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Abstract 

In this paper, we develop a memory model that predicts 
retrieval characteristics of real-world facts. First, we show 
how ACT-R’s memory model can be used to predict people’s 
knowledge about real-world objects. The model assumes the 
probability of retrieving a chunk of information about an 
object and the time to retrieve this information depend on the 
pattern of prior environmental exposure to the object. Second, 
we use frequencies of information appearing on the Internet 
as a proxy for what information people would encounter in 
their natural environment, outside the laboratory. In two 
Experiments, we use this model to account for subjects’ 
associative knowledge about real-world objects as well as the 
associated retrieval latencies. Third, in a computer simulation, 
we explore how such model predictions can be used to 
understand the workings and performance of decision 
strategies that operate on the contents of declarative memory.    

Keywords: ACT-R; declarative memory; decision making; 
fast-and-frugal heuristics; Internet; strategy selection 

The Importance of Memory for Inferences 

Many of our every-day decisions are based on declarative 

knowledge retrieved from long-term memory. For example, 

a consumer who decides between different car brands will 

retrieve knowledge, such as information about the price 

segment, brand image, or fuel efficiency, to decide which 

brands to consider more closely. In judgment and decision 

research, there is a rich literature on how people infer 

unknown criteria, such as the quality of a car, based on 

object attributes used as cues (e.g., Gigerenzer, Hertwig, & 

Pachur, 2011). The kind of cue-knowledge a person 

retrieves when making a decision will likely depend on the 

information related to the decision objects she has 

encountered before, say, on the Internet. The person will 

then use this cue-knowledge as input of decision strategies 

when making inferences about unknown criteria, such as 

the quality of a car. A detailed cognitive model of how 

environmental patterns are reflected in memory, tied to 

models of decision making, could hence help to understand 

how human decision making depends on and is adapted to 

the environment. 

Modeling Declarative Knowledge in ACT-R 

In the cognitive architecture ACT-R, knowledge about the 

world is represented in declarative memory (Anderson, 

Bothell, Byrne, Douglass, Lebiere, & Qin, 2004). The basic 

unit of knowledge in declarative memory is the chunk. A 

chunk combines a set of elements into a long-term memory 

unit, where different concepts are configured together in the 

chunk’s slots. New declarative knowledge is added to 

memory by encoding representations of objects that are 

attended in the environment. For example, the knowledge 

that the city of Berlin has an airport can be represented in a 

chunk with the following structure: 

BERLIN-AIRPORT 

ISA        CITY_FACT  

CITY       BERLIN 

ATTRIBUTE   AIRPORT 

RELATION   HAS 

The chunk is of type CITY_FACT. Its slots contain the 

city BERLIN, the attribute AIRPORT, and the relation 

HAS. If the same constellation of concepts is encountered 

and attended again, rather than creating a duplicate chunk, 

the memory entry of an existing chunk will be strengthened, 

and as a result, will become more readily accessible in 

memory.   

In addition to symbolic information (the chunk-type and 

slot values), each chunk encodes subsymbolic information 

about the likelihood that the chunk will be needed to reach 

one of the system’s processing goals – the chunk’s 

activation (Anderson & Milson, 1989). A chunk’s 

activation, in turn, is probabilistically related to its retrieval 

and the time required for retrieval. Table 1 summarizes the 

relevant equations for ACT-R’s declarative memory system 

(see Anderson et al., 2004 for details on ACT-R’s theory of 

declarative memory). 

 

Table 1: Equations relevant for memory retrieval 

 

Equation number Equation 

1) Activation Ai = Bi + ∑      
 
    

2) Base-level Activation Bi = ln n /(1-d) - d ln L 

3) Associative Strength Sji =   
      

    
 

4) Attention Weighting Wj =    ⁄  

5) Retrieval Probability    = 
 

    (    )  
 

6) Retrieval Time Ti =       

Note. Equation 2 is an approximation of base-level 

activation. 

In the following, we explore to what extent ACT-R’s 

memory model can be used to predict people’s knowledge 

about real-world objects when using the Internet as a mirror 
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of the environment. Implementing the above formulas in 

Matlab, we aspire to develop a convenient method for 

modeling memory contingent on frequencies of objects and 

their attributes in people’s natural environment, outside the 

laboratory. As we will illustrate, alike efforts may be helpful 

when using ACT-R’s memory system to understand, for 

instance, the workings and performance of decision 

strategies. 

Predicting Retrieval from Internet Frequencies 

We used frequencies of mentions of objects on the Internet 

as proxies to what information people would encounter in 

their natural environment, outside the laboratory (henceforth 

web frequency). Specifically, we searched for the names of 

cities (e.g., Berlin), the names of city attributes (e.g., 

airport) and the combination of cities and attributes (e.g., 

Berlin airport) on www.en.wikipedia.org in English, using 

the Wikipedia API tool to find the total number of hits for 

pages containing our search term. Search was performed on 

September 14
th

 2014. 

To calibrate and test our model, in two Experiments, we 

collected behavioral data on people’s knowledge of 

European cities by asking them for pairs of cities and 

attributes whether or not they had heard of the city having 

the attribute before (e.g., “Does Berlin have an airport?”). 

Memory Activation of Knowledge 

We assume that when a person believes she has encountered 

a city together with an attribute before, this implies a 

successful retrieval of a chunk i encoding the relation 

between the city and the attribute. Given this assumption, 

each time a person tries to retrieve a combination of a city 

and an attribute, according to Equation 1, two sources of 

activation for chunk i are (a) the base-level activation of 

chunk i whose slots contain the city name and the attribute 

name and (b) spreading activation from the city and 

attribute names included in the retrieval request. 

 A chunk’s base-level activation is a function of the 

number of encounters, n, with the object or relation encoded 

in the chunk (Equation 2). We approximate the frequency 

with which a city and an attribute occur together in one 

context by the number of times both concepts co-occur on 

one page in the knowledge base Wikipedia (         ). As a 

simplification, we assume the time of creation to be equal 

for all chunks and hence replace the lifetime of the chunk, L, 

by a constant. The decay parameter d is usually set to .5. 

The base-level activation of the chunk i can hence be 

written as: 

Bi,web = c0 + ln Ncity&cue, (7) 

where the constant c0  absorbs the value for the term ln 2 - 

.5 ln L.  

For the spreading activation, we assume that the chunks 

encoding the city and the attribute forming part of the 

retrieval request spread activation to chunk i.  Following 

Equation 3, the associative strength between a city and an 

attribute depends on the number of times the city and the 

attribute co-occur together relative to each of the concepts’ 

base-rates of occurring (Schooler & Anderson, 1997).  

P (city|cue) is the probability that the city occurs, given the 

presence of the attribute. When dividing this conditional 

probability by P (city), we get a measure for how much 

more likely the city is to occur when the attribute is present 

than when it is not. The associative strength between the 

attribute and the city is the logarithm of this odds ratio:  

Scue,i = ln 
           

       
 = ln 

             

      

       
 = ln 

           

              
.       (8) 

We estimate the probability of a city or attribute occurring, 

(P (city), P (cue)) by dividing the frequency of its 

occurrence in the knowledge base (Ncity, Ncue) by the total 

size of the knowledge base Nall. We approximate the size of 

the knowledge base by the number of hits for pages in 

Wikipedia on which the word and appears (Nand), so we can 

write:  

Scue,i = ln 

         

    
     

    
 
    
    

 = ln 
             

         
. 

(9) 

It can be shown mathematically that Scity,i = Scue,i. Assuming 

that the attention weights Wj from the m sources of 

activation sum to 1 (cf., Anderson, Reder, & Lebiere, 1996) 

and activation spreading from the city and the attribute with 

equal proportions, the total activation for chunk i, as 

estimated from the web, can be written as: 

        c0 +                
             

         
. (10) 

We assume the memory activation Ai resulting from 

encounters with information in a person’s environment to be 

a linear function of the activation Ai,web as estimated from 

web frequencies: 

Ai = c + b Ai,web. (11) 

The parameters c and b serve as scaling parameters 

describing the unknown relation between how often a 

person encounters an object in her environment and the web 

frequency of the corresponding search term.  

 Given these assumptions, the formula approximating 

memory activation for chunk i by web frequencies of 

corresponding search terms N can be written as: 

       (                
             

         

)  (12) 

Retrieval Probability & Retrieval Latency of Knowledge  

We use the chunk’s activation estimated from web 

frequencies to predict our participants’ retrieval 

probabilities of city-attribute associations according to 

Equation 5: 

   = 
 

   

      (                
             

         
)   

 

, 
(13) 

as well as corresponding retrieval times according to 

Equation 6:  
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 (    (                

             

         
)   )

  
(14) 

where   is the retrieval threshold and   is the retrieval noise 

generated from a logistic distribution with a mean of zero 

and a variance of   =
  

 
  .  In our model, we assume noise 

not only in the activation level but also in the retrieval 

threshold (cf., Marewski & Schooler, 2011), where the total 

retrieval noise parameter, s, is an aggregate of the criterion 

noise parameter, s , and activation noise parameter, sA, so 

that   

  √  
     

 . (15) 

The response times are assumed to be the sum of 

perceptual-motor times, I, such as visual encoding and key 

pressing, and memory retrieval time:  

        . (16) 

Empirical Data 

Participants  

One hundred twenty-eight (Exp. 1) and 73 subjects (Exp. 2) 

participated in an experiment conducted at the University of 

Lausanne, Switzerland. Participants received a flat fee of 

CHF 5 ($ 5.14) plus a bonus of up to CHF 33 ($ 33.90) 

depending on the consistency of their responses in the main 

task and a short control task at the end of the experiment. 

 

 

Figure 1: Illustration of the city-attribute task. Attributes 

were international airport, university, high-speed train line, 

major league soccer team, company, underground, 

cathedral, and harbor (Exp. 1). 

Stimuli and Procedure  

We assessed retrieval rates and response time distributions 

for people’s knowledge about 95 European cities on 8 

attributes in Experiment 1 and 7 in Experiment 2. The 

difference between Experiment 1 and Experiment 2 was that 

we dropped the attribute harbor from the list of attributes 

for which knowledge was tested. Specifically, participants 

saw city-attribute pairs, one at a time (Figure 1). Participants 

were asked to respond by key press either with “Yes” (they 

could remember having heard or seen somewhere before 

that the city possessed the attribute) or with “No” (they 

could not recall any such instances). For each trial, we 

recorded both (i) subjects’ responses and (ii) the time that 

elapsed between the presentation of a city-attribute pair and 

a keystroke. Additionally, for each city, we asked subjects 

whether they recognized the city name and whether they 

knew anything else about the city. In total, subjects 

responded to 950 (Exp. 1) or 855 (Exp. 2) trials. 

Model Fits and Predictions 

We fitted the parameters of the memory model for chunks 

encoding knowledge about cities to the data from 

Experiment 1. Leaving these parameters fixed, we used our 

model to predict (i.e., for a different set of participants) 

memory performance in Experiment 2.  

Model Calibration on Experiment 1 

Post-hoc, the cities “Nice” and “Derby” were excluded 

because web frequencies also included results for the 

adjective “nice” and the sport “derby”. Also all Swiss cities 

were excluded from the list because knowledge about these 

cities reflected personal experience rather than knowledge 

acquired through the media. 88 cities were included in the 

final sample. To calibrate the model, we first fit Equation 13 

to the observed retrieval rates from Experiment 1. We set 

the total retrieval noise s to the value (.83) used by 

Marewski and Schooler (2011) and anchored the activation 

scale by setting the expected value of the retrieval criterion 

distribution,  , to zero, so that an object with an activation 

of 0 would have a 50% chance of being retrieved (cf. 

Marewski & Schooler, 2011). With a simple regression 

conducted on the log-odds form of Equation 13, we 

estimated the constant c (-6.11) and the scaling parameter b 

(.69). The Pearson correlation between empirical retrieval 

rates and simulated retrieval probabilities is r = .72.  

With these parameters fixed, in a second calibration step, 

we fit Equation 16 to the response time distributions for 

successful retrievals (“Yes” responses) in Experiment 1. Of 

course, response latency is not a perfect proxy for retrieval 

time. The total response time includes other components 

such as the time it takes to read a word and the time to press 

a key. To model these non-retrieval times, we assume 

response times are the sum of retrieval times plus 

perceptual-motor times (Equation 16). We model 

perceptual-motor times by drawing from a uniform 

distribution with boundaries of t ± t/2, where t is set to the 

mean time as simulated by the ACT-R production rules 

necessary for performing the task excluding the memory 

retrieval (1.01 s). 

Subsequently, we fit the latency factor F (.80) and the 

criterion noise parameter s  (.67) to the response time 

distributions of the 704 items of the city-attribute task in 

Experiment 1. This, as implied by Equation 15, fixes the 

activation noise parameter to sA = .49. We did so by 

minimizing the sum of maximum vertical distances between 

the empirical and predicted cumulative response time 

distributions (cf., Voss, Rothermund, & Voss, 2004), 
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weighted by the empirical retrieval rates for each of the 

items. The simulation calculates, for each item, the expected 

value of retrieval time from the proportion of an item’s 

activation distribution that falls above a retrieval criterion 

sampled from the retrieval criterion distribution. To 

simulate response time distributions, we took a total of 

10,000 samples from the retrieval criterion distribution per 

item. In sum, four parameters were estimated to predict 

retrieval probability and retrieval latency. In addition, four 

parameters were fixed (i.e., not fitted to the data). Table 2 

gives an overview of the parameters and their values.  

 

Table 2: Parameters of the memory model 

 

Parameter Value 

Parameters estimated from retrieval probabilities 

 Constant, c -6.11 

 Scaling parameter, b .69 

Parameters estimated from response time distributions 

 Latency factor, F .80 

 Criterion noise parameter, s  .67 

Fixed parameters  

 Total retrieval noise parameter, s .83 

 
Expected value of retrieval criterion 

distribution,   
0 

 Activation noise parameter, sA .49 

 
Expected value of the perceptual-motor time 

distribution 
1.01 s 

 

We calculated medians of the empirical and simulated 

response time distributions excluding city-attribute pairs for 

which less than three participants responded with “Yes”. We 

then smoothed the empirical and simulated medians with a 

running window of size five. The weighted (by the number 

of “Yes” responses) correlation between empirical and 

simulated smoothed median response times is r = .62. 

Model Predictions for Experiment 2 

Leaving these parameter values unchanged, we predict 

memory performance in Experiment 2. Figures 2 and 3 

show the predicted and observed retrieval rates and response 

time distributions, respectively.  

Figure 2 plots retrieval as a function of activation. The 

points represent the empirical retrieval rates (proportion of 

“Yes” responses), the S-shaped curve shows the predicted 

retrieval probabilities based on Equation 13. The Pearson 

correlation between empirical retrieval rates and predicted 

retrieval probabilities is r = .72.  

 

 

Figure 2: Observed retrieval rates and predicted retrieval 

probabilities for knowledge about 88 cities (Exp. 2) 

computed over 73 participants. Retrieval rates are plotted as 

a function of the expected value of the knowledge 

activations for 616 city-attribute pairs. The vertical line 

shows the expected value of the retrieval criterion. 

Figure 3 plots response times for positive responses 

(“Yes”) given to the city-attribute task of Experiment 2 as a 

function of the corresponding chunk’s expected value of 

activation. The points represent the empirical quartiles of 

response time distributions, the solid lines show the 

quartiles of predicted response time distributions based on 

ACT-R’s retrieval mechanism (Equation 14). As can be 

seen, while generally increasing with decreasing activation, 

median response times are not a simple monotonic function 

of a chunk’s expected value of activation. Chunks will be 

retrieved when their momentary activation exceeds the 

retrieval threshold. As we assume noise in a chunk’s 

activation as well as in the retrieval criterion, chunks with a 

low expected value of activation sometimes exceed the 

retrieval criterion, at a momentary activation that is likely 

higher than the expected value of their activation. For that 

reason, predicted response times flatten out towards the 

lower end of the activation scale. As Figure 3 shows, our 

memory model is able to capture the increase in median and 

spread of response time distributions with decreasing 

activation of memory chunks. Response time distributions 

based on a low number of “Yes” responses are noisier and 

less well predicted by our memory model than those 

calculated from a high number of responses. Excluding city-

attribute pairs for which less than three participants 

responded “Yes”, the weighted (by the number of “Yes” 

responses) correlation between empirical and predicted 

smoothed median response times is r = .34. 
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Figure 3: Dots show the 25
th

, 50
th

, and 75
th

 percentiles of 

measured response times for the 572 city-attribute pairs of 

Experiment 2 where at least three participants responded 

with “Yes” in the city-attribute task. The solid lines show 

the quartiles of response times predicted by the model. The 

x-axis plots the expected value of the chunk’s activation, as 

derived from web frequencies. Response times and 

activations are smoothed with a moving average. The 

vertical line shows the expected value of the retrieval 

criterion.  

Application to Decision Making 

We extend previous efforts to populate the contents of ACT-

R’s declarative memory with records that reflect the 

associated objects’ statistical patterns of occurrence in the 

real world (Marewski & Schooler, 2011; Salvucci, 2014). 

We believe modeling efforts of this kind lend themselves to 

many possible applications. In what follows, we illustrate 

just one.  

Much research in the cognitive and decision sciences has 

explored how people infer objects’ (e.g., cities’) values on 

unknown criteria (e.g., population size, wealth) from the 

objects’ attributes, used as cues. Within the fast-and-frugal 

heuristics research program (e.g., Gigerenzer et al., 2011) 

several strategies describing how people make such 

inferential decisions have been suggested. The take-the-best 

heuristic (Gigerenzer & Goldstein, 1996), for example, 

retrieves knowledge about objects’ attributes in order of 

strength of relation to the criterion. This strength of relation 

is measured as cue validity, or as the probability that a city 

A has a higher value on the criterion (e.g., population) to be 

inferred than city B, given that A has a positive value on a 

cue (e.g., has a university) and B a negative or unknown 

value on that cue (e.g., has no university). Starting with the 

most valid cue, take-the-best prescribes comparing objects 

successively on cues in order of decreasing validity, until 

one cue is identified that allows for making a decision. 

 While there is evidence that people actually use strategies 

like take-the-best (e.g., Bröder & Gaissmaier, 2007; Walsh 

& Gluck, 2016), and are able to adapt their strategy choice 

to the statistical structure of the environment (e.g., 

Rieskamp & Otto, 2006), what is known as the strategy 

selection problem remains a serious modeling challenge in 

the cognitive decision science and beyond (see Marewski & 

Link, 2014 for an overview).  

 In addressing that modeling challenge, one strand of 

research explores how environments are reflected in the 

memory system, that is, how statistical properties of the 

environment translate into retrieval probabilities and 

retrieval latencies of decision-relevant information. In 

interaction with the memory system, so the rationale goes, 

the environment carves out for each strategy a cognitive 

niche (Marewski & Schooler, 2011). In so doing, that 

interplay likely restricts the consideration set of strategies 

that can be applied to make a decision. Second, among the 

set of applicable strategies, currencies like the strategies’ 

speed of execution, required effort, and accuracy influence 

selection.  

The memory model introduced in this paper simulates 

which knowledge a person will likely retrieve when 

confronted with a decision problem. In doing so, the model 

generates knowledge which can serve as input for different 

decision strategies. Given the rules prescribed by a 

particular strategy, one can make predictions on how a 

strategy will operate, based on the input provided by the 

memory model. In this way, the model aids exploring 

whether a strategy will be applicable, how much effort 

executing that strategy will require (e.g., the number of cues 

that must be retrieved before a decision can be made), and 

how accurate the resulting decisions might be.  

To illustrate this, Figure 4 explores the niche of the take-

the-best heuristic: Panel A depicts the probability of 

applicability of this heuristic, B the mean cue validity of the 

discriminating cue, and C the mean accuracy across paired 

comparisons of 88 cities included in Experiments 1 and 2. 

Cue validities were calculated from the actual attributes of 

the cities for a comparison of city size. The probability of 

attribute-knowledge retrieval was simulated based on the 

memory model calibrated to the retrieval rates observed in 

Experiment 1. The cities have been grouped into 22 equally 

sized bins according to their rank of environmental 

frequency (approximated by web frequencies).  

As can be seen in Panel A, the probability that take-the-

best can make a decision increases with the environmental 

frequencies of both cities. This relationship is paralleled by 

the effort required to execute take-the-best (Panel B): Fewer 

cues need to be checked (i.e., the discriminating cue is of 

high validity) as the environmental frequencies of the cities 

increase. In areas where both cities are of low 

environmental frequency, the applicability of take-the-best 

is at its lowest, and in the cases where that heuristic is 

applicable, it needs to examine several cues before a 

decision can be made. As one might expect, the heuristic’s 

accuracy (Panel C) generally rises with the validity of the 

discriminating cue. However, accuracy is low when both 

cities have about the same environmental frequency. 
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Figure 4: Simulation of inferences about city size made by 

the take-the-best heuristic. The 88 cities are grouped into 22 

equally-sized bins according to their rank of environmental 

frequency. Bin numbers are shown on the horizontal axes. 

The vertical axis shows the mean applicability (A), cue 

validity of the first discriminating cue (B) and accuracy of 

inferences (C) across 10,000 simulated subjects for an 

exhaustive pairing of cities within each of the bins. Note 

that these simulations are exploratory. 

Outlook and Conclusion 

We are working on implementing simulations of memory-

based inferences to, eventually, predict when people will 

use which decision strategy in a given environment. We 

hope that such modeling efforts will, one day, invite insights 

into how the environment, in interaction with the memory 

system, aids adaptive strategy selection.  
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