont été 

utilisés. Par rapport à la condition témoin, le traitement avec MTS-17-MTS a produit un 

changement acide de la dépendance au pH dans hASIC1a-D237C/I312C, et un changement 

alcalin ou petit acide chez les mutants simples, hASIC1a-I312C et -D237C. Une validation 

supplémentaire de la réticulation est requise dans D237C/I312C. Nos résultats fournissent de 
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nouvelles informations structurelles sur l'activité ASIC1a. 

Caractérisation des modulateurs pharmacologiques et étude de l'activation 

ASIC avec réticulation à base de cystéine 

Une cellule est considérée comme un bloc l’unité de base de tout organisme vivant, et elle 

est composée de composants intracellulaires séparés des cellules voisines par la membrane 

plasmique et travaille 24 heures sur 24 pour maintenir différentes fonctions comme le support 

structurel, produire de l'énergie, permettre le transport passif et actif de divers ions et molécules, 

la gestion des réactions métaboliques et la respiration. Pour l’important échange d'ions 

mentionné ci-dessus, la cellule a recourt à des protéines traversant la membrane cellulaire et qui 

possèdent un pore sélectif permettant le passage des ions : les « canaux ioniques ». Ces 

canaux ioniques contrôlent divers processus biologiques comme la fonction cardiaque, la 

contraction des muscles squelettiques et lisses, le transport épithélial, etc. Le canal ionique peut 

être activé par un ligand, une tension électrique et mécaniquement. Dans notre recherche, nous 

travaillons avec des canaux ioniques sensibles à l'acide (ASIC) qui sont activés par acidification 

extracellulaire et localisés dans les neurones. Lorsqu'ils sont activés, ils sont parfois fermés ou 

ouverts, le passge d’ions qu’ils entrainent active les neurones. Ils sont impliqués dans diverses 

conditions physiopathologiques comme la douleur, les démangeaisons, l'apprentissage et la 

mémoire, l'épilepsie, les accidents vasculaires cérébraux, la maladie d'Alzheimer etc. On ne sait 

pas comment l'acidification extracellulaire peut activer le canal et quels sont les changements 

conformationnels associés dans ces domaines ? En mettant l'accent sur l'identification du 

mécanisme d'activation du canal, j'ai trouvé que 1) certaines petites molécules dérivées d'une 

molécule existante appelée 2-guanidine-4-méthylquinazoline (GMQ) peuvent moduler l'activité 

ASIC, 2) ont caractérisé une mutation rare dans l'ASIC1a humaine clone, ayant des propriétés 

légèrement modifiées par rapport à l'ASIC1a humain de type sauvage réel, 3) Les composés de 

liaison croisée, à savoir le 4,4'-bis (maléimido) azobenzène (BMA), est un composé qui peut se 

fixer à ses deux extrémités à un résidu cystéine modifié dans l'ASIC1a et exercer une force 

mécanique sur les domaines en étendant ou en pliant son forme par application d'une longueur 

d'onde spécifique de la lumière. Les composés à base de bis-méthane-thiosulfonate (MTS) sont 

de différentes longueurs qui peuvent également se fixer aux deux extrémités au résidu de cystéine 

modifié sans changer de forme. Les deux composés ont affecté l'activation de l'ASIC1a. Une 

enquête plus approfondie est nécessaire pour conclure les changements de conformation dans les 

domaines identifiés pendant l'activation du canal. Dans l’ensemble, plusieurs aspects associés à 

la relation structure-fonction de l'activité ASIC1a ont été identifiés. À l'avenir, les études 

présentées dans cette thèse seront utiles pour concevoir des molécules thérapeutiques en mesure 
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d’inhiber ou d’activer le canal. 

ABBREVIATIONS 

ASICs - Acid-sensing ion channels  

ENaC - Epithelial Na+ Channel 

DEG – Degenerin 

DRG - Dorsal Root Ganglion 

PNS - Peripheral Nervous System 

CNS - Central Nervous System 

TM -Transmembrane   

NSAIDs - Non-Steroid Anti-Inflammatory Drugs   

PcTx1- Psalmotoxin 

GMQ -N-(4-Methyl-2-quinazolinyl)-guanidine hydrochloride 

FaNaC - FMRFamide peptide–activated sodium channel  

MitTx - Micrurus tener toxin 

BMA - 4, 4′-Bis (maleimido) azobenzene 

ATP - Adenosine triphosphate 

MEA-TMA - Maleimide ethylene azobenzene trimethyl ammonium derivative 

MAM - 4,4´-bis(maleimido-glycine) azobenzene 

CHO – Chinese hamster ovary 

GFP – Green fluorescent protein 

LED – Light emitting diode  

LTP – Long-term potentiation 

MES - 2-Morpholinoethanesulfonic Acid 

HEPES - (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 

HEK – Human embryonic cell 

EGTA - (ethylene glycol-bis (β-aminoethyl ether)-N, N, N', N'-tetraacetic acid) 

LTP – Long term potentiation 

LTD- Long term depression 

NMDA- N-methyl-D-aspartate receptor 

WT- Wild type 

KO- Knockout 

ExAC – Exome Aggregation Consortium 

rASIC1a- rat ASIC1a 

hASIC1a – human ASIC1a 

mASIC1a – mouse ASIC1a 

LRET - Luminescence Resonance Energy Transfer 
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1. Introduction 

Ion channels are proteins that span across the cell membrane of animal and plant cells, those 

conduct ions and have various important physiological and pathological roles. Ion channels are 

classified based on their ion selectivity and mechanism of activation. Based on the ion selectivity, 

they are classified as chloride, potassium, sodium, calcium, proton and non-selective cation 

channels, while based on mechanism of activation they are classified into three superfamilies: 

voltage-gated, ligand-gated and mechano-sensitive ion channels. They are widely expressed in 

different cell types and are of crucial physiological importance. They play a principal role in 

regulating cellular excitability. This thesis work is based on a class of ligand-gated ion channels 

called Acid-sensing ion channels (ASICs). 

1.1. Acid-sensing ion channels 

In 1980, it was shown for the first time that protons increased the excitability of the cultured 

neuron3. In the late 1990s, ASICs were cloned from human4,5, rat6-8 and mouse9. In those studies 

that cloned ASICs, it was not known that these channels can be activated by protons3,10,11. By 

1997, ASIC was first shown to produce acid-induced inward current upon extracellular 

acidification12-14 and shown to be a voltage-insensitive Na+-channel. ASICs belong to the 

ENaC/DEG (Epithelial Na+ Channel/Degenerin) superfamily of ion channels. A phylogenetic 

tree of the ENaC/DEG family is represented in Figure 1. The ENaC/DEG superfamily of ion 

channel comprises 60 different proteins that form channels, which are either constitutively active, 

gated by mechanical stress or gated by ligands. ENaC is an epithelial sodium channel that forms 

constitutively active, Na+ conducting, and voltage insensitive channel in different tissues and 

organ. There are four main subunits α-, β-, γ-and δ-ENaC15. ASIC share 25% sequence 

homology with ENaC. Degenerin (DEG), in contrast, is a mechanosensitive channel of C. elegans 

involved in the stretch and touch sensation1. ASICs are encoded by four different genes ASIC1-

4 (ACCN1-4) encoding six different subunits ASIC1a (BNaC2)4,7, ASIC1b (ASIC1β)16,17, 

ASIC2a (MDEG1/BNaC1)5,8, ASIC2b (MDEG2)9, ASIC3 (DRASIC)6,18, and ASIC4 
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(BNaC4)19,20. In humans, ASIC3 has three different subunits namely ASIC3a, 3b and 3c18,21. 

 

ASICs are widely expressed among chordates and vertebrates and are highly conserved22. A 

functional ASIC channel is formed by the assembly of three individual subunits forming the pore. 

It can exist either as a homotrimeric or heterotrimeric channel. Each homomeric or heteromeric 

channel has its unique property of pH-sensitivity and kinetics. A functional homomeric channel 

is formed by ASIC1a, ASIC1b, ASIC2a and ASIC3, while ASIC2b and ASIC4 do not form a 

functional channel. All ASICs, except ASIC4, can form functional heteromers23. The trimeric 

assembly of ASIC has been observed in several crystal structures of ASIC124-29, in a 

stoichiometry study of ASIC1a/ASIC2a assembly30 and by atomic force microscopy (AFM). 

Interestingly, ASIC was also found to form heteromeric assembly with ENaC31. 

1.1.1. Expression pattern of ASICs 

ASICs are expressed in both the central nervous system (CNS) and peripheral nervous 

system (PNS) (Table 1). In rodents, only ASIC1a, ASIC2a, ASIC2b and ASIC4 are expressed 

in CNS4,7,32, while in humans, in addition to ASIC1a, ASIC2a, ASIC2b and ASIC4, very low 

expression of ASIC3 was detected33. High expression of ASIC1a, ASIC2a, ASIC2b and ASIC4 

mRNA expression is found in the cultured hippocampus, hypothalamus, cerebellum, cortical 

region, olfactory bulb, habenula, dorsal raphe and basolateral amygdala, striatum, nucleus 

accumbens, amygdala and cerebral cortex34,35. Transfection of epitope-tagged ASIC1a in 

Figure 1. Phylogenetic tree from genes of PPK- 

Pickpocket, DEG MEC4-Mechanosensitive 

channel of C.elegans, FaNaC- peptide gated 

channel of H.aspersa, ENaC- Epithelial Na+ 

channel, ASIC-Acid-sensing ion channel and 

BASIC- Bile acid-sensing ion channel subfamilies. 

The genes pick-pocket (PPK) from Drosophila, 

DEG MEC4 from C.elegans, and the peptide-gated 

FaNaC of H.aspera and are shown in green. Clustal 

W algorithm was used to align the protein 

expression. Single letter corresponds to the 

species, h-human, c-chicken, r-rat, s-shark, t-toad 

fish, l-lamprey, x-xenopus, z-zebra fish. Adapted 

figure1. 
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cultured hippocampal neurons shows the distribution in cell bodies and dendrites36, and studies 

also reported the localization of ASIC1a at the post-synaptic terminal35,36, together with post-

synaptic proteins like PICK137, CaMKII38, PSD-9536 and AKAP15039. The less pH-sensitive 

ASIC2a also interacts with neuronal synaptic scaffolding protein PSD-9540,41. In the PNS, all 

ASIC subunits are expressed, except ASIC442-44. ASIC subunits are expressed in sensory 

neurons of dorsal root ganglion (DRG) and are localized in the axon growth cone, cell bodies 

and nerve terminals45. Increasing evidence show ASIC expression in non-neuronal cells, like 

astrocyte46, monocytes, arthritic chondrocytes, osteoblasts, osteoclasts47 and muscle cells48. 

1.1.2. Biophysical properties of ASICs 

The biophysical properties of a channel comprise their permeability to ions, voltage or 

ligand dependence, and associated kinetics. To study the biophysical properties, the ASICs are 

expressed in vitro in Xenopus oocytes or cell lines, e.g. COS7, HEK293 and CHO for 

electrophysiological characterization. ASICs can exist in three different functional states, namely 

closed, open and desensitized (Figure 2A). Upon extracellular acidification, ASICs undergo 

rapid transient activation, followed by desensitization. Activation of the channel occurs rapidly 

(ms) in all functional ASICs, and the desensitization kinetics depends on subunit composition23. 

ASICs remain closed at physiological pH7.4 and open upon extracellular acidification to ≤ pH6.8 

(C-O transition). They undergo steady-state desensitization (SSD) upon persistent exposure to 

mild acidic pH6.9-7.2 that can desensitize the channel activity directly from closed to 

desensitized state without opening (C-D transition). In some ASIC subtype like ASIC2a and 

ASIC3, the desensitization is not complete, and a sustained current is observed. As an example, 

a typical current trace of the activation followed by desensitization of human ASIC1a from a 
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patch-clamp recording is shown (Figure 2A).  

Figure 2. Schematic illustration of current trace and pH dependence curves. A. The current trace of ASIC1a 

from whole-cell patch-clamp experiment at -60mV on CHO cells expressing ASIC1a. Green line represents the 

channel activation, blue line for desensitization during prolonged acidification and black line for the return towards 

resting state. Underneath, the boxes labelled with C (Closed), O (Open) and D (Desensitize) stand for the different 

functional states. B. Stead-state desensitization (SSD) curve (left) and activation curve (right) of ASIC1a. Steady-

state desensitization is a state of ASIC1a, where it enters the desensitized state when exposed to pH less than pH7.4 

and pH greater than the pH required for minimal activation of the channel for a few seconds. For obtaining SSD 

curve (left), a control was performed by applying conditioning pH7.4 for 60s and channel activation by pH5 for 10s. 

Following each control application, different conditioning pH, from pH7.8 to pH6.8 was applied for 60s and the 

channel was activated by pH5 for 10s. The peak currents obtained from different conditioning pHs were normalized 

to peak current obtained from the control condition. The normalized peak currents were plotted as a function of the 

conditioning pHs and fitted to obtain the SSD curve. For the activation curve (right), the channel was exposed to 

extracellular conditioning pH7.4 for 60s, followed by activation with different test pHs (pH6.8 to pH5) for 10s. 

Conditioning with pH7.4 was applied between each activation for 60s. The normalized values of the peak current 

were obtained from different pH condition for activation and it is plotted using the Hill equation to obtain the 

activation curve. 

 

The sensitivity of the channel to the H+ is defined by the pH dependence. The pH-

dependence differs based on the subunit composition. The channel activity for activation is 

defined by pH dependence of activation (Figure 2B, right) and the half-maximal activation is 

defined by pH50 (half-maximal activation). Whereas, desensitization of the channel is defined by 

steady-state desensitization (Figure 2B, left) and half-maximal desensitization is defined pHD50 

(half-maximal steady-state desensitization). Half-maximal activation is obtained by fitting the 

normalized values of activation from experiments to Hill equation, I=Imax/(1 + 

(10−pH50/10−pH)nH), where Imax is the maximal peak current amplitude and nH is the Hill 

coefficient. An analogous equation is used for fitting the SSD values. Table 1 shows the pH50 

and pHD50 values of homomeric ASICs. 
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The cloned ASICs were shown to be Na+-selective49-51. Selectivity for Na+ over K+, PNa
+/PK

+, is 

≤10-folds and for ASIC1a homotrimers, which are permeable to the Ca2+ ion has PNa
+/PCa

2+ ≥1516. 

Other than Na+ and Ca2+, ASIC is also permeable to H+, however, the magnitude is negligible, 

and it causes tachyphylaxis in homomeric ASIC1a. Tachyphylaxis is a phenomenon that leads to 

rapid diminishing of the response of the channel to successive doses of agonist. It is believed that 

H+ permeates through the channels that lead to a long-lived inactive state. The tachyphylaxis of 

ASIC1a activity depends on extracellular pH and Ca2+ ion concentration, intracellular pH, 

duration of acidic stimulation52.  

1.1.3. Physiological and pathological roles of ASICs 

1.1.3.1. Roles of ASICs in the CNS 

1.1.3.1.1. Acidosis-associated ASIC activation 

Maintenance of the body fluid pH in the range between pH7.35-7.45 is an important 

parameter for normal functioning and several buffering systems play important role in the 

exchange of H+ between cellular components53. For example, lactic acid produced from glucose 

and glycogen breakdown in skeletal muscles, pyruvic acid as an intermediate metabolite of 

glycolytic system, and beta-hydroxybutyric acid, a ketone body as a result of fatty acid 

metabolism. Compared to the extracellular pH, intracellular pH is slightly acidic in most living 

organisms. In the CNS, maintenance of the pH homeostasis is a key requirement for proper 

neurotransmissions. The pH in the CNS is 0.1-0.2 units more acidic than that of the body fluids. 

ASIC subtypes pH50 activation pHD50 SSD Localisation 

ASIC1a 6.6 – 6.2 ~7.2 CNS, PNS 

ASIC1b 6.3 – 5.9 ~6.7 PNS 

ASIC2a 4.9 – 4.0 ~5.6 CNS, PNS 

ASIC2b NA NA CNS, PNS 

ASIC3 7.7 – 6.4 ~7.1 PNS 

ASIC4 NA NA CNS 

Table 1. pH50 of ASIC 

activation and desensitisation. 

The values are represented 

based on different articles. 

pH50 - Half-maximal 

activation of the channel, 

pHD50 - Half-maximal steady-

state desensitisation, NA - Not 

applicable. Table adapted2. 
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In the CNS, ASIC1a, -2a, and -2b are prominently expressed and among this ASIC1a is more 

pH-sensitive. Slow changes in the extracellular pH from pH7.4 to pH7.2-6.9 can desensitize the 

ASICs, while more rapid acidic pH change should activate ASIC1a. However, the time scale of 

pH change in the synaptic terminals depends on the situation, like rapid acidification (in ms or 

less) during vesicle release, followed by slower alkalosis (~20-200 ms) and slower acidosis (in 

minutes). pH changes not only activate ASICs, but also other ion channels like two-pore K+ (K2P) 

channel, P2X receptors, BK channel, and TRPV channels2. The V-H+-ATPases shuttles protons 

into synaptic vesicles and lowers their pH to ~5.554. The proton gradient results in 

neurotransmitter uptake by synaptic vesicles. The fusion of synaptic vesicle with the to pre-

synaptic membrane releases the neurotransmitter, causing acidification of the synaptic cleft 

occurs (in a millisecond or less). This led to the activation of ASIC1a localized at the post-

synapse. After acidification, the local environment undergoes   slower alkalization. Since changes 

in extracellular pH regulate ASICs activity, ASICs are considered as a potent pH sensor 

regulating various physiological processes. Ex vivo studies showed that 1) A drop in the 

extracellular pH of mouse CNS neurons produced acid-induced action potentials by ASIC1a 

expressing neurons, and ASICs are involved in seizure inhibition55, 2) Presynaptic stimulation in 

the lateral amygdala produces excitatory post-synaptic ASIC1a current56, 3) Genetic disruption 

of ASIC1a results in the absence of acid-induced current (pH6.0-5.0) in hippocampal, cortical 

and amygdala nureons35,36,57. 

1.1.3.1.2. Synaptic plasticity and spatial memory 

The expression of ASIC1a is prominent in the regions of the CNS with high synaptic 

density. The activation of postsynaptic ASIC1a by extracellular acidification through presynaptic 

vesicular release in a controlled microdomain is shown to influence the synaptic plasticity. 

Studies using pH-sensitive fluorescence indicators have shown presynaptic stimulation leading 

to acidification of the synaptic cleft and light-induced activation of proton pumps causing 

extracellular acidification58,59. Initially, a study showed that loss of ASIC1a in the mice 
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hippocampus impaired the long-term potentiation (LTP), spatial learning and eye-blinking 

condition which defines the underling role of ASIC1a in synaptic plasticity. The mice were 

generated by embryonic deletion of ASIC1. The loss of postsynaptic ASIC1a in hippocampus 

impaired the high frequency stimulated long-term potentiation due to reduced excitatory 

potentials and NMDA receptor activation36. Presynaptic stimulation transiently reduced 

extracellular pH in the amygdala and ASIC present in lateral amygdala pyramidal neurons were 

activated, generating postsynaptic ASIC current and LTP56. The contrary, another study showed 

ASIC1a was not required for hippocampal long-term potentiation (LTP) and spatial memory60. 

This effect was observed in the ASIC1a KO mice generated from selective deletion and breeding 

of transgenic mice ASIC1aflox/flox and Nestin-cre. The difference in the LTP effect might originate 

through the strategy used for deletion of ASIC1a. In hippocampal neurons, the magnitude of LTD 

induced by application of mGlu1 receptor agonist (S)-3,5-Dihydroxyphenylglycine (DHPG) or 

by paired-pulse low-frequency stimulation (PP-LFS) was mediated by ASIC1a and the LTD was 

inhibited by PcTx1, suggesting the role of ASIC1a in mGLu receptor-mediated LTD61. 

Involvement of ASICs in synaptic transmission was evaluated from hippocampal neurons from 

WT and ASIC knockout (KO) mice, where the probability of neurotransmitter release was higher 

in neurons from KO mice, suggesting the influence of ASIC1a in glutamatergic synaptic 

transmission through presynaptic mechanism62. In medial nucleus of the trapezoid body 

(MTNB), drop of extracellular pH induced postsynaptic ASIC current and it was inhibited by 

PcTx1 and ASIC1a KO mice. Independent of glutamergic current, action potential was still 

elicited by extracellular acidification. During high-frequency stimulation (HTS), lack of ASIC1a 

resulted enhanced short-term depression (STD) of glutamergic EPSCs63. Thus, ASIC1a has a role 

in improving synaptic signaling. 

1.1.3.1.3. Fear conditioning 

ASIC1a is widely expressed in the CNS and several studies have shown the role of ASIC1a 
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in fear-related behavior. Higher expression of ASIC1a was found in amygdala neurons and 

elicited greater current density than hippocampal neurons and disrupting the ASIC1a gene 

eliminated the H+-induced current. Effect of ASIC1a on amygdala-dependent behavior showed 

ASIC1a KO mice displayed a deficit in cue and context fear conditioning35. Targeting the ASIC1a 

reduced innate fear and altered the neuronal activity. Disrupting the ASIC1a in mice resulted in 

reduced fear in the open field test and with predator odor trimethylthiazoline (TMT). Similarly, 

intracerebroventricular administration of PcTx1 reduced TMT-evoked freezing in wild-type mice 

and not in the ASIC1a KO mice, suggesting ASIC1a mediated fear conditioning. The fear circuit 

activity was assessed with an expression of the c-fos gene as fear circuit marker. The results 

showed loss of ASIC1a reduced the TMT-evoked fear-related behaviour and led to a loss of c-

fos expression in the amygdala and dorsal periaqueductal gray64. Fear memory was also assessed 

by restoring the ASIC1a using viral vector-mediated gene transfer in basolateral amygdala of 

ASIC1a KO mice and exposure of the mice to TMT odor. Together, these experiments identified 

the re-expression of ASIC1a in the basolateral amygdala was enough to rescue the conditioned 

fear memory, but not the unconditioned fear response. However, ASIC1a might also play a role 

in unconditioned fear response, as ASIC1a is also expressed abundantly in the bed nucleus of the 

stria terminalis (BNST) which is involved in unconditioned fear response65. In a different 

approach, human ASIC1a was overexpressed in mice using synapsin 1 promoter. hASIC1a 

interacted with endogenous mouse ASIC1a and distributed in the synaptosome. The amygdala 

showed prominent expression ASIC1a and overexpressing it enhanced the fear conditioning66. 

All these studies suggest the role of ASIC1a in fear conditioning and anxiety development. The 

fear learning and activity-induced LTP in the basolateral amygdala were reduced in ASIC1a KO 

mice, in which ASIC1a was selectively deleted in GABAergic cells67. Thus, the region of 

basolateral amygdala drives the fear switch and reward responsive behavior by influencing spatial 

memory. 
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1.1.3.1.4. Acidosis-induced neurodegeneration 

Neurodegeneration is a progressive loss of the structure and function of neurons, resulting 

in loss of neuronal activity. A common feature of neurological conditions such as ischemic stroke, 

epilepsy, trauma is a drop in the tissue extracellular pH. Inflammation and metabolic stress may 

also result in a drop in the extracellular pH. Reduced blood flow in the brain during a stroke, can 

reduce the oxygen supply leading to anaerobic respiration utilizing glucose to produce lactate, in 

turn inducing subsequent acidosis. Some studies provide the evidence for homomeric ASIC1a 

conducting Ca2+ and acidosis-induced neuronal injury57,68. Using an in vivo ischemic animal 

model, where ischemia was induced by middle artery occlusion (MCAO) and the role of ASIC1 

blockade in neuroprotection was established. Blockade of ASIC1a by amiloride or PcTX1 or 

using ASIC1 KO in mice showed a reduction in infarct volume of the brain. These studies 

suggested the blockade of ASIC1a can provide additional protection when NMDA receptors were 

also blocked57,69. While the above-mentioned studies performed experiments with transient 

MCAO model, neuroprotection was also demonstrated after permanent MCAO69. Alteration of 

the brain tissue pH after ischemia was measured continuously in the ipsilateral and contralateral 

parietal cortex of mice after MCA suture removal.  The pH values dropped to pH6.5 after MCAO. 

The acidosis was attenuated by i.c.v administration of NaHCO3 or blocking of ASIC1a by i.c.v 

or i.n administration of PcTx1 reduced the infarct volume, and additional protection was obtained 

by blocking NMDA receptors with memantine69. In a related study from rat cortical neurons, 

ASIC1a was inhibited using either amiloride or PcTx1, in a combination setting of ischemia and 

acidosis resulting in decrease of intracellular Ca2+ elevation. However, at very low pH, PcTx1 

and amiloride failed to block elevated steady-state Ca2+ levels in response to ischemia with 

acidosis. Also, the sustained current component activated in response to combined ischemia and 

acidosis was not inhibited by ASIC1a inhibitors. This suggests that elevated calcium levels due 

to acidosis was in part due to proton dependent activation of ASIC1a70. Yi-Zhi Wang et al 

suggested neuronal necroptosis through ASIC1a. Acidic stimulation recruits the serine/threonine 



19 

 

 

kinase receptor interaction protein 1 (RIP1) to the ASIC1a c-terminus, causing RIP1 

phosphorylation and subsequent neuronal death. Deletion of the ASIC1a gene prevented the 

phosphorylation of RIP1 and brain damage caused by increased acidity due to stroke71. A 

comprehensive review by Wemmie J.A. et al provides detailed information on ASIC associated 

neurological diseases44. 

1.1.3.1.5. Epilepsy 

ASICs were investigated for their role in status epilepticus (SE), a condition in which 

neuronal overexcitation leads to acidosis. Rats were treated with pilocarpine, a cholinergic agent 

to induce SE. Reduction in the mRNA expression of ASIC1a and ASIC2b were observed in CA1-

2 of the hippocampus, which might blunt the pH-dependent responsiveness34. Inhalation of 10% 

CO2 after the onset of tonic-clonic seizures induced hypercarbic acidosis in vivo mouse model 

stopped epileptic activity and inhibited seizures. Acidosis activated inhibitory interneurons and 

shortened the seizure duration55. Under glucose hypometabolism, ASIC2a overexpression was 

observed in an epileptic model of rat hippocampal slices72. A high concentration of amiloride 

administered in an animal model has also been shown to inhibit pilocarpine-induced seizures via 

ASICs73,74. It has been postulated that the hydrophilic nature of amiloride may prevent it 

from crossing the blood-brain barrier contradicting the seizure termination through ASIC 

inhibition by amiloride. Though amiloride reaches the brain, they are known to block ENaC and 

sodium-hydrogen exchanger (NHE) other than ASICs. Thus, seizure inhibition may occur also 

through Na+/H+ exchanger, but anti-epileptic mechanism was shown associated with deactivation 

of ASIC1a and ASIC3 instead of NHE in rats73. Also, the role of amiloride in enhancing the 

anticonvulsant effect of an antiepileptic drug in mice has been demonstrated75,76. 

1.1.3.2. Roles of ASICs in the PNS 

1.1.3.2.1. Nociception 

Nociception involves the transmission of neuronal signals induced by nociceptive stimuli 
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to the CNS. It is useful as a warning system to avoid excessive damage. The different stimuli, 

either chemical or physical, can activate different molecular mechanisms involving activation of 

different types of receptors77. To study the pain signaling, ASIC3 knockout mice was generated 

by Chen. C et al. Mutant mice displayed normal health and responded to sensory stimuli, however 

they displayed reduced latency to the onset of pain response with moderate to high-intensity 

stimuli78. To avoid heteromultimerisation of ASIC subunit, a dominant-negative form of ASIC3 

transgenic mice which was generated to inactivate all native neuronal ASIC currents by 

oligomerization. The transgenic mice displayed more sensitivity to mechanical pain and chemical 

stimuli79. The two studies showed rather an anti-nociceptive effect of ASIC3. Several studies 

have shown the role of ASICs in nociception80-83. While a specific knockdown of ASIC3 using 

intrathecal administration of siRNA in rats produced analgesic effects against primary 

inflammation-induced hyperalgesia84. Similarly, injection of MitTx in mice activated ASIC1a 

channel on capsaicin-sensitive nerve fibers and evoked ASIC1a dependent pain-related 

behaviour85. Intraplanar injection of mambalgin-1 in mice evoked peripheral analgesic effects 

through ASIC1b86. The same research group showed mambalgin-1 inhibiting ASIC1a and 

ASIC1b in neuropathic and inflammatory pain87. Peripheral ASIC1b and ASIC3 were inhibited 

by diminazene and APETx2 to elicit an antihyperalgesic effect in rats injected previously with 

Freund’s complete adjuvant (FCA) in the paw88. In rats, subcutaneous injection of moderate pH7 

or in combination with hypertonicity and arachidonic acid (AA) increased the excitability of 

ASIC3-expressing neuron and induced action potential firing, which was totally inhibited by 

APETx2, producing analgesic effect against primary inflammation84. In the study, in which GMQ 

was identified as a non-proton activator of ASIC3, it was shown that injection of GMQ in mouse 

paw elicited pain-related behaviour89. Exposure of the DRG neurons to acidic pH-induced action 

potentials and subsequent application of either diclofenac, salicylic acid, or flurbiprofen 

diminished the number of action potential42. Similarly, the endogenous molecules 

lysophosphatidylcholine (LPC) and AA were shown to activate hASIC3 without extracellular 



21 

 

 

acidification90. These findings suggest the potent role of ASICs in peripheral pain perception. 

In the CNS, intrathecal and intracerebroventricular (ICV) injection of PcTx1 in ASIC1a 

expressing mice showed an antinociceptive effect in tail immersion and hot plate test. The 

involvement of ASIC1a was also confirmed by intrathecal injection of ASIC1a-antisense in wild-

type mice and it decreased the thermal nociception91. The brain-derived neurotrophic factor 

(BDNF) promotes ASIC1a expression and activity via the downstream phosphoinositide 3-kinase 

(PIK3)-protein kinase B (PKB/Akt) cascade. BDNF was found to sensitizes ASIC1a function by 

enhancing its surface expression Both WT and ASIC1-/- mice developed mechanical 

hyperalgesia, however, mechanical hyperalgesia was sustained in WT mice, suggesting ASIC1a 

role92. 

1.1.3.2.2. Mechanotransduction 

Mechanotransduction is a conversion of the mechanical force to electrical signals. The 

molecular topology of ASIC resembles the mechanosensitive channel MEC-4 and MEC-10 from 

C.elegans. Among ASICs, the role of ASIC1a is less addressed in the cutaneous 

mechanosensation. Activation of ASIC1a in mice by MitTx resulted in pain-related behavior in 

hind paw85. The role of ASIC1a in visceral and not in cutaneous mechanosensation was supported 

by a study performed on gastroesophageal and cutaneous afferent fibres in mice93. Moving on to 

ASIC2, it was shown that ASIC2 deficient mice developed hypertension and impaired 

mechanosensation94. Knockout of ASIC2 decreased the sensitivity to rapid-adapting (RA) and 

slow-adapting (SA) mechanoreceptor95. ASIC3 KO mice are very sensitive to mechanical 

pressure78. A triple knockout of ASIC1a, ASIC2 and ASIC3 in mice enhanced the cutaneous 

mechanosensation96. There are several other studies from different organs elucidating the role of 

ASIC in mechanosensation, which is well described in the review97. 
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1.1.4.  Structure of ASIC 

1.1.4.1.  General topology 

ASIC subunits are composed of 500 to 560 amino acid residues. Until 2007, the membrane 

topology of ASIC was described based on secondary-structure predictions and biochemical 

analysis. The first crystal structure of ASIC obtained from chicken revealed three individual 

subunits assembled to form the channel. ASIC subunits consist of a large extracellular domain 

linked to the 2α-helices, the transmembrane domains (TM1 and TM2) per subunit, and 

intracellular C- and N-terminal domains. The extracellular domain of each subunit is compared 

to a clenched hand holding a ball, where the domains are 

named as a finger, thumb, palm, ß-ball, wrist, and 

transmembrane domain (TM) forming the pore. The 

interface between thumb, ß-ball and finger contains many 

negatively charged amino acids, and this region is 

collectively called acidic pocket. In terms of sequence 

similarity, cASIC1 shares 90% homology with hASIC1a, 

mASIC1a and rASIC1a. The percentage of sequence 

homology between different ASIC subunits are shown in 

Table 1 of the appendix. 

1.1.4.2. Crystal structure of ASIC1 

ASIC was very first crystallized from chicken ASIC1 (PDB ID:2QTS) at low pH5-6 in 2007 

and it was obtained from a non-functional form with N- and C-terminals truncated29. By 2009, 

crystallized cASIC1 (PDB ID: 4NYK) was obtained at low pH6.528. The first ASIC1a structure 

(2QTS) was obtained from a non-functional channel having truncated C-terminal, while later 

(4NYK) was determined from a functional channel with truncated-terminal in the desensitized 

state and a closed pore. In 2012, the crystal structure of cASIC1 in complex with Psalmotoxin 

Figure 3. Crystal structure of ASIC 

subunit in the closed state. Chicken 

ASIC1a (PDB: 5WKU) single subunit 

represented with a domain organization. 
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(PcTx1), a toxin from the spider, was obtained at 3.0Å, low pH5.5, with truncated C- and N-

terminals resulting in a non-functional form (PDB ID: 3S3X)19. PcTx1 increases ligand affinity 

of ASIC1a and it is a gating modifier, as it shifts the pH dependence of activation and 

desensitization to alkaline values26,98. In the same year, two different crystal structures of cASIC1 

in complex with PcTx1 were resolved at 2.8Å, low pH5.5 (PDB ID: 4FZ0) and 3.3 Å, high 

pH7.25 (PDB ID: 4FZ1)20. The structure at high pH7.25 had a large pore diameter of ~10Å and 

the channel in the presence of 1µM produced a non-selective current at pH7.25, while the 

structure obtained at low pH5.5 had a uniform lining of the pore with hydrophobic residue and 

the channel resulted in Na+-selective and amiloride-sensitive current when activated by pH5.5 

with 100nM PcTx1. With these structures, it was hypothesized that the channel opens through an 

expansion of the extracellular vestibule and amino acid rearrangements in the subunit interface. 

Likewise, cASIC1 was crystallized with a toxin named MitTx, from black mamba snake at 3.6 

Å in the open state (PDB ID: 4NTW)18. The TM2 domain was identified with a bend at GAS 

motifs.  Having the toxin-bound open state and desensitized state crystal structures, the closed 

state crystal structure of cASIC1at 3.7Å became available in 201817. This is the only known 

crystal structure in the closed state (PDB ID: 5WKV, with Ca2+ and PDB ID: 5WKU, with Ba2+) 

(Figure 3). These crystal structures have provided information on state-dependent conformations, 

yet conformational changes during channel activation remain elusive. This year, two more   

crystal structure were added to pre-existing structures. Yoder.N and Gouaux.E developed cryo-

EM cASIC1a structure both in high and low pH. The structure in resting and desensitized channels 

reveal re-entrant loop at N-terminal that contains highly conserved ‘His-Gly’ motif. It implicated 

the importance of re-entrant loop lining the ion permeation pathway in gating and ion-selectivity 

44. For the very first time, a human ASIC1a cryo-EM structure and hASIC1a-Mamba1 complex 

at a resolution of 3.56Å and 3.90Å. It was shown that mamba1 binds to hASC1a in a closed state 
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and reduces the proton sensitivity by trapping the channel in a closed state. Comparison of closed 

state structures of cASIC1a and hASIC1a revealed minor deviation between the structures 45. 

1.1.4.3. State-dependent conformational changes in ASIC1a 

The conformation changes of ASIC1a domains is state-dependent. In the closed state, the 

channel adopts a conformation with the thumb domain facing away from the central axis and 

finger domain, thereby holding the acidic pocket in an extended conformation, and a closed 

pore24. Upon activation, a structural rearrangement has been postulated at the α4 and α5 of the 

thumb helices, where α5 makes a lateral pivot towards palm domain of neighboring subunit. This 

rearrangement of the thumb domain brings the residues of acidic pocket closer upon protonation 

of the acidic residues for the formation of carboxyl-carboxylate pairing to stabilize the interface 

between thumb, finger and palm domains. Upon the collapse of acidic pocket and stable subunit 

interface formation, two different β-strands of the palm domain, β1 and β12 undergo a small 

angular twist leading to an outward displacement of the TM1 and TM2 domains. These structural 

rearrangements lead to expansion of the pore and Na+ ions entry. 

Figure 4. Theoretical conformational changes during ASIC activity. Conformational changes predicted from 

different experimental approaches and crystal structure. Cartoon representation of two of the three subunit of 

ASIC1a in closed, open and desensitized state. In closed state, acidic pocket resides with an extended conformation 

of thumb facing away from the β-ball and finger domain. Transmembrane domain in the closed state adapts 

constrained conformation and shuts the gate for passage of Na+. Protonation events (middle) marked with + symbol, 

brings thumb domain closer to β-ball and finger domain, and allows the passage of Na+ ions through expanded 

transmembrane domain. During channel desensitization (right), substantial rearrangements in the acidic pocket, and 

relaxation of palm and transmembrane domain like in closed state occurs. Black arrow- conformational changes 

observed from crystal structure and red arrow- Evidence of conformation changes observed from voltage-clamp 

fluorometry. Figure from Vullo S and Kellenberger S, 201946. 

When the channel is persistently exposed to acidification, it results in the channel desensitization 
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due to the relaxation of the lower palm towards the central vertical axis and lateral displacement 

of TM domains, thereby adopting a closed pore. During desensitization state, L415 and N416 in 

the β11- β12 linker rotate 180°, thereby uncouples the upper ECD from the lower channel 

domains17. A recent functional study found a residue Q276, located in the middle of β9 strand 

works together with the rotation of L415 and N416, and compression of β11- β12 linker by 

locking them to achieve steady-state desensitization under low-pH. Substitution of these three 

residues results in incomplete or no desensitization99. The desensitized state adapts the relaxed 

conformation of the wrist and TM domains like the closed state and a collapsed acidic 

pocket like in the open state conformation100. A recent functional study also showed that 

mutating all the negatively charged residues in acidic pocket still produced transient currents 

upon extracellular acidification. This suggests that pH sensing occurs in the acidic pocket that 

collapses during channel activation but not the driving force for channel activation. Activation 

of the channel depends on the protonation of multiple residues in different domains. Mutations 

in the acidic pocket produced an acidic shift in the pH50 of activation, an alkaline shift in the 

pHD50 and decrease in the Hill coefficient of activation, but not SSD, thereby involved in fine-

tuning of pH dependence51. Although, the conformational changes are explained with the help of 

crystal structures and functional studies51,99,101, the mechanism of channel activation upon 

protonation is yet unknown. A hypothetical scheme of channel activation and desensitization by 

extracellular acidification is shown in figure 4. 

1.1.5. Pharmacology of ASICs 

The pharmacology of ASICs comprises of a wide range of compounds, ranging from small 

synthetic to natural molecules, endogenous peptides, animal toxins and ions. 

1.1.5.1. Synthetic compounds 

Amiloride is a clinically used diuretic for the treatment of hypertension and heart failure. It 

is a well-known inhibitor of ENaC with an IC50 of 0.1-0.3µM and it blocks non-selectively ASICs, 



26 

 

 

and exchangers like Na+/H+ and Na+/Ca2+ 102. The IC50 of ASIC inhibition ranges from 5-100µM 

depending on the ASIC subunit composition103. Amidine A-317567 is a small molecule 

having similar potency as amiloride with an IC50 of 2-30μM; its efficacy has been proven both 

in vitro and in in vivo pain models104. A few drugs of the non-steroid anti-inflammatory drugs 

(NSAIDs) class like salicylic acid, ibuprofen, flurbiprofen, aspirin, diclofenac, are also known to 

produce a significant inhibitory effect on ASIC activation (IC50 92-350 μM)42. Antiparasitic drugs 

like diminazene (IC50 ~0.2-0.8μM), hydroxystilbamidine (IC50~1.5μM), and pentamidine 

(IC50~40μM)105 are also potent inhibitors of ASICs. Amiloride binds to the pore entry of 

ASIC1a and ASIC3106, while diminazene involves both allosteric modulation and pore block in 

ASIC1a107. The modulatory effect by diminazene is caused by binding to Glu residue at 79 and 

418 (mouse ASIC1a numbering) of lower palm domain that undergoes structural rearrangement 

during channel opening. Diminazene is also shown to inhibit ASIC subtypes like ASIC1b, -2a, 

and -3 via open-channel inhibition88. A novel small molecule named NS383 was identified as to 

inhibit ASIC1a and -3 in pH-dependent manner (≥ pH6.5) at a sub-micromolar concentration 

(IC50 ~0.61-2.2 μ M)108. 2-guanidine-4-methyl quinazoline (GMQ) is a small molecule containing 

a guanidium group and a heterocyclic ring. It was shown as the first non-proton ligand to activate 

ASIC3 at physiological pH 7.489, and later as a modulator of ASICs106. However, GMQ does not 

activate ASIC1a, ASIC1b or ASIC2a at physiological pH 7.4. At a concentration of 1mM, GMQ 

potentiates the sustained current of ASIC3. This is due to the shift in the pH-dependence of 

activation to alkaline values and of the pH-dependence of desensitization to acidic values. GMQ 

at high concentration inhibits ASIC current by pore block. Binding of GMQ to pore region, where 

amiloride is known to bind was confirmed by mutagenesis and other residues in the pore region 

of ASIC1a were also proposed to be involved106. Endogenous compounds like the arginine 

metabolite agmatine and can exert similar effect like GMQ on ASIC389,109. GMQ and amiloride 
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shift the pH-dependence of activation and desensitization in a similar manner for ASIC1a and 

ASIC3, and pharmacological modulation depends on the extracellular domain110. 

1.1.5.2. Endogenous modulators 

Divalent metal ions (Ca2+, Zn2+, Mg2+) are endogenous modulators of ASICs. They exert 

different roles in the modulation of the ASICs. Ca2+ and Mg2+ exert an acidic shift of the pH 

dependence of activation and desensitization. In contrast, Zn2+ inhibits ASIC1a, ASIC1b and 

ASIC3 current111 and potentiates ASIC2 current112. 

ASICs are also a target of neuropeptides. The FMRFamide-gated Na+ channel (FaNaC), a 

molluscan ion channel and the Hydra-RFamide gated Na+ channel (HyNaC) are FMRFamide 

peptide-activated channels that belong to ENaC/Deg superfamily of ion channels113. The 

FMRFamide peptide is not endogenously synthesised in mammals and its mode of action occurs 

mostly through G-protein coupled receptors. In fact, mammals do syntheses five similar peptides 

called FMRFamide-like peptides (RFRP), neuropeptide FF (NPFF), prolacting-releasing peptide 

(PrRP), Kisspeptin and pyroglutamylated RF-amide peptide. RFamide peptides potentiate the H+-

induced current, slow the desensitization and induce a sustained current in homomeric ASIC1a 

and ASIC3 (EC50 ~10-50µM), and not in ASIC2a114. The resulting sustained current is due to the 

shift in steady-state desensitization of the channel to acidic values. A few peptides structurally 

similar to FMRFamide, such as neuropeptide FF and SF also exhibit similar effects on ASIC1 

and ASIC3114. It was shown that the RFamide binds to the region of extracellular palm domain 

of ASIC1a contributing to conformational changes and slowing of desensitization115. The 

FMRFamide-related peptides slow the desensitization time course of ASIC1a and ASIC3116, and 

induce sustained current and acidic shift in the pH dependence of desensitization117. Two 

endogenous opioid neuropeptides, dynorphin A and big dynorphin enhance ASIC1a activity 

(EC50 ~30nm). Big dynorphin also enhances ASIC1b activity118. A recent study suggests that big 
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dynorphin binds to the acidic pocket of ASIC1a119. 

1.1.5.3. Animal toxins 

Apparently, many compounds have different roles in altering the ASIC activity. 

Interestingly, toxins act either as inhibitor/activator or modulator of ASIC activity. Psalmotoxin 

(PcTx1), a peptide of 40 amino acids obtained from the South American tarantula Psalmopoeus 

cambridgei120, the most potent hASIC1a specific inhibitor (IC50  ~1nM). PcTx1 is a 40 amino 

acid cysteine-rich peptide containing three disulphide bridges whose structure was resolved by 

NMR121. PcTx1 inhibits ASIC1a by binding to the acidic pocket. PcTx1 is a gating modifier as it 

shifts the steady-state desensitization curve towards alkaline values, which results in the channel 

desensitization at ≤ pH 7.498. One PcTx1 peptide binds deeply to the acidic pocket of each 

ASIC1a subunit. The peptide contains hydrophobic and charged residues on the surface. The 

hydrophobic patch of PcTx1 envelope around the α5 helix of ASIC1a and the basic cluster of 

PcTx1 interacts deeply into the acidic pocket25,27. 

MitTx-α/β a pain-inducing toxin obtained from the Texas coral snake Micrurus tener, 

activates ASIC1a and ASIC1b at pH7.4 (EC50~9-30 nM), ASIC3 (EC50 ≤ 800nM) and weakly 

activates ASIC2a85. MitTx consists of α and β-subunits, non-covalently associated and requires 

both subunit association for its activity. Like PcTx1, one molecule of MitTx binds to each subunit 

of ASIC1a by interaction with wrist, palm and thumb domain. The interaction site of β subunit of 

MitTx overlaps with PcTx1. The Phe14 of MitTx-α hook into lower thumb subunit interaction 

interface and Lys16 into the wrist. The interaction was shown with the crystal structure of cASIC1 

in complex with MitTx25. 

Mambalgin 1-3, is a 57-amino acid peptide, isolated from African black mamba 

Dendroaspis polylepis venom. Mambalgins do not have sequence similarity to PcTx1 and MitTx. 

It inhibits homomeric ASIC1a and heteromeric ASIC1a/2a and ASIC1a/2b (IC50 ~55-246nM). 

Mambalgin-1 is a gating modifier which binds to the closed state of the channel and induces 
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strong acidic shift to the pH dependence of activation86. Mambalgin2, which differ from 

Mambalgin1 only by one residue was shown to bind to the upper palm domain, palm domain of 

adjacent subunit and β-ball domain of ASIC1a122, which is close to PcTx1 binding site. 

APETx2 is 42 amino-acid toxin from sea anemone Anthopleura elegantissima and it inhibits 

homomeric and heteromeric ASIC3 (IC50~63nM-2µM)123. APETx2 rapidly and reversibly 

inhibits ASIC3 peak and sustained current at pH7.0. APETx2 binding site on ASICs is not yet 

identified, however it has been suggested to bind as like PcTx1 to the acidic pocket98. 

1.2.  Technical introduction to cross-linking approaches in proteins 

In my thesis, the hASIC1a channel activation mechanism was assessed using two different 

approaches. The section 1.2.1 describes the usage of an optical tweezer-based cross-linking 

approach and section 1.2.2 is about using monovalent and bivalent methane sulfonate 

compounds. 

1.2.1. Optical control of ion channels using thiol-specific optical tweezers 

Different types of optical approaches are available to study ion channels including 

photochemical, genetic and hybrid approaches. Photochemical approaches comprise the use of 

caged compounds, photo-switchable ligands, and photo-affinity labels58,59,124-126.  

In my thesis work, 4,4′-Bis(maleimido)azobenzene (BMA), an azobenzene-based optical 

tweezer was used to determine the structure-function relationship of ASIC1a channel activation. 

Depending on the wavelength of light applied, BMA can adopt the cis- or trans-conformation. 

Compounds of this type contain, either one or two functional sulfhydryl-modifying groups that 

will attach to introduced cysteine residues in the channel via covalent bond(s). A molecule with 

one sulfhydryl-reacting group, could be used to attach a functional group, the orientation of 

which could then be controlled by light. Some molecules contain two cysteine-binding functional 

groups, one on each end, and can form a cross-link. Photo-isomerization of azobenzene to trans-

cis isomerization is proposed to consist of rotation, inversion, concerted inversion or inversion-

assisted rotation of central azo bond127. Azobenzene-containing compounds like azobenzene-
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trimethyl ammonium derivative (MEA-TMA)128, quaternary ammonium–azobenzene–

quaternary ammonium (QAQ)129, 4,4´-bis(maleimido-glycine) azobenzene (MAM)130, and 4,4′-

Bis(maleimido)azobenzene (BMA)131 have been used to previously to study ion channels. 

In MEA-TMA, MEA binds covalently to engineered cysteine residues. TMA is a cation 

moiety, which can be used to block channels in a voltage-dependent manner. A cysteine residue 

was engineered in the conduction pathway of P2X2 channel to place MEA-TMA close to the 

channel pore128. After attachment of the molecule, the light was used to change the orientation 

of the TMA group and to thereby block the channel or remove the block. This molecule was used 

to study the role of P2X receptor in neuronal activity128. QAQ is another photoisomerizable 

molecule having a central azobenzene moiety coupled on both sides with quaternary ammonium 

groups. When QAQ is delivered intracellular, it reversibly blocks most of the Na+, Ca2+ and K+ 

current in trans configuration and the blockade can be released in the cis configuration. 

Structurally, QAQ resembles lidocaine and its derivative QX-314 that act as a local anaesthetic 

by blocking Na+ channels129,132. This molecule was used for understanding signaling mechanisms 

in acute and chronic pain129. MAM is a semi-rigid photo-switchable azobenzene that was used 

to cross-link engineered cysteines in P2X2 receptor to elucidate the pore opening 

mechanism130. BMA is a cross-linking molecule like MAM having shorter functional arms. 

Upon illumination with 360nm and 440nm light, BMA can adapt its conformation to cis and 

trans state, respectively (Figure 5). The absorption spectrum of BMA consists of a strong near 

UV band (  22000 L mol-1 cm-1) and a weaker band in the visible region (  400 L mol-1 cm-

1) A thermal isomerization step that occurs in fractions of ps is well described by Bandara et al 

127. The end-to-end distance of the molecule is 22Å in the trans-state and 13Å in the cis state. 

Browne L. E et al used BMA to tether with engineered cysteines in the transmembrane domain 

of rP2X2, rP2X3 and hASIC1a. Application of 440nm light produced a current in rP2X2-P329C 

rP2X2, rP2X3-P320C, hASIC1a-I428C and -G430C131. The residues I428 and G430 are in TM2 
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domain of hASIC1a. The light-induced current in both mutants had 15% of maximal current 

induced by pH5. But it was not tested whether cross-linking by BMA produced light-induced 

current.  

Therefore, BMA was used in my thesis to extend the optical tweezer approach on the 

hASIC1a channel activation mechanism. For this strategy, cysteine mutations were engineered 

in different domains of the hASIC1a, and a specific wavelength of light was applied on the 

cysteine mutants tethered with BMA to exert mechanical force to open the channel. First, it was 

tested whether BMA attached to different parts can open the channel, and in the second series of 

experiments, the modulatory effect of BMA upon application of 440nm and 360nm light was 

tested. The current ratio at IpH6.x/IpH5 and peak current at IpH5 were measured under the 

standard condition and were later observed for changes by application of light. Cross-linking at 

transmembrane domain residues by BMA was tested using western blot analysis and no cross-

linking by BMA was observed.  

 

 

 

  

 

 

Figure 5. Structure of BMA. BMA in cis (left) and trans conformation (right) obtained upon application of 360nm 

and 440nm wavelength of light. 

1.2.2. Bismethanesulfonate-based cross-linking 

As an alternative approach to photoisomerizable BMA molecule, whose length can be 

modified by application of light, different lengths of bismethanesulfonate-based (MTS) cross-

linking compounds were applied. The length of MTS cross-linkers cannot be modified like BMA 

and it attaches on its both ends to cysteine residue through covalent sulfhydryl bond. MTS cross-

linking reagents are alkylthiosulfonates that favorably and rapidly form covalent bonds with 

cis conformation trans conformation 
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cysteine residues under mild conditions. The disulfide bond is reversible only under the 

exposure to reducing agents such as ß-mercaptoethanol, dithiothreitol (DTT) or tris(2-

carboxyethyl) phosphine (TCEP). The rate constant of disulfide bond formation is on the order 

of 105 M-1 sec-1 which facilitates rapid covalent bond formation with cysteine residues in the 

protein. MTS reagents can be classified either as charged, neutral, spin-labelled, fluorescently 

labelled, biotin-labelled, photoreactive labelled compounds and cross-linkers. However, mostly 

monovalent, and cross-linkers MTS reagents are used to study ion channel structure-function 

relationship.  

1. Charged or monovalent MTS reagents, like MTSEA, MTSET and MTSES are used in 

many structure-function relationship studies in diverse ion channels115,133-135. In a study, cysteine 

mutations were introduced at the N-terminus and in the transmembrane helices of ASIC1a. The 

engineered cysteine residues were then modified by application of MTSET, resulting in channel 

inhibition, suggesting that the mutated residues are part of pore134. A highly conserved region of 

the extracellular part of ASIC1a that forms a contact region between the finger, the adjacent β-

ball and the upper palm domain was found important for channel function as application of 

MTSET, MTS-TAE and MTS-TBAE reduced current amplitudes in a state-dependent manner, 

suggesting conformation changes during channel inactivation136. To map the proton binding site, 

MTSET was applied to acidic pocket and lower palm cysteine mutants and shown to reduce the 

proton affinity for activation137. Conformational changes in the lower palm of ASIC1a were 

assessed using MTSET, highlighting the contribution of the lower palm to 

desensitization115,138.Other than ASICs, MTS reagents were also used in studies with ENaC139, 

voltage-gated Kv1.3140,  and voltage-gated Nav1.5141. 
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2. MTS cross-linkers are compounds that react with cysteine residues on their two ends 

and can therefore cross-link two cysteine residues of the target proteins. These compounds are 

used as molecular rulers due to their availability in different lengths. Size differences make them 

apt for scavenging structural distances in the protein under different conformational states142 

(Figure 6). Cross-linking compounds had been previously used in some structure-functional 

studies, like determining the dimensions of the drug-binding domain in human P-glycoprotein142 

and organization of P2X1 receptor intracellular termini in closed and desensitized states143. Both 

the studies assessed the structural information through functional changes by application of MTS 

cross-linkers. In the earlier study, the drug-binding domain of human P-glycoprotein was 

determined using MTS cross-linkers142, while in the latter study, intracellular regions of hP2X1 

in the apo and ATP-bound desensitized states were examined using MTS cross-linker, which 

indicated a selective pattern the structural organization in the apo and desensitized state143.   

 

 

 

 

 

 

 

 

Figure 6.  Structure of MTS cross-linking and monovalent reagents. Cross-linker MTS: MTS-2-MTS, MTS-4-

MTS, MTS6-MTS, MTS-8-MTS, MTS-10-MTS, MTS-11-MTS, MTS-14-MTS and MTS-17; Monovalent MTS: 

MTSES, MTSEA-Biotin and MTS-PEO3-Biotin. 

Using monovalent and cross-linking MTS reagents, hASIC1a channel activation was 

evaluated. Cross-linker MTS reagents were applied in the oocyte expressing mutant hASIC1a, 

where maximal current and shift in the pH dependence of activation were measured. To 

differentiate the effect produced by MTS cross-linker on the half-maximal and peak current of 

hASIC1a, monovalent MTS reagents were used. 
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2. Scientific introduction to thesis projects  

Since the cloning of ASICs, much progress has been made to understand the physiological 

and pathological roles of ASICs. A lot of emphases are put on to understand the conformation 

changes in the structure associated with the channel activation mechanism. Determining the 

crystal structures of ASIC1a from closed, toxin-bound open and desensitized states has 

contributed some insight on putative proton binding sites, the key residues involved in ASIC 

gating. While the structure-function relationship studies on ASICs have provided more 

information on conformational changes occurring at different domains during ASIC activity, 

the channel activation mechanism is yet unclear. To better understand the structure-function 

relationship of ASIC1a activity, we wanted to address three different aspects in ASIC as follows 

1) As there is no potent and selective small-molecule available, that can inhibit ASIC activity, 

we tested derivatives of  GMQ, where GMQ is a known modulator of ASIC activity, 2) A 

hASIC1a clone containing a mutation to Asp of Gly212 was used over years as WT in many 

laboratories. However, this mutation occurs at a low frequency of 8.26 × 10−6 according to 

Exome Aggregation Consortium (ExAC). The ASIC1a containing Asp at 212 is located on the 

β-ball domain at a subunit interface, facing the thumb domain of a neighboring subunit. We 

then tested the biophysical and pharmacological properties of the channel between WT (G212) 

and the rare mutant (D212), 3) Using cross-linking optical tweezer BMA and MTS-based 

compounds, pair of residues were identified in hASIC1a involved in the channel activation by 

introducing structural constrain. 

 

 

 

 

3. Hypotheses 
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1. GMQ derivatives could provide better potency and subunit-dependent selectivity. 

2. Through the identification of functional differences between ASIC1a WT (G212) and mutant 

(D212), the results from previous studies in the background of ASIC1a-D212 can be 

interpreted correctly.  

3. By applying cross-linking approach and as consequence, introducing structural constraints 

between two residues, the domain or residues involved in the channel activation or 

modulation can be determined. 

 

 

4. Aims 

To test the hypotheses mentioned above, the aims of my thesis work are as follows: 

1. Identify potent GMQ derivatives with subunit-dependent selectivity and understand their 

structure-function relationship. 

2. Identify any functional differences of the biophysical and pharmacological properties 

between hASIC1a WT and the rare hASIC1a-G212D mutant. 

3. Identify cross-linked residues by BMA involved in the channel activation by applying 

mechanical force by light to activate the channel. Secondly, to apply cross-linking MTS 

reagents to hASIC1a containing engineered cysteine residues, to introduce structural 

constraints to identify residues involved in the channel activation.  

 

 

 

 

 

 

5. Results 
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5.1. Project 1 - Assessment of ASIC1a and ASIC3 activity by GMQ and its derivatives 

Article: Heteroarylguanidines as Allosteric Modulators of ASIC1a and ASIC3 Channels 

Authors: Omar Alijevic, Hassan Hammoud, Anand Vaithia, Viktor Trendafilov, Maud 

Bollenbach, Martine Schmitt, Frédéric Bihel and Stephan Kellenberger 

In this project, 2-Gaunidine-4-methly quinazoline (GMQ) and its derivatives having the 

guanidium group of GMQ as scaffold were evaluated for their efficacy on homotrimeric hASIC1a 

and rASIC3, and on heteromeric ASIC1a/2a and ASIC3/2a. Based on the experimental 

assessment, derivates containing quinazoline and quinoline induced an alkaline shift of the pH 

dependence of activation in ASIC3 and an acidic shift in ASIC1a similar to GMQ. In contrast, 2-

guanidinopyridines shifted the pH dependence of both ASIC1a and ASIC3 to acidic values. 

Compounds of this group had a higher potency for ASIC1a and ASIC3 inhibition than the parent 

compound.  Interestingly, a biphasic effect was identified when guanidino-quinolines and -

pyridines were used in ASIC1a. These compounds at higher concentration (IC50 > 100 μM) 

inhibited ASIC1a and ASIC3 currents, and at low concentration (EC50 ≈ 10 μM) potentiated 

ASIC1a, but not ASIC3. In ASIC1a/2a heteromers, only very few compounds induced a shift in 

the pH dependence of activation, while many compounds showed increased tendency of Icpd/Ictrl 

ratio at pH5.8 over IpH4.0. Only few compounds decreased the maximal peak amplitude. Almost 

none of the compounds produced a potentiation of heteromeric currents. Thus, heteromeric 

ASICs containing ASIC2a can possibly disrupt the binding pocket for many GMQ derivatives, 

thereby decreasing their efficacy to blocking effect. 

 

 

 

 

5.1.1. My contribution to the article 

This project was initially started by Dr. Omar Alijevic, a former PhD student in the lab. 
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After joining the group, I took over this project and performed many experiments with GMQ 

derivates to assess the gating and blocking effect on hASIC1a and rASIC3. Additionally, I had 

made experiments requested by the reviewer on heteromeric ASIC1a/2a and ASIC3/2a. I had 

established a protocol to identify the expression of heteromeric ASIC1a/2a and ASIC3/2a and 

assessed the effect of GMQ derivatives on them. Apart from doing the experiments, I had 

analyzed the data, contributed to making figures, and to the writing of the manuscript. 
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5.2. Project 2 - Investigation on the differences between WT hASIC1a and its rare 

mutant 

Article: Accelerated Current Decay Kinetics of a Rare Human Acid-Sensing ion Channel 1a 

Variant That Is Used in Many Studies as Wild Type 

Authors: Anand Vaithia, Sabrina Vullo, Zhong Peng, Omar Alijevic and Stephan 

Kellenberger 

 

In this project, our aim was to determine the difference between human ASIC1a WT (G212) 

and mutant (D212). The mutant ASIC1a-D212 occurs at a very low frequency of 8.26 × 10-6 

according to ExAC and the WT contains Gly at 212 position. Human ASIC1a-D212 was used by 

many laboratories over years as WT. We found that the WT ASIC1a (hASIC1a-G212) had slower 

current decay kinetics, higher surface expression and current amplitudes, 2-fold decreased IC50 

for Mambalgin1 and a smaller shift in the pH dependence of activation with 1mM GMQ 

compared to mutant hASIC1a-D212. Cl- ions are known to modulate the ASIC1a function144. 

Since 212 is close to the Cl- binding site145, we measured the maximal current amplitude, current 

kinetics and pH dependence of activation under the presence and absence of Cl- ion. We found 

that current decay kinetics was significantly slower in hASIC1a-G212 under 140mM Cl-/0mM 

SCN- compared to 0mM Cl-/140mM SCN. Similarly, under 140mM Cl-/0mM SCN- condition, 

the current decay kinetics was slower in hASIC1a-D212 but was 4 fold smaller than hASIC1a-

G212. Hence, the hASIC1a-G212 may not directly affect the Cl- binding but it alters the current 

decay kinetics. Additionally, the previous experiments performed in the lab with hASIC1a-D212 

construct were validated in the hASIC1a-G212 background and no difference was observed, 

suggesting the findings were conserved in both constructs.  
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5.2.1. My Contribution to the article 

I had performed experiments to measure the shift in pH dependence of activation in mouse 

and human constructs, surface expression, peak current amplitude, the kinetics of desensitization 

and recovery from desensitization, properties of heteromeric channels, the effects of toxin 

peptides and modulation by anion type. The article has 9 figures; I had performed the 

experiments shown in figures 2 to 6, except figure 3C, 3C and 5A. 
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5.3.  Project 3: Investigation of the activation mechanism of human ASIC1a channel by 

using cross-linkers  

Prepared manuscript for publication: Probing conformational changes during activation of ASIC1a 

by an optical tweezer and methanethiosulfonate-based cross-linkers 

Authors: Anand Vaithia and Stephan Kellenberger 

Acid-sensing ion channels (ASICs) are proton-gated voltage-insensitive Na+ channel, 

primarily activated by protons that initiate the conformational change towards the channel 

opening.  A functional ASICs are formed by homo- or heterotrimeric assembly of ASIC subunits. 

ASICs contain a large extracellular domain composed of domains namely finger, knuckle, β-ball, 

thumb and palm connected to the intracellular domain through the transmembrane domain. 

Activation of ASIC by protons comprises of conformational changes that are not completely 

identified. It is believed that conformational changes occurring in the extracellular domains are 

passed to the transmembrane domain leading to ion flow into the pore. To further explore the 

activation mechanism, two cross-linking approaches were applied, the optical tweezer BMA and 

MTS reagents. In the first approach, by application of light on BMA tethered to ASIC1a mutants, 

it was found that I428C from TM2 domain can undergo light-dependent activation without the 

formation of cross-link with adjacent subunit. No other mutants from TM domain or extracellular 

domains produced light-dependent channel activation. Application of light produced a 

modulatory effect in some mutants of hASIC1a-E97C/D437C, -G430C,                                                      

-D237C/E315C, -D237C/E355C and -K246C/D347C. In the second approach, using MTS cross-

linkers, three mutants, hASIC1a-T236C/D351C, -D237C/I312C and -D237C/E315C showed 

stronger effects with cross-linker compared to monovalent MTS reagents. Uniquely, the effect 

on D327C/I312C by MTS-17-MTS could not be explained by the sum of the effects on the single 

mutant D237C and I312C, therefore suggesting a cross-linking may occur. Further analysis is 

required to assess the cross-linking to understand the structural aspect associated with channel 

function. 
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5.3.1. My contribution to the article 

In this project, I did all the molecular biology work necessary for the generation of various 

mutants for cell and oocyte expression system. For optical tweezer approach, I have developed 

the optical system assembly coupled to the patch-clamp setup to imitate the working conditions. 

In both approaches, all the experiments were performed by me. I have also contributed to making 

figures, data analysis and writing the final draft of the manuscript. 
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ABSTRACT 

Acid-sensing ion channels (ASICs) are proton-gated, Na+-selective ion channels that are 

expressed in the central and peripheral nervous system. They are involved in various 

physiological and pathological processes such as neurodegeneration after stroke, pain 

sensation, fear behavior and learning. In this study we attempted to impose distance constraints 

between pairs of residues in different channel domains and to measure how this affected 

channel function, in order to obtain structural information on the activation mechanism. Optical 

tweezers such as 4′-Bis(maleimido)azobenzene (BMA) change their conformation depending 

on the wavelength of applied light. After exposure of channel mutants to BMA, an activation 

of the channel by light was observed with the previously reported mutant ASIC1a-I428C, but 

not for any other tested mutant of a series of mutants localized in proximity of the extracellular 

pore entry and in different parts of the extracellular domain.  Western blot analysis indicated 

however that BMA did not cross-link two subunits in the I428C mutant, thus the observed 

activation was not due to a force exerted between the I428C residues of adjacent subunits. For 

some extracellular domain mutants, D237C/E315C, D237C/E355C and K246C/D347C, 

application of light modulated the pH dependence. In a second approach, methanethiosulfonate 

(MTS) cross-linker reagents of different lengths, when applied to ASIC1a Cys mutants, 

mailto:Stephan.kellenberger@unil.ch
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changed the pH dependence of many of them. In three double mutants, D237C/I312C, 

T236C/D351C and D237C/E315C, the functional effect of cross-linkers was stronger than that 

of monovalent MTS reagents of similar size, suggesting that a cross-linking occurred. When 

cross-linkers were applied to these double mutants and to the corresponding single mutants, 

the effects on the single mutants considerably different between single and double mutants in 

one pair, D237C/I312C, suggesting therefore that the observed acidic shift in the pH 

dependence was due to a cross-link between the engineered Cys residues. 

Keywords: ASIC1a, 4′-Bis(maleimido)azobenzene (BMA), MTS cross-linker, activation 

mechanism, optical tweezer 

 

INTRODUCTION 

Acid-sensing ion channels (ASICs) are proton-gated voltage-independent Na+-selective 

ion channels that belong to Epithelial Na+ Channel/Degenerin superfamily of ion channels. In 

rodents, 6 homologous ASIC subunits, ASIC1a, -1b, -2a, -2b, -3 and -4 have been identified. 

Homotrimeric or heterotrimeric assembly of ASIC subunits results in channels with different 

pH sensitivity, and activation and desensitization kinetics (Kellenberger and Schild 2002, 

Hesselager, Timmermann et al. 2004). ASIC1a, -2a, -2b and -4 are expressed in the CNS, and 

all ASICs except ASIC4 are expressed in the PNS (Wemmie, Taugher et al. 2013, Kellenberger 

and Schild 2015). ASICs are involved in various pathological and physiological functions, such 

as learning and memory, anxiety and fear (Wemmie, Taugher et al. 2013), neurodegeneration 

after ischemic stroke (Xiong, Zhu et al. 2004), seizure termination (Ziemann, Schnizler et al. 

2008) and pain sensation (Price, McIlwrath et al. 2001, Deval, Noel et al. 2008). The channel 

exists in three different functional states, closed, open and desensitized (Wemmie, Taugher et 

al. 2013, Grunder and Pusch 2015, Kellenberger and Schild 2015). Extracellular acidification 

results in rapid ASIC activation, producing an inward current that is transient and decays when 

the channel enters the non-conducting desensitized state. High-resolution structures of chicken 
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ASIC1a in closed, toxin-opened and desensitized conformations (Jasti, Furukawa et al. 2007, 

Gonzales, Kawate et al. 2009, Dawson, Benz et al. 2012, Baconguis, Bohlen et al. 2014, Yoder, 

Yoshioka et al. 2018, Yoder and Gouaux 2020) and of human ASIC1a in the closed state (Sun, 

Liu et al. 2020) have been published and indicate that ASICs are trimers. The structure of a 

single ASIC subunit has been compared to the shape of a hand holding a small ball (Figure 

1A), with the two transmembrane domains corresponding to the forearm (Jasti, Furukawa et 

al. 2007). The extracellular sub-domains were named accordingly as palm, finger, knuckle, 

thumb and β-ball. In each subunit, the finger, thumb and β-ball enclose together with the palm 

of a neighboring subunit a vestibule that is called acidic pocket because it contains several 

acidic amino acid residues. The wrist is a flexible region just above the pore entry. Structural 

comparison of the closed and open state indicates that during channel activation the acidic 

pocket collapses, the channel gate opens and the extracellular fenestrations are expanded 

(Yoder, Yoshioka et al. 2018). During desensitization, the lower palm domains collapse 

towards the central vertical axis and the transmembrane helices relax back to resting-like 

conformation leading to a closed pore (Gonzales, Kawate et al. 2009, Roy, Boiteux et al. 2013, 

Baconguis, Bohlen et al. 2014, Yoder, Yoshioka et al. 2018). 

The structures have so far not identified the residues that are critical for channel 

activation. Several studies performed mutational analysis and identified residues of the 

extracellular domain that are likely involved in channel activation since their mutation resulted 

in a changed pH dependence (Smith, Zhang et al. 2007, Paukert, Chen et al. 2008, Li, Yang et 

al. 2010, Liechti, Berneche et al. 2010, Krauson, Rued et al. 2013, Schuhmacher, Srivats et al. 

2015, Lynagh, Mikhaleva et al. 2018). The observation that simultaneous mutation of all acidic 

amino acid residues of the acidic pocket resulted in channels that were still activated by 

acidification, suggests that protonation of acidic pocket residues is not required for ASIC 

activation (Vullo, Bonifacio et al. 2017). 
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This study aimed at identifying conformational changes that are involved in ASIC1a 

activation.  To this end, Cys mutants of human ASIC1a (hASIC1a) were exposed to two 

different types of cross-linkers. These single or double mutants had been designed to contain 

Cys residues at distances that matched the length of the cross-linkers. First, the optical tweezer, 

bis(maleimido)azobenzene (BMA), that can be switched by light of different wavelengths 

between an extended (trans) and a folded (cis) conformation, was used with the aim of opening 

ASIC1a by light (Fig. 1B). Secondly, bis-methane-thiosulfonate (MTS) cross-linkers of 

different length matching the distance between engineered Cys residue in ASIC1a mutants 

were administered with the aim of locking the channel in specific functional states. BMA and 

light activated the mutant I428C, as published previously, but no other tested mutant. We show 

that the activation of I428C occurred without cross-linking I428C of adjacent subunits. The 

MTS cross-linkers affected the pH dependence of many of the tested mutants, but in most cases 

without inducing a cross-link, providing thus not the expected structural information. 

RESULTS 

Light-activated current in ASIC1a  

In a recent study it was shown that exposure of the mutants I428C and G430C of 

hASIC1a to BMA allowed the activation of the channel by light (Browne, Nunes et al. 2014). 

In the present study, we intended to use this approach at different positions of ASIC1a to probe 

for conformational changes involved in ASIC activation. As controls, activation of the two 

mutants I428C and G430C was investigated in the first set of experiments. The structural 

models indicated an intersubunit distance between Ile428 residues (measured between the -

carbon atoms, [ for Gly]) of 21.3Å in the closed and 28.4Å in the open state; for Gly430 the 

corresponding distances were 9.5Å and 16.6Å, respectively (Table S1). These residues are 

located at the top of the TM2, in the extracellular pore entry, with Ile428 pointing towards the 

outside, and Gly430 towards the adjacent subunit in the open conformation (Figure 1C). The 
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end-to-end length of BMA is 13Å in the cis, and 22 Å in the trans configuration. Both the 

configuration is represented in Figure 1B. The I428C and G430C mutants were expressed 

separately in CHO cells, and cells were incubated with 10µM BMA for 12 min in the dark 

immediately before testing in whole-cell patch-clamp for two possible ways of activation, 

extracellular acidification and illumination with light of 440nm wavelength. The 440nm light 

induces the trans conformation of BMA. Changing the extracellular pH from 7.4 to 5.0 induced 

transient inward currents, as shown for I428C in Figure 1D (left trace). The pH of half-maximal 

activation (pH50) of I428C was 6.46±0.03 (n=7). Application of 440nm light for 5s to I428C 

induced inward currents containing a transient and a sustained component (Figure 1D, right), 

that had however smaller amplitudes than the pH5-induced currents (Figure 1E). Switching 

from 440nm to 360nm light for 0.1s brought the current back to the baseline (Figure 1D), due 

to induction of the cis conformation of BMA and likely subsequent deactivation. Channel 

activation occurred rapidly with both ways of activation, with time constants of =48±16ms 

(440nm light) and =106±24ms (pH5). In control experiments with cells expressing ASIC1a 

wild type (WT) that were exposed during 12min to 10M BMA, 440 nm light did not induce 

any current (n=7), while the pH5-induced current amplitude was -4.2±1.1nA (n=7). In contrast 

to a previous study (Browne, Nunes et al. 2014), we were not able to induce current with 440nm 

light in the G430C mutant. The pH5-induced current amplitude in G430C-transfected cells was 

-5.2±1.1nA (n=7), indicating a normal expression of the mutant channels. Mutations 

homologous to ASIC1a-I428C and -G430C were also introduced in rat ASIC1b (I413C and 

G415C), human ASIC2a (V425C and A427C) and rat ASIC3 (V433C and E435C) and it was 

tested whether 440 nm light-induced currents after exposure to BMA. However, only pH-

induced currents were observed in these mutants (data not shown). 
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Characterization of light-activated current in ASIC1a I428C 

It was then tested how the conditions of the BMA incubation affected the amplitude of 

the light-induced current of I428C. Varying the duration of the incubation with 10µM BMA 

between 12 and 20 min did not affect the current amplitude (Figure 2A). Also, there was no 

significant effect of the BMA concentration on the current amplitude when tested on an 

incubation duration of 20 min (Figure 2B), and in many experiments the amplitude of the light-

induced current was very low (Figure 2A-B). Light-induced currents were generally only found 

in 20-40% of the measured cells, if amplitudes >20pA were considered (Figure 2C). After 

incubation with 40M BMA, the cells seemed in many cases to be stressed.  The pH5-induced 

current amplitude was compared between the cells expressing light-induced currents and cells 

producing no light-induced current. The mean difference was significantly different only under 

10µM BMA (-3.65±1.38nA, n=9-17, p<0.05) and not under 20µM(-1.32±1.45nA, n=8-16) and 

40µMv(-3.1±1.5nA, n=6-23) (Two-way ANOVA, Sidak’s post-hoc test) (Figure 2D). The 

transient ASIC currents are Na+-selective, and ASICs are not permeable to the large cation 

NMDG. To further confirm that the light-induced current is mediated by the expressed ASIC1a 

channels, Na+, which is the main monovalent cation of the extracellular solution (Methods) 

was replaced with NMDG, resulting in a reversible loss of 440 nm light-induced current 

(Figure 2E, n=7, One-way ANOVA, Sidak’s post-hoc test). If ASIC1a-I428C was repeatedly 

activated by 440 nm light, the current amplitude was increased at the second application 

relative to the first and showed then a rundown. This rundown did not depend on the interval 

between the applications of the light pulse (Figure 2F and 2G, n=3-6, Mixed effect One-way 

ANOVA, Dunnett post-hoc test).  

No BMA-mediated light-activated currents in mutants from different ASIC1a domains 

Residues for mutations were chosen in domains that are known to be involved in 

activation or that seemed to be of interest based on the structure. To be able to react with BMA 
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on its both ends, the distance between two engineered Cys residues, either in the same or in 

adjacent subunits, were selected based on the end-to-end distances measured between the -

carbon atoms ( for Gly residues), in order to match approximately the length of BMA in the 

cis or trans conformation. In pre-selected residues, this distance was compared in structural 

models of the closed, open and desensitized state, in order to select mutants in which it changed 

during activity. Selected double mutants are shown in Figure 3A and single mutants in Figure 

3B. A list of these mutants, with indication of the distances, is shown in Table S1. All mutants 

were expressed in CHO cells and they produced normal current amplitudes. In the selected 

double mutants, the distances are compatible with cross-linking by BMA within the same 

subunit. Cross-linking with BMA was assessed by measuring the light-induced current. All 

mutants listed in Table S1 were exposed to 440nm and 360nm light. However, none of the 

mutants except I428C produced detectable light-induced currents. Representative current 

traces of selected ASIC1a mutants, the double mutant E97C/V354C from the acidic pocket, 

and the single mutants T419C from lower palm and Y67C from TM1 are shown in Figure 3C.  

Modulation of ASIC1a mutant currents by light 

Since light-induced currents were not observed in any mutant other than I428C, it was 

tested whether attaching of BMA to these engineered Cys residues, followed by applying 360 

or 440nm light could modulate the pH-induced current of these channels. The ratio of 

IpH6.x/IpH5 (with pH6.x being a pH that induced 30-60% of the maximal current amplitude 

in each mutant) was measured in the absence and presence of 440nm light to determine if the 

pH dependence of activation was affected by BMA binding and subsequent light application. 

Representative current traces of T419C in the absence and presence of 440nm light are shown 

in Figure 4A.  The analysis indicates that this ratio was not affected by 440nm light in WT and 

any of the mutants (Figure 4B and 4C, Ordinary one-way ANOVA, Dunnett’s post-hoc test).  

The mean difference in the ratio of IpH6.x/IpH5 ratios obtained in the presence and absence of 
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440nm light are plotted and compared to that of the WT in Figure 4D and 4E, confirming the 

absence of a difference to the WT (One-way ANOVA, Dunnett’s post-hoc test) in all mutants, 

except for E97C/D347C (-1.18±0.34, n=4-7, p<0.05). The ratio of the peak amplitudes 

IpH5440nm/IpH5ctrl indicated a decrease of the IpH5 amplitude in the WT and in many mutants, 

but no significant difference was observed between the WT and any mutant (Figure 4F and 

4G, Ordinary one-way ANOVA, Dunnett’s post-hoc test,).  

The same measurements as described above for 440nm light were then carried out with 

360nm light. The application of 360nm light produced a modulatory effect by BMA on mutants 

G430C (0.23±0.04,n=4,p=0.01), D237C/E315C (0.13±0.02, n=4, p<0.006), D237C/E355C 

(0.15±0.02, n=4, p=0.005), and K246C/D347C (-0.11±0.03, n=4, p=0.05). A significant 

difference was observed in the mean of IpH6.x/IpH5 ratio under the presence and absence of 

light and indicated above for each mutant (Figure 5A and 5B, paired t-test (two-tailed)). The 

mean difference in the ratio of IpH6.x/IpH5 ratios in the absence and presence of 360nm light 

showed some variability between mutants however, none was different from that of the WT 

(Figure 5C and 5D, Ordinary one-way ANOVA, Dunnett’s post-hoc test). The ratio of the 

peak amplitude IpH5 under the presence and absence of 360nm indicated a significant 

difference in the WT (p<0.5, paired t-test (two-tailed)) and a decrease of the IpH5360nm/ IpH5ctrl 

amplitude in several mutants to the WT (Figure 5E and 5F, Ordinary one-way ANOVA, 

Dunnett’s post-hoc test).  

No evidence for BMA cross-linking of the I428C mutant 

BMA is a cross-linker, and presumably it links in the I428C mutant the engineered Cys 

residues at position 428 of two adjacent subunits (Browne, Nunes et al. 2014). It has however 

also been shown in many studies that monovalent sulfhydryl reagents can change ASIC 

function (Tolino, Okumura et al. 2011, Roy, Boiteux et al. 2013, Bonifacio, Lelli et al. 2014, 

Gautschi, van Bemmelen et al. 2017). It was therefore tested biochemically in ASIC1a WT and 
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the two mutants I428C and G430C whether BMA cross-links two subunits. As in the patch-

clamp experiments, cells expressing these ASICs were labeled with 20µM BMA for 20min in 

the dark. Cell surface proteins were labeled with biotin, and cells were lysed. The extracted 

biotinylated surface proteins were separated on SDS-PAGE and detected using an ASIC1 

antibody on the western blot whose specificity had been demonstrated (Wemmie, Askwith et 

al. 2003). Monomeric ASIC1a WT or mutant bands were obtained at 70kDa and dimer bands 

were obtained at 130kDa (Figure 6A). Comparison of the dimer to monomer band intensity 

ratio under control and 20µM BMA treatment displayed no significant difference between 

control and treatment conditions (Figure 6B). The analysis was further extended to mutants in 

the TM2 domain and experiments were performed once in those mutants to detect cross-link. 

This indicative analysis shows that in all mutants tested; BMA did not form a cross-link (n=1) 

(Figure S2). For the mutants in the extracellular domain, western blot analysis to detect cross-

link was not performed since the double mutations are introduced in the same domain, and thus 

a cross-linking would not link two subunits and double the apparent mass. 

Modulation of H+-activated currents by MTS cross-linkers  

As an alternative approach to BMA, MTS cross-linkers were then used. MTS cross-

linkers were selected based on their length (Table S2) to match the distance measured between 

the -carbon atoms ( for Gly) in one of the functional states of the mutants (Table S1), as 

indicated in Table 2. Successful cross-linking was expected to impose the distance of the cross-

linker between the residue pair of the mutant and may therefore force the channel into the 

conformation that best matches the imposed distance between the two residues. Since many 

studies have shown that monovalent MTS reagents can affect ASIC function (Pfister, Gautschi 

et al. 2006, Tolino, Okumura et al. 2011, Frey, Pavlovicz et al. 2013, Gautschi, van Bemmelen 

et al. 2017), the effects of cross-linkers were compared of the effects of a monovalent MTS 

reagent of similar size.  
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The analysis with MTS cross-linkers was performed on the same mutants to which 

BMA had been applied, except for E63C, as its distances did not match the length of MTS-

cross-linkers, I137C/K396C and I137C/E403C, because these mutants did not show any effect 

in experiments with BMA, and D237C/F257C, since no H+-induced current was detected after 

injection of D237C/F257C cRNA. Each mutant was tested with one or several MTS-cross-

linkers that fit the distance between the two involved residues in the closed and the open state, 

and it was assumed that an effective cross-link would alter the channel function. For each 

mutant, the ASIC current was measured at two different pH values before and after 

modification by the cross-linker (3-min exposure at 1mM), pH6.x that induced 30-60% of the 

maximal current amplitude under control conditions, and pH5 for the. maximal current 

amplitude. The current amplitude induced by pH5, and the IpH6.x/IpH5 ratio was then 

compared between the control and the cross-link condition. If an MTS-cross-linker 

significantly affected the function of a given mutant, the same experiment was repeated with a 

monovalent MTS reagent of similar size (Figure 7). If the IpH6.x/IpH5 ratio was smaller with 

the MTS-cross-linker when compared to the corresponding monovalent MTS reagent, and thus 

the effect of the cross-linker was greater than that of the monovalent compound, it suggested 

that the difference may be due to the cross-linking of two Cys residues. The 

(IpH6.xMTS/IpH5MTS)/(IpH6.xCtrl/IpH5Ctrl) ratio with MTS cross-linkers for mutant 

D237C/I312C (MTS-17-MTS: 0.31±0.05, n=6), T236C/D351C (MTS-11-MTS:0.20±0.06, 

n=6) and D237C/E315C (MTS-14-MTS:0.21±0.04,n=4) was smaller than treatment with 

monovalent MTS reagent for D237C/I312C (MTS-PEO3-Biotin: 0.42±0.03, n=6), 

T236C/D351C (MTSEA-Biotin: 0.33±0.06, n=5) and D237C/E315C (MTS-PEO3-Biotin: 

0.67±0.04, n=4) however, statistical test (unpaired t-test (two-tailed)) indicated no significant 

difference.  
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In control experiments, the ratio of  the IpH6.4/IpH5 ratio after MTS exposure / control 

(IpH6.4MTS/IpH5MTS/ IpH6.4Ctrl/IpH5Ctrl) was determined with ASIC1a WT for several 

compounds, showing no effect (IpH6.4MTS/IpH5MTS/ IpH6.4Ctrl/IpH5Ctrl ratios of 1.09±0.1, n=4 

(MTS-2-MTS), 0.69±0.08, n=3 (MTS-4-MTS), 0.85±0.06, n=4 (MTS-6-MTS), 1.01±0.17, 

n=4 (MTS-11-MTS), 1.03±0.08, n=4, (MTS-14-MTS), and 0.91±0.04, n=4, (MTS-17-MTS); 

ordinary one-way ANOVA, Tukey post-hoc test). 

In parallel, the effect of the MTS reagents on the IpH5 was analyzed. In many mutants, 

a significant decrease in IpH5 was observed. An increased IpH5 current was observed in H72C 

with MTS-PEO3-Biotin and E97C/E355C with MTSEA-Biotin (paired t-test) (Figure 8).  

For the three promising double mutants and the corresponding single mutants, the 

IpH6.x/IpH5 ratio was determined, and the pH dependence of activation was measured under 

control conditions and after exposure to the MTS cross-linker, as illustrated in Figures 9A-B 

for I312C. The ratio of IpH6.x/IpH5 and the pH50 of activation are plotted for each double 

mutant besides the corresponding values of the single mutants in Figures 9C-H. If cross-

linking was responsible for the functional effect of a cross-linker, we would expect a small 

effect in each of the two single mutants, and a larger effect in the double mutant. Of the three 

double mutants, such a pattern is only observed for the mutant D237C/I312C. Table 1 

summarizes the shift in the pH dependence of activation and the change in maximal amplitude 

upon reagent exposure of the three double mutants and the corresponding single mutants. The 

pH50 of activation was shifted by the reagent MTS-17-MTS to more acidic values in the double 

mutant D237C/I312C and the single mutant D237C, and to more alkaline values in I312C. The 

shift showed a tendency of being smaller in the single as compared to the double mutant. 

Therefore, it may be possible that the MTS-17-MTS-induced shift is due to a cross-link 

between D237C and I312C (Figure 9I).  
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DISCUSSION 

In this study we used cross-linking compounds on ASIC1a to detect conformational 

changes involved in channel activation. We show that hASIC1a-I428C that has reacted with 

the optical tweezer BMA can be activated by light, and that this does not involve a cross-linking 

between I428C of adjacent subunits. None of the other tested mutants containing single or 

double Cys mutations in the wrist or the acidic pocket was activated by light after exposure to 

BMA. In many of these mutants, MTS cross-linkers and monovalent MTS reagents changed 

the pH dependence. In three double mutants of the acidic pocket, cross-linkers induced stronger 

changes in pH dependence than the monovalent reagents. Analysis of the pH dependence of 

activation of these double mutants and the corresponding single mutants showed that MTS-17-

MTS produced an acidic shift in D327C/I312C (0.25±0.15, n=3, p>0.05), and that this shift 

was smaller in the single mutant D237C (0.10±0.11, n=5-6, p>0.05), and absent in I312C (-

0.05±0.11, n=5-6, p>0.05). The length of this compound corresponds to the distance between 

the two engineered Cys residues of D237C/I312C in the closed state and suggests therefore 

that constraining the distance between these two residues may hinder ASIC activation. 

Light-dependent activation of ASIC1a after exposure to BMA 

To date, only a few studies have used optical tweezers to activate ion channels. This 

approach was in several studies successful with P2X (Browne, Nunes et al. 2014, 

Habermacher, Martz et al. 2016, Fryatt, Dayl et al. 2019). One of these studies also showed 

that two mutants of hASIC1a, I428C and G430C were opened by light after reaction with BMA 

(Browne, Nunes et al. 2014). In our hands, I428C, but not G430C produced light-induced 

channel activation after reaction with BMA. Comparison of the distances in the structures 

indicated intersubunit distances between the engineered Cys residues that appeared to be too 

high in the case of I428C and too low in the case of G430C for gating by BMA (Table S1). A 

biochemical analysis of cell surface expressed ASIC1a did not provide any evidence for a 

cross-linking of these two mutants by BMA. It may be possible that modification of I428C by 
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BMA occurs in a similar way as the modification of G430C by MTSET and MTSPTrEA that 

results in channel activation at pH7.4, producing a non-desensitizing, amiloride-sensitive 

current (Gautschi, van Bemmelen et al. 2017).  

Modulatory effect of BMA by application of light on hASIC1a activity 

To assess the activation mechanism in ASIC1a, we have selected several mutants in the 

wrist domain and the acidic pocket, for which the distance between the engineered Cys residues 

in structural models of the closed, open or desensitized state matched the end-to-end distance 

of BMA in the cis or trans conformation (Table S1). In all the mutants shown in Table S1, 

application of 440nm and 360nm light after exposure to BMA did not induce any light-induced 

current. Comparison of the (IpH6.x440nm/IpH5440nm)/(IpH6.xCtrl/IpH5Ctrl) ratio showed a 

significant difference only between hASIC1a-E97C/D347C and WT. The ratios of 

IpH6.x/IpH5 under control and 440nm light conditions were not significantly different in any 

of the mutants. It is possible that in the double mutants, 440nm light did not produce any 

significant modulatory effect. Analysis of the change in the IpH6.x/IpH5 ratio under exposure 

to 360nm indicated a significant difference between control and light condition in 

D237C/E315C, D237C/E355C and K246C/D347C. These three mutants are part of the acidic 

pocket. Application of 360nm light should put BMA in the cis configuration, which for these 

mutants would correspond to open or desensitized state distances. In the two mutants 

D237C/E315C and D237C/E355C, 360nm light induced an alkaline shift of the pH 

dependence, which would be expected for a constraint that favors the open state, while an 

acidic shift was observed for K246C/D347C (Figure 5B). However, the ratio of IpH6.x/IpH5 

ratios between the three mutant and WT were not significantly different. Thus, it is not 

necessary to observe channel activation by light since a recent study mutated several acidic 

amino acids from the acidic pocket, and the channel was still functional concluding the role of 

acidic pocket in slower conformational changes associated with protonation even occurring 
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outside acidic pocket (Vullo, Bonifacio et al. 2017). There was some huge variability in the 

ratio of IpH6.x/IpH5 ratio for R64C and G433C under the presence and absence of 360nm 

light, which might be resulted from the experimental condition and considering more 

experiments can explain the effect. Similarly, variability was observed in E97C/D347C, which 

was not significantly different from WT under 360nm light application but was significant 

under 440nm light. In both cases, it is still possible that BMA can make cross-link at 

E97C/D347C and the shift in the ratio is result of it. But it remains unclear if the effects 

observed are due to cross-linking. These mutants were not assessed for cross-linking by BMA 

through western blot, since they are in the same subunit. Hence, it limits our speculation to 

know whether BMA can cross-link in these mutants and shift in the IpH6.x/IpH5 values 

through cross-linking.  

Functional analysis of hASIC1a mutants using MTS cross-linkers 

 Thiol-specific MTS cross-linkers with various lengths of spacer arms were selected to 

match the distance between the Cβ [Cα for Gly] of residue pairs located in ASIC domains that 

have been associated with activation. Several studies have used previously the monovalent 

MTS to analyze the conformational changes associated with ASIC1a functional states (Pfister, 

Gautschi et al. 2006, Bargeton and Kellenberger 2010, Tolino, Okumura et al. 2011, Frey, 

Pavlovicz et al. 2013, Krauson, Rued et al. 2013, Gautschi, van Bemmelen et al. 2017). To 

date, only very few studies used MTS cross-linkers (Loo and Clarke 2001, Fryatt, Dayl et al. 

2019). Loo et al used different thiol-specific MTS cross-linkers to assess the drug-binding 

domain of P-glycoprotein (P-gp) and the molecular mechanism associated to ATP-hydrolysis 

that causes drug transport. Cross-linked cysteine mutants of human P-gp by MTS cross-linker 

were visualized with western blot and cross-linking was observed in several mutants. Based on 

these results it was concluded that the drug-binding domain may form a funnel-like shape to 

accommodate several compounds of different size. Cross-linking in the TM domain inhibited 
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the ATPase activity due to hindered conformation changes. This approach with thiol-specific 

MTS cross-linkers of different length has not been reported before with ASIC1a.   

Our analysis showed in some mutants a lower IpH6.x/IpH5 value after exposure to 

MTS cross-linkers relative to the control condition in comparison to monovalent MTS 

reagents. Of these mutants, MTS-17-MTS, whose length matches the closed state distance in 

D237C/I312C, produced an acidic shift of the activation pH dependence, while it induced a 

smaller acidic shift in D237C, and had no effect on I312C. Our experiments do not prove that 

a cross-link is really formed between D237C and I312C. Since such a cross-link would occur 

within the same subunit, it would not significantly change the apparent mass in SDS-PAGE.  

There are however several other methods to analyze a possible cross-linking, and the most 

appropriate would be to use Mass spectrometry (MS)(Yakovlev 2009, Holding 2015).  

Previous findings with MTS reagents in these domains 

For the mutant hASIC1-G430C, it was observed that MTSEA-biotin could produce an 

alkaline shift in the pH dependence of activation, indicating modification of the residue was 

more sensitive for activation (Gautschi, van Bemmelen et al. 2017). This residue was shown 

to be directly activated by MTSET and MTSPTrEA in the absence of extracellular acidification 

favoring a conducting state (Table S3) (Gautschi, van Bemmelen et al. 2017). The homologous 

mutation in mASIC1a was also shown to be involved in the pore opening mechanism (Table 

S3) (Tolino, Okumura et al. 2011). In our hand, MTS-4-MTS and MTS-10-MTS that 

approximately match to distance of the residues in the closed state produced a trend comparable 

to MTSEA-Biotin. It is possible that the mutant G430C is not cross-linked by both of these 

cross-linkers. Another study that used MTSET to modify engineered Cys residues showed that 

the pH50 of activation was shifted to acidic value and peak amplitude was inhibited in 

hASIC1a-E315C and -D347C (Liechti, Berneche et al. 2010). Together, it was found that 

MTS-17-MTS shifted the pH dependence of activation in hASIC1a-D237C/I312C to an acidic 
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value. It is likely possible that MTS-17-MTS may form cross-link between D237C and I312C 

that need to be further validated to associate the conformational changes in these domains to 

the role in channel activation mechanism.   

CONCLUSION 

In conclusion, two different cysteine-based cross-link approaches were applied in 

pursuit to identify the residues and associated conformational changes in the domains to 

understand the hASIC1a channel activation mechanism. The analysis revealed light-induced 

current in I428C without cross-link formation.  Using MTS cross-linker, only a pair of residues, 

D237C/I312C was identified for possible cross-linking by MTS-17-MTS. Indeed, this 

functional analysis needs further validation to describe the conformational changes associated 

with the channel activity. 

MATERIALS AND METHODS   

Optical tweezer labelling 

4, 4′-Bis (maleimido) azobenzene (BMA) was purchased from Toronto Research 

Chemicals (Canada). BMA was dissolved in DMSO to make a stock concentration of 10mM 

that was stored in the dark at -20◦C. The stock solution was diluted at different concentrations 

10, 20, and 40 µM in the extracellular solution at pH7.3 and the cells were labelled at room 

temperature in the dark for 12, 20 or 40min. The cells were washed twice with the extracellular 

solution at pH 7.4 and were used immediately in the experiment. The light-induced current was 

measured at 10% intensity for 440nm and 100% intensity for 360nm. In all the cases, the given 

intensity of light was used to obtain light-induced current, unless stated.  

Light-induced current in rP2X2-P329C and hASIC1a-I428C 

rP2X2 P329C was transfected in HEK cells and after 48h of protein expression, the 

cells were tethered to 10µM BMA for 12min under dark at extracellular pH7.3. The light-

induced currents were measured by application of 440nm light and channel was closed by 
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application of 360nm light. In CHO cells, hASIC1a-I428C was transfected and after 48hr of 

channel expression, the cells were tethered to different concentration of BMA. In all 

experiments, using 440nm and 360nm light, the channel was activated by application of 440nm 

light at 10% intensity for 5s and 360nm light at 100% intensity for 0.1s. The measured output 

intensities for 440nm and 360nm light were, respectively, 6.3 and 2.9 mW/mm2. 

Molecular biology 

Cysteine mutations were introduced in human ASIC1a, human ASIC2a, rat ASIC1bM3 

and rat ASIC3 in the mammalian expression vector peak8 (Edge Biosystems, Gaithersburg, 

MD) using site-directed mutagenesis. Primers for the mutagenesis were designed using Quick-

change site directed mutagenesis method in the PrimerX online tool and synthesized by 

Microsynth (Switzerland). Site-directed mutagenesis was performed using KAPA HiFi Hot-

start PCR polymerase (Roche, Switzerland). All mutations were confirmed by sanger 

sequencing (Synergene and Microsynth, Switzerland). Human ASIC1a single mutant D237C 

and D351C in the background of D212 was used. The rat P2X2 P329C mutant in pcDNA3.1 

was provided as a gift by Dr. Thomas Grutter (University of Strasbourg, France). Wild-type 

and mutant ASIC1a, ASIC2a, rASIC1bM3, rASIC3 were transiently co-transfected with EGFP 

or sfGFP in CHO cells using Rotifect (CarlRoth). The standard manufacturer protocol was 

followed for the transfection. For the expression rP2X2 P329C, HEK cells were transiently co-

transfected with EGFP. The ratio of EGFP to ASIC or P2X2 was maintained at 0.2:1. CHO 

cells were cultured in DMEM/Nutrient Mixture F-12 with GlutaMAXTM medium, while HEK 

cells in GlutaMaxTM medium supplemented with 10% fetal bovine serum (FBS, 

ThermoFischer Scientific) and 1% Penicillin/Streptomycin (5,000 U/mL, ThermoFischer 

Scientific) and the cells were grown at 37◦C under 5% CO2 atmosphere. Experiments were 

performed after 48h.  
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Patch-clamp electrophysiology 

Whole-cell patch-clamp recordings were carried out at -60mV at room temperature. 

After labelling the cells with BMA, whole-cell recordings were performed using an EPC-10 

patch-clamp amplifier (HEKA Electronics, Germany). The solution exchange for the 

experiments was done using cFlow 8 channel flow controller connected to the MPRE8 

perfusion head (Cell MicroControls, Virginia, USA).  The sampling interval for all the 

experiments was set at 1ms and current filtering at 3 KHz. Patch pipettes of resistance between 

3 - 4MΩ were filled with intracellular solution containing (in mM) 90 K-gluconate, 10 NaCl, 

10 KCl, 60 HEPES, 10 EGTA, making a final osmolarity of 290 mOsm, adjusted to pH7.3 

with KOH. The standard extracellular solution contained (in mM) 140 NaCl, 4 KCl, 2 CaCl2, 

1 MgCl2, 10 MES, 10 HEPES, 10 Glucose to a final osmolarity of 320 mOsm, adjusted to 

pH7.4 with NaOH. For NMDG+-containing extracellular solution, NaCl was replaced by 

NMDG+.  Illumination on cells was achieved by coupling high-power LEDs, 445nm (SOLIS, 

ThorLabs) and 365 nm (SOLIS, ThorLabs) to the microscope. Light was directed on cells using 

CFI S Fluor 40X Plan Fluorite 40X, 0.75 NA objective lens (Nikon). The intensity of the light 

output was measured using handheld optical meter (Newport). The measured output intensities 

for wavelengths for 360 and 440 nm were 2.8 and 6.3 mW/mm2.  The relative light intensity in 

mW/mm2 was measured as a function of voltage trigger, 0.1-2.5V for the 360nm LED and 0.1-

4.5 V for the 440nm LED. The LEDs were controlled with external modulation option in the 

DC2200 LED driver device (Thor Labs, Germany) which was coupled with EPC10 patch-

clamp amplifier and controlled by HEKA patch-master software. 

Electrophysiological measurements using Xenopus oocytes 

Female South African clawed Xenopus laevis frogs were anaesthetized with 1.3g/L of 

MS-222 (Sigma-Aldrich, USA). A small incision of less than 1cm was performed on the 

abdominal wall for the extraction of oocytes. All procedures with Xenopus laevis were 
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approved by the local veterinary authority of Canton de Vaud, Switzerland. Healthy stage V 

and VI oocytes were isolated and treated with collagenase for isolation and defolliculation. 

Oocytes were injected with 50nl of cRNA (100 ng/µl to 500 ng/µl) of ASIC1a and mutants. 

Oocytes were stored in modified Barth’s saline (MBS) containing (in mM) 85 NaCl, 1 KCl, 

2.4 NaHCO3,0.33 Ca (NO3)2,0.82 MgSO4,0.41 CaCl2, 10 HEPES, and 4.08 NaOH during 

protein expression phase. Electrophysiology experiments were performed 1-2 days after cRNA 

injection, and the currents were recorded with a Dagan TEV200 amplifier (Minneapolis, MN) 

equipped with two bath electrodes at a holding potential of -60mV. Oocytes were placed in a 

recording chamber and perfused with experimental solutions by gravity at a rate of 10-

12ml/min. Oocytes used for the experiments were conditioned with pH7.4 for 50s and peak 

currents were measured in ASICs by activation with two different acidic pH for 10s. After 

measuring peak currents, the oocytes were incubated for 3min with 1mM of monovalent or 

cross-linking MTS reagent in extracellular solution pH7.4. Following MTS reagent treatment, 

oocytes were washed for 1min with extracellular solution pH7.4 and peak currents were 

recorded by exposing the oocytes to conditioning pH7.4 for 50s, and ASICs were activated by 

two different acidic pH for 10s. Following MTS-reagent application, 10mM of DTT dissolved 

in extracellular solution pH7.4 was applied on the same oocyte and incubated for 3min. DTT 

was washed out before the measurement of peak currents in similar manner as MTS reagent 

treatment. 

Cell surface cross-linking and biotinylation 

CHO cells were transiently transfected with 10µg of ASIC1a wild type and mutants 

cultured in 10cm cell culture plates. After 48hof transfection, the cells were washed twice with 

extracellular solution pH7.3. The cells were then labelled in the dark with 20µM of BMA for 

20 min as described above. After the labelling, cells were washed once again with extracellular 

solution pH7.3, followed by two washing steps with ice-cold PBS-CM (in mM in mM, 137 
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NaCl, 2.7 KCl, 8 Na2HPO4, 2 KH2PO4, 0.1 CaCl2, 1 MgCl2) at pH7.4, followed by two wash 

steps with PBS-CM at pH8.0. Cells were incubated with EZ-link Sulfo-NHS-SS-Biotin 

(ThermoFischer Scientific) in PBS-CM (pH8) at a concentration of 1mg/ml for 15 min. 

Biotinylation was quenched by PBS-CM containing 100mM glycine for 10 min. The cells were 

washed twice with PBS-CM at pH7.4. The cell lysate was prepared by scrapping the cells in 1 

ml of membrane isolation buffer containing (in mM) 100 NaCl, 5 EDTA, 20 HEPES, 1% Triton 

X-100 at pH 7.4, supplemented with 200mM cOmplete protease inhibitor (Roche). Lysed cells 

were centrifuged at 11000g, 4°C and a fraction of supernatant was stored as total protein 

extraction. All the steps were performed under ice-cold condition. 

Molecular modelling 

The crystal structures of cASIC1a in open, desensitized and closed state (PDB ID: 

4NTW, 4NYK and 5WKU) were used to generate homology models of human ASIC1a. The 

homology models were used as a template to identify the amino acid residues oriented towards 

each other from the adjacent subunits or within the same subunit. Amino acid residues were 

selected for introducing cysteine mutation by measuring the distance between Cβ atom (Cα for 

Gly) of the residues using UCSF chimera. It was predicted that BMA could bridge two 

cysteines in the cis conformation between the β-carbons of the cysteines at 13Å apart and 22Å 

in the trans conformation. These distances were used as selection criteria of residues, 

corresponding to trans and cis conformation of BMA. 

Affinity purification and western blot 

The left-over fraction of lysed total protein was added to 50 µl of Streptavidin Agarose 

resin beads (ThermoFischer Scientific) and samples were incubated overnight at 4°C in a 

rotating wheel. The next day, beads were washed thrice with ice-cold PBS-CM at pH7.4 and 

recovered by centrifugation at 4°C, 1000g. Recovered beads bound to the protein were added 

to 50 µl of 2x sample loading buffer (20% glycerol, 6% SDS, 250mM Tris-HCl at pH6.7, 0.1% 
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(w/v) bromophenol blue, 50mM DTT), and 20µl of total protein with 5µl of 5x sample loading 

buffer (1.5M Sucrose, 10% SDS, 12.5mM EDTA, 312mM Tris pH8.8, 0.25% (w/v) 

bromophenol blue, 125 mM DTT). The total protein sample was treated at 95°C for 10min and 

surface protein was treated at 65°C for 15min. Total and surface protein samples of 25µl were 

loaded and resolved in Mini-protean TGX stain free 4-15% precast SDS-PAGE (BioRad) in 

running buffer containing 27.5mM Tris-base, 213mM Glycine and 1% SDS at 100V for 1.5h. 

Protein samples were transferred to ProtranTM 0.2µM nitrocellulose membranes (Amersham 

Biosciences) at 4°C, 100V for 2.5h. After the transfer, the membrane was blocked by TBST 

(137mM NaCl, 2.7mM KCl, 19mM Tris-base, 0.1% Tween 20) containing 5% non-fat milk 

for 1h. Membranes were exposed overnight at 4°C to polyclonal anti-ASIC1 antibody MTY19 

(1:1000)(John A. Wemmie 2003) present in 1% non-fat milk containing TBST buffer, washed 

three times, and were then exposed to Donkey anti-rabbit IgG horseradish peroxidase-linked 

secondary antibody (1:4000, GE healthcare, Switzerland). The antibody MTY19 is directed to 

the C-terminal 22 amino acid of mouse ASIC1a and it was used to detect ASIC1a with highly 

specificity in the hippocampus. To detect actin, the same blots were exposed overnight at 4°C 

to Anti-actin (1:1000, Sigma Aldrich) in TBST buffer containing 1% BSA, washed three times 

and detected with Donkey anti-rabbit IgG horseradish peroxidase linked secondary antibody 

(1:4000, GE healthcare). Blots were exposed to secondary antibodies for 1h at room 

temperature and washed three times with 1x TBST. The signals were detected using the Fusion 

SOLO chemiluminescence system (Vilber Lourmat, Marne-laVallée, France) using 

SuperSignalTM West Femto maximum sensitivity substrate (Thermo Scientific). The band 

intensities were quantified by the linear analysis method of the software, with the area of 

measurement kept constant for all samples of the same blot. Background noise was subtracted 

prior to determining the intensity occupied by individual bands. 
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Molecular cloning and cRNA synthesis for Xenopus laevis 

Cysteine mutants present in ASIC1a peak8 vector were sub-cloned to the pSD5-derived 

vector containing 5’ and 3’ non-translated sequence of β-globin for improved protein 

expression in Xenopus laevis oocytes. Primers were designed using TaKaRa In-Fusion cloning 

primer designing tool. PCR was performed for ASIC1a mutants in peak8 vector using 

PrimeSTAR® Max DNA polymerase (TaKaRa, Switzerland). The psD5 vector was double 

digested by EcoRI and XbaI, and the PCR product was purified by gel extraction. The purified 

PCR product and double-digested vector were ligated by following the standard manufacturer 

protocol of the cloning kit In-Fusion HD (TaKaRa, Switzerland). From the ligation reaction, 

2.5µl of the sample was transformed on LB agar containing ampicillin and single colonies were 

isolated for sub-culture. Plasmid DNA was extracted using Mini-prep Plasmid DNA 

purification kit (Machery-Nagel, Germany). cRNA was synthesized using the in vitro 

transcription kit mMESSAGE mMACHINE™ SP6 (ThermoFisher, Switzerland). Integrity of 

the cRNA was verified by loading the synthesised cRNA on an agarose gel. 

MTS reagents 

Several MTS (methanethiosulfonate) compounds were used in the electrophysiology 

experiments with Xenopus leavis oocytes expressing ASICs. These compounds, including 

MTS-2-MTS (1,2-Ethanediyl Bismethanethiosulfonate), MTS-4-MTS (1,4-Butanediyl 

Bismethanethiosulfonate), MTS-6-MTS (1,6-Hexanediyl Bismethanethiosulfonate), MTS-8-

MTS (1,8-Octadiyl Bismethanethiosulfonate), MTS-10-MTS (1,10-Decadiyl 

Bismethanethiosulfonate), MTS-11-MTS (Undecane-1,11-diyl-bismethanethiosulfonate), 

MTS-14-PEO3-MTS (3,6,9,12-Tetraoxatetradecane-1,14-diyl bismethanethiosulfonate), 

MTS-17-PEO5-MTS (3,6,9,12,15-pentaoxaheptadecane-1,17-diyl bismethanethiosulfonate), 

MTSES (Sodium (2-Sulfonatoethyl)methanethiosulfonate)), MTSEA-Biotin (N-

Biotinylaminoethyl Methanethiosulfonate), MTS-PEG4-Biotin (1-Biotinylamino-3,6,9-
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trioxaundecane-11-yl-methanethiosulfonate) were purchased from Toronto Research 

Chemicals (Toronto, Canada). The MTS-2-MTS, MTS-4-MTS, MTS-6-MTS, MTS-8-MTS, 

MTS10-MTS, MTSES, MTSEA-Biotin, MTS-PEG4-Biotin were dissolved in 

dimethylsulphoxide (DMSO), while MTS-14-PEO3-MTS and MTS-17-PEO5-MTS in 

methanol, and MTS-11-MTS in chloroform at 100mM stock concentration and stored at -20°C. 

These compounds were thawed prior to experiment at 4°C and dissolved in extracellular 

solution pH7.4 just before the experiments. 

Data analysis 

Electrophysiology recordings of current amplitudes were analyzed using Clampex 9.2 

software (Molecular Devices) at a sampling rate of 10kHz. The pH of half maximal activation 

(pH50) was determined by fitting normalized activation curves to the Hill equation, I = 

Imax/(1+(10-pH50/10-pH)nH), where Imax is the maximal current amplitude, pH50 is the half-

maximal current amplitude, and nH is the Hill-coefficient. Data are presented as mean ± SEM. 

Differences between WT and mutant forms of ASIC1a and between different treatments were 

analyzed by ANOVA followed by indicated post hoc test, using GraphPad Prism. 
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FIGURES 

 

Figure 1. Light-dependent activation of ASIC1a channel. A. Structural image representation 

of ASIC1a trimer and its domain organization, transmembrane (red), thumb (green), palm 

(yellow), β-ball (orange), finger (purple), and knuckle (cyan) in human ASIC1a model based 

on chicken ASIC1a, B. BMA in cis state (top) and trans state (bottom), C. Location of I428 

and G430 in the transmembrane 2 domain, D. pH5-induced (left) and 440nm light-induced 

current (right) in hASIC1a-I428C mutant. Blue bar over trace (right) represents 440nm light 

applied for 5s and 360nm light applied for 0.1s, E. Comparison of light-induced current in 

ASIC1a I428C to pH5-induced current. Statistical significance obtained by paired t-test (two-

tailed) (n=11) ∗p < 0.05; ∗∗p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001.  
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Figure 2. Characterization of light-activated current in ASIC1a I428C. A. Light-induced 

current normalized to IpH5 obtained in I428C by incubation of 10µM BMA for 12 and 20 min, 

B. Light-induced current normalized to IpH5 obtained by incubation of I428C with different 

concentration of BMA for 20min, C. Frequency of light-induced current obtained (red) in 

comparison to no light-induced current (grey) normalized to IpH5 in I428C with different 

concentration of BMA incubated for 20 min, D. Current amplitude obtained under 440nm light 

and pH5 by incubation of hASIC1a-I428C with 10µM, 20µM and 40µM. The symbol # denotes 

the statistical significance between pH5 current in light-induced and no light-induced cells, E. 

Comparison of light-induced current normalized to IpH5 obtained with Na+ containing 

extracellular solution and loss of light-induced current with NMDG+ containing extracellular 

solution, Comparison of light-induced current normalized to sweep number 2 current between 
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each sweep at an interval of 3min (F) and 1min (G) between each 440nm light application 

(n=4). Statistical significance is denoted by ∗p < 0.05; ∗∗p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 

0.0001.  

 

Figure 3. No light- and BMA-activated current in two series of new Cys mutants in ASIC1a. 

A. Cysteine mutation introduced in the thumb, finger, knuckle, palm and β-ball domains, B. 

Structural image representing the crystal structure of the channel highlighted (black box) with 

two regions in human ASIC1a closed state (left) and cysteine mutation introduced in the 

transmembrane domain (right), C. Trace representing pH5-induced current and absence of 

light-induced current for E97C/V354C (top), T419C (middle), Y67C (bottom). Blue bar 

represents light intensity of 440nm, and purple bar represents light intensity of 360nm. Both 

440nm and 360 nm lights were applied either 5s or 0.1s. The mutants are labelled with color 

matching the domain organization. 
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Figure 4. Modulatory effect of BMA assessed by the shift in the ratio of IpH6.x/IpH5 by 

440nm light. A. Represented trace of T419C mutant under the presence and absence (control) 

of 440nm light. The ratio of IpH6.x/IpH5 measured before and after application of 440nm light 

(B) in the wild type and mutants of lower palm, TM1 and TM2 domain, and (C) in the double 
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mutants of ECM domain. The ratio of IpH6.x/IpH5 ratio under the presence and absence 

(control) of 440nm light (D) in the single mutants of lower palm, TM1 and TM2 domain, and 

(E) in the double mutants of ECM domain. The ratio of peak current amplitude IpH5 under the 

presence and absence (control) of 440nm light (F) in the single mutants of lower palm, TM1 

and TM2 domain, and (G) in the double mutants of ECM domain. For all the mutants, the 

IpH6.x was measured at pH6.4, while for D237C/I312C-IpH6.0, K246C/D347C- IpH5.5, 

F257C/D351C- IpH6. The 440nm light was pre-applied 200ms before and 5s co-applied during 

the activation of channel by pH6.x and pH5. Statistical significance was determined by One-

way ANOVA (Dunnett’s post-hoc test) and indicated with ∗p < 0.05; ∗∗p < 0.01, ∗∗∗ p < 0.001, 

∗∗∗∗ p < 0.0001 and mutants are labelled with color matching the domain organization. The 

symbol # indicates statistical significance in WT.  
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Figure 5. Modulatory effect of BMA assessed by the shift in the ratio of IpH6.x/IpH5 by 

360nm light. The ratio of IpH6.x/IpH5 measured before and after application of 360nm light 

(A) in the wild type and mutants of lower palm, TM1 and TM2 domain, and (B) in the double 

mutants of ECM domain. The ratio of IpH6.x/IpH5 ratio under the presence and absence 

(control) of 360nm light (C) in the wild type and mutants of lower palm, TM1 and TM2 domain 

s, and (D) in the double mutants of ECM domain. The ratio of peak current amplitude IpH5 

under the presence and absence (control) of 360nm light (E) in the wild type and mutants of 

lower palm, TM1 and TM2 domain, and (F) in the double mutants of ECM domain. For all the 
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mutants, the IpH6.x was measured at pH6.4, while for D237C/I312C - IpH6.0, K246C/D347C 

- IpH5.5, F257C/D351C - IpH6. The 360nm light was pre-applied 200ms before and 5s co-

applied during the activation of channel by pH6.x and pH5. Statistical significance was 

determined by One-way ANOVA (Dunnett’s post-hoc test) and indicated with ∗p < 0.05; ∗∗p 

< 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001 and mutants are labelled with color matching the domain 

organization. The symbol # indicates statistical significance in WT. 

 

Figure 6. No evidence for cross-linking by BMA at engineered cysteine mutations in western 

blot analysis. A. CHO cells transfected with mutants were blotted by specific antibody against 

ASIC1a. Monomeric band obtained at 70kDa and dimeric band at 130KDa, B. Ratio between 

dimeric to monomeric band intensity, n=3. 
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Figure 7. Analysis of the pH dependence of mutants before and after treatment with cross-

linker and monovalent MTS reagents. The values of the pH6.x were, for mutants Y67C, 

E427C, G430C, G433C, E97C-E355C – IpH6.6; R64C, H72C, T419C, E421C, K423C, 

A425C, I428C, E235C/E355C, D237C/E315C, D296C/E359C, E97C/V354C, E237C/E355C 

– IpH6.4; F257C/D351C, E97C/D347C – IpH6; D237C/I312C, T236C/D351C – IpH6.2; 

K246C/D347C – IpH5.5. In top of all mutants, a scale is indicated to match the distance 

between Cβ-atom of cysteine under the closed, open and desensitized state. Below the MTS 

cross-linker and MTS monovalent reagents with their distances matching the channel state is 

indicated. Differences between control and MTS condition are indicated for statistical 

significance from paired t-test (two-tailed) with ∗p < 0.05; ∗∗p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 

0.0001. 
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Figure 8. The ratio of peak maximal current obtained at IpH5 in mutants exposed to MTS 

cross-linker and monovalent MTS reagents. Difference between control and MTS condition 

are indicated with statistical significance from paired t-test (two-tailed) with ∗p < 0.05; ∗∗p < 

0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001 and mutants are labelled with color matching the domain 

organization. 
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Figure 9. Effect of MTS-cross-linker on double mutant and their respective single mutants. A. 

Current trace of ASIC1a I312C under control (top) and treatment with MTS-17-MTS (bottom) 

condition.  B. pH dependence of activation curve obtained as a function of pH activation with 

normalized current, ASIC1a D237C ctrl (black), MTS-17-MTS (red) and MTS-14-MTS (blue). 

C. Representation of IpH6.x/IpH5 ratio for ASIC1a D237C/I312C, D237C and I312C (Ctrl-

black; MTS-17-MTS -red). D. Shift in the pH dependence of activation under control and 

MTS-17-MTS treatment condition (Ctrl-black; MTS-17-MTS -red). E. Representation of 

IpH6.x/IpH5 ratio for ASIC1a T236C/D351C, T236C and D351C (Ctrl-black; MTS-11-MTS 

-orange). F. Shift in the pH dependence of activation under control and MTS-11-MTS 

treatment condition (Ctrl-black; MTS-11-MTS -orange).  G. Representation of IpH6.x/IpH5 

ratio for ASIC1a D237C/E315C, D237C and E315C (Ctrl-black; MTS-14-MTS -blue). H. 

Shift in the pH dependence of activation under control and MTS-14-MTS treatment condition 

(Ctrl-black; MTS-14-MTS -blue), I. Structural representation of double mutant in acidic pocket 
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of human ASIC1a structure in closed state. statistical significance represented by ∗p < 0.05; 

∗∗p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001 and mutants are labelled with color matching the 

domain organization. 

SUPPLEMENTARY FIGURES LEGENDS 

 

Figure S1. Light-induced current in rP2X2. A. Light-induced current obtained in rP2X2 

P329C. 7µM ATP-induced (left) and 440nm light-activated current (right) in rP2X2 P329C. 

Blue bar over trace (right) represents 10% intensity of 440nm light applied for 5s and 100% 

intensity of 360nm light applied for 0.1s, B. Comparison of 7µM ATP-induced and light-

induced current in rP2X2 P329C. Statistical significance obtained by paired t-test (two-tailed, 

n=11) ∗p < 0.05; ∗∗p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001. C. Different intensities of light 

obtained either by adjusting the brightness level value in DC2000 light controller device (left) 

or by adjusting the voltage trigger input in patch master software. 
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Figure S2. Cross-link reaction of BMA at engineered cysteine mutation analyzed by western 

blot. Cells transfected with mutants were blotted by specific antibody against ASIC1a. 

Monomeric band obtained at 70KDa and dimeric band at 130KDa. 

 

Table 1. Summary of shift in pH50 of activation and change in IpH5 peak amplitude by MTS 

cross-linker in selected double mutants and the respective single mutants  

Mutant 
MTS cross-

linker 
pH50 shift IpH5MTS/ctrl 

hASIC1a-D237C I312C MTS-17-MTS -0.26±0.07 (n=3) -0.71±0.08 

hASIC1a-D237C MTS-17-MTS -0.17±0.07 (n=3) -0.83±0.04 

hASIC1a-I312C MTS-17-MTS +0.07±0.16 (n=4) 0.02±0.18 

hASIC1a-D351C T236C MTS-11-MTS -0.43±0.17 (n= 4-5) -0.69±0.09 

hASIC1a-D351C MTS-11-MTS -0.14±0.03 (n=4-5) -0.41±0.05 

hASIC1a-T236C MTS-11-MTS -0.83±0.15 (n=4) -0.15±0.06 

hASIC1a-D237C E315C MTS-14-MTS -0.57±0.07 (n=6) -0.38±0.08 

hASIC1a-D237C MTS-14-MTS -0.20±0.05 (n=4) 0.25±0.05 

hASIC1a-E315C MTS-14-MTS -0.64±0.08 (n=4) -0.33±0.05 

The symbol ‘-‘indicates the decrease in current amplitude and ‘+’ indicates the increase in 

current amplitude. 
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Table 2. Selection of MTS cross-linker and MTS monovalent reagents based on their lengths 

matching to the distances between engineered Cys mutation in open (4NTW), desensitized 

(4NYK) and closed state (5WKU) models of human ASIC1a. 

Mutant 

Open state Closed state 

MTS Cross-

linker 

MTS 

Monovalent 

MTS Cross-

linker 

MTS 

Monovalent 

R64C MTS-14-MTS 
MTS-PEO3-

Biotin 
MTS-10-MTS# MTSEA-Biotin 

Y67C MTS-17-MTS - MTS-10-MTS# MTSEA-Biotin 

H72C 
MTS-14-MTS, 

MTS-17-MTS 

MTS-PEO3-

Biotin 
MTS-10-MTS# - 

T419C - - 
MTS-10-MTS# 

MTS-14-MTS 
- 

E421C MTS-14-MTS - MTS-10-MTS# - 

K423C 
MTS-8-MTS 

MTS-10-MTS 
- MTS-6-MTS# MTSEA-Biotin 

A425C MTS-10-MTS MTSEA-Biotin 
MTS-4-MTS# 

MTS-6-MTS# 
MTSES 

E427C MTS-17-MTS - 
MTS-8-MTS 

MTS-10-MTS# 

MTS-PEO3-

Biotin 

I428C - - 
MTS-14-MTS# 

MTS-17-MTS 
- 

G430C MTS-17-MTS - 

MTS-4-MTS# 

MTS-6-MTS 

MTS-10-MTS 

MTSEA-Biotin 

G433C MTS-10-MTS - 
MTS-2-MTS# 

MTS-4-MTS 
- 

E97/D347 MTS-8-MTS# MTSEA-Biotin MTS-10-MTS MTSEA-Biotin 

E97/V354 MTS-11-MTS# MTSEA-Biotin 
MTS-14-MTS 

MTS-17-MTS 

MTS-PEO3-

Biotin 

E97/E355 MTS-14-MTS# 
MTS-PEO3-

Biotin 
MTS-17-MTS 

MTS-PEO3-

Biotin 

E235/E355 MTS-10-MTS# MTSEA-Biotin MTS-17-MTS 
MTS-PEO3-

Biotin 

T236/D351 MTS-6-MTS# MTSES MTS-11-MTS MTSEA-Biotin 

D237/I312 MTS-11-MTS# MTSEA-Biotin MTS-17-MTS 
MTS-PEO3-

Biotin 

D237/E315 MTS-8-MTS# MTSEA-Biotin MTS-14-MTS 
MTS-PEO3-

Biotin 

D237/E355 MTS-6-MTS# - 
MTS-11-MTS 

MTS-14-MTS 
MTSEA-Biotin 

K246/D347 MTS-11-MTS# MTSEA-Biotin MTS-14-MTS 
MTS-PEO3-

Biotin 

F257/D351 MTS-11-MTS# - MTS-14-MTS 
MTS-PEO3-

Biotin 

D296/E359 
MTS-8-MTS 

MTS-10-MTS 
MTSEA-Biotin MTS-17-MTS# 

MTS-PEO3-

Biotin 
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MTS reagent with symbol # denotes the length of the reagent matching to the desensitized 

state. 

 
SUPPLEMENTARY DATA 

Table S1. Distances between residues that were mutated to Cys in this study, determined 

between Cβ-atoms (C for Gly) of open (4NTW), desensitized (4NYK) and closed state 

(5WKU) models of human ASIC1a. 

Residue 

Open 
state 

4NTW 
(Å) 

Desensitized 
state 

4NYK (Å) 

Closed 
state 

5WKU 
(Å) 

Residue 

Open 
state 

4NTW 
(Å) 

Desensitized 
state 

4NYK (Å) 

Closed 
state 

5WKU 
(Å) 

E63 27 22.2 22.2 E97/D347 12.5 12.8 14.8 

R64 21 15 15.2 E97/V354 17.2 17.2 21.2 

Y67 24.8 18 17.7 E97/E355 19.8 19.7 25.4 

H72 22.2 15.5 15.2 I137/K396 20.7 21 21 

T419 17.3 17.9 18.8 I137/E403 20.4 20.3 21.2 

E421 17.6 16.3 15.9 E235/E355 15.3 15.4 25.9 

K423 16.3 12.1 11.8 T236/D351 11.4 11.4 17.4 

A425 16.2 9.2 9 D237/F257 15.5 16.3 22.3 

E427 23.8 15.6 16 D237/I312 17.0 17.0 23.4 

I428 28.4 21 21.3 D237/E315 13.7 14.1 20.6 

G430 16.6 9.4 9.5 D237/E355 11.6 11.6 18.2 

G433 14.4 5.2 5.7 K246/D347 17.6 17.7 20.7 

    F257/D351 14.6 14.3 18.0 

    D296/E359 14.4 22.8 23.6 

The indicated distances are measured in hASIC1a models between two subunits for single 

mutants and within the subunit for double mutants.  

Table S2. Distances of MTS cross-linker and monovalent reagent 

MTS cross-linker Length (Å) MTS monovalent Length (Å) 

MTS-2-MTS 6.28 MTSES 5.06 

MTS-4-MTS 9.18 MTSEA-Biotin 10.9 

MTS-6-MTS 12.3 MTS-PEO3-Biotin 24.7 

MTS-8-MTS 14.6   

MTS-10-MTS 15.84   

MTS-11-MTS 17.46   

MTS-14-MTS 21.05   

MTS-17-MTS 23   

The distances of MTS cross-linker and monovalent reagents are measured between the Sulphur 

atom on both ends after the release of sulfinic acid (SO2CH3). 
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Table S3. Summary of functional information obtained from previous studies using 

monovalent MTS reagent on ASIC1a mutants 

 
MTS reagent Mutation Information 

MTSET, MTSMT and MTSPT mASIC1a-G428C Direct activation of the channel 

in the absence of extracellular 

acidification (Tolino, Okumura 

et al. 2011) 
MTSET mASIC1a Y424C-G428C 

MTSET and MTSPTrEA 
hASIC1a-G430C, hASIC2a-

A427C 

Direct activation of the channel 

in the absence of extracellular 

acidification (Gautschi, van 

Bemmelen et al. 2017) 

MTSET hASIC1a-E315C, -D347C 

Acidic shift in the pH50 of 

activation and inhibition of peak 

amplitude (Liechti, Berneche et 

al. 2010) 

MTSET hASIC1a-E235C, -E355C 

No shift in the pH50 of 

activation(Liechti, Berneche et 

al. 2010) 
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6. Discussion 

6.1.  Modulatory effect by non-proton ligand GMQ and its derivatives on ASIC1a 

To date, protons are the known agonist of ASICs. Yu et al identified GMQ as a nonproton 

ligand, that can open ASIC3 at physiological pH7.489. Two residues, E423 and E79 belonging to 

the lower palm domain of ASIC3 were identified crucial for the activation of the channel by 

GMQ89. GMQ is known to shift the pH dependence of activation to more alkaline value in ASIC3 

and create a window current at pH7.4 leading to the channel activation106. However, the effect of 

GMQ on gating mechanism is different on other ASIC subtypes. GMQ shifts the pH dependence 

of activation in both ASIC1a and ASIC1b to acidic value, whereas in ASIC3 to alkaline value. In 

ASIC1a-E418C, an acidic shift in the pH dependence of activation was induced by GMQ and it 

was not observed in ASIC1a-E79C. In both these mutants an acidic shift was observed in the 

steady-state desensitization, suggesting a partial loss of GMQ effect on the activation of 

ASIC1a106. At a concentration >1mM, GMQ inhibited the maximal peak current in all ASIC 

subtypes, but with a lower effect in ASIC1b. Thus, it was clear from previous studies that GMQ 

is a gating modifier and pore blocker of ASIC subtypes. To gain insight into the role of GMQ in 

vivo, currents were measured in rat DRG neurons in response to the application of GMQ89. In 

most neurons, ASIC-like currents evoked by acidification were observed even by GMQ, 

suggesting GMQ may also activate the channel in vivo. Since studies have shown the role of 

ASIC3-mediated pain responses78,84,104, GMQ was injected into the right hind paw of ASIC3-/- 

and ASIC3+/+ mice. Intraplanar injection of 100µM GMQ-containing 0.9% NaCl solution in the 

mice showed paw licking time was higher in ASIC3+/+ mice compared to ASIC3-/- mice. 

Additionally, the paw licking time was slightly prolonged in ASIC1-/- mice compared to ASIC1+/+ 

mice. Thus, GMQ was shown to activate sensory neurons and cause pain-related behavior. Hence, 

it was interesting to find analogues of GMQ with higher affinity. To identify a potent small 

molecule based on GMQ, the guanidium moiety of GMQ was used as scaffold generate the 

derivatives, since previously tested GMQ analogues, 2-guanidino-benzimidazole, -
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benzothiazole, and -benzoxazole modulated ASIC3 poorly89.  

6.1.1. Blocking and gating effect by GMQ derivatives on ASIC1a and ASIC3 

To measure the potency of GMQ derivatives on ASIC1a and ASIC3, gating and blocking 

effects were measured. Gating effect refers to the measurement of current ratio at two pH vales, 

at pH6.6 close to the pH50 of the channel in the steep part of activation curve and at pH5 to 

maximal channel activation where pH dependence has saturated.  A change of this amplitude by 

a compound indicates that the compound affects the maximal current amplitude. For the blocking 

effect, currents were measured at pH5, where the pH dependence curve has saturated. For ASIC1a 

and ASIC3, the gating effect was measured at pH6.6 (IGMQ/Ictrl) induced-current close to the pH50 

of activation for both the channels. The blocking effect was measured by the inhibition of current-

induced by pH5 (IGMQ/Ictrl). Five different cluster of compounds were tested and the number 

mentioned in the parenthesis of clusters correspond to a specific molecule shown in the figure 1 

of the article146. Cluster1 was derived with the conserved bicyclic structure of GMQ but with a 

replaced cyclohexane ring for a benzene ring to evaluate the role of aromatic ring on ASIC 

activity. To evaluate the role of methyl group at position 4 and nitrogen atom at position 3 that is 

important for the GMQ activity to form H-bond interaction with guanidine to the nitrogen atom 

at position 1, quinoxaline (2) and quinoline (3a, b) compounds were tested.  Cluster2 (4a, b, c), 

cluster3 (5a, b, c, d, e) and cluster4 (6) were generated with disconnected benzene ring to produce 

6-, -5-,4-phenyl-2-guanidinopyridines. Cluster5 (7, 8) was generated with disconnected 

guanidine moiety. For the gating effect, compounds in cluster 1 (1, 2, 3a, 3b), 2(4c), 3 (5b, 5c, 

5e) and 5 (7) produced strong acidic shift , while cluster5 (8) produced strong alkaline shift in the 

pH dependence of activation similar to GMQ in ASIC1a. For the blocking effect, quinoline (3a) 

produced strong inhibition while quinoxaline (2) and quinoline (3b) produced moderated effect 

like GMQ (Figure 2)146. In ASIC3, the compounds from cluster1 (1,3a) and 5 (7,8) produced an 

alkaline shift in the pH dependence of activation, while the compounds from cluster 3 (5b,5c,5e) 

produced acidic shift, suggesting an importance of aromatic group of guanidinopyridine in the 
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modulatory effect. For the blocking effect, cluster 1 (3a,3b), cluster2, cluster3 and cluster4 

showed significant blocking effect at IpH5 (Figure 3)146. 

Taken together, it was found that the nitrogen atom at position 3 plays a role in altering the 

blocking effect on ASIC1a and ASIC3. The blocking effect is due to inhibition of the current at 

pH5 by pore block that decreases the unitary current106. For the gating effect, binding of GMQ to 

the palm domain and by mutation of palm domain residues, GMQ binding was suppressed by 

shift in the pH dependence of steady-state desensitization, but not of activation106. 

6.1.2. Gating and blocking effect by GMQ derivatives on heteromeric channels 

In the CNS, functional ASIC1a homomers, and ASIC1a/2a and ASIC1a/2b heteromers are 

expressed. In the PNS, functional ASIC homomer and many more possible ASIC heteromers are 

possible, except ASIC4. Therefore, we used ASIC1a/2a heteromers representing the CNS and 

ASIC3/2a representing the PNS to test the GMQ derivatives at IpH5.8 and IpH4.0. Transfection of 

two subunit cDNAs can lead to channels with different stoichiometry30. Depending on this 

stoichiometry, the pH dependence of activation is changed, and the pH dependence is assayed 

with the two pH conditions, pH5,8 and pH4.0. The test resulted in the variability of IpH5.8/IpH4.0 

ratio in cells expressing heteromers before the application of any derivative. To reduce the 

variability in the IpH5.8/IpH4.0 ratio, different ratio of ASIC1a/2a and ASIC3/2a DNA were 

transfected and in cells producing IpH5.8/IpH4.0 ratio between 0.25 to 0.75 were considered for 

treatment with GMQ derivatives. Several compounds like cluster 2(4a), cluster 4(6) and including 

GMQ showed significant alkaline shift in the Icpd/Ictrl ratios at pH5.8/pH4 opposite to the shift 

observed in ASIC1a and ASIC2a106. In ASIC3/2a, a significant alkaline shift in the Icpd/Ictrl ratios 

at pH5.8/pH4 was observed by compound from cluster2(4a) and cluster 5(8).  For blocking effect, 

most of the compound like cluster1(3a) and cluster 5(7,8) significantly affected the IpH4 in 

ASIC3/2a and no loss in IpH4 was observed in ASIC1a/2a. Due to the inclusion of ASIC2a in 

the heteromers, the effect of modulation on ASIC1a/2a and ASIC3/2a heteromeric channel 

activity was less pronounced by the GMQ derivatives. It is known that the G445 of ASIC3 and 
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G440 of ASIC1a located in the pore, and that correspond to the residue in ENaC that is important 

for amiloride inhibition is also important for the blocking effect by GMQ. Mutation of these 

residues to Ala results in loss of the blocking effect by GMQ106. Sequence comparison among 

hASIC1a, hASIC2a and rASIC3 showed that the TM2 is well conserved in the pore region while 

the lower palm domain residues are not completely conserved. Therefore, binding of GMQ might 

be affected due to the altered interaction with binding partner in the palm domain, and the 

stoichiometry of heteromeric channel assembly itself might result in the partial loss of the 

modulatory and the inhibitory effect. Induction of LTP, for instance, increases the synaptic 

transmission and producing strengthened signal transmission can be beneficial and important for 

learning and memory36. In this case, cluster2(4a) compound that produce a small blocking effect 

at IpH5 can be used in the induction of LTP. A recent study used GMQ-guided in silico screening 

of 5 Food and Drug Administration (FDA) approved compounds and evaluated their modulatory 

effect on rASIC3. Based on the surface electrostatic analysis, sephin1 resulted in higher 

resemblance to GMQ and sephin1 activates rASIC3 at pH7.4 and potentiate its response to acidic 

stimuli at pH7.4. Sephin1 is a novel modulator of ASIC3147. Using a similar approach, combining 

both in silico and electrophysiology experiments, other compounds can be identified and 

assessed. In fact, techniques like voltage-sensitive dye-based assays in parallel to patch-clamp 

electrophysiology can be used as an alternative technique to provide a faster assessment of 

compounds based on their ability to modify channel activity. 

6.2. Difference in the biophysical properties between WT (G212) and mutant (D212) 

ASIC1a 

In many laboratories, including ours, a human ASIC1a clone that contained Asp at position 

212 was used as wild type. Residue 212 is in the palm domain at the subunit interface, facing 

towards the thumb domain of the adjacent subunit. Since the time when this human ASIC1a clone 

was generated, it contains Asp at position 2123. The occurrence of this mutation in humans is 

very low. This mutation might likely have been generated by an error in the clone generation 
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process or the clone was obtained from a person carrying the mutation at 212. It is possible for 

errors since these clones were generated from the assembly of three different contigs and one of 

the contigs might contain this error. The sequence similarity between hASIC1a and hASIC2a 

shown in Figure 23 of the article that clearly shows the hASIC1a clone contains D at 212. The 

Asp at 212 is in close proximity to the proposed Cl- binding site144. By examination of the 

biophysical properties, we found some difference between the WT hASIC1a-G212 and mutant 

hASIC1a-D212. An acidic shift in the pH dependence of steady-state desensitization by 0.08 pH 

units, 20-fold higher current amplitudes, 2-fold increased surface expression and slower 

current decay kinetics were observed in the WT hASIC1a-G212. In the open and desensitized 

crystal structure of cASIC1a, a chloride ion was shown to bound per subunit at Lys212 (hASIC1a-

L211) that deeply inserts into the adjacent subunit25,28,29, however, this was not found in the 

closed state24. The predicted chloride ion binding-site is located between the two helices, α4 and 

α5 of the thumb domain. The coordination of chloride ion in cASIC1a was shown by Arg310, 

Glu314 and Lys212 from an adjacent subunit, and van der Waals interaction from the side chain 

of Leu352, Val353 and Cyc360. Disruption of Cl- binding site alters the pH-dependent gating, 

time course of desensitization and attenuates tachyphylaxis144.  Kusama et al showed that chloride 

concentration can affect the ASIC current decay kinetics144,148. Mutation of the chloride binding 

residue in mASIC1a resulted in disrupted modulation of current decay kinetics144. Mutation of 

the conserved intersubunit chloride binding site in mASIC2a produced partial effect and no effect 

in rASIC3. In the closed state, it was found that the channel lacks bound Cl- within the thumb 

domain and this may be due to the conformational changes associated with high pH resulting in 

the expansion of acidic pocket145. It is assumed that mASIC1a-K211 is uncharged at the closed 

state and charged at the open or the desensitized state based on the pKa values of the lysine side 

chains that can be lower than 6.0149. Since the aim was to identify the differences in the 

biophysical properties between hASIC1a-D212 and -G212 and it is known that 212 is a site close 

in proximity to the chloride binding site145, extracellular chloride concentration was modified and 
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also replaced with SCN- for Cl-. An accelerated current decay kinetics was observed with SCN- 

compared to Cl- in both hASIC1a-D212 and -G212, but the binding of SCN- and Cl- occurs at the 

same site in ASIC1a as shown before144. The exchange of Asp with Gly at 212 produced a 

consequence on the current decay kinetics and may not affect the binding of Cl- itself. Taken 

together, only a few differences were found in the biophysical properties of the channel and the 

studies done in other laboratories on hASIC1a-D212 mutant background remain valid even in 

hASIC1a-G212 WT. In a recent study, to understand the role of Gly212 in the activation and 

desensitization, Gly was replaced with A, D, E, F, Q, S and T. In Glu212, the pH dependence of 

activation was shifted to more alkaline values, while in other mutants to acidic value. In all 

mutants, functional analysis showed modulation of current decay kinetics by Cl- were present, 

but the substitution with different amino acids at 212 did not affect the Cl- binding, rather 

produced the consequence of its binding due to altered intra- and intersubunit interaction150. 

6.3.  Analysis on the structure-function relationship of ASIC1a channel activation 

6.3.1. Light-induced channel activation in ASIC1a 

The wrist is a flexible region that connects the extracellular domains to the transmembrane 

domain in ASIC1a. In ratASIC1a, some residues like Glu, His and Asp were mutated, and this 

resulted in decreased H+-sensitivity, suggesting this region to be critically involved in ASIC proton 

sensing151. In a study, two residues I428C and G430C of hASIC1a in the transmembrane domain 

tethered to BMA evoked light-induced current by application of 440nm light 131. Similar light-

induced channel activation was observed in rP2X2-P329C and rP2X3-P320C. ASICs and P2X 

receptors are two distinct ion channel families containing completely different amino acid 

sequence, however they share similar structural topology with two transmembrane domains linked 

to an agonist-binding extracellular domain rich in cysteine residues. With the crystal structures, 

structural parallels in the pore architecture were found in ASIC and P2X28,29,152. Structural and 

functional similarities in both these channels are well discussed in the review153. X-ray structures 
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revealed parallels in the structural architecture of the pore. In our analysis, we found with western 

blot analysis that residues Ile428C and Gly430C did not form cross-link at this position. In our 

hand, the light-induced current was only observed in Ile428C and not in Gly430C. From the 

structural information, the distance from the α atom of Gly430 to Gly430 of the adjacent subunit 

is 9.5Å in the closed state. The distance between adjacent Gly430 was smaller than the distance of 

BMA in the cis configuration. So, when BMA is incubated with the cells expressing hASIC1a-

G430C, it is possible that BMA may bind to the channel at each G430C residue among the subunits 

but may not be possible to open the channel. On the other hand, the distance from the β atom of 

Ile to the adjacent Ile is 21.3 Å in the closed state. Also, our analysis in Ile428C and Gly430 shows 

BMA does not form a cross-link. Thus, the mechanism of activation by light may be due to the 

modification of Ile428C residue per subunit by BMA, but the exact mechanism behind light-

dependent activation only at Ile428C is unknown. Studies have shown that positively charged 

MTS reagents can modify G430C due to their accessibility and thereby open the channel133,135. 

However, in our experiments hASIC1a-G430C did not produce a light-dependent activation and 

neither a shift in the baseline current at pH7.4. Hence, it was identified that BMA can modify only 

hASIC1a-I428C without cross-linking and result in light-dependent activation of ASIC1a at 

physiological pH7.4. 

6.3.2. Light-induced shift in the pH dependence of activation  

It is known from various studies that the acidic pocket is an important region for ASIC1a 

function. Experiments with PcTx1 and mambalgin have shown that the acidic pocket regulates the 

pH dependence25-27 and several studies have investigated the acidic pocket and associated 

conformational changes during channel activity. Using luminescence resonance energy transfer 

(LRET), the reduction in the distance between thumb and finger domains was observed in ASIC1a 

associated with proton gating154. In the acidic pocket, rapid and slow conformational changes were 

observed during activation and desensitization51. In our study, cross-linking by BMA in the double 

mutants was not assessed biochemically, as these mutants are located in the same subunit. We 
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applied both 440nm and 360nm light to identify any shift in the half-maximal pH. As studies show 

the correlation or requirement of acidic pocket collapse for ASIC activation, we observed 

application of 360nm light on BMA tethered to three double mutants, D237C/E315C, 

D237C/E355C and K246C/D347C of the acidic pocket shifted the pH dependence. However, it 

cannot be indicated whether a cross-linking has indeed occurred. Further analysis of cross-link in 

the pair of mutants is required to understand the conformation changes associated to channel 

function. 

6.3.3. Shift in pH dependence of activation by MTS cross-linkers 

Different approaches have been applied to identify conformational changes during 

activation. To determine the structural changes, studies have measured the accessibility of Cys 

residue to specific MTS reagent. Structural changes during channel desensitization were observed 

in the lower palm138. We used a similar approach by introducing Cys mutation and modify them 

with MTS cross-linker. Such analysis was never done before in ASIC1a and we did an extensive 

analysis using selective MTS cross-linking reagents in which the distance between the two 

residues was different in the closed and the open state for pair of residues. Cross-linkers with the 

length that matches to the distance in either state was applied to the channel. The pH dependence 

of activation and maximal current amplitude was measured. It is expected that if a cross-link 

occurs, a compound can lock the channel in each functional state. Selected mutants, D237C/I312C, 

T236C/D351C and D237C/E315C alone showed a decrease in the ratio of IpH6.x/IpH5MTS /ctrl 

with MTS cross-linker in comparison to the MTS monovalent reagent. The pH50 of activation in 

the double mutants T236C/D351C and D237C/E315C, and its single mutant using MTS cross-

linker showed an acidic shift. While in the mutant D237C/I312C, the pH50 of activation under 

MTS cross-linker was shifted to acidic value. In D237C, the pH dependence of activation with 

MTS-17-MTS was shifted to acidic value and the shift was smaller than in the double mutant. In 

I312C, the pH dependence of activation with MTS-17-MTS was shifted to alkaline value. 

However, it was not confirmed if MTS-17-MTS can form cross-link at D237C/I312C and shift in 
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the pH dependence of activation is due to MTS-17-MTS cross-link. Since, both the mutant is in 

the same subunit, it limits the assessment of cross-link by MTS reagent.  

There are some MTS crosslinking reagents that indicated a significant decrease in the pH 

dependence of activation compared to the control condition. For example, in hASIC1a-

T236C/D351C, both MTSES and MTS-6-MTS indicated a strong acidic shift in the IpH6.2/IpH5.0 

ratio. Similarly, in hASIC1a-E97C/V354C and -D237C/I312C, a strong shift in the IpH6.x/IpH5 

was observed both in the treatment with MTS cross-linker and MTS monovalent reagent. In 

hASIC1a-E97C/V354C, the modification by MTS-17-MTS, MTS-14-MTS and MTS-PEO3-

Biotin shifted the IpH6.4/IpH5 ratio. But in hASIC1a-D237C/I312C, the ratio of IpH6.0/IpH5 

with MTS cross-linker was strongly decreased in comparison to the MTS monovalent reagent. 

Thus, in hASIC1a-T236C/D351C and -E97C/V354C, the shift in pH dependence may arise just 

by the modification of one of the cysteine mutations. 

In comparison to voltage-clamp fluorometry (VCF) data, where the cysteine mutants were 

tethered to AlexaFluor488 C5 maleimide, the mutant D237W/D351C, D237C/D347C and E355C 

showed fast fluorescence signal change in correlation to the kinetics of current activation51. In an 

earlier study, using the same VCF approach, E355C was proposed to undergo first rapid movement 

associated with channel opening or an early preparation for desensitization. In the mutants E235C 

and V354, a backward movement was proposed during recovery from desensitized state155. Such 

studies have provided us with information on residues involved during channel activity and we 

can use that information to compare and correlate the results obtained using MTS cross-linkers 

with channel activity. 

In our case, treatment of hASIC1a-D237C/I312C, -D237C/E315C and -T236C/D351C with 

MTS cross-linker matching to their distance in the close state produced a significant shift in the 

IpH6.x/IpH5 and inhibited peak maximal current. Though, these mutants are in pair with E355C 

and E97C, testing the single mutant with respective cross-linker may provide a better 
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understanding. As we know that E235C, D237C, D347C, D351C and E355C residues  are required 

for the preparation of channel activation51,155, hence, it is likely possible that modification of these 

residues by MTS cross-linking reagent or MTS monovalent reagent may affect the movement of 

residue required for the channel activation. In the case of F257W/D351C, by VCF it was shown 

that fluorescence change kinetics were associated with current desensitization. In hASIC-D237C 

single mutant, both MTS-17-MTS and MTS-14-MTS whose length match with the closed state 

produced an acidic shift in the pH dependence of activation. We did not measure a monovalent 

MTS reagent on this mutant. Thus, in comparison, we can assume that one of the mutants is 

modified by MTS cross-link reagent and modification results in decreased activation.  This is the 

first time an MTS cross-linker approach has been applied on ASIC1a to study the activation 

mechanism. We assume some limitations using this approach. First, it is possible that there may 

be some double mutant where cross-linking might have occurred and did not produce any effect 

on the channel, or the monovalent cross-linking reagent was a limit since its distances did not 

match exactly like a control for cross-linking MTS reagents. Secondly, it is possible that at least 

for one of the residues in the chosen pair from extracellular domain may not be accessible for 

cross-linking and this can be the case also in TM domain. Thirdly, it is possible that the structural 

distances between the two residues do not correspond to the distance of MTS cross-linking 

molecules. Considering these limitations, we assume that cross-linking may occur and it needs 

further validation to elucidate the conformation changes associated in this domain during the 

channel activation. Together, further analysis by mass spectrometry is required to identify the 

potential cross-linking in the double mutant.  Overall, the cross-linking approach was not 

successful and the possible reasons could be 1) variation in the measured distances between the 

crystal structures and the physiological condition, 2) the length of compounds did not match 

exactly to the distances among the selected residues. 

Using cysteine-based cross-linking approaches, BMA and MTS cross-linker did not cross-
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link the same residues. Pair of residues found under both approaches were different from each 

other. With certain limitations using these two approaches to understand the channel activation 

mechanism, the results are only predictive to describe the conformational changes associated with 

the channel activity. 
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7. Conclusion and perspectives 

Over recent years, ASICs have attracted the interest of researchers to investigate their role 

in physiological and pathological functions. Some research conducted on ASICs is focused on 

identifying potent modulators of channel activity and identifying proton binding sites. In ASICs, 

the exact mechanism of channel activation remains still unknown even with the availability of 

high-resolution structures. Several studies have identified possible protonation sites in ASIC1a, 

but the conformational changes associated with proton binding remain elusive. In my thesis, using 

the cysteine-based cross-linking approaches, few pairs of residues were to shift the pH dependence 

of activation by application of 360nm light and by MTS cross-linker. Only in hASIC1a-

D237C/I312C the shift in the pH dependence of activation by MTS-17-MTS was stronger than its 

single mutants D237C and I312C. However, cross-linking of D237C/I312C by MTS-17-MTS 

needs further validation. To determine the cross-linking, purified peptide fragments of cross-

linked hASIC1a-D237C/I312C can be used for mass spectrometry analysis. Studies have already 

used molecular dynamics simulation in parallel to the experimental approach to consolidate the 

structure-function findings in ASIC1a117,150,156. In the future, molecular simulation can also be 

applied to determine the pair of residues and the distance constraints required to obtain cross-

linking using either BMA or MTS cross-linker reagents in different domains of hASIC1a. 
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