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ABSTRACT. The goal of the present thesis
consists of establishing the normative foundations for
reasoning about combined evidence. Unlike the inter-
pretation of single items of evidence, little is known
about inference tasks involving multiple items of evi-
dence. In forensic practice, however, experts are regu-
larly confronted with a collection of evidence rather
than isolated evidence items. This necessarily raises
the question on how to interpret evidence holistically.
The study of the relationships between the different
evidence items in a collection and between a collec-
tion and a common cause (represented as hypotheses),
is of central concern for this thesis. Such relation-
ships and causes are almost always unobservable in
judicial contexts, and therefore, inherently uncertain.
Indeed, uncertainty is a fundamental feature of rea-
soning about evidence. The framework for handling
uncertainty is defined by probability theory. Evidential
reasoning is consequentially a form of probabilistic
reasoning. The present thesis locates itself in this
probabilistic framework and puts a strong emphasis
on graphical probabilistic modeling.
The thesis is composed of four cornerstones for each
of which a paper was produced. Throughout this
thesis, the ordering of the cornerstones is thematic
and not chronological. The first paper examines the
different types of evidence and their combinations,
their generic inference structures, and the relationships
between these different inference structures. The ex-
amination establishes, thus, a probabilistic ontology
of evidence. The following study illustrates the ap-
plication of generic inference structures in two real
forensic cases. One case involves the combination of
two features of a single footwear mark. The other
involves fingermarks and a footwear mark, thus two
distinct marks. The study shows that even apparently
simple forms of combinations involve evidential sub-
tleties that require careful analysis. The third study
provides novel analysis methods for evidential phenom-
ena exclusively occurring in combined evidence. To
date, there are only a few methods for assessing the
inferential interactions between items of evidence in
a holistic setting. This study addressed this problem.
The final project consists of a complex case analysis
involving four different DNA specimens collected from
a rape case that lead to a wrongful conviction of a
young man. The model treats each specimen as a
mixture profile, and includes considerations on the
relevance of each specimen, the possible number of
contributors to each specimen, the inferential relation-
ships between the specimens, as well as between the
specimens and the hypothesis about the authorship of
the crime. As it turned out, the different specimens
were subject to strong inferential interactions − a fact
that was completely missed by the expert of the case.
This thesis shows: the problems pervading the subject
of combined evidence are not academic phantoms;
they are measurable, real, and can affect the lives of
people for better or worse.

RESUME. L’objectif de cette thèse consiste à
établir les fondements normatifs pour raisonner sur
la combinaison des éléments de preuves (indices).
Contrairement à leur interprétation en isolation, peu
est connu sur les inférences impliquant plusieurs in-
dices. Dans la pratique forensique, cependant, les
experts sont régulièrement confrontés à une collection
d’indices plutôt que isolés. Cela soulève nécessaire-
ment la question sur la façon d’interpréter les indices
de manière holistique. L’étude des relations entre
les différents indices dans une collection et entre une
collection et une cause commune (représentée par
des hypothèses), est une préoccupation centrale pour
cette thèse. Ces relations et ces causes sont large-
ment inobservable dans des contextes judiciaires, et
par conséquent, de caractères incertaine. En effet,
l’incertitude est une caractéristique fondamentale du
raisonnement sur les indices. Le cadre pour gérer
l’incertitude est définie par la théorie des probabilités.
Le raisonnement sur les indices est alors une forme
de raisonnement probabiliste. La présente thèse se
situe dans ce cadre probabiliste et met l’accent sur la
modélisation probabiliste graphique.
La thèse se compose de quatre jalons majeurs pour
chacun desquels un article a été produit. Tout au
long de cette thèse, les jalons sont reproduits en ordre
thématique et non chronologique. Le premier article
examine les différents types d’indices et leurs combi-
naisons, leurs structures d’inférence génériques, et les
relations entre ces différentes structures d’inférence.
L’étude établit, par conséquent, une ontologie proba-
biliste des indices. L’étude qui suit illustre l’application
des structures d’inférence génériques dans deux cas
forensiques réels. Un cas implique la combinaison de
deux caractéristiques d’une trace de semelle. L’autre
cas implique des traces digitales et une trace de semelle,
c’est-à-dire deux marques distinctes. L’étude montre
que même des combinaisons simple produisent des sub-
tilités nécessitant une analyse minutieuse. La troisième
étude fournit de nouvelles méthodes d’analyse pour
des phénomènes se produisant exclusivement dans les
combinaisons d’indices. Jusqu’à ce jour, il n’y a que
quelques méthodes d’évaluation des interactions in-
férentielles entre les indices dans un cadre holistique.
L’étude en question a abordé ce problème. Le projet
final consiste en une analyse d’un cas complexe impli-
quant quatre échantillons d’ADN différents provenant
d’une affaire de viol qui menait à la condamnation
erronée d’un jeune homme. Le modèle traite chaque
échantillon comme un profil de mélange, et comprend
des considérations sur la pertinence de chaque échan-
tillon, le nombre possible de collaborateurs de chaque
échantillon, les relations inférentielles entre les spéci-
mens, ainsi qu’entre les spécimens et l’hypothèse de la
paternité de le crime. En fait, les différents échantil-
lons sont soumis à de fortes interactions inférentielles
- un fait qui a été complètement manqué par l’expert
de l’affaire.
La thèse montre: les problèmes qui envahissent le
sujet de la combinaison des éléments de preuves ne
sont pas des fantômes académiques; au contraire, ils
sont mesurables, réel, et peuvent affecter la vie des
gens pour le meilleur ou le pire.
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Outline of the thesis

What needs to be said about the author’s research on the combination of items of evidence from a ‘scientific’
perspective, can be found in the articles that were compiled during the last five years. You will find the articles in
Part III of the present manuscript. The articles produced are listed and presented in thematic order.

• JUCHLI, P. The evidential foundations of probabilistic reasoning: toward a better understanding of evidence
and its usage. Frontiers in Genetics 4 (2013), doi: 10.3389/fgene.2013.00164.

• JUCHLI, P., BIEDERMANN, A., AND TARONI, F. A probabilistic ontology of evidence and its combinations.
Submitted to Artificial Intelligence and Law in December 2015.

• JUCHLI, P., BIEDERMANN, A., AND TARONI, F. Graphical probabilistic analysis of the combination of
items of evidence. Law, Probability and Risk 11 (2012), 51-84.

• JUCHLI, P. AND TARONI, F. Investigating evidential phenomena in combined evidence. Submitted to
Artificial Intelligence in December 2015.

• JUCHLI, P., AND TARONI, F. Aggregating DNA evidence: A probabilistic analysis of the DNA evidence in
State of Texas vs Josiah Sutton. To be submitted to International Journal of Approximate Reasoning.

Each article listed above is reproduced in the chapters from 1 to 5 respectively.
Part I and II are meant to present you with a personal account and a complementary view on the subject of

combining evidence so as to put the articles into the author’s perspective. For this purpose, the author takes the
liberty to use a personalistic narrative perspective in the form of the first person singular. As you may have noticed,
the author will also address you, the reader, directly.

Part I discusses the fundamental concepts of evidential reasoning. The introductory chapter (Chapter 1) outlines
the context, objective, and methodological framework of the present thesis. Chapter 2 outlines the basic properties
of what we call ‘evidence’, in particular, the relevance and credibility aspect of evidence. This is accomplished by
examining the question of what evidence is (Section 2.1), followed by a discussion on what types of evidence there
are when focusing on inferential properties (Section 2.2). Chapter 3 is devoted to the uncertainty aspect of evidence
and how it can be measured by probabilities. This discourse starts with the notion of conditional independence
and its relationship to personal probabilities (Section 3.1), followed by outlining the importance of the Bayes’
theorem for evidential reasoning (Section 3.2), and an explanation on the metrics the inferential force of evidence
employed in this thesis (Section 3.3). This thesis uses two metrics for the inferential force. These are the likelihood
ratio (Subsection 3.3.1) and the weight of evidence (Subsection 3.3.2). Chapter 4 is a remark. It discloses my
standpoint from which a given text was redacted. You may feel this chapter to be somewhat out of bounds for
this thesis. However, please accept this as my personal stance against the ‘objective’ self-negation of our current
scientific tradition. This part closes with Chapter 5 and deals with a generic argument of evidence. Section 5.1
outlines constitutive elements of such an argument. A fundamental property of an argument of evidence is the drag
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coefficient, a quantity that encapsulates the uncertainty accumulation in such an argument. A general account of the
drag coefficient and the impact of weak and rare events on the drag coefficient is given in Section 5.2.

Part II deals with the study of the combination of evidence items. Each chapter outlines and discusses the results
presented in the series of the papers. Namely, Chapter 6 deals with our (i.e., Franco Taroni, Alex Biedermann and
I) ontological study of evidence. This study is approached by asking in what way evidence exists (Section 6.1).
Section 6.2 presents an excerpt of our ontology for combined evidence. The chapter closes with the discussion on
atomism and holism as it pertains to the study of combined evidence (Section 6.3). Chapter 7 portraits our study of
combined evidence in two forensic cases. This involves the examination of the impact of inferential interactions
between evidence items on the inferential force (Section 7.1). The relationship between the hypotheses and the
evidence items for the combination of evidence is discussed in Section 7.2. Chapter 8 discusses the methods
developed for the examination of large bodies of evidence. In a first step we discuss how a measure for inferential
interactions can be derived from the multiplication law of probability (Section 8.1) and how it can be extended to
masses of evidence. The measure for the degree of dissonance in evidence is explained in Section 8.2, as well as the
questions arising from dissonant evidence. Section 8.3 outlines the relative contribution measure for evidence and
its general tendencies in large bodies of evidence. Section 8.4 closes the chapter with general questions about large
bodies of evidence that remain yet to be addressed. Chapter 9 discusses the case assessment and interpretation on
State of Texas vs Josiah Sutton. It involves the aggregation of multiple DNA typing results of potential mixture
profiles. Section 9.1 discusses the main procedures we followed for the aggregation. A combination of evidence
relies heavily on additional information, such as circumstantial information or expert knowledge. This has important
implications for the evaluator and his models (Section 9.2). The inferences suggested by the model are discussed in
Section 9.3. The main conclusions are given in Chapter 10. This chapter closes the second part of the thesis by
contrasting the study of combined evidence with the general state of forensic practice.

xvi



Part I
EVIDENCE





1 Introduction

‘Indeed this is the nature of all arguments, for
what is certain cannot be proved by what is
uncertain.’
Quintilian, Institutio Oratoria, 5.10.8.

The Science of Evidence, a notion coined (or promoted?) by D. A. Schum [126], considers evidence to be a
subject of systematic research. The endeavor spans from the examination of evidential properties, the discovery of
evidence, its interpretation and uses, to the communication of evidence-related findings, all the while embracing
a generalized approach. The expression ‘generalized approach’ means also that the Science of Evidence is a
multidisciplinary activity, which is characterized by an inclusive nature. The aim is not to accumulate methods
and techniques from different disciplines in order to build a large toolbox for solving problems. It is to build an
integrated understanding of evidence by looking at different disciplines and not the other way around. The spirit of
this science is, therefore, essentially the same as Forensic Science,which only stresses its close ties to the justice and
security establishment.

The study of combined evidence is a particular excercitation within the vast discipline of the Science of Evidence
or Forensic Science. Its object is the extension of the evidence evaluation from an atomistic to a holistic interpretative
framework. This was, to my best knowledge, first explicitly stated by J. H. Wigmore in 1937:

‘What is wanted is simple enough in purpose, − namely, some method which will enable us to lift into
consciousness and to state in words the reasons why a total mass of evidence does or should persuade us
to a given conclusion, and why our conclusion would or should have been different or identical if some part
of that total mass of evidence had been different. The mind is moved; then can we not explain why it is
moved? If we can set down and work out a mathematical equation, why can we not set down and work
out a mental probative equation?’ [146, p. 4]

Almost 80 years later, however, the problem largely remains as indicated by P. Dawid in 2011:

‘Modern technology provides for the collection and manipulation of vast quantities of data of many different
kinds, and a new and all-pervading field of intellectual and practical activity, ‘Information Technology’, has
sprung up to support these data-handling requirements. In contrast, relatively little attention has been
payed to the issues of combining, comparing, linking and − most important − interpreting all these data,
so turning them from information into evidence.’ [29, p.1]

The present thesis explores the normative foundations of evidence combination in Forensic Science.
I pursued this object within a probabilistic framework. It is widely recognized in law [e.g., 93, 100, 121] as well

as in forensic science [e.g., 4, 44, 118], that the interpretation of evidence is best operated within this framework.
Today, there are no other normative systems that can measure up to the richness and versatility of probability
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theory to capture evidential subtleties and complexities [126]. Since the seminal work of J. Pearl and others [e.g.,
92, 108], graphical probabilistic models (i.e. Bayesian networks) have assisted human inference in various domains
(see [86, 112] for an overview). Bayesian networks have also proven to be greatly useful in forensic and judicial
contexts [e.g., 11, 133]. I relied heavily on the tool of graphical probabilistic models to explore the normative
foundation of combined evidence. Note that the thesis provides information about probability theory and Bayesian
networks only on a need-to-know basis. If you wish to know more about these subjects, you may consult the general
literature on this topic. Namely, on the subject of probability theory you may find the sources [e.g., 35, 97, 122]
helpful, and on the subject of Bayesian networks [e.g. 77, 83, 133]. Further sources are cited at different locations
throughout this thesis.

2



2 Relevance and credibility

In the end, every observation that prompts us to contemplate about its significance is essentially an item of evidence
(for something). The use of evidence is deeply engrained in humans, and even more so, in a trained forensic scientist,
such as myself. This favors the content of a particular perception to be closely tied to a particular conclusion. That
is, the understanding of evidence grows based on particular instances, but not the other way around. Therefore, it
comes more naturally to us to examine the relationship between, say, ‘the green color of a tomato’ and ‘the ripeness
of the fruit’, or ‘the correspondence between a fingermark and fingerprint’ and ‘a common individual’, than to
examine the relationship between ‘the green tomato and the ripeness of the fruit’ and ‘the correspondence between
mark and print, and a common individual’. However, a serious contemplation about evidence must bring to light
the latter more obscure relationships. A good starting point is to begin by examining naïve, general questions and
to further the study depending on the answers obtained by such questions. It seems almost natural to initiate the
discussion by asking what ‘evidence’ actually is (Section 2.1). The answers provided by such a questions will allow
us to draw further distinctions among what we call ‘evidence’ (Section 2.2).

2.1 What is evidence?

An insight that turned out to be very helpful in understanding the meaning of evidence is presented in the present
section. This insight can be found in different forms in [1, 69, 125].

Let us start by setting up the following two assertions, namely,

First
Every item of evidence is a thing1; ‘The thing’ is the generic term for ‘the evidence’.

Second
There exist things that are ‘not evidence’.

From the first assertion it follows that items of evidence regularly possess at least one property in common with
all the things that are not items of evidence. From the second statement it follows that items of evidence regularly
possess at least one property that the other things do not have. For the former we shall use the expression the
general property of things, and for the latter the particular property of evidence. Thus, every item of evidence
possesses a general property of things and a particular property of evidence. The general property of things is the
reference to itself. Ideally, this reference is tautological since the thing introduces itself to our mind on the basis
of an identity statement. That is, thing A states ‘thing A’, or in short A : A. For example, a package containing
a substance resembling narcotics actually contains narcotics, a fingermark is actually a fingermark, and so on.
However, this reference is not always tautological, that is, either thing B states ‘thing A’ (B : A), or thing A states

1The ‘thing’ as it is understood here, can also be immaterial, such as a verbal statement from a person, a noise, or even the absence of
something.
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‘thing B’ (A : B). For example, a suspicious person is selling a substance as narcotics, but it turns out to be flour; or a
pattern resembling a fingermark is found at the crime scene, however it turned out to be an artifact (B : A), and so on.
In another case, one may find a batch of toy figures that contain narcotics, or a counterfeit fingermark (A : B). An
enquiry of the first reference involves the assessment of the credibility of the thing, or more precisely, the credibility
of the identity statement of the thing. Later we will see that the credibility of a thing involves different intricate
aspects.

However, an item of evidence possesses a second reference to something else. That is, they ‘point beyond
themselves’ as I. Hacking says [69]. This reference is the particular property of evidence. As can be seen, this
reference is precisely not tautological but expresses a relationship of a thing to something else, that is to some A.2

Based on such a relationship we are inclined to say A points at C, or A indicates C, where C is a A. This indicative
property is also what qualifies the evidence as a sign. Consider the following excerpt from Quintilian’s Institutio
Oratoria:

‘Such signs or indications enable us to infer that something else has happened; blood for instance may lead
us to infer that a murder has taken place. But bloodstains on a garment may be the result of the slaying
of a victim at a sacrifice or of bleeding at the nose. Everyone who has a bloodstain on his clothes is not
necessarily a murderer.’ [115, 5.9.9]

In other words, it may happen that we take a thing to be an indication (sign) for a C, whereas actually it is an
indication for something else D. Hence, the enquiry on whether C is indicated or D pertains to the relevance of the
thing, but not to its credibility (e.g., bloodstain) for an issue of interest (e.g., murder).

Let C stand for the issue of interest (e.g., the violation of a narcotics act). Generally, you would aspire to the
ideal situation, where the item is entirely credible and relevant: A : A (identity) and A implies C. In this situation the
evidence is conclusive. However, if the thing is entirely relevant but not credible, then the evidence is worthless for
our enquiry. More precisely, you would have B : A and A implies C, but since you assume that A, which is in fact B,
your thing is actually saying nothing about A implying C (e.g., what you thought was narcotics was actually flour.
However, the possession of flour is not regulated by the narcotics act). In turn, if the thing is entirely credible but
not relevant, then the evidence is also worthless. In such situations you would have, A : A but A implies D instead of
C (e.g., you find narcotics delivery car, but as it turns out, the delivery is destined for a legal research project of a
student at the School of Criminal Justice at the University of Lausanne). In short:

• An item of evidence possesses a reference to itself and to something else.

• An examination of the former reference amounts to assessing the credibility of the evidence.

• An examination of the latter reference amounts to assessing the relevance of the evidence.

• A meaningful item of evidence possesses at least some credibility and some relevance, otherwise it bears no
meaning at all.

• Hence, both the credibility of the evidence as well as its relevance need to be assessed for any item of
evidence.

You can find additional information regarding the credibility and the relevance of the evidence from a slightly
different perspective in a book review (see Part III Chapter 1). Let me emphasize at this enjuncture that I did not
intend to provide a general and clearcut definition of evidence, but only what I termed as a ‘helpful insight’. The
question of what evidence is, was, and continues to be, bestowed with various views in different disciplines by
different scholars (see for example [8]). To my knowledge a general and clear-cut definition of evidence does not
exist. However, all views seem to gravitate around the issues relative to the credibility and/or the relevance of
evidence.

2The overscore or overline stands for a negation of the term it scores over. Thus, A designates a negated A (‘not A’).
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2.2. A SUBSTANCE-BLIND APPROACH TO EVIDENCE

2.2 A substance-blind approach to evidence

The first paragraph of Section 2.1 pointed out the difficulty in focusing on relationships between items of evidence
that completely differ in their perceptual content or substance (i.e., ‘green color of a tomato’ and ‘correspondence
between fingermark and fingerprint’). Later, I identified two references that every item of evidence possesses. Each
reference is associated with the credibility and the relevance of the evidence respectively. The ponderosity of this
insight arises from its applicability to all items of evidence irrespective of their substances.

Given that every item of evidence possesses an aspect of relevance and credibility, these so-called credentials of
evidence provide ideal dimensions, along which the investigation and classification of evidence can be achieved
unhinged from its substance. Based on the credibility and relevance of evidence, Schum [125, 126] established a
classification of evidence. It is in the context of his classification of evidence that a particular intellectual attitude
becomes most evident. That is, the investigation of evidential properties on an inferential basis rather than evidential
substance. Schum calls this intellectual attitude ‘a substance-blind approach to evidence’:

‘Investigators in the fields of law, history, and intelligence analysis must be prepared to evaluate evidence
having any conceivable substance. The problem then is: How can we ever say anything general about
evidence if it comes in so many substantive varieties? One answer is provided if we choose to ignore its
substance and focus instead on its inferential properties.’ [6, p. 72]

In order to explain the substance-blind approach Schum [126] refers to a passage in J. H. Poincaré’s ‘La valeur de la
science’:

‘Maintenant qu’est-ce que la science? [...], c’est avant
tout une classification, une façon de rapprocher des faits
que les apparences séparaient, bien qu’ils fussent liés par
quelque parenté naturelle et caché. La science, en d’autres
termes, est un système de relations.’ [111, p. 265]

‘Now what is science? [...] it is before all a classifica-
tion, a manner of bringing together facts which appearances
separate, though they were bound together by some natural
and hidden kinship. Science, in other words, is a system of
relations.’ [110, p. 137]

It was through the focus on relations among items of evidence that ‘are bound together by some natural and
hidden kinship’, that allowed Schum to gain a deeper insight into different forms and combinations of evidence [126].
By doing so, Schum created a substance-blind classification3 of evidence, which is shown in Figure 2.1 [6, 125, 126].
Schum’s classification shows different combinations between dimensions of credibility and relevance.

The relevance dimension contains two categories: directly and indirectly relevant evidence. An item of evidence
is said to be directly relevant, if it is conclusive on some issue of interest when the item is completely credible. If
an item remains inconclusive on the issue of interest, even if it is completely credible, then the item is said to be
indirectly relevant. An evidence item is said to be ancillary, if it serves to assess the relevance of another item of
evidence. Stated otherwise, ancillary evidence is evidence about some other evidence.

The credibility dimension contains four major categories: tangible, testimonial, and missing evidence, as well as
accepted facts. Tangible evidence refers to physical objects and their derivations, for example, documents, sensor
records, images, charts, measurements, and so on. An item of evidence is testimonial, if it is provided by a person.
It is unequivocal in cases, in which a person asserts that some event occurred (e.g., an eyewitness states: ‘I clearly
saw Mr. X breaking into my neighbour’s flat’). In contrast, a testimony is equivocal, if a witness is not certain
whether some event occurred (e.g., an eyewitness states ‘I am not quite sure, but I believe rather strongly to have
seen Mr. X breaking into my neighbour’s flat’). In some cases a testimony might be even completely equivocal
(e.g., an eyewitness states ‘I don’t know at all whether Mr. X did break into this flat’ or ‘I can’t remember what
happened’). Both, tangible evidence and testimonial evidence can be positive (+) or negative (-). An evidence item
is positive if the occurrence of an event is reported (e.g., ‘a fingermark was found on the door knob’), and negative

3The words ‘categorization’, ‘taxonomy’, or ‘ontology’ are used interchangeably with ‘classification’.
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Figure. 2.1 – Classification of evidence according to Schum’s substance blind approach

otherwise (e.g. ‘no fingermark was found on the door knob’). An item of evidence can also be missing. That is, a
particular item of evidence was expected to be found, but was not produced (e.g. ‘Mr. X must have grabbed the door
knob, however there was no fingermark’). Note that negative and missing evidence are not the same. The former
refers to the absence of evidence, and the latter to the evidence of absence. Finally, accepted facts are evidential
instances, for which the credibility is considered to be given (e.g. ‘Lausanne is situated at the northern shore of the
Lac Léman (i.e., Lake Geneva)’).

How an item of evidence is best classified depends on the situation at hand and the reasoner’s perspective. The
classification of an item of evidence is, therefore, context-dependent [6]. For a forensic scientist, for instance, the
correspondence between a fingermark and a reference print may be an item of tangible evidence. For a lawyer, who
receives an expert testimony by the forensic scientist, however, the same correspondence may represent testimonial
evidence. In another case, especially in cases of evidence combination, the same evidence may be used twice for
different inferences and, thus possibly, represent two types of evidence. For example, an item of tangible evidence
can serve, at the same time, as an item of ancillary evidence for an other item (e.g., the bloodstains on garment for
inferring the identity of a murder victim) and as an item that is directly relevant for an issue of interest (e.g., the
bloodstains for inferring a stabbing of the victim by the suspect).
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3 Uncertainty about evidence

In Section 2.1 I have explained that an item of evidence is not necessarily credible or relevant. On this occasion
you might have asked yourself: How do I know whether an item of evidence is credible or relevant? The answer is:
Most of the time you don’t; most of the time you will be uncertain about an item’s credibility and relevance. There
is, thus, no choice left but to exploit the experienced uncertainty as well as possible. A widely accepted method to
exploit uncertainty is the theory of probability, where probabilities are considered as a measure of the uncertainty
you experience relative to some event, or otherwise stated as your degree of belief that some event applies. Any
given probability is, therefore, an expression of how you relate to the world: ‘It is not solely a feature of your mind,
it is not a value possessed by an event but expresses a relationship between you and the event and is a basic tool in
your understanding of the world.’ [97, p. 38] If the measure of probability is understood in such a way, then the
probability is said to be ‘subjective’ [37], or ‘personal’ [97, 122].

3.1 Conditional independence, and personal probabilities

In order to better understand what ‘subjectivity’ means regarding the theory of probability, it is important to become
acquainted with the fundamental concept conditional independence. A probability function denoted by Pr(·) is
required to be coherent, in the sense that they adhere to the laws of probability theory [97]. Let e1 and e2 denote two
events. Assume further that we had knowledge about a third event e3. If we believe that event e2 does not affect our
belief about e1 given our knowledge of e3, then the events e1 and e2 are said to be conditionally independent given
e3. Stated more formally, one has Pr(e1 | e2,e3) = Pr(e1 | e3) and conversely Pr(e2 | e1,e3) = Pr(e2 | e3). Thus,
we can write Pr(e1,e2,e3) = Pr(e1 | e3)Pr(e2 | e3)Pr(e3). If, however, we believe that e1 affects the probability of
e2 given e3, then one has Pr(e1 | e2,e3) and conversely Pr(e2 | e1,e3). At this point it is important to note that the
conditional (in)dependence relationship a symmetric relationship. That is, if e1 is conditionally (in)dependent of e2
given e3, then e2 is independent of e1 given e3.

Now, we have asserted that a probability expresses the relationship between us and the world. We are never in
a state of complete ignorance; there is always something we know at a given time. Thus, everyone of us has an
individual ‘knowledge base’ or ‘current state of knowledge’. This is denoted K and represents, thus, everything
a reasoner knows [37].1 From a personalistic point of view any given probability can only exist relative to some
K. Thus, following a strict notation, probabilities such as Pr(e2) or Pr(e1 | e2) are not entirely correct, because
this would mean that some e1 or e2 possess a probability on their own. However, since the probability expresses a
relationship between us and the world, some e1 or e2 obviously cannot possess a probability. Instead we should
write Pr(e2 | K) or Pr(e1 | e2,K), because ‘the’ probability is always my or your probability of something, given
my or your current state of knowledge K. That is, any given probability is necessarily conditioned by some K and
represents therefore a personal probability. 2

1This knowledge is often called ‘background knowledge’.
2For clarity, I use Pr(e | K) as a short for Pr(E = e | K). Also for clarity purposes the K is sometimes omitted all together. Note also that in
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3.2 Bayes’ theorem

Let e denote some evidence. Further, let H = {hp,hd} stand for a set of hypotheses (propositions). In most forensic
applications we distinguish between a prosecution hypothesis hp and a defense hypothesis hd .

At the very beginning of any evidential investigation a reasoner, such as you or I, is in a given state of knowledge.
When the reasoner has fixed some hypotheses H and starts to contemplate about them, he will eventually relate the
hypotheses to his current state of knowledge. At this point he forms his initial beliefs regarding the hypotheses.
His belief is then translated into a probability for each hypothesis so that Pr(H | K) = Pr(hp | K)+Pr(hd | K) = 1
applies. These probabilities are called ‘prior probabilities’ because we assign them to hp and hd prior to the
observation of an evidential fact. Next, imagine that the reasoner obtains an item of evidence, say, e for the
moment. This means that everything that is not e (i.e. e) is eliminated from our consideration so that now
Pr(H | e,K) = Pr(hp | e,K)+Pr(hd | e,K) = 1 holds. At this point let us focus on hp. The joint probability of e,hp
is given by

Pr(e,hp | K) = Pr(e | K)Pr(hp | e,K) = Pr(hp | K)Pr(e | hp,K). (3.1)

Next, assume that the reasoner were interested in the probability of hp, given that e occurred (i.e., Pr(hp | e,K)).
How should he accomplish the transformation from the prior probability Pr(hp | K) to the posterior probability
Pr(hp | e,K)? Bayes’ theorem or Bayes’ rule, which follows from Equation (3.1), suggests an answer to this
question, notably

Pr(hp | e,K) =
Pr(e,hp | K)

Pr(e | K)
=

Pr(e | hp,K)Pr(hp | K)

Pr(e | K)
, (3.2)

where Pr(e | K) 6= 0. This probability, also called ‘normalization constant’ in this context, serves to redress the
proportions of Pr(e,hp |K) relative to Pr(e |K) in order to assure that Pr(H | e,K)=Pr(hp | e,K)+Pr(hd | e,K)= 1
holds. The probability Pr(e | hp,K) is sometimes referred to as the (Bayesian) likelihood3. This probability is an
important constituent for the measures of the inferential force.

3.3 Inferential force

The notion of inferential force is a crucial feature of evidence-based reasoning. It stems from the question of how
strong one or more items of evidence are.

‘In evaluating evidence or ‘weighing’ evidence in an inferential task, one recognizes that items of evidence
differ in strength; for various reasons some items are persuasive and allow for substantial revision in our
opinions, while other items seem to justify little or no opinion revision. Thus, a major task in inductive
inference consists of evaluating the inferential or probative strength of evidence.’ [127, p.107]

In fact, together with the properties of credibility and relevance, these three elements of evidence are called the three
credentials of evidence by D. Schum [125]. The most common measures for the inferential force are the likelihood
ratio and the weight of evidence. These measures not only allow us to compare different items of evidence regarding
their respective strength but also to evaluate the combined strength of multiple items. These measures are presented
in the following two subsections (3.3.1 and 3.3.2).

some papers of this thesis the knowledge base is denoted as I.
3Namely, it is a probability regarding its dependence on e but a likelihood regarding its dependence on hp [97]. Thus, it is the probability of e

given hp but the likelihood of hp given e.
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3.3.1 Likelihood ratio

There is now wide agreement in forensic science to measure the inferential force of evidence by the likelihood ratio
(LR) [4, 118]. Say we were interested in the inferential force exerted by event e on our hypotheses H. When taking
the ratio of Bayes’ theorem for hp and for hd (see Equation 3.2) we obtain the odds form of Bayes’ theorem. The
LR appears in the odds form of the Bayes’ theorem:

Pr(hp | e,K)

Pr(hd | e,K)︸ ︷︷ ︸
posterior odds

=
Pr(e | hp,K)

Pr(e | hd ,K)︸ ︷︷ ︸
LR

Pr(hp | K)

Pr(hd | K)︸ ︷︷ ︸
prior odds

. (3.3)

The prior odds refer to the odds of the hypotheses prior to our observing e, and the posterior odds those after
receiving e. The ratio at the center of Equation (3.3) is the likelihood ratio of hp given e.4 It conveys succinctly
if, and to what extent, e generates inferential force on H. Thus, the LR tells us how much we can learn from e
regarding our hypotheses, or stated otherwise, the impact of e on the relative magnitudes of the prior odds and
the posterior odds. This view can be emphasized by writing the LR in terms of the prior odds and the posterior
odds. For this purpose, let O(hp | e,K) denote the posterior odds and O(hp | K) the prior odds. By reformulating
Equation 3.3 we have

LR =
Pr(e | hp,K)

Pr(e | hd ,K)
=

O(hp | e,K)

O(hp | K)
. (3.4)

The values of the LR range from 0 to ∞. The value 0 implies that e is impossible given hp and K. Conversely, the
value ∞ implies that e is impossible given hd and K. If the LR is larger than one, then e supports the hypothesis in
the numerator (here hp) over the one in the denominator (hd). If the LR is exactly one, then e has no inferential force
and we learn that e is equally probable under hp and hd . In such cases the posterior odds and the prior odds possess
exactly the same value. If the LR is smaller than one, then e supports the hypothesis in the denominator over the one
in the numerator. Note that the LR is sometimes called the Bayes factor (BF), or the Bayes-Turing-Jeffreys-factor.
More precisely, if the evaluation involves only simple hypotheses5, the BF reduces to the LR. In contrast, if the
evaluation involves composite hypotheses, then the inferential force of the item depends on the assessments you
made on the priors and is, therefore, measured by the BF (for further explanations see for instance [136]). Composite
hypotheses occur typically in contexts of multiple hypotheses. In such cases, it is advisable to revert to the original
form of Bayes’ theorem shown in Equation (3.2). However, for the remaining part of this thesis you will not need to
know how to work with multiple hypotheses. For further information on this subject you are referred to [9, 58] for a
general account and to [18, 133, 135] for forensic applications.

Finally, suppose we were confronted with a set of items, say E = {e1,e2, ...,en}, where a given item is denoted
as ei ∈ E. In the general form, the LR is given by

Pr(E | hp,K)

Pr(E | hd ,K)
=

 n

∏
i=2

Pr(ei | e1,e2, ...,ei−1,hp,K)

Pr(ei | e1,e2, ...,ei−1,hd ,K)

 Pr(e1 | hp,K)

Pr(e1 | hd ,K)
. (3.5)

If the items are further independent given H (i.e. ei is independent e j for all i 6= j), then this reduces to

Pr(E | hp,K)

Pr(E | hd ,K)
=

n

∏
i=1

Pr(ei | hp,K)

Pr(ei | hd ,K)
, (3.6)

4The articles reproduced in Part III use different notations for the LR depending on the general framework in which the paper was written.
The following notations for the LRs are all equivalent: Pr(e | hp,K)/Pr(e | hd ,K)≡Ve|H,K ≡ LRe|H,K ≡ F(hp : e | K).

5A hypothesis is said to be simple, if all the parameters of the distribution are specified. Otherwise, the hypothesis is said to be complex.
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and if each item possesses the same inferential force, then we can simplify even further

Pr(E | hp,K)

Pr(E | hd ,K)
=

[
Pr(ei | hp,K)

Pr(ei | hd ,K)

]n

. (3.7)

3.3.2 Weight of evidence

The weight of evidence (WoE) is a concept that I. J. Good seems to have appreciated because of its intuitive appeal
and versatility. This is reflected in his many works [64]. The WoE corresponds to the logarithm of the BF, or the
LR respectively. This makes WoE an additive and symmetrical measure of the inferential force. Following the
naming of the events in the previous subsection, the WoE of the LR in Equation 3.3 is denoted W (hp : e | K), and
read as ‘the weight of evidence in favor of hp as compared to hd provided by e and given K’ [e.g., 58, 60, 65]. If the
logarithm is at the base of 10, then WoE is measured in units of bans (abbreviated by b), where a tenth of a ban
is a deciban (abbreviated by db)6. One deciban is the smallest unit of WoE perceptible to human judgement and
corresponds to a BF of roughly 5/4 (i.e., log10(5/4)≈ 0.097) [65]. If the logarithmic base is 2, then the unit is in
bits, in which case the same unit is used for information and for the WoE [63].

Let O(hp | e,K) denote the posterior odds and O(hp | K) the prior odds. By taking the logarithm of Equation 3.3,
the odds and the LR become additive

logO(hp | e,K) =W (hp : e | K)+ logO(hp | K), (3.8)

Thus, the weight of evidence is essentially the difference between the log posterior odds and the log prior odds
(W (hp : e | K) = logO(hp | e,K)− logO(hp | K)). In general, the WoE can take a value between−∞ and ∞. A value
of 0 implies that e provides no weight at all (which corresponds to LR = 1). If the WoE takes a value smaller than 0,
then e provides weight in favor of hd (i.e., LR < 1). If its value is larger than 0, then e provides weight in favor of
hp (i.e., LR > 1). You can see that, as opposed to the LR, the values of the WoE are symmetric regarding 0.

When dealing with multiple items of evidence E = {e1,e2, ...,en,}, the Equations (3.5) to (3.7) are also additive.
Namely, in general we have

W (hp : E | K) =W (hp : e1 | K)+
n

∑
i=2

W (hp : ei | e1,e2, ...,ei−1,K). (3.9)

If the items are independent given H, then (3.9) simplifies to

W (hp : E | K) =
n

∑
i=1

W (hp : ei | K), (3.10)

and if all the items possess the same weight, then we can simplify even further

W (hp : E | K) = n×W (hp : ei | K). (3.11)

The properties that are exploited in this thesis are the additivity and the symmetry of the WoE. However, I invite
you to keep in mind that the WoE has many other interesting properties lending themselves to a more concise
interpretation and, therefore, to a better understanding of what this measure of inferential force means. For
example, the WoE can also be written in terms of information (usually measured in bit) and can be translated into

6The name stems from the English town of Banbury, where I. J. Good was part of A. Turing cryptanalysis team during the Second World War.
According to I. J. Good, it was Turing who proposed the name ban for the unit of WoE in dependence on Banbury [63].
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communication theory [66]. The mutual information between hp and e (or the logarithm of the association factor
between H and e) is given by

I(hp : e | K) = log
Pr(e,hp | K)

Pr(e | K)Pr(hp | K)
= log

Pr(e | hp,K)

Pr(e | K)
= log

Pr(hp | e,K)

Pr(hp | K)
= I(e : hp | K). (3.12)

Thus, the WoE can also be written as the difference between the mutual information between hp and e and between
hd and e

W (hp : e | K) = I(hp : e | K)− I(hd : e | K) = I(e : hp | K)− I(e : hd | K). (3.13)

I. J. Good showed that the mutual information between (the proposition expressing) the evidence and (the one
expressing) the hypothesis corresponds to the explanatory power of the hypothesis for the evidence, whereas the
weight of evidence corresponds to the degree of corroboration [60]. Hence, according to Equation (3.13), the WoE
expresses essentially the difference between the explanatory power of two competing hypotheses regarding some
evidence. For further information on this subject regarding its theoretical aspects you are referred to [e.g., 61, 95]
and for different practical applications to [66].
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4 Notes on subjectivity and objectivity

The dualism of subjectivity and objectivity is one that caused me a great deal of confusion that lasted for quite some
time. I personally find this dual distinction arduous when used in epistemic (e.g., scientific) contexts, especially in
expressions such as ‘objective knowledge’ or ‘objective fact’. By reading scientific literature it was often not clear
to me, in what sense these words were used, and what intention an author pursued by using them. This distinction
has ample connotations from apologists of different philosophical drifts, most of whom hold some absolute claim
towards a given scientific practice. For example, ‘the scientist must exclusively focus on value-free, and hence,
objective facts!’1, or ‘everything is subjective, and thus, relative!’. This renders the discourse on uncertainty
unnecessarily sluggish and dogmatic. Do not get me wrong, I agree with de Finetti’s view on science, or knowledge
in general 2:

‘Il y a toujours une infinité d’explications possibles pour
un même groupe d’observations: si nous en choisissons une,
et si nous énonçons une loi, ce ne pourra être que pour
des raisons subjectives qui nous la font considérer digne de
confiance.’ [33, p. 64]

‘There are always an infinite number of possible expla-
nations for a given group of observations: if we chose one
(explanation) and assert a law, then this is only due to sub-
jective reasons, which make them seem trustworthy.’ (free
translation)

Thus, the following problem arises: subjectivity is defined in opposition to objectivity, and vice versa. If we
fully accept subjectivity, which seems reasonable to me, it makes no sense to think in categories of subjectivity
versus objectivity, since the latter does not exist as such, and consequently neither does the former. This renders
every discourses held within the boundaries of subjectivity and objectivity largely meaningless. It is just as de
Finetti stated a ‘total inadequacy of the present language’ [34, p.139]. In this context he provided the quote by Sir
Harold Jeffreys, which is repeated here:

‘ordinary language has been created by realists, and mostly very naïve ones... We have enormous possibilities
of describing the inferred properties of objects, but very meagre ones of describing the directly known ones
of sensation... The idealist must either do his best with realist language or make a new one, and not much
has been done in the latter direction’ [74, p.124]

The question is, thus, whether it is possible to find words that fit such a ‘subjective’ world view. For this purpose,
consider again de Finetti’s understanding of science. This argument can be very confusing, because at first glance,
this argumentation truly seems to imply the subjectivity of these so-called ‘positive facts’, viz. of everything I
become aware of.3 However, it makes less sense at second glance, and even less at the third. Following a rigorous
reading, de Finetti’s statement is itself voiced from a subjective position (which is again voiced from a subjective

1The NAS report of 2009 makes recurrent use of such statements, for example, ‘The goal is to make scientific investigations as objective as
possible so the results do not depend on the investigator.’ [105, ch.4 p.10]

2See also I. W. Evett: ‘... a so-called ‘objective test’ can only exist within a framework of assumptions and the validity of those assumptions
in an individual case is a matter for subjective judgement. The objectivity is an illusion.’ [42, p.119]

3A similar argumentation can be found in de Finetti’s philosophical manifest Probabilism [36], where he cites Adriano Thilgher: ‘All objects,
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position, ...). We seem to be hung up in an infinite regress4. Clearly, the act of thinking produces the judgement of
subjectivity (of the reasons that make a thing trustworthy). Indeed, what else could? However, does that mean that
the act of thinking that produces a judgement can simultaneously presuppose this very judgement5?
J. G. Fichte showed how such an impasse is caused by an erroneous understanding of our self-awareness [50]. For
one: ‘think about a dice!’. Notice how you become immediately aware of your thinking. Thus, this awareness is
neither accidental nor accessory, but it is something intrinsically tied to your act of thought. If you are immediately
aware of yourself, then this self-awareness can only be described in the way that

‘... deine innere Tätigkeit, die auf etwas ausser ihr (auf
das Object des Denkens) geht, geht zugleich in sich selbst,
und auf sich selbst. Aber durch in sich zurückgehende
Thätigkeit entsteht uns [...] das Ich. Du warst sonach in
deinem Denken deiner selbst dir bewusst, und dieses Selb-
stbewusstseyn eben war jenes unmittelbare Bewusstseyn
deines Denkens; sey es, dass ein Object, oder dass du selbst
gedacht wurdest. − Also das Selbstbetwusstsein ist unmit-
telbar; in ihm ist Subjectives und Objectives unzertrennlich
vereinigt und absolut Eins.’ [50, p. 528]

‘..your inner activity that points at something beyond
itself (upon the object of thought), points at the same
time into itself and at itself. The I arises from the activity
returning into itself. Hence, in your act of thinking you
were aware of yourself, and this self-awareness is precisely
that immediate awareness of your act of thinking; (irre-
spective of) whether it is an object or yourself that was
thought of. − Thus, the self-awareness is immediate; in it,
the subjective and the objective are inseparably unified and
absolute one.’ (Free translation)

This view suggests that the distinction between subject and object (and thus, subjectivity and objectivity)
is imposed by the particular condition of our mind during the act of thinking (i.e., ‘your inner activity’). This
distinction, however, cannot refer to an actual division of our minds from the world. Hence, this necessarily raises
the question of whether such a distinction has any relevance for science in general, and for forensic science and law
in particular. I argue that it is not. Consider again H. Poincaré’s words on science quoted in the previous section,
namely, that science ‘is a manner of bringing together facts which appearances separate, though they were bound
together by some natural and hidden kinship’. For H. Poincaré objectivity − if such can be found − can only be
found in these relationships, because only these are transmissible or transferable by discourse from one mind to
another. Stated otherwise, these relationships are intelligible. Thus, H. Poincaré later writes:

‘Les objets extétieurs, par exemple, pour le lesquels
le mot objet a été inventé, sont justement des objets et
non des apparences fuyantes et insaisissables parce que
ce ne sont pas seulement des groupes de sensations, mais
des groupes cimentés par un lien constant. C’est ce lien,
et ce lien seul qui est objet en eux, et ce lien c’est un
rapport.’ [111, p. 266]

‘External objects, for instance, for which the word ob-
ject was invented, are really objects and not fleeting and
fugitive appearances, because they are not only groups of
sensations, but groups cemented by a constant bond. It
is this bond, and this bond alone, which is the object in
itself, and this bond is a relation.’ [110, p. 137]

men, and things of which I speak are, in the last analysis, only the content of my present act of thought: the very statement that they exist outside
and independently of me is an act of my thought: I CAN ONLY THINK OF THEM AS INDEPENDENT OF ME BY THINKING THEM, I.E.,
MAKING THEM DEPENDENT ON ME.’ [36, p. 171]

4In a similar context J. G. Fichte states: ‘Aber um deines Denkens dir bewusst zu seyn, musst du deiner selbst dir bewusst seyn. −Du bist−
deiner dir bewusst, sagst du; du unterscheidest sonach nothwendig dein denkendes Ich von dem im Denken desselben gedachten Ich. Aber damit
du dies könnest, muss abermals das Denkende in jenem Denken Object eines höheren Denkens seyn, um Object des Bewusstseyns seyn zu
können; und du erhältst zugleich ein neues Subject, welches dessen, das vorhin das Sellbstbewusst|seyn war, sich wieder bewusst sey. [...] und
nachem wir einmal nach diesem Gesetze fortzuschliessen angefangen haben, kannst du mir nirgends eine Stelle nachweisen, wo wir aufhören
sollten;...’ [50, p. 526] In my free translation: ‘However, for you to be aware of your thinking, you have to be aware of yourself. You say, −
you are − aware of you; in this act of thought, therefore, you distinguish necessarily between your thinking the I and the I that is thought. For
you to be able to do so, however, that which is thinking in your (present) thought must be anew an object of some higher act of thinking in
order to become an object of awareness; at the same time you obtain a new subject so that you are again aware of that, which formerly was the
self-awareness. [...] once engaged in such a scheme of reasoning, you cannot provide me with a point, at which we should halt.’

5Note that neither de Finetti’s texts ‘La prévision’ or ‘Probabilism’ explicitly imply such a presupposition [33, 36]. However, they neither
prevent it.
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That is to say, these relationships are intelligible (i.e., they can be understood), because they can be thought.
Only what is intelligible is potentially transferable, and only what is transferable can be reproduced by another mind.
This is the reason why H. Poincaré writes that only what can be reproduced by another mind holds the prerequisite
for objectiveness. Thus, from my pragmatic perspective, it is secondary whether something is subjective or objective.
What we should care about is whether something can be reproduced in a mind other than my own and adopted.
Stated otherwise, the real question is not about whether something is objective or subjective, absolutely true or
relatively true; it is about persuasiveness. More precisely, whether it is generally persuasive, or only for a particular
individual. In the latter case, that something is intimate. If, however, it is something that everyone can check for
himself, or that can be transferred to a conscious and ‘sane’ mind by discourse, then it is common. Everything else,
is somewhere in between these two extremes at varying degrees of what is personal.
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5 Argument of evidence

Section 2.1 explained the distinction between the credibility of the evidence and its relevance. Section 3.3 discussed
the inferential force of evidence. These three features of evidence constitute the ‘three credentials of evidence’ [125].
For any given item of evidence not only do we have to assess these three features, but also we also have to bring
them together coherently (i.e., by obeying the laws of probability). How this is accomplished is the subject of the
present section following the teachings of D. A. Schum and A. W. Martin [125, 127].

Most of the time, it seems overly simplistic to reach the hypotheses from some evidential fact (e.g., observation
or testimony) in a single inference step. Usually, we will find several sources of uncertainty introducing themselves
between some hypotheses and fact. This means that inferences have to be made step by step from one source
of uncertainty to the other until we reach the hypotheses. These kinds of inferences are called simple cascaded
inferences [125] or catenated inferences [146]. The structures of such inferences can be represented by chains of
reasoning of different lengths as shown in Figure 5.1.

5.1 Argument structure

The fundamental inference structure of an item of evidence must address (at least) the credibility and the relevance of
the item. If the credibility and the relevance contain a single source of uncertainty each, then we obtain a two-staged
chain of reasoning. This reasoning chain corresponds to the graphical probabilistic model (i.e. Bayesian network, or
BN) in Figure 5.1 a. Let me quickly explain what these structures are exactly. Each node represents a variable such
as in our case H, E, or R, where H = {hp,hd} denotes our hypotheses, E = {e,e} some event possibly relevant for
our hypotheses, and R = {r,r} the report of the event (which can be an observation or a testimony). The arrows
(or arcs) codify a conditioning order, and express therefore the conditional dependence relationship between these
variables (see Section 3.1). In the present case, we have R conditioned by E, which in turn is conditioned by H. In
order to choose a given conditioning order for the construction of an inference structure, it is helpful to reason from
cause to effect [83, 120] 1; that is, from the hypotheses to what is finally reported. This is the information conveyed
by the graphical structure of these models.

The probabilistic structure of these models is not directly visible, with the exception of the conditional depen-
dence relationship between the variables. However, to each of these variables we assign a specific probability table
(so called node probability tables, or NPT) that codify the probabilities given to each variable. These are shown
in the Tables 5.1 (a) to (c). The graphical aspect codifies the dependence relationship. The node probability table

1Note, however, that causality is not the same concept as conditional dependence. Consider this beautiful example by P. Lipton: ‘Numerous
sticks are in free fall, twisting and tumbling. A snapshot is taken before any of them hits the ground, and what is found is that at that moment
more of the sticks were near the horizontal than near the vertical. [...] Think of a single stick with a fixed midpoint. There are only two ways it
could be vertical − pointing up or pointing down − but many ways it could be horizontal − any orientation in the horizontal plane. More sticks
were near the horizontal because of the geometrical fact that there are more ways for sticks to be near the horizontal. But geometrical facts are
not causes.’ [98, p. 21] However, the probability of your finding an object in free fall in the horizontal position rather than in the vertical position
is clearly conditioned by the geometric fact presented in the object.
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PART I CHAPTER 5. ARGUMENT OF EVIDENCE

Figure. 5.1 – Simple cascaded inferences. a. Generic argument of evidence (two-stage); b. Argument of evidence with
no uncertainty regarding the credibility of the item (single-stage); c. Argument of evidence with no uncertainty regarding
the relevance of the item (single-stage) d. argument of evidence for multiple inference stages (n-Stage).

codifies the probabilities for each variable. Together they form a graphical probabilistic model, or in the present
thesis, a Bayesian network.

Table. 5.1 – Probability tables for the nodes H, E, and R for the reasoning chain of Figure 5.1 a.

(a)

H: hp Pr(hp | K)
hd Pr(hp | K)

(b)

H: hp hd

E: e a1 b1
e 1−a1 1−b1

(c)

E: e e

R: r a2 b2
r 1−a2 1−b2

Let me note a few things in preparation for the following sections. The link in the chain representing the
inference step, also called ‘reasoning stage’ or simply ‘stage’, from R to E is the argument of credibility and that
from E to H is the argument of relevance. Together they form the argument of evidence. The inferential force of a
report r in the form of an LR is given by

Pr(r | hp,K)

Pr(r | hd ,K)
=

Pr(r | e,K)Pr(e | hp,K)+Pr(r | e,K)Pr(e | hp,K)

Pr(r | e,K)Pr(e | hd ,K)+Pr(r | e,K)Pr(e | hd ,K)
=

a2a1 +b2(1−a1)

a2b1 +b2(1−b1)
.

Assuming that the reports appear perfectly credible to us, that is, they represent no source of uncertainty to us, then
we have a2 = 1 and b2 = 0 and the LR reduces to a1/b1. This situation is depicted in Figure 5.1 b. Conversely, if
the event seems perfectly relevant to us, that is a1 = 1 and b1 = 0, then the LR reduces to a2/b2.
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5.2. DRAG COEFFICIENT

5.2 Drag coefficient

Often you will encounter items of evidence, for which you identify n sources of uncertainty between a report and
the hypotheses. The chain of reasoning depicted in Figure 5.1 d. corresponds to this situation. A forensic example
of such a multistage cascaded inference can be found in [15, 16]. In such situations we have a1,a2, ...,an and
b1,b2, ...,bn (and the corresponding complement) probabilities involved, namely, for each of the n stages. Let ai and
bi denote the probabilities of the ith stage out of n stages. The general form of the LR is given by

Pr(r | hp,K)

Pr(r | hd ,K)
=

a1 +Dn

b1 +Dn
=

a1 +Dn−1 +
bn

∏
n
i=2(ai−bi)

b1 +Dn−1 +
bn

∏
n
i=2(ai−bi)

, (5.1)

where Dn is the drag coefficient (see also Section 3.2.4 of III.3). It encapsulates the inferential drag produced by
additional stages (of uncertainties). In general, the larger the value of Dn, irrespective of its sign, the weaker the
inferential force. Moreover, positive values of Dn imply that r favors hp, whereas for negative values r favors hd .
From Equation 5.1 you can gather that the uncertainties are recursively accumulated along the stages of the chain. It
further shows that the amount of drag accumulated at a given stage is determined by two things: the differences of
likelihoods ai and bi and the size of bi. This is significant: the ratio between likelihoods is not sufficient; the values
of the likelihoods themselves are equally important. In other words, this Bayesian mechanism incorporates the
‘rareness or improbability’ of the events of each stage [125]. Note also that the difference between the likelihoods
at any stage decreases and the drag, in turn, increases. This means that the inferential force decreases with every
additional reasoning stage. Thus, the longer a reasoning chain, the weaker the inferential force.

Weak events and rare events. Let us take a closer look at how weak and rare events influence the drag. A weak
event exists if the likelihoods ai and bi take values of similar magnitude. A chain of reasoning involving an event,
for which the corresponding likelihoods take the same value (ai = bi), generates no inferential force, because this
event produces the maximal drag of ∞. For example, at the second stage such an event produces D2 = b2/0 = ∞,
and at the third D3 = b2/(a2−b2)+b3/[(a2−b2)×0] = ∞, and so on.2 Hence, the closer the values of ai and bi,
the smaller their difference (ai−bi), and thus, the larger the drag and the smaller the inferential force. Moreover,
there is no mechanism in a reasoning chain to compensate a drag once accumulated. On the contrary, the difference
between the likelihoods at any stage decreases as mentioned before (cf. the end of (the previous) Section5.2). Thus,
for any simple chain of reasoning the following rule holds: irrespective of the weak link’s location, a chain cannot
be stronger than its weakest link [125].

A rare event exists if the likelihoods ai and bi are both small. This means that the difference (ai−bi) is also
small. Does that mean that a rare event is a weak link? The answer is no, because for rare events it matters where
they are located in the chain. As mentioned in the previous section, the drag depends on the difference between the
likelihoods as well as on their ratio. Rare and weak events might produce similar effects regarding the difference
between the likelihoods, however, the effect is quite different for their ratios. In fact, as D. A. Schum showed
in [125], this becomes clear when we factor out the last term involving an and bn:

Dn = Dn−1 +
bn

∏
n
i=2(ai−bi)

= Dn−1 +
bn

∏
n−1
i=2 (ai−bi)

[
bn

an−bn

]
= Dn−1 +

bn

∏
n−1
i=2 (ai−bi)

[
an

bn
−1
]−1

.

We see that for the nth stage (the one on the bottom of the chain) the difference between the likelihoods plays no
role. Only the ratio matters. In other words, at the nth stage it does not matter whether we have, say an = 0.9 and

2Throughout the thesis limx→0 1/x = 0 for a division by zero is adopted.
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PART I CHAPTER 5. ARGUMENT OF EVIDENCE

bn = 0.01 or some rare event with an = 0.009 and bn = 0.0001. In both cases the ratio is 90. However, in any other
reasoning stage the difference comes into play. In which case the first pair of likelihoods yields 0.89, but the second
0.0089. Thus, if a rare event is not located at the nth stage, then it has the same effect as a weak event.
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Part I I
COMBINING EVIDENCE
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‘Celui qui a entendu la même chose de 12’000
témoins oculaires a seulement 12’000 probabilités,
ce qui équivaut à une forte probabilité, ce qui est
loin d’être certain.’
Voltaire, 1694 - 1778

In Part I we have seen what an argument of evidence is, and how it serves to connect a particular report to the
hypotheses of interest. During this discussion it became clear that between a report and the hypotheses we may feel
compelled to introduce several sources of uncertainty creating a chain of reasoning for simple cascaded inferences.
Graphically speaking, this operation amounts to a vertical expansion of our inference. In this part, however, we
examine how arguments of evidence are combined. That is, we examine the relationships between different lines of
arguments in order to realize a horizontal expansion of the argument. Such argument structures codify so called
complex cascaded inferences as opposed to simple cascaded inferences [127], which I discussed in the previous
chapter.

Note further that evidence can be mixed or not. Evidence is said to be mixed if it contains evidence items of
different types [146]. A collection of multiple items of evidence associated with particular problem or a case is
called a ‘body of evidence’. Large bodies of evidence are also named masses of evidence. As long as it is not
explicitly indicated in this text, bodies of evidence and masses of evidence can be mixed or not.
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6 An ontological study of evidence

The notion of ontology is often delimited by, or seen in opposition to, the notion of phenomenology, which is the
systematic study of experiences or phenomena. An ontology, on the other hand, is the systematic study of things
that exist, including their corresponding relationships. Thus, the paper does not investigate how we experience
evidence, but what kinds of evidence there exist and how they relate to each other. You may say at this point: Since
we study evidence from a perspective of subjective probability, every item of evidence is nothing but an intellectual
experience. Given this fact, I agree that the distinction between ontology and phenomenology is not quite clear.
Note, however, that it is also true that in our daily lives we experience evidence as facts that exist. Moreover, we also
experience differences between items of evidence, and make distinctions based on the differences we experienced.
From a pragmatic perspective it seems natural to accept these experiences as facts. More precisely, we simply
assumed that evidence exists. Now, given this assumption, the next question would be: in what ways or how does it
exist? What I found by following this question is discussed in this chapter.

6.1 In what ways does evidence exist?

Remember in Section 2.1 we said there exist things and that some of those things can be called ‘evidence’. We have
also seen that contrary to mere things, items of evidence possess a reference to something else. Thus, we drew a line
through the concept ‘thing’ and created the concept of evidence, based on whether such a reference is present or
absent. Things that possess such a reference were named evidence. I am not quite clear how we should call things
that do not possess such a reference. An expression like ‘not evidence’ seems correct but also uninformative. I will
name them ‘facts of subsistence’, because we haven’t assigned any form to these things yet (and I am not going
to in this thesis). That is, for the time being, we have acknowledged that these things simply are, without further
specifying in what way they are. In short, we have divided the concept of things into two, in the course of which
two categories were established: things named evidence, and another herewith named facts of subsistence. Note that
nothing was added by such an operation as the concept of evidence already existed, although latently, in its generic
concept ‘thing’. Stated otherwise, ‘evidence’ is an intrinsic property of ‘thing’. We merely emphasized in what way
evidence and facts of subsistence are opposite. This intellectual operation is called analysis [50, 80].1

Next, I had to ask myself how to continue our ontological examination of evidence. In this respect D. A. Schum
stated:

‘In my studies of evidence, I have troubled about how evidence might be usefully classified. This would be
an utterly impossible task if we just considered the substance or the content of evidence. [...] It seems
safe to say that the substance of content of evidence is unlimited in its variety. If all evidence items are
absolutely unique, how are we ever to say anything general about evidence? [...] It occurred to me that
evidence might be usefully classified on ‘inferential grounds’ rather than upon any grounds regarding its
substance or content.’ [126, p. 206]

1The French term for analyzing in the context of law is ‘trancher’, which can be translated as ‘to dissect’.
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I decided to follow a similar substance-blind approach. However, the deviation from D. A. Schum’s approach
consisted in focusing on the graphical probabilistic aspect of evidence. I wanted to find out whether such a
perspective could add anything regarding the substance-blind classification already established by D. A. Schum (see
Section 2.2). For the study we established three guiding questions, namely:

1. What criterion do we apply to distinguish one manifestation of evidence from another?

2. What are the implications entailed by such a criterion for a probabilistic argument we might want to undertake?

3. Can we establish a structure of kinship between such manifestations based on the probabilistic argument we
identified?

The first question pertains to the drawing of further lines within the concept of evidence − just as we did when
we distinguished between evidence and facts of subsistence. Thus, the criterion mentioned in the first question are
ultimately analytical criteria. The second question aims at finding out how a given criterion affects the way in which
we reason. The last question deals with commonalities and presuppositions among the implications generated by the
criterion. That is, two or more criteria may have something in common, they can thus be regrouped2. In other cases,
a given criterion may presuppose another criterion in order to make sense. By following these questions I created an
ontology that resembles a genealogical tree. Such a tree is shown later in Figure 6.2 for recurrent combinations
of evidence with the corresponding generic Bayesian networks. This excerpt of my ontology is discussed in the
following section.

6.2 Ontology for combined evidence

The finding that the criteria themselves can be classified, is one result of my study. In particular, some criteria
seem to prescribe a particular inference structure without giving any description of the inference; others, however,
describe a particular inference within a given structure but provide no structural norm. I called the first type of
criteria inferentially prescriptive and the latter inferentially descriptive criteria. To the present day, the natural
redundance criterion discovered by D. A. Schum is the only prescriptive criterion for recurrent forms of combined
evidence.

Imagine two reports R1 and R2 on two events, say E1 and E2. Each event is relevant to some degree for the
hypotheses of interest H. If E1 = E2, then these two events are naturally redundant because they pertain to the same
inferential object (but not necessarily to the same content or substance). On a structural level, this implies that there
can only be one argument of relevance based on a single event E = E1 = E2. This situation is depicted as a BN in
Figure 6.1 b. However, there remains one argument of credibility for each of the two reports. In turn, if the events
E1 and E2 do not refer to the same inferential object, then each event necessarily possesses an argument of relevance
on its own (see Figure 6.1). Again there is one argument of credibility for each report R1 and R2 (see Figure 6.1).

The inferentially descriptive criteria could further be classified into two classes. Some descriptive criteria were
describing a particular probability assignment while others a particular form of observation (or variable instantiation
in the context of Bayesian networks). The latter class of criteria is discussed in the paper reproduced in Chapter 2 of
Part III. The probability assignment in an inference structure determines the inferential force a given item develops,
that is, which hypothesis a given item favors. In combined evidence the items can either favor the same hypothesis
or different hypotheses. If they favor the same hypothesis, then the evidence is said to be harmonious, and dissonant
otherwise.

2This type of reasoning is called synthesis. As opposed to the analysis, a synthetic reasoning determines what is common in two different,
or opposite things. Thus in essence, the analysis refers to a reasoning leading to a judgement of negation, whereas the synthesis leads to a
judgement of affirmation [50]. The difference between these two modes of conceptual reasoning, will become important later.
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a1,2, b1,2 a2,2, b2,2 a1,2, b1,2 
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a1,1, b1,1 

Line 1 Line 2

Stage 1

Stage 2

a2,1, b2,1 a1, b1 
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a2,2, b2,2 

a. b.

Figure. 6.1 – BNs for generic combinations of evidence with two lines of reasoning and two reasoning stages. a. Reports
on naturally nonredundant events (i.e., E1 6= E2). b. Reports on naturally redundant events (i.e., E1 = E2 = E). The
probabilities of each reasoning stage and line of reasoning are denoted by the probabilities of ai, j and bi, j (or ai and bi),
where i refers to the line of reasoning and j to the reasoning stage.

In Section 5 of Part I, the probabilities of the jth reasoning stage were denoted a j and b j. Following the same
logic, the probabilities ai, j and bi, j refer to the jth stage of the ith line of reasoning. Thus, a1,2 and b1,2 refer to
the conditional probabilities of the first report R1 = r1 (see Figure 6.1). Conversely, let a2,2 and b2,2 denote the
conditional probabilities for the second report R2 = r2. If the inequality signs for a1,2 and b1,2, and a2,2 and b2,2 are
the same (e.g., a1,2 > b1,2 and a2,2 > b2,2), then this is indicated by two arrows pointing into the same direction: ↑↑.
I called two reasoning stages, for which the relationship ↑↑ applies, inferentially congruent reasoning stages. In
turn, if the inequality signs are opposite (e.g., a1,2 > b1,2 and a2,2 < b2,2), then this is indicated by arrows pointing
into different directions: ↑↓. Two reasoning stages, for which the relationship ↑↓ holds, were named inferentially
inverted reasoning stages.

Harmonious evidence involving reports on naturally redundant events (E = E1 = E2) are said to be corroborative.
Dissonant evidence involving reports on naturally redundant events are said to be contradicting. More precisely,
they are corroborative if the reasoning stages encapsulating the arguments of credibility are inferentially congruent
(↑↑), because in such cases the reports favor the same event. In contrast, they are contradictory if they are
inferentially inverted (↑↓), that is, if they favor different events. As can be seen from Figure 6.2, there is exactly one
possible situation in terms of congruence and inversion for corroborative and contradictory evidence respectively.
Harmonious evidence involving reports on naturally nonredundant events (E1 6= E2) are said to be convergent.
Dissonant evidence involving reports on naturally nonredundant events are said to be conflicting. As you can see
from Figure 6.2, as opposed to naturally redundant events, there are two possible situations in terms of congruence
and inversion for convergent and conflicting evidence each.

Finally, the events in convergent evidence may be subject to different types of inferential interaction depending
on probabilities that were assigned. Thus, if such an interaction is absent, then this means that the events are
conditionally independent given the hypotheses. If they are present, then the distinction is threefold: directional
change, redundance, and synergy. Inferential interactions will be discussed in later chapters and play a major role in
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combined evidence.
In any case, from Figure 6.2 you can see that the different criteria and their classes form the underlying skeleton

for the different inference patterns and the characteristics of inferences these patterns may incorporate. Based on this
ontology, there are two major reasoning types we can undertake. If you assess some evidence at hand by proceeding
from the top to the bottom of Figure 6.2, the directionality of your reasoning process is from a generic towards a
more specific concept of evidence. This means that your examination of the evidence is analytical in nature. In
contrast, say you have already identified the exact inference pattern and the characteristic inference in your pattern,
then you can follow the ontology from bottom to top. This allows you to check whether you have assessed all
the criteria and their classes adequately, and whether your pattern and inference you chose are really the best for
your evidence at hand. In such cases, the reasoning process passes from a specific towards a more generic concept
of evidence, and your examination is synthetic. A similar skeleton that also involves single items of evidence is
presented in the paper reproduced in Part III Chapter 3. It can be used in the same manner.

6.3 Atomism vs holism?

A question that arises in the context of combined evidence (complex cascaded inferences) is the degree of granularity
we should choose, that is, how intricate and detailed an examination of evidence ought to be. Should we consider
the evidence ‘as a whole’ and try to model it as such, or is it better to examine each item with its peculiar reasoning
stages separately and aggregate them ‘holistically’ in a single model? I believe that the position held by D. A.
Schum and P. Tillers is the only reasonable choice:

‘It is hard even to imagine what it means to take evidence “as a whole”. We perceive slices and various
features in almost everything we see − and if we don’t, perhaps we can’t see anything at all. Moreover, it is
hard to imagine how we can imbibe the evidence we “see” without performing some sort of mental analysis,
which by definition seems to involve some sort of dissection. [...] The admonition not to analyze and
dissect almost seems tantamount to advice not to think too carefully about the way you think. [...] Any
theory that assumes an absolute dichotomy between holistic thinking and nonholistic thinking is thoroughly
implausible and any theory that admonishes people to think globally rather than locally is vacuous.’ [141,
p.1252]

This means that any serious examination of evidence, and a fortiori combined evidence, requires both at varying
degrees: a careful analysis of its atomistic parts (i.e. reasoning stages) and a logical aggregation of these parts into
a whole, the latter being essentially driven by a synthetic process. Moreover, the evidential subtleties that we are
going to examine in the following chapters, are subtle precisely because they cannot be accurately understood or
even recognized if we one-sidedly adopt a coarse or narrow vantage point from which to consider evidence. In order
to recognize and examine subtleties, we need similarly subtle successions of vantage points from coarse to narrow,
and back. This requires an aptitude to analyze as well as to synthesize.

This requirement is equally relevant to the model construction for combined evidence. Problems involving
combined evidence are usually too large to examine (see for example Chapter 9 of the present part). Additionally, as
indicated above, a solely holistic approach is vacuous. Caesar’s strategy of ‘divide et impera’ is a good advice for
handling such large problems. It is also quite common in model construction [88, 101, 125]. The strategy stipulates
the decomposition of the unmanageable global problem into closed, local problems. For each local problem a
local model is created, which are then aggregated into a global model. As you may have anticipated, the problem
decomposition is based on analysis. It allows us to obtain a collection of local problems in the form of semantical
units. An aggregation of these semantical units for a reconstitution of the global problem is based on synthesis. That
is, common features of these distinct semantical units are exploited for their combination.

My ontology of evidence in combination with D. A. Schum’s ontology serves as a stepping stone for the
in-depth examination of evidential subtleties, as well as the model construction of large problems. It allows us to
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identify and understand different forms of evidence, as well as their characteristic inferences arising from their
atomistic parts. Moreover, the approach I chose, makes explicit reference to the necessary criteria for establishing
distinctions between different forms of evidence. On the basis of such an ontology we can know exactly what
criteria we presupposed in the light of some evidence. Stated otherwise, the different forms of evidence, are forms
of evidence precisely because one can identify and apprehend the origin of their forms in such criteria. By doing so
the concept of evidence is not one large impenetrable object of our mind; instead we have transformed it into slices
of intellectually palpable aspects of evidential inference.
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Figure. 6.2 – Ontology of recurrent combinations of evidence. Boxes in grey and white letters designate the classifications
of the criteria. Boxes in white with black letters refer to a given criterion. An evidence examination from the top to the
bottom of the ontology is analytic, and from the bottom to top synthetic.



7 A graphical probabilistic analysis of the combination
of items of evidence

The next study deals with the examination of two real cases that were originally studied by Prof. Chrisophe Champod
(similar case examinations are also described in [132, 133]). One case involves the evaluation of two features of
a single shoe mark evidence. The other case deals with two distinct types of traces, namely a fingermark and a
shoe mark. The study shows that even in the smallest forms of evidence combination, that is evidence involving
two items, much can be learned about the nature and the probabilistic subtleties of combined evidence. The paper
derived from this study is reproduced in Chapter 3 of Part III. The main questions of interest for this project were:

1. What are the relationships among a set of (usually unobservable) propositions and a set of (observable) items
of scientific evidence?

2. What are the inferential interactions among the evidence items?

3. To what extent do these inferential interactions in combined evidence cause a deviation from the assessment
of isolated items of evidence in terms of inferential force?

The first question refers to the relationship between the hypotheses and the items of evidence. The second question
pertains to the inferential interactions we have seen in the previous chapter (the present cases involve redundance,
synergy, and conditional independence). The third question relates to the examination of how these inferential
interactions impact the inferential force of evidence, and how this may lead to the over- or understatement of the
inferential force of evidence.

7.1 Inferential force and inferential interaction

Figure 7.1 a. depicts the Bayesian network used in the first case study, and Figure b., a simplified version of the one
used in the second case study. As can be seen in these figures, the credibility aspect of the items were not considered
because my main interest pertained to the arguments of relevance and their possible interactions rather than to the
impact of observational errors. As a consequence, the report node R is absent in the present discussion.

As mentioned above, the first case involves a shoe mark. The general sole pattern (E1) and the shoe size (E2)
were jointly evaluated in the light of the hypotheses (F), that is whether or not the suspect’s pair of shoes is the
source of the marks (i.e. source-level hypotheses1). Both items favored the hypothesis that the suspect’s shoe is the
source of the mark rather than an unknown shoe. That is, the evidence is an instance of convergent evidence. The
study showed, that the shoe size was redundant to a certain degree given the general pattern. Stated otherwise, the

1I refer here to the hierarchy of propositions proposed by R. Cook et al. in their seminal paper of 1998 [23]. For more recent developments
on this topic see [47, 43].
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Figure. 7.1 – Bayesian networks for the combined assessment of two features and items of evidence respectively; a. the
combination of the general pattern of a shoe mark (E1) and the shoe size (E2) given source-level propositions (F). b.
the combination of a fingermark (E1) and a shoe mark (E2) given crime-level propositions (H). The nodes F1 and F2
refer to the respective source-level propositions for the two marks respectively. The nodes G1 and G2 represent the
events of whether or not the marks were left by the offender (i.e., relevance for the crime in question).

general pattern already incorporated some information about the shoe size. It turned out, the LR took a value of
roughly 160’000 when accounting for the inferential interaction. However, if these two features had been considered
to be conditionally independent given the hypotheses (F), then the LR would have taken a value of over a million; a
considerable difference of inferential force.

The second case involved the combination of fingermark (E1) and a shoe mark (E2) evidence stemming from a
burglary case. More precisely, E1 and E2 refer to correspondences between a given mark and reference prints. The
hypotheses, in turn, were formulated as crime-level propositions (i.e., H = {hp,hd}). Both evidence items favored
hp over hd . It is, thus, again a case of convergent evidence. However, both marks were poor in recognizable details
and generated, therefore, limited inferential force when considered in isolation. That is, the fingermark yielded an
LR of roughly 138, whereas the shoe marks yielded 33. However, a joint evaluation of the evidence items produced
an LR well over 4000, which is considerable.

Note also the dashed arc in Figure 7.1 b. It shows that an interaction is only conceivable between the source nodes
F1 and F2 but not between E1 and E2. Indeed, it seems unreasonable to assume that the degree of correspondence
between the fingermark and a reference print can directly influence the correspondence between a shoe mark and a
shoe print − even if both were left by the same individual. Now, I said before that an interaction is conceivable (but
not necessary). In fact, the variables represented by the source nodes are conditionally dependent given H only if we
believe that the probability that the suspect left the shoe mark for reasons unrelated to the crime depends on whether
the suspect left the fingermarks or not. However, by testing the impact of a conditional dependency relationship we
noticed, that the inferential force hardly changed.

In essence, thus, inferential interactions can have a massive impact on the joint inferential force of evidence
items, such as in the first case, but also almost no impact, such as in the second case. This result shows that
inferential interactions are treacherous and their effects must be carefully examined from case to case.

7.2 Within a mark and between marks

Compare the reasoning patterns of Figure 7.1 a. and b.. As explained in the previous section, the situation in a.
corresponds to the evaluation of two features of a single shoe mark, whereas case b. corresponds to the evaluation
of a fingermark and a shoe mark. In the latter case, the combination is realized in the reasoning stage from
the source-level propositions to the crime-level propositions. Structurally speaking, the two chains of reasoning
associated with each mark converge in the hypotheses node. In contrast, the features of the shoe mark converge
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Figure. 7.2 – Bayesian networks for within-mark and between-mark evaluation given source-level propositions. a.
within-mark inference: a mark is decomposed into its observational components. b. between-mark inferences.

in the source node. An interesting question at this point is whether we can combine distinct evidence items based
on source-level propositions (i.e., by using a reasoning structure shown in a.). By applying this question to the
second case, we can imagine a proposition of the sort ‘the suspect left the marks’. Notice, we can reformulate this
proposition without any loss or addition of information as ‘the suspect left both marks’; and finally as ‘the suspect
left the finger and the shoe marks’. However, the use of such propositions is tantamount to evaluating each mark in
isolation. Nothing is gained from such a combination. Why then, does it make sense in the first case?

The reason is this: in source-level evaluations we establish an inferential connection between a particular object
to a particular source. As a consequence, the evidence item is bound to its content. The two features in the shoe
mark, namely the general pattern and the shoe size, are observational slices of the same item, and as a consequence,
also of the identical content. Such slices are analytical products and therefore distinct, intrinsic features of the
evidence. This implies that there was only a single inference to begin with: the connection of a particular shoe mark
to a particular shoe (see Figure 7.2 a.). The synthesis of the observational slices leads back to the generic concept
(e.g. the shoe mark).

In contrast, distinct marks, such as a fingermark and a shoe mark, are bound to distinct contents. Thus, we
can only define the source as a simple sum of multiple contents (e.g., ‘the suspect left the finger and the shoe
marks’). The same argument convinces equally in cases where the distinct marks are of the same type, such as
multiple fingermarks, or multiple shoe marks. In such cases, we are compelled to define the source as a simple sum
of multiple redundant contents. In general, an attempt to combine such distinct items at a source-level does not
amount to a synthesis. There is no added semantical value because we produce only an umbrella term for the sum
of multiple contents instead of a real generic concept that goes beyond its content.

This is represented in Figure 7.2 b. Thus, a meaningful combination of distinct marks can only be achieved
when evidence items are examined in a more general framework. More precisely, we have to consider generic
concepts that go beyond their contents and extend to extrinsic features of the evidence items. This can be achieved
when activity- or crime-level propositions are considered.
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8 An investigation of evidential phenomena in large
bodies of evidence

Section 6.3 explained that we need subtle successions of vantage points from coarse to narrow in order to examine
and understand combined evidence or even masses of evidence. Methods to examine evidential phenomena do
not exist aside from sensitivity analyses [e.g., 83, 142] and conflict analyses [e.g., 76, 87]. Yet, these methods
examine probabilities rather than the inferential force. The only method that uses the inferential force as a metric
for examining evidential phenomena is D. A. Schum’s redundance measure. It measures the inferential interaction
in convergent evidence. However, there are two shortcomings with D. A. Schum’s redundance measure. First, its
application is limited to two events. Second, it is not clear how this measure was derived.

There were two further concerns, aside from the ones regarding the redundance measure. On the one hand:
although dissonance was described by D. A. Schum, there were no methods to define and quantify evidential
dissonance. On the other hand: in practice we are often interested in knowing which evidence item provides more
inferential force relative to others. A quick outline of these subjects is presented below:

Redundance. In [125] D. A. Schum uses the redundance of statistical communication theory to measure
redundance in probabilistic inference. The explanation starts with the average uncertainty1 of an outcome xi ∈ X ,
where X = {x1,x2, ...,xn}, which is given by

H(X) =−
n

∑
i=1

Pr(xi) log2 Pr(xi),

where H(X)≥ 0 applies, with equality, if and only if Pr(xi) = 1 for an i. The average uncertainty is maximal if the
distribution of Pr(xi) is uniform (i.e. Pr(xi) = 1/n). The information theoretic redundance measure is given by the
difference between the maximal average uncertainty Hmax(X) and H(X)

R =
Hmax(X)−H(X)

Hmax(X)
= 1− H(X)

Hmax(X)
. (8.1)

The ratio H(X)/Hmax(X) is the relative uncertainty in a message array. It is maximal if H(X) = Hmax(X), in which
case we have R = 0. In contrast, if H(X) approaches zero, then R approaches 1. The redundancy in this case is very
high. Thus, we have the bounds 0≤ R < 1. An example is provided in Appendix A.

At this point, D. A. Schum makes a leap. That is, he establishes the following Equation

Re2|e1 =
logLRe2|H − logLRe2|e1,H

logLRe2|H
= 1−

logLRe2|e1,H

logLRe2|H
, (8.2)

1This is alternatively called the average Shannon information content or entropy.
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where logLRe2|H 6= 0 (i.e. LRe2|H 6= 1). Note that Equation (8.1) uses the expected log-probabilities, whereas
Equation (8.2) uses the logarithm of LRs. It remains, therefore, unclear why Equation (8.2) seems to make sense and
allows us to capture the inferential interactions between two events, such as between e1 and e2. We felt unsatisfied
by such a leap, as well as this measure’s restriction to two events. We asked ourselves:

1. Can a redundance measure be established without making such a leap?

2. Can the redundance measure be generalized to an arbitrary number of events?

Dissonance. D. A. Schum has introduced the notion of dissonant evidence, that is, a body of evidence in which
the items do not favor the same hypothesis. However, there was no method to assess and define the dissonance
quantitatively. This raised the following questions

1. Is it possible to establish a mathematical definition of dissonance?

2. Can we effectively quantify the degree of dissonance in an entire body of evidence or to an arbitrary subset of
items of evidence?

Relative contribution. When examining a body of evidence, we are often interested in knowing which evidence
item(s) contribute most inferential force relative to others. For this reason we established the relative contribution
measure, which is the ratio between inferential force of a subset of evidence items and some other set (i.e. another
subset or the entire body of evidence). In this regard, I investigated whether there are general tendencies we can
observe when accumulating evidence. More precisely, I asked

1. What is the most effective way to express the relative contribution of a set of evidence items?

2. What properties does the relative contribution exhibit in extreme cases of evidence accumulation?

All these questions were investigated by using WoE measure of the inferential force. The WoE measure is
the most prolific metric to examine large bodies of evidence given its additive and symmetric properties (see
Section 3.3.2). Moreover, D. A. Schum himself used the WoE for his redundance measure. The solutions to these
questions provide a subtle succession of vantage points from which to examine combined evidence or masses of
evidence. These measures are discussed in the present chapter. The paper itself is reproduced in Chapter 4 of Part III.
Note also that the current state of knowledge K is omitted from our notation in order to increase clarity.

8.1 The redundance measure: A consequence of the multiplication law

As explained above, the transposition of the redundance idea from statistical communication to the context of
evidential reasoning is unsatisfying. In order to address this deficit I derived the redundance measure from the
context of evidential reasoning based on the metric of the WoE. I could show that the redundance measure is a direct
consequence of the multiplication law of probability applied to events that are conditionally dependent given some
hypotheses H = {h,h}. Let e1 and e2 denote two events that are relevant for the hypotheses and that both favor h
over h. In particular we can establish the following equation

W (h : e1)+W (h : e2)−W (h : e1,e2) =W (h : e2)−W (h : e2 | e1). (8.3)

The lefthand side of this equation corresponds to the numerator in D. A. Schum’s redundance measure (see
Equation (8.2)). However, the righthand side of Equation 8.3 is the crucial expression: Not only does it provide a
precise description of inferential interactions, but it also represents the key to the generalization of the redundance
measure to an arbitrary number of events as we will see later.
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Figure. 8.1 – Schematic depiction of the domain of values for the weight of W (h : e1,e2) associated with each type
of inferential interaction between the events e1 and e2 given H. The length of the grey bars indicates the amount of
weight produced by the simple sum of the weights of each event in isolation. The upper abscissa, ranging from −∞ to
∞, applies if both events favor h over h (i.e. 0 <W (h : e1) and 0 <W (h : e2)). The lower abscissa, ranging from ∞ to
−∞, applies if both events favor h over h (i.e. W (h : e1)< 0 and W (h : e2)< 0).

Consider what happens if both events are conditionally independent given H. In such cases we necessarily
have W (h : e1)+W (h : e2) =W (h : e1,e2) and W (h : e2) =W (h : e2 | e1). In this case both sides of Equation (8.3)
become zero. What happens if W (h : e2 | e1) is larger than W (h : e2)? In such cases we have W (h : e1)+W (h : e2)<
W (h : e1,e2), that is, the joint weight of the events is larger than the simple sum of the weight of each event. The
events are therefore synergistic given H. In contrast, if 0 <W (h : e2 | e1) is smaller than W (h : e2), then we obtain
W (h : e1)<W (h : e1,e2)<W (h : e1)+W (h : e2). In other words, the joint weight of the events is smaller than the
simple sum of their weights, but still larger than W (h : e1) alone. The events are thus partially redundant given
H. However, it may happen that 0 =W (h : e2 | e1)<W (h : e2). In such cases we obtain W (h : e1,e2) =W (h : e1).
Since event e2 possesses no weight at all once we know about e1, it is completely redundant given H. Finally, you
may be confronted with a situation, in which you find W (h : e2 | e1)< 0, although 0 <W (h : e2). This implies that
W (h : e1,e2) <W (h : e1). That is that the joint weight of the events is smaller than the weight of e1 alone. You
are dealing, therefore, with events that are directionally changed given H. Figure 8.1 summarizes the relationship
between the different inferential interactions and the weights.

From two items to masses Equation (8.3) could be generalized to an arbitrary number of events irrespective of
where they are located in a chain of reasoning. Consider again the expression W (h : e1)+W (h : e2)−W (h : e1,e2).
Let us rewrite W (h : e1)+W (h : e2) = W (h : e1,e2 | {E1 ⊥ E2 | H}) = W⊥(h : e1,e2). Hence, we can rewrite
W (h : e1)+W (h : e2)−W (h : e1,e2) =W⊥(h : e1,e2)−W (h : e1,e2). The extent to which the events are engaged
in an inferential interaction can, therefore, be expressed by the extent to which the value of W (h : e1,e2) deviates
from W⊥(h : e1,e2). This deviation is captured by the difference W⊥(h : e1,e2)−W (h : e1,e2).

Next, let E = {e1,e2, ...,en} denote the set of events that are conditionally dependent given H, and which
converge in H. Thus, we can generalize the redundance measure. Note that at this point I decided to call it the
impact measure for inferential interactions (in E given H). This is because this method only allows us to measure
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the overall impact of the inferential interactions, but it cannot identify which inferential interactions are present2.
The impact measure ia(h : E) is given by

ia(h : E) =
W⊥(h : E)−W (h : E)

W⊥(h : E)
= 1− W (h : E)

W⊥(h : E)
, (8.4)

where 0 6=W⊥(h : E). This measure allows us also to examine an arbitrary subset of events such as E′ ⊆ E down to
a pair of events in which case we return to the initial redundance measure (Equation 8.2).

8.2 Dissonance

The WoE is negative if the event favors h over h, and a positive sign otherwise. At the same time, the WoE measure
is symmetric as mentioned in Section 3.3.2. The WoE is therefore an ideal metric for a measure of dissonance.
For example, say we have two events e1 and e2 relevant for H. For clarity purposes let us assume that these are
independent given H (the following discussion is also valid for events that are conditionally dependent given H). If
e1 disposes W (h : e1) = 2 bans in favor of h, then an event e2 that produces exactly the same amount of inferential
force, but in the opposite direction, possesses W (h : e2) =−2 bans. My dissonance measure recruits this property
of the WoE.

I defined the weight potential of a set of events {e1,e2} as Wpot(h : e1,e2) = |W (h : e1)|+ |W (h : e2)|. In
the present example we have Wpot(h : e1,e2) = 4. Next, I defined the expressed weight, which takes the form
Wex(h : e1,e2) = |W (h : e1)+W (h : e2)|. In the present case we have Wex(h : e1,e2) = 2+(−2) = 0. It seems
natural at this point, to measure the dissonance in terms of the weight lost due to dissonance, or in other words, the
difference between the weight potential and the expressed weight

Wdiss(h : e1,e2) =Wpot(h : e1,e2)−Wex(h : e1,e2). (8.5)

Equation (8.5) possesses properties that are instructive for the degree of dissonance in a body of evidence. In
general, the expressed weight can never be larger than the weight potential, that is Wpot(h : e1,e2)≥Wex(h : e1,e2).
This implies that Wdiss(h : e1,e2)≥ 0, with zero only if Wpot(h : e1,e2) =Wex(h : e1,e2). In such cases, the degree of
dissonance is minimal and the events are harmonious. The dissonance is maximal if Wex(h : e1,e2) = 0 (and Wpot(h :
e1,e2)> 0), that is, all the weight produced is lost through. We obtain, therefore, Wdiss(h : e1,e2) =Wpot(h : e1,e2).
Note that for contradicting and conflicting evidence as well as evidence involving directional change, the weight lost
through is always non-zero (Wdiss(h : e1,e2)> 0). Figure 8.2 shows a schematic depiction of the different weights.

The dissonance measure can be applied to any number of events that are relevant to our hypotheses. Let E denote
a set of events we would like to examine for dissonance so that Wdiss(h : E) =Wpot(h : E)−Wex(h : E). Similarly
we can focus on any desired subset of E such as E′ ⊆ E in order to obtain Wdiss(h : E′) =Wpot(h : E′)−Wex(h : E′).
A recurrent application of the dissonance measure to different subsets of the body of evidence can help us to trace
the origin of a dissonance in our model. Stated otherwise, depending on the ordinality of the chosen subset, the
dissonance measure can become a coarse chopper just as well as a delicate scalpel for our dissonance analysis.

How should we deal with dissonant evidence? Imagine you were examining a body of evidence, say E, in the
light of some hypotheses H. You apply the dissonance measure and find that your body of evidence is dissonant (i.e.,
0 <Wdiss(h : E)). What are you supposed to do with this observation? Well, that depends. If you believe that it is in

2The medical notion of comorbidity designates presence of multiple illnesses in an organism. A comorbidity complicates the ascription of
observed symptoms to a particular illness. In analogy, we could borrow this medical term for the presence of multiple interactions in a body of
evidence. In short: the comorbidity of multiple interactions in a body of evidence complicates the diagnosis of particular types of interactions
from the observation of their cumulative impact on the inferential force of the body of evidence.
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Figure. 8.2 – Schematic depiction of the weight potential, the expressed weight, and the weight lost through. The grey
bars in the top represent the weights provided by two events e1 and e2.

our world’s nature to produce dissonances, and that your body of evidence is just another caprice of such a world,
then you might not attribute much significance to this observation. Stated otherwise, only harmonious evidence can
surprise you. This extreme view has an opposite stance: you believe that our world does not produce dissonances.
Our world’s true nature is perfect harmony. Thus, if you observe a dissonance in your body of evidence, then this
is because there is something wrong with your evaluation. Which of the two views is correct? Should we adopt
a less extreme view, some middle ground between these views? To tell you the truth: I don’t know (yet). To my
best knowledge none of these questions has been tackled. I can only propose my intuitions on this subject. To me,
dissonances represent warning signs, indicating that we may have made some erroneous assumptions or inferences.
This is suggested by the fact, that we find contradicting, or conflicting arguments generally unpersuasive. That is,
we are reluctant to accept such arguments and feel compelled to reexamine them. Conversely, I also believe that
the larger the body of evidence, the more likely3 it is for a dissonance to appear, simply because: ‘It is not easy to
tear any event out of the context of the universe in which it occurred without detaching it from some factor that has
influenced it.’ [113, p. 35]. Stated otherwise, any given model is at best an approximation of an extremely restricted
part of the real world [87]. Therefore, we cannot (and should not) expect a model to provide a perfect fit for any
body of evidence. There will always remain some elements of the real world that escape our senses and mind.
Hence, the relevant question is not, whether we observe a dissonance among evidence items, but rather whether this
dissonance is critical or harmless for the evaluation task.

8.3 Relative contribution

The relative contribution in terms of WoE is a straightforward concept. Let E = {e1,e2, ...,en} denote a body
of convergent evidence and E′ ⊆ E, where E′ = e1,e2, ...,ek, the subset of evidence that is of particular interest.
Assume further that none of the items provides conclusive evidence for h. Then the contribution of weight by E′
relative to E is a ratio of their weights: W (h : E′)/W (h : E). Now clearly, if k = n, then this ratio is 1, and as k
tends towards 0, the smaller its weight contribution is relative to E until it reaches zero. We can also reason in
the opposite direction and apply a slight modification. Say k starts at zero and increases towards n, where n tends
towards infinity (i.e., E contains an infinite number of items of evidence). In such cases, the weight contribution

3Note that throughout this thesis, the words ‘likely’ and ‘probable’ correspond to the everyday use of the terms and are non-technical. They
are used interchangeably.
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of E′ relative to E tends also towards zero. Finally, imagine all the items disposed the same amount of weight
W (h : ei), where ei is some interchangeable (regarding its WoE) item of E. According to Equation (3.11) we have
W (h : E′)/W (h : E) = (k×W (h : ei))/(n×W (h : ei)) = k/n, that is the simple ratio of the number of items in the
corresponding sets.

8.4 Analyzing large bodies of evidence

The different measures and methods to examine large bodies of evidence can be adjusted to any desired granularity,
irrespective of the location of the events in a chain of reasoning. They provide, therefore, subtle successions of
vantage points, which I have mentioned at the beginning of this chapter. In turn, these measures also raise questions.
For example, how often do we encounter particular types of inferential interaction? Are there types of evidence
that are particularly susceptible to inferential interactions, and if so to what types of interaction? Is dissonance a
recurrent feature of combined evidence? How should we deal with dissonances and how are they dealt with by
fact-finders? None of these questions has been raised in forensic or judicial literature, let alone studied. I believe
that these questions must be followed up by further research.
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9 State of Texas vs Josiah Sutton: A case analysis

In the previous chapter we have encountered the interaction type of directional change. This particular type of
inferential interaction is, in my opinion, the most treacherous of all interactions we have seen, because it can lead
to grave misinterpretations of cases. As you will see in the present analysis, the DNA expert in the case State of
Texas vs Josiah Sutton1 overlooked the fact that the DNA profiles were subjected to directional change. This led
the DNA expert to believe that Josiah Sutton was a contributor to the DNA specimens from which the profiles
were derived. However, a proper study of the DNA profiles in the framework of the case information suggests the
opposite conclusion.

Josiah Sutton was accused of having participated, together with an unidentified assailant, in the abduction, rape,
and sexual assault of a female. The crime was executed by two assailants and took place in the victim’s own car.
The DNA evidence consisted of four typing results that were established from four different specimens: the sperm
fraction of the vaginal swab taken from the victim, the debris of the pubic hair combings from the victim, a stain
from the victims jeans, and a stain from the victim’s car. All these items were tested positive for semen. At the trial,
the expert concluded that the typing results were a ‘mixture of DNA types consistent with J. Sutton, the victim,
and at least one other unknown donor...’ [72]. Professor W. C. Thompson reviewed the case. By assuming that
all the specimens were directly connected to the crime, and by considering all the crime profiles together rather
than in isolation, he realized that it was extremely implausible for Sutton to be a DNA contributor to any of the
specimens [139].

My research project consisted in the probabilistic joint evaluation of the four specimens given crime-level
propositions. The main questions were:

1. How a Bayesian network could be created to model the DNA evidence, and

2. whether a Bayesian network, could reproduce the findings and conclusions obtained by W. C. Thompson.

The paper is reproduced in Chapter 5 of Part III.

9.1 Aggregating multiple DNA typing results

The modeling approach can be roughly divided into five stages: (i) the definition of the hypotheses, (ii) the creation
of possible worlds in which the specimens can exist, (iii) the assessment of the number of contributors, (iv) the
establishment of the possible contributor scenarios, and (v) the implementation of the typing results in the model.
The present discussion focuses on the creation of the possible worlds and contributor scenarios (points (ii) and (iv)).
The remaining points are explained only as much as needed for the understanding of points (ii) and (iv).

1State of Texas vs Josiah Sutton, District Court of Harris County (1999), Case No. 800450
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(i) Hypotheses. At the outset, the prosecution considered two suspects. These were Sutton and an acquaintance
of his named Adams. Thus, we established four propositions, each identifying a pair of individuals as the victim’s
assailants. Namely, we envisaged every possible pairing among Sutton, Adams, and two unknown persons.

(ii) Possible worlds. The enumeration of the possible worlds consists of determining the necessary conditions for
the specimens to exist in the way they did. As a result, each world can be described by a set of necessary conditions.
This involved the consideration for the creation of a given semen stain (i.e. ejaculation, non use of condoms), the
relevance of the semen regarding the crime, or that the semen came from a person unrelated to the crime. We further
concluded that the sperm fraction of the vaginal swab and the pubic hair combings had to be considered as naturally
redundant given the hypotheses in order to avoid fallacious double counting. We calculated the most likely worlds
based on the probabilities assessed for all the necessary conditions.

At the outset, we were confronted with 256 possible worlds. Given the practical impossibility of examining the
typing results in each world, it is crucial to reduce the number of worlds. This reduction is achieved following three
strategies: (a) by exploiting circumstantial information, (b) by weeding out worlds that are incompatible with the
probability assignments previously made, and (c) by using items of evidence (i.e., the fact that all specimens yielded
a DNA profile different from the victim). From the 256 initial worlds, nine survived the reduction process, from
these nine worlds we retained the three likeliest worlds to be incorporated into the final model.

(iii) Number of contributors. The assessment of the number of DNA contributors to a given specimen consisted
of computing the posterior probabilities of the number of contributors based on the typing result of a given specimen.
This was accomplished by using the method proposed in [12]. The most likely number of contributors for the
vaginal swab and the pubic hair combings were two and three, and for the remaining stains one and two.

(iv) Contributor scenarios. The hypotheses, the likeliest worlds, and the likeliest number of contributors, gov-
erned the logical framework that enumerates all the possible contributor scenarios. A contributor scenario defined as
the actual DNA contributors in a given specimen, such as, ‘Sutton, Adams, and the victim’, ‘two unknown persons’,
and so on. We ended up with eight distinct contributor scenarios for the vaginal swab and the pubic hair combings
(considered as one specimen), and sixteen scenarios for each stain. Further, we found that in certain worlds, the
contributor scenarios of the vaginal swab and the pubic hair combings logically determined the possible contributor
scenarios of the stains. Based on the logical framework and the interdependencies between the scenarios of the
different specimens we created a model that reproduces the scenarios. The scenarios themselves serve as a gateway
between the hypotheses and the typing results.

(v) Typing results. For the evaluation of the typing results we implemented the modeling approach described
in [104]. The genotype of the each possible contributor was modeled once and is the same for all the specimens.
The typing results themselves enable the discrimination among the possible contributor scenarios.

9.2 The importance of circumstantial information

The reduction of possible worlds and of the number of contributors is crucial. This cannot be stressed enough. The
more worlds and the more potential contributors we have to consider, the larger the number of possible contributor
scenarios. In theory there are an ‘infinite’ number of possible contributor scenarios. This is because, on the one
hand, we cannot determine a maximum number of contributors in a specimen with certainty; and on the other
hand, we can imagine an infinite number of possible worlds that could have produced the specimens. However,
a detailed examination of the framework of circumstances, expert knowledge, and evidence items can squeeze
out crucial information for restricting the number of contributors and worlds. Conversely, without any additional
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information we are likely to end up with an astronomical number of contributor scenarios: a situation unfit for any
interpretative effort. It appears that such information does not only serve to inform probabilities on parameters (such
the relevant population for the random match probability), but also to organize evidence items for a joint evaluation;
such information affects, therefore, the inference structure itself.

Notwithstanding, I believe that the combination through well defined contributor scenarios is a generally
applicable method for evaluating multiple DNA specimens. In return, the heavy reliance on such information
implies three things that must be kept in mind. First, our model is highly context-specific and likely to be unsuited
in other cases; they are ‘custom products’ for a given case. Second, it is crucial for the evaluator of combined
evidence to have access to such additional information. Otherwise, a combination becomes unfeasible. Third, given
that such models are context-specific, the standpoint from which the model was created must be made transparent
to fact-finders. In essence, the additional information that influenced the model must be properly conveyed to the
fact-finders so as to render the conclusions derived from the model intelligible for them.

9.3 Inferences from the model

Figure 9.1 shows a schematic of the case examination. Given the size of the final model, I had to outsource the BNs
for the computation of the posterior probabilities of the number of contributors and the likelihoods of the worlds.
These probability values were then imported into the final model. This is shown by the boxes and arrows drawn
with dashed lines. The final model has a distinct architecture produced by the organization of different problem
areas, such as the scenarios for each specimen, the typing results for each specimen, and the observed typing results
(i.e., credibility of the results). The different problem areas are depicted by boxes drawn with continuous lines.
The corresponding arrow shows the influence of one problem area on another. The arcs in grey show further the
conditional dependencies between the typing results given the hypotheses. The inferential interaction of directional
change between the different typing results stems from these connections.

The inferences from our model corroborated W. C. Thompson’s analysis [139]. That is, when the items were
evaluated in isolation, they then supported the Sutton’s involvement in the crime (LR ≈ 10). Note that the inferential
force we obtain is very weak. In contrast, when the items are evaluated jointly, then the items favored two unknown
assailants (LR ≈ 0.19). The application of our inferential interaction measure, which was discussed in the previous
chapter, clearly indicated the presence of a directional change in the evidence.

In general, the joint evaluation of multiple DNA profiles is not a trivial task and requires an examination at a
high degree of granularity. This is also indispensable for the detection of inferential interactions.

43



PART II CHAPTER 9. CASE ANALYSIS

Figure. 9.1 – Architecture of the case examination. The boxes with dashed lines represent BNs that were outsourced
from the final BN. The dashed arrows indicate the importation of probability values from these BNs to the final BN.
The boxes with continuous lines represent thematically ordered clusters of uncertainties. The arrows represent influences
between the clusters. The arcs in grey further highlight the influences responsible for the inferential interactions between
the specimens.
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10 Conclusion

This objective of the present thesis is to investigate the normative foundations of combined items of evidence. This
was pursued by the method of probabilistic reasoning aided by Bayesian networks. The distillates of the thesis are
wrapped in four catch phrases: 1. Reasoning about combined evidence is bi-directional; 2. Combinations ought
to be relational; 3. Conclusions from combined evidence tend to be ‘ethnocentric’; 4. Arguments of combined
evidence tend to be ephemeral. Each of these statements is discussed in the following paragraphs.

1. Reasoning about combined evidence is bi-directional. This thesis shows the importance of an in-depth
analysis and precise synthesis for the study of combined evidence. That is, the thinking is inherently bi-directional:
top down and bottom up.

On the one hand, we are required to understand arguments of evidence down to its atoms (i.e. its reasoning
stages), because evidential subtleties quickly escape coarse structures of evidential arguments. As a result, reductions
(e.g., bypassing) of arguments are preferably (i.e., if feasible) realized after assessing the impact of evidential
subtleties in more intricate and detailed argument structures rather than before.

On the other hand, bodies of evidence stemming from real cases are often very large. An effective evaluation
of such bodies requires its decomposition into smaller units. A thorough understanding of generic arguments of
evidence as well as the relationships between generic arguments not only supports the identification of suitable
units, but also provides indications on how to reconstitute these units into a ‘single final idea’.

2. Combinations ought to be relational. Combined evidence items do not simply represent sums of evidence
items, such as item A and item B. The opposite holds: evidence items enter into a specific relationship, which is
either dissonant or harmonious. In particular instances an item A corroborates, contradicts, converges with, or
conflicts with an item B. These relationships can be defined and quantified within in the framework of probability
theory by the dissonance measure. Moreover, certain relationships can further exhibit different forms of inferential
interactions. These interactions cause the inferential force of combined evidence to deviate greatly from the
inferential force of the sum of isolated items. This deviation can be exploited for the quantification of inferential
interactions such as the impact measure. That is, we can compare the inferential force taking into account inferential
interactions against the inferential force assuming no interaction.

Stated otherwise, combining evidence not only asks us to look at the evidence items, but also, and more
importantly, what lies hidden between the items.

3. Conclusions from combined evidence tend to be ‘ethnocentric’. The combination of evidence items
requires an extensive use of circumstantial information and expert knowledge, which in turn impacts not only how
we inform probabilities but also the argument structure itself. In addition, these structures are highly sensitive to
our choice of hypotheses (e.g., source-, activity-, or crime-level propositions). The argument structure reflects,
therefore, our point of view shaped by our hypotheses of interest, circumstantial information, and expert knowledge.

45



PART II CHAPTER 10. CONCLUSION

Stated otherwise, ‘... in making our decisions on both hypotheses and basic assumptions, ethnocentricity and even
egocentricity play significant roles.’ [114, p. 519]

In practice this means that a Bayesian network, such as the one created for the DNA evidence in State of Texas
vs Josiah Sutton, is unintelligible to someone who is ignorant of our point of view: it is, in P. Feyerabend’s sense,
incommensurable [49]. The group of people who share our point of view will tend to agree with our model and
its suggested conclusions (see point 4). Simultaneously, the group of people, who do not share our point of view,
will find our model and its conclusions incomprehensible. We have to keep in mind that reasoning about combined
evidence is ‘ethnocentric’ with respect to the former group, but marginalizing, in turn, for the latter group. An
expertise on combined items of evidence requires, therefore, a particularly high standard for the transparency and
the clear communication of the results.

4. Arguments of combined evidence tend to be ephemeral. The more evidence we integrate into our
inferences the better. Stated negatively, the omission of available evidence in our inference is − normatively
speaking − unreasonable [62]. Conversely, increasing evidence for our inference, means that the inference will be
decreaslingly influenced by initial personal biases. Thus, divergent prior opinions tend to converge [e.g., 39, 54].
This ‘... ultimately leads to a consensus which will not be challenged again until the basic assumptions on which it
rests are questioned.’ [114, p. 519]

The consequence of questioning the basic assumption for combined evidence is this: the evidence items in
Bayesian networks tackling large bodies of (mixed) evidence are organized based on the hypotheses of interest,
circumstantial information, and expert knowledge. These are the basic assumptions on which our inference rests.
This is also in agreement with the first principle of evidence interpretation, which states that

‘Interpretation of scientific evidence is carried out within a framework of circumstances. The interpretation
depends on the structure and content of the framework.’ [45, p.235]

Therefore, reasoning about such bodies of evidence has inevitably a strong inclination towards contextualization and
reluctance to generalization. More precisely, Bayesian networks involving large bodies of evidence are situation-
specific and not generic (see for example the DNA evidence in State of Texas vs Josiah Sutton). This implies that
not only our probability assessments, but the entire argument structure of the model becomes increasingly sensitive
to changes regarding the hypotheses of interest, circumstantial information, or expert knowledge. Note that this
sensitivity is not superficial; it is fundamental. We are likely held to overhaul the entire argument in order to cope
with a change in our basic assumptions. As a result, the stronger the contextualization of the model, the less flexible
and the more ephemeral it becomes.
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Epi logue

‘La vérité est que nul ne peut agir avec l’intensité que sup-
pose l’action criminelle sans laisser des marques multiples
de son passage.’ [99]

‘The truth is that no one can operate with an intensity
required for a criminal act without leaving multiple traces
of his motion.’ (Free translation)

Stated in more general terms, an event, be it a crime, an accident, or a natural phenomenon, affects the
environment on a broad front. Hence, it is more likely that we find a body of (mixed) evidence items rather than a
single item purporting an event. These collections are ‘cemented by a constant bond’ [111, p. 266] and not loose
parts, or a bunch of isolated entities. Conversely, we perceive items of evidence as isolated entities, because our
attention towards things is inherently selective: we always focus on ‘certain aspects of the stimulus situation to the
exclusion of other aspects’ [19, p.105]. As a consequence ‘we perceive slices and various features in everything we
see’ [141, p.1252].

Our thinking is subjected to the same selective modality. Notice how we reason: we proceed by analyzing one
evidence item after another, one evidence feature after another, and one piece of circumstantial information after
another. The reconstitution of the collection is established afterwards, and is conveyed to us as a product of an
intellectual effort, a synthesis. In contrast, we do not recognize a complete body of evidence that contains all the
items, features, and pieces of circumstantial information at the outset. This suggests that we primarily perceive and
think of evidence items as isolated entities, not because that is what they are in nature, but because it is in our nature
to perceive and think of isolated aspects, or slices of reality. We are well advised to appreciate this inherent mental
bias.

This bias is exposed to further exacerbation in forensic contexts due to the historical character of forensic
investigations. Namely, the event that produced a collection of items is itself unobserved in the vast majority of
the cases. We can only observe the relicts of past events (which may present themselves more or less revealing).
Thus, the event itself is an issue of inference and so is the membership of an item to a certain body of evidence. In
practice, we have to assess the membership one item after another given a set of possible events (e.g. hypotheses, or
intermediate hypotheses). As a result, the consideration of evidence items as isolated entities seems more immediate
than collections of evidence; the latter appear more indirect and artificial.

However, just because bodies of evidence feel indirect and artificial does not mean, that we should give in to our
inherent bias and just attend to some part of the evidence, or to each item in isolation. On the contrary, Wigmore
clearly states the imperative to consider all evidence items, and that all of them be properly organized relative to
each other [146]. More precisely, in the formation of our belief, we must recruit all the evidence at once, and not in
succession. Otherwise, we might neglect some items, devote asymmetrical attention to different items, and risk
being misled by a part of the evidence.

‘Our object, specifically, is in essence: To perform the logical (or psychological) process of a conscious
juxtaposition of detailed ideas, for the purpose of producing rationally a single final idea. Hence, to the
extent that the mind is unable to juxtapose consciously a larger number of ideas, each coherent group of
detailed constiutent ideas must be reduced in consciousness to a single idea; until the mind can consciously
juxtapose them with due attention to each, so as to produce its single final idea.’ [146, p. 748]

That said, the reality of forensic practice is still charging in the (exact) opposite direction. Different types of
forensic evidence tend to be delegated to specialized laboratories, where they are subjected to standardized routine-
examinations and default-computations [e.g., 13]. It seems, that our bias is institutionalized rather than being
rectified; instead of cultivating a multidisciplinary and inclusive approach to evidence as a remedy, a further
fragmentation into specialism seems to be the dominating current in forensic practice [26]. Roux et al. gave a
succinct characterization of this unfortunate drift:
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‘... forensic science seems to be engaged in an out of control spiral forcing the discipline to reduce its scope
to a series of service laboratories with limited strict analytical functions, rather than a set of interrelated
processes that meet the needs of the security and criminal justice systems more holistically...’ [119, p. 2]

Such a highly standardized and fragmented milieu is not only detrimental to forensic science in general, but it also
lacks everything that is vital for the study of combined evidence. The consternation we experience when the ‘out of
control spiral’ reaches its closing scene was poetically captured two hundred years ago by Johan Wolfgang von
Goethe:

‘Wer will was Lebendigs erkennen und beschreiben,
Sucht erst den Geist heraus zu treiben,
Dann hat er die Teile in seiner Hand,
Fehlt, leider! nur das geistige Band.’ [144]

‘He who would study organic existence,
First drives out the soul with rigid persistence;
Then the parts in his hand he may hold and class,
But the spiritual link is lost, alas! [143, p. 77]

The ‘soul’ of forensic science − as a science on its own − and the study of combined evidence − as a particular
exercitation of this science − is driven out by a narrow attention slanted towards the dissection of the study of
evidence into well defined fragments and specialisms. In order to maintain ‘the spiritual link’ we are bound to
apply equal devotion and rigor in bridging the divide between these fragments. The study of combined evidence
requires an extensive and inclusive mindset with a pronounced sensorium for hidden relationships. Such a mindset
is completely incompatible with the dominating current previously outlined.
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1 The Evidential Foundations of Probabilistic Reason-
ing: towards a better understanding of evidence and
its usage

“The Evidential Foundations of Probabilistic Reasoning” by David A. Schum “...contains a collection of thoughts..."
(p. 1) on issues related to evidence and to inference tasks based on evidence. The study of such issues is best
summarized by an expression introduced in Chapter 1: ‘Science of Evidence’. The Science of Evidence tries “...to
treat the study of evidence as having a life of its own..." (p. 8). This perspective of examining evidence and inference
with an interdisciplinary, generalist approach, is also reflected by the author David Schum himself: he is a professor
of law and information technology and engineering at George Mason University. The fundamental insights he
shares in this book are - unfortunately - all too often overlooked and unknown in forensic and judicial practice and
research.

An important feature of evidential inference is its involvement with uncertainty, and consequently its probabilistic
nature. This view is held also by Schum. He acknowledges that uncertainty is a prevalent feature of reasoning tasks
based on evidence, and that it attends situations of daily life but also and most prominently, legal applications: “...in
any inference task our evidence is always incomplete, rarely conclusive, and often imprecise or vague; it comes
from sources having any gradation of credibility. As a result, conclusions reached from evidence [...] can only
be probabilistic in nature." (p. xiii) Unfortunately, forensic practice regularly distrusts the notion of probability
because people focus on precise numbers (derived from a generous data pool). However, assigning numbers for
probabilistic evidence evaluation is neither a prerequisite nor an end for analyzes of evidential inference. Schum’s
work is directly relevant to this aspect by demonstrating that (i) purely structural considerations on evidence and (ii)
adopting probabilities as numerically variable ingredients of inferences, enable us to approach numerous problems,
and to explore evidential subtleties or complexities. Let us first consider (i) and then (ii).

(i) Every item of evidence fans out into two primary dimensions: relevance and credibility. A relevance
relationship between an event (for the purpose of this review let us say, ‘DNA matches with suspect’s DNA’)
and a hypothesis (‘suspect is the assailant’) can involve a multistage reasoning (chain of reasoning). A given
linkage pattern between elements of a chain of reasoning is called ‘argument’. Elements regarding the credibility of
evidence (e.g. ‘how reliable is the expert reporting the DNA typing results?’) are located upstream in such a chain
of reasoning. Depending on the type of evidence and the desired level of detail, it may also involve a multistage
reasoning process and produce an argument. Thus, a probabilistic assessment of evidence requires an argument
structured in terms of relevance and credibility. The argument structure becomes even more complex when multiple
items of evidence are involved. In spite of this fact, basic configurations of evidence combination can be identified
and analyzed probabilistically. Schum shows in his studies that such basic configurations of evidence combination
result in specific inference structures and well defined inferential mechanisms.

(ii) Every item of evidence is characterized by an inferential force. It expresses if and to what extent evidence
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supports a hypothesis. Its quantity depends on the argument structure we choose for the evidence and on the
probabilistic assessment we attach to the argument. The likelihood ratio is commonly used in Bayesian analysis
to measure the inferential force of evidence. The study of likelihood ratios under varying probabilities is an
important aspect of Schum’s work: ‘[m]y essential research strategy was to perform sensitivity analyzes on the
likelihood ratios I identified." ([124], p. 576) By doing so, Schum shows how certain argument structures give rise
to peculiar inferential phenomenons such as in this non-exhaustive enumeration: inferential drag, redundancy, and
synergism. Each additional reasoning stage in a chain of reasoning generally weakens the inferential force of an
item of evidence: an inferential drag is accumulated. The likelihood ratio analysis on the inferential drag shows
how such an accumulation is generated. Redundancy and synergism occur in specific configurations of evidence
combination. The presence of the former implies that knowledge of one item of evidence can diminish or even
nullify the inferential force of another. Ignoring redundancies can lead to overstatements of the joint inferential
force of the items of evidence. Synergy relates to the opposite situation: the knowledge on one item of evidence
increases the inferential force of another. Ignoring synergies leads to understatements of the joint inferential force.

Now, how is such knowledge useful in practice? First, it does not matter from which domain the evidence comes
from, nor do we need to be familiar with its domain-specific methods and techniques to enhance our reasoning with
these insights. Second, by identifying generic inference structures we know which inferential mechanisms we are
exposed to and which we are not. Hence, we are less likely to be subjected to flawed reasoning leading to over- and
understatements when assessing the inferential force of evidence. Imagine, for example, a DNA trace is analyzed by
two laboratories. Now we have two results, but is our evidence also twice as strong? Third, knowledge on basic
inference structures creates gateways to contextualized evidence interpretation, and even more so when we deal with
masses of evidence (see for the analysis of a judicial case [79] and for a forensic case [78]). This is a particularly
strong point since an item of evidence is typically found in conjunction with other evidence.

The book discusses a vast array of evidence-related subjects from different standpoints and across different
disciplines. It demands time due to its broad scope; careful reading, and mental flexibility due to its interdisciplinary
character. Sometimes it might even ask for the reader to be patient, as some subjects are developed incrementally
making a few passages appear repetitive. In turn, many topics and problems that have appeared opaque and
uneasy before may become clear and intellectually palpable afterwards. For readers who are interested in better
understanding the properties of evidence and how to embrace evidence by systematic and logic reasoning, this a
book that deserves serious consideration.
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2 A probabilistic ontology of evidence and its combi-
nations

ABSTRACT. This paper investigates and presents different manifestations of evidence from a forensic and
judicial perspective to establish an ontology of evidence and its combinations. In general, the discussion
will emphasize the following questions: (i) what criteria do we apply to distinguish one manifestation of
evidence from another? (ii) what are the implications entailed by such a criteria for a probabilistic argument
we might want to undertake?, and (iii) can we establish a structure of kinship between such manifestations
based on the probabilistic argument we identified? Rather than focusing on a codification of evidence as in the
Anglo-American law of evidence, this paper aims to discuss fundamental inference patterns and structures, and
to elicit their probabilistic properties. Hence, distinctions that may be important from a non-probabilistic point
of view may not be of the same importance in the present paper and vice versa.

Keywords. Ontology of evidence · combined evidence · uncertainty · probabilistic reasoning

2.1 Introduction

2.1.1 Evidence and uncertainties

In ancient Greek and Rome the study of evidence or signs1 was an important discipline of rhetorics. This discipline
is understood as the study to persuade other people, through deliberate argumentation, especially on political or
judicial matters [52]. A telling example of what was understood as a sign or evidence can be found in Quintilian’s
Institutio Oratoria: “The Latin equivalent of the Greek σέμειον is signum, a sign, though some have called it
indicium, an indication, or vestigium, a trace. Such signs or indications enable us to infer that something else has
happened; blood for instance may lead us to infer that a murder has taken place.”2 [115, 5.9.9] Notice the twofold
reference that evidence incorporates: to the thing itself and to the another thing (‘something else has happened’).
Modern scientific jargon often uses the word ‘hypothesis’ to describe the latter thing. For example, smoke is
evidence for the hypothesis of a fire and a bloodstain on a garment is evidence for the hypothesis of someone’s
murder 3.

For the sake of argument we might agree that ‘smoke’ is conclusive evidence for the hypothesis of ‘fire’ that is,
by seeing smoke we are certain that there is a fire. On the other hand, “(...) blood stains on a garment may be the

1Evidence is, first and foremost, a sign.
2In German we use the word ‘Indiz’ and in French we use both words ‘indice’ and more rarely ‘vestige’ when we mean evidence. It appears

that these words meant exactly the same thing then and now including all the subtleties, except for the mathematical connotation that appeared
much later in history [55, 52].

3Other terms that are commonly used for the ‘thing itself’ and the ‘other thing’ are the factum probandum (the fact that is to be proven) and
the factum probans (the fact that proves) [146].
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result of the slaying of a victim at a sacrifice or of bleeding at the nose. Everyone who has a bloodstain on his clothes
is not necessarily a murderer.” [115, 5.9.9] In this case our observation is inconclusive evidence for our hypothesis
and almost all evidence is inconclusive in real life. As a result, we believe that someone is murdered to be true
only to some degree.4 It is here that we stumble upon the fundamental feature of evidential reasoning: uncertainty.
Imagine now, that the bloodstain in question is very large and turns out to be of human origin. Knowledge or
ignorance of this fact changes the degree to which we believe that someone was murdered. This suggests that
uncertainty is conditioned on our state of knowledge at the time we form our belief. Therefore, uncertainty, as we
understand it, should not be divorced from the person that perceives and assesses it: “(...) uncertainty is a personal
matter; it is not ’the uncertainty but ‘your’ uncertainty.” [97, p. 1]

By acknowledging the involvement of (your) uncertainty we can make further refinements. For example, we
notice that a given item of evidence e does not always occur or happen. Therefore, the occurrence of an event
claimed by e can be uncertain for us. In other words, at the initial stage, when we are considering ways to gather
data, the item of evidence e conditional on the chosen way, is uncertain for us [96]. This kind of uncertainty is
also sometimes referred to as the ‘credibility’ of the source that provides a given item of evidence e [125]. We will
show in this paper that, depending on the situation and the nature of the source we might be held to make further
distinctions within a source’s credibility.

A further aspect of evidence is that conclusions drawn from evidence e upon a hypothesis h may leave us with a
state of uncertainty, since e, if obtained, does not necessarily mean that h is true for us. This merely means that
e is inconclusive, which is a feature of evidence already discussed above. In either case, it is of general interest
to enquire about the inferential force and relevance that evidence e bears upon hypothesis h, and of the argument
(reasoning pattern) on which we base the assessment of the credibility of the source and of the relevance relationship
that links e to h [125]. In summary, thus, evidence can be conclusive or inconclusive, with the latter being associated
with uncertainty. According to Schum, this raises ‘three credentials of evidence’ that need to be assessed: credibility,
relevance, and inferential force.

2.1.2 Uncertainties and Probabilities

We have pointed out that uncertainty is a fundamental feature of the situation in which a person finds himself in a
state of incomplete knowledge, resulting from inconclusive evidence. We have seen that relevance and credibility
refer to types of uncertainty, but in order to assess the inferential force of evidence, we somehow have to combine
these different types of uncertainties. The problem, therefore, is: how can we combine uncertainties? An effective
solution to this problem consists in turning uncertainties into numbers which are easy to combine. In other words,
we want to measure uncertainties which, following much forceful argument that is now being increasingly accepted,
‘(...) must obey the rules of probability calculus.”[96, p. 298]

The relationship between law and probability theory is one of mutual affinity and maybe even necessity5.
The benefit of probability theory for reasoning in judicial and forensic context remains immense even today
[e.g., 4, 79, 118], essentially because it has become a standard. Probability calculus is our method of choice for
handling uncertainties6. Although, probability theory allows us to build coherent and logical reasoning patterns,
or probabilistic arguments7 it may quickly become cumbersome, the more uncertainties we have to address. Not

4One early source where the distinction between conclusive and inconclusive evidence is made, can be found in Rhetorics to Alexander,
attributed to Aristotle : “One sign causes belief, another knowledge.” [7, 1430b] Signs that cause belief are called eikota (εικοτά), which literally
means likelihoods [52]. Signs that are infallible are called tekmerion (τεκμεριον) and are based on syllogisms [7, 1357b].

5See for instance on forerunners of quantified probability calculus in the service of reasoned belief: “Significantly, most of these pioneers
either had legal training (Fermat, Huygens, Leibniz) or came from a family that dealt in law (Cardano, Pascal, Arnauld).” [57, p. 229]

6We entertain the concept of subjective or epistemological probabilities here (as opposed to objective or frequentist probabilities). Probabilities
in this sense represent personal beliefs, an expression of the relationship between a person’s mind and the (uncertain) event the person reasons
about as mentioned previously in Section 2.1.1 [96, 97].

7When we use the word ‘argument’ from here on, we mean a probabilistic argument.
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only does it become increasingly difficult to examine the role that individual uncertainties play in our argument,
it also becomes more difficult to establish an argument that embraces all the uncertainties in the first place. This
is unfortunate, since our mind only has a limited capacity to deal with multiple ideas at a given moment. We can
think about a great number of things but not about all of them at the same time. This, however, is precisely what is
required in thinking about evidence, (and especially combinations of masses of evidence). Thus, “[o]ur object then
(...) is in essence: To perform the logical (or psychological) process of a conscious juxtaposition of detailed ideas,
for the purpose of producing rationally a single final idea.” [146, p. 748]

To successively subsume different uncertainties so that we can rationally produce a ‘single final idea’ in the
form of a graphical probabilistic model, Bayesian networks (BNs) can be used [28, 75, 108]. They offer a graphical
representation scheme of uncertainties including their relationships of probabilistic independence given the current
state of knowledge.

The application of BNs to problems that preoccupy people has been very successful in diverse fields of research
(see [86, 112] for an overview). Forensic and judicial applications are no exceptions in this respect [e.g., 133]. BNs
thus represent our method of choice for our study of the uncertainty regarding evidence and its combinations.

2.1.3 Ontology of evidence and its combinations from a probabilistic perspective

Differentiating manifestations of evidence and its combinations is essentially a task of classification or categorization.
It allows us to say, roughly, that this form of evidence is one thing and that form of evidence another. Such formation
of categories is the core-process for creating an ontology. This alone, however, does not suffice. The formation of
categories needs to be pursued with method and consideration since an “[o]ntology (...) is the systematic study of
existence: categories of things that can exist and the relationships they can bear to one another.” [89, p. 1]

Generally, people are well acquainted with categories of things. Consider, for example, things that are alive and
things that are not, liquid things and solid things, past things and future things, and so on. Creating categories is
a fundamental feature of the functioning our mind and devised to make sense of the world, to establish structure,
and to uncover relationships where we only perceive abruptness. In legal contexts, for instance, a skilled creation
and use of categories is a key feature of a good investigator, as noted by Kind: “I have formed the impression, over
many years of working in the field of crime investigation, that good investigators have this capacity to view events
and to classify them, intuitively, in the most informative way.” [82, p. 167] However, Kind’s observation implies
also that humans are at constant risk to employ uninformative, misleading, or even wrong categories. One method
to increase our awareness of what categories we are using in a given situation, and to reduce the risk of employing
inadequate categories, is to identify and name the criterion that produced a category in the first place. We ask: what
is the condition that suggests a differentiation of things into categories in that particular case? Such is the method
that we will use in this paper for establishing the different manifestations of evidence and its combinations. It is a
way to keep track of the definition of the categories we have set up for a reasoning and not the other way around.

We have argued earlier that uncertainty is an intrinsic property of a reasoner’s relationship with evidence and
that the use of probability theory is vital to the understanding of the manner in which different uncertainties combine
and interact. Thus, it seems natural at this point to investigate if and how a criterion that produced a category of
evidence or its combinations affects a related probabilistic argument and whether we can establish on that basis a new
structure of kinship that relates to our arguments. To make these analyses explicit, arguments will be represented
in the form of BNs. They provide the analytical and structural framework within which the ontology of evidence
and its combinations is investigated and presented in this paper. Thus, this paper does not address an ontology
of evidence as stipulated by the Anglo-American law of evidence, but aims to provide a probabilistic analysis of
fundamental inference-structures associated with different manifestations of evidence. Further, aspects of practical
proceedings, such as admissibility, are not addressed. References to ancient Greek and Roman literature on evidence
are made only as far as necessary for setting the context of a given subject. Readers interested in the history of
evidence are referred to [55, 69, 52].
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Table. 2.1 – Definition of events for a reasoning about Scenario 1

Events

H h: S murdered V.
h: S did not murder V (S has nothing to do with the case).

E e: There are bloodstains on S’s garment.
e: There is no bloodstain on S’s garment.

R r: There is a sensory report of reddish stains on S’s garment.
r: There is no sensory report of reddish stains on S’s garment.

2.1.4 Outline of the paper

In Section 2.2 we will investigate the fundamental argument for evidence in its simplest form as proposed by
Schum [125]. At its core lies the elementary but often ignored fact that the report of an event is not the same as the
event itself. Virtually all other forms of evidence − be it in combination or not − can be derived from this argument
by extending and/or retracting one or more elements of that argument. Later in Section 2.3 we will investigate single
items of evidence, followed by evidence in combination Section 2.4. Section 2.5 investigates the kinship among the
different criteria identified. The paper concludes in Section 2.6. where we highlight our main findings.

2.2 Argument of evidence

It is often held that, for a sensible application of probability theory, events of interest should be clearly defined [83].
That is, regarding the scenario under investigation, the target events should embrace features of the scenario of
which we have a clear understanding and that we can articulate appropriately. For the purpose of examining the
basic constituents of an argument of evidence, as pursued throughout this paper, consider the following scenario:

Scenario 1: We see S near the place where V lives. S seems upset and on his garment we observe reddish stains.
We remember that S had a terrible dispute with V the day before. The possibility that S could have murdered V
immediately crosses our mind and becomes object of our inquiry.

Table 2.1 proposes definitions for events of interest for this scenario. H represents the hypotheses of interest. E
denotes the event regarding blood staining, relevant for H, and R the report by a source, which − in our case −
is our senses. K, not listed in the table, denotes our current state of knowledge so that K = {S is near V’s place,
S seems upset, S had a dispute with V the day before}. All the beliefs we hold for each event are conditioned by
K. Each event has two states, one for an event’s occurrence and one for its nonoccurrence, each being denoted
by a lower case letter. The question now is, how to order the three events so that a meaningful argument is
obtained. General literature on BNs recommends an ordering that reflects causal considerations in order to achieve
a consistent conditional dependency relationship between variables and to provide an intuitively interpretable
reasoning structure [120, 83].8 In the case considered here, it appears natural to assume that the knowledge of H
influences our beliefs about E. The event, in turn, conditions our view on R. This argument structure is shown on
the far left in Figure 2.1 as a BN where the variables are depicted as nodes and the direct dependencies are expressed
by edges connecting two nodes. A reasoning structure where we employ a serial ordering of variables only is also
called a singly connected chain of reasoning [125]. The specified beliefs for the nodes are represented by the node
probability tables (NPTs) shown next to each node of the BN depicted in Figure 2.1.

8Note, however, that a conditioning order can be established between variables for which we do not conceive a relationship of cause and
effect.
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Figure. 2.1 – The BN dealing with the credibility of a report and the relevance of the questioned event E on our
hypotheses E. Both the argument of credibility and the argument of relevance involve a single reasoning stage. The
corresponding NPTs are listed next to the BN.

2.2.1 Basic reasoning stages of an argument of evidence

By tracing our inference from a given report R the hypotheses H, we identify two distinct reasoning stages: one from
R to E and one from E to H. The first reasoning stage refers to the argument of credibility while the second refers to
the argument of relevance (see Figure 2.1). The argument of credibility requires us to enquire about the following
question: what is the nature of the source and what is the relationship between the source of the information and
the object of its claim, given K? The assessment of the four probabilities in the NPT of R, each representing an
aspect of the source’s credibility, expresses the beliefs derived from this enquiry as probabilities, namely a1 (short
for Pr(e | h,K)) and b1 (Pr(e | h,K)) and their corresponding complementary probabilities (i.e. Pr(e | h,K) and
Pr(e | h,K) respectively).

The the questions raised by the argument of relevance are similar to the one of credibility: what is the nature of
the event E and what is the relationship between the event and the ultimate hypotheses H given K? Again these
questions are addressed in terms of probabilities. The four conditional probabilities in the NPT of E are of interest at
this juncture. That is, a2 (short for Pr(r | e,K)) and b2 (short for Pr(r | e,K)) and the complementary probabilities
Pr(r | e,K) and Pr(r | e,K). Finally, probabilities for the node H are assessed on K, that is, the probabilities of the
hypotheses H prior to our reception of any report.

The above describes basic model to evaluate evidence. As will be pointed out in later sections, depending on the
case under examination, we might be held to increase the number of reasoning stages to establish a relevance or
credibility argument.

2.2.2 The inferential force of the evidence in terms of credibility and relevance

By comparing the beliefs we hold for our hypotheses before and after seeing reddish stains on S’s garment we
notice two things. First, we may note that these beliefs are different, and second, the probability of h has increased
after seeing the reddish stains. Such a change in beliefs, in particular the extent of change in belief, depends on
the inferential force (or, strength) of the evidence, and is appropriately measured by the likelihood ratio (V , short
for ‘value’). The likelihood ratio of a report r regarding our argument described above is given by the following
ratio of two probabilities Vr|H = Pr(r | h,K)/Pr(r | h,K). The notation Vr|H refers to the likelihood ratio of r. If not
stated otherwise, h is the conditioning event of the probability in the numerator, and h the conditioning event of the
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Figure. 2.2 – A BN representing a reasoning stage involving events C and E. The NPT of E is shown on the right-hand
side of the BN.

probability in the denominator. According to the model shown in Figure 2.1, R relates to H through E so that the
conversation can be extended to include E. By doing, so we can rewrite the likelihood ratio as

Vr|H =
a1 +[ a2

b2
−1]−1

b1 +[ a2
b2
−1]−1 (2.1)

where the ratio a2/b2 is the local likelihood ratio assigned to the argument of credibility (Vr|E ). The two other
probabilities, namely a1 and b1, belong to the argument of relevance. Considered separately, their ratio represents
the likelihood ratio of the relevance argument Ve|H = a1/b1. As can be seen in Equation 2.1 the reasoning stages are
interwoven as is mirrored in Vr|H

Vr|H =
a1 +[Vr|E −1]−1

b1 +[Vr|E −1]−1 .

The likelihood ratio is a number that shows us if and by how much the evidence allows us to discriminate
between hypotheses of interest. The likelihood ratio can take values from 0 to infinity, where values in the range
0 <V < 1 are said to support the hypothesis in the denominator, values in the range 1 <V < ∞ are said to support
the hypothesis in the numerator (over the specified alternative). A value of 1 does not help discriminate between
the two propositions. The evidence is, therefore, logically irrelevant [93]. The values 0 and ∞, on the other hand,
represent evidence that establish, respectively, the hypothesis in the denominator and the numerator.

The expression [a2/b2−1]−1 in Equation (2.1) is also known as the drag coefficient and is denoted as D by
Schum [125]. It is a quantitative description of the inferential drag that the evidence r in the reasoning stage R→ E
carries on Ve|H . In general, a positive value of D implies that r favors h. A negative value means that r supports the
alternative hypothesis. In any case, however, the overall likelihood ratios of Vr|H or Vr|H are bounded by the local
likelihood ratios of Ve|H and Ve|H so that Ve|H ≤Vr|H ,Vr|H ≤Ve|H .

2.2.3 Examining single reasoning stages in terms of certain, uncertain, and impossible events

To initiate the study of more complex evidential reasoning patterns, consider first the basic relationship between two
events. In particular, consider the two events C = {c,c} and E = {e,e} organised in a reasoning stage as shown in
Figure 2.2 with the relevant NPT for E. Let us further define a′,b′ ∈]0,1[ and a,b ∈ [0,1]. This allows us to make
the explicit and threefold distinction between certain (a = 1, b = 1), uncertain (a′, b′), and impossible events (a = 0,
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Table. 2.2 – Typology of single reasoning stages with distinct specification of the NPT for the dependant variable E.
Note that a′,b′ ∈ (0,1).

(a)

C: c c

E: e a′ 1
e 1−a′ 0

(b)

C: c c

E: e 0 1
e 1 0

(c)

C: c c

E: e 0 b′

e 1 1−b′

(d)

C: c c

E: e a′ b′

e 1−a′ 1−b′

(e)

C: c c

E: e 1 b′

e 0 1−b′

(f)

C: c c

E: e 1 0
e 0 1

(g)

C: c c

E: e a′ 0
e 1−a′ 1

b = 0). By applying such a distinction to a single reasoning stage we can identify seven distinct NPT configurations
for a single reasoning stage summarised in Tables 2.2 (a) to (g). NPT configurations where a = b are not considered
because such a configuration of probability values refers to situations where two events C and E are independent. In
other words, knowledge about one event has no bearing whatsoever upon our beliefs about the other, and vice-versa.

Given the knowledge that either e or e is true, the NPT configurations (a) to (g) imply different reasoning
stages that can be classified in one of two distinct categories of inference, described by Bernoulli in his treatise Ars
Conjectandi as, respectively, necessity and contingency [10].9 Configuration (d) represents a special case that needs
further specifications. In particular, we must state which of the two possible situations applies a′ > b′ or a′ < b′.

A reasoning stage involving necessity refers to situations where the truth or falsehood of E implies to the
truth or falsehood of C. For example, we may say, if e then necessarily c. We will use the symbol for a logical
implication⇒ to denote such situations (e.g. e⇒ c). Probabilistically speaking, we have Ve|C = ∞ and, conversely,
Pr(e | c)/Pr(e | c) = 0.10

As opposed to necessity, contingency refers to situations, where the truth or falsehood of E does not establish
the truth or falsehood of C. For example, by saying that ‘if e then contingently c’ we mean that e supports c over
c. In situations of contingency, the symbol→ is used to indicate that the event on the lefthand side supports the
conditioning event on the righthand side (over the alternative), e.g. e→ c. In Bayesian terms, this can be expressed
as Pr(e | c)> Pr(e | c) which implies that Ve|C > 1 and, conversely, 0 < Pr(e | c)/Pr(e | c)< 1. Table 2.3 gives an
overview of the reasoning stages in terms of necessity and contingency. Type (b) and (f) reasoning stages involve
so-called ‘deterministic’ relationships, that is, dependent variables will take exactly one of their possible states,
given the conditioning variable (i.e. the NPT of the dependent variable contains only the logical values zero and
one). It is a characteristic feature of type (b) and (f) reasoning stages that they involve necessity irrespective of the
direction of reasoning (i.e., diagnostic reasoning (from E to C) or predictive reasoning (from C to E)) and of the
particular event we hold as true (i.e., e, e, c, or c). Type (d) reasoning stages refer to the opposite extreme as they
remain contingent irrespective of the direction of reasoning and of the particular event we hold as true. All other

9Of course, Bernoulli did not invent the concepts of necessity and contingency (for the history of these concepts see [52]). However, as will
be seen later in Section 2.3.2, he created evidential cases based on these concepts that cover the most fundamental inference types based on
evidence.

10By convention we adopt Ve|C = limPr(e|c)→0
Pr(e|c)
Pr(e|c) = ∞ for a division by zero.
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Table. 2.3 – Types of reasoning stages (as defined in Table 2.2), potential evidence (column two), associated likelihood
ratio (column three) and nature of the influence (defined in terms of necessity, ⇒, and contingency, →). Note that
a′,b′ ∈ (0,1).

Reasoning stage E VE|C Nature of influence

(a) e Ve|C = a′ e→ c
e Ve|C = ∞ e⇒ c

(b) e Ve|C = 0 e⇒ c
e Ve|C = ∞ e⇒ c

(c) e Ve|C = 0 e⇒ c
e Ve|C = 1/(1−b′) e→ c

(d) e (a′ > b′) Ve|C = a′/b′ > 1 e→ c
e (a′ < b′) Ve|C = a′/b′ < 1 e→ c
e (a′ > b′) Ve|C = a′/b′ > 1 e→ c
e (a′ < b′) Ve|C = a′/b′ < 1 e→ c

(e) e Ve|C = 1/b′ e→ c
e Ve|C = 0 e⇒ c

(f) e Ve|C = ∞ e⇒ c
e Ve|C = 0 e⇒ c

(g) e Ve|C = ∞ e⇒ c
e Ve|C = 1−a′ e→ c

types of reasoning stages are intermediate forms between these two extreme cases. These reasoning stages qualify
as cases of necessity and contingency depending on the direction of reasoning and on the event we believe to be
true.

2.3 Ontology of single items of evidence

In the following, we will investigate how different criteria modify the basic argument of evidence in terms of
credibility, relevance, and inferential force.

2.3.1 Criterion based on the occurrence and nonoccurrence of events: positive evidence and negative evidence

Consider the case in which an item of evidence consists of a report regarding a particular conditioning event. Such a
report can claim the occurrence or the nonoccurrence of the conditioning event. From an inferential perspective,
it does not matter whether the claim relates to the occurrence or nonoccurrence as long as the report allows us to
discriminate between competing hypotheses so that it presents some informative value to us. Take, for example,
Scenario 1 that focuses on the sensory report of there being reddish stains on S’s garment (r), or not (r). If we were
to observe such reddish stains, then this is an instance of what is called positive evidence, that is an item of evidence
that reports an occurrence of an event. In turn, if we were to observe no such stains, then this is an instance of what
is called negative evidence: an item of evidence reporting the nonoccurrence of an event. Clearly, both reports are
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such as to affect, potentially, our belief in the hypotheses of S murdering V. Sections 2.2 and 2.2.2 discuss how to
interpret positive evidence. To interpret the nonoccurrence of reddish stains on S’s garment, we can employ the
same model as depicted in Figure 2.1 with the difference that, at this juncture, we enquire about the effect of r upon
our belief about the event H. The equation for the likelihood ratio remains largely the same except for the drag
coefficient. For cases of negative evidence the drag coefficient is composed of the complementary probabilities
of a2 and b2, namely 1−a2 and 1−b2. All other components remain unchanged and the likelihood ratio can be
written as follows:

Vr|H =
a1 +D
b1 +D

, (2.2)

while for positive evidence we have Dr and for negative evidence we have Dr:

Dr = [
a2

b2
−1]−1 = [Vr|E −1]−1, (2.3) Dr = [

1−a2

1−b2
−1]−1 = [Vr|E −1]−1. (2.4)

2.3.2 Criterion based on necessity and contingency: Bernoulli’s four cases of evidence and their sub-cases

Consider again the notions of necessity and contingency in Section 2.2.3. In his treatise Ars Conjectandi, Jacques
Bernoulli created categories of evidence based on these notions [68, 125].

Bernoulli distinguishes four basic cases of evidence based on the notion of necessity and contingency, namely:

• Case 1: The argument of relevance and the argument of credibility are both of necessity.

• Case 2: The argument of relevance is one of necessity, while the argument of credibility is one of contingency.

• Case 3: The argument of relevance is one of contingency, while the argument of credibility is one of necessity.

• Case 4: Both sub-arguments are of contingency.

Bernoulli’s four cases can be further subdivided. First, we can distinguish between positive and negative evidence.
Thus, in the current notation, we distinguish the reports r from r. The second and the third distinctions are established
by including considerations about the inferential force of the arguments. In particular, as a second consideration, we
can make a distinction between the indications a given report (i.e., r or r) provides on the conditioning event E:
does the report indicate e or rather e? Third, upon receipt of a report, we can focus on the indication an event E
makes on our ultimate hypothesis H: does it indicate h or rather h? Table 2.4 provides an overview of sub-cases
resulting from such distinctions by using the notation introduced in Section 2.2.3. Note, however, that only situations
corresponding to the natural sense of probabilistic evidence propagation are considered. Take, for instance, the case
in which a report r favours e over ē. Subsequently, we will be concerned with how e influences the proposition H
(e.g., r→ e,e→ h). However we will not consider the case, where e indicates h (e.g., r→ e,e→ h).

For each possible configuration of reasoning stages discussed in Section 2.2.3, Tables 2.5 and 2.6 show the case
and sub-case to which the basic argument of evidence belongs. Consider, for example, an argument of evidence
with an argument of relevance and an argument of credibility involving both a type (a) NPT configuration. Since the
report r is an instance of positive evidence (Section 2.3.1) Table 2.5 informs us that the argument of evidence in
question corresponds to situation 2 . Table 2.4, in turn, indicates that in 2 r→ e⇒ h applies.

By comparing positive evidence with negative evidence it becomes clear that arguments of evidence categorise
in different cases. Exceptions in that regard are all configurations between reasoning stages of type (b) and (f).
These involve exclusively certain and impossible events. They represent configurations of conclusive reasoning
stages that may be called pure case 1 arguments.
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Table. 2.4 – Subcases for each of Bernoulli’s four cases for positive and negative evidence in an argument that consists
of the three variables H (the ultimate proposition with states h and h̄), E (evidence potentially relevant for H with
states e and ē) and R (the report of a source with states r and r̄).

Bernoulli’s cases Subcases Positive evidence Negative evidence

1

1 r⇒ e⇒ h r⇒ e⇒ h
2 r⇒ e⇒ h r⇒ e⇒ h
3 r⇒ e⇒ h r⇒ e⇒ h
4 r⇒ e⇒ h r⇒ e⇒ h

2

1 r→ e⇒ h r→ e⇒ h
2 r→ e⇒ h r→ e⇒ h
3 r→ e⇒ h r→ e⇒ h
4 r→ e⇒ h r→ e⇒ h

3

1 r⇒ e→ h r⇒ e→ h
2 r⇒ e→ h r⇒ e→ h
3 r⇒ e→ h r⇒ e→ h
4 r⇒ e→ h r⇒ e→ h

4

1 r→ e→ h r→ e→ h
2 r→ e→ h r→ e→ h
3 r→ e→ h r→ e→ h
4 r→ e→ h r→ e→ h

We also observe that Bernoulli’s four cases cover all possible configurations of reasoning stages for the basic
argument of evidence. As a consequence, every argument of evidence that can be reduced to its basic form can be
classified according to Bernoulli’s four cases and their sub-cases.

Arguments of evidence belonging to cases 2 or 3 represent noncascaded inferences. That is, they involve no inter-
mediary reasoning stage dealing with uncertainties between report and hypotheses (unlike case 4 arguments) [123].
In other words, if the argument of evidence belongs to case 2, then the inferential force (i.e. likelihood ratio) of
the argument of evidence reduces to the inferential force provided by the credibility argument (e.g., if a1 = 1 and
b1 = 0, then Vr|H = Vr|E = a2/b2). If, however, the argument of evidence belongs to case 3, then the inferential
force of the argument of evidence reduces to the inferential force provided by the relevance argument (e.g., if a2 = 1
and b2 = 0, then Vr|H =Ve|H = a1/b1).

It is also worth emphasizing that certain configurations do not belong to a single sub-case or case (e.g., (a,d)
or (d,f)). A common feature of these configurations is that they incorporate a type (d) NPT. As noted earlier in
Section 2.2.3, type (d) NPT enable us to specify either a′ > b′ or a′ < b′. Depending on which of the two inequalities
applies, the argument of evidence may correspond to a different case or sub-case. Hence, if the argument of evidence
involves an NPT of type (d) (i.e. (·,d) or (d,·)), and we have not specified which inequality applies, then such an
argument of evidence must correspond to two cases or two sub-cases. If the argument of evidence is type (d,d), then
such an argument of evidence must correspond to all of the four sub-cases of case 4, since there are 22 possible
configurations of inequality (i.e. two for the argument of relevance and two for the argument of credibility). For all
arguments involving one type (d) reasoning stage, we use the following ordering: (a′ > b′), (a′ < b′). For type (d,d)
arguments of evidence we use the following ordering: (a1 > b1,a2 > b2), (a1 > b1,a2 < b2), (a1 < b1,a2 > b2),
and (a1 < b1,a2 < b2). The cell-coloring in Tables 2.5 and 2.6 is read from left to right.
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Table. 2.5 – Bernoulli’s Cases of evidence and their sub-cases for positive evidence

Argument
(a) (b) (c) (d) (e) (f) (g)of

relevance

Argument
of

credibility

(a) 2 2 2 4 2 4 4 4
(b) 2 2 2 4 2 4 4 4
(e) 2 2 2 4 2 4 4 4
(d) 3 2 3 2 3 2 1 4 3 2 1 4 1 4 1 4
(c) 3 3 3 1 3 1 1 1
(f) 3 3 3 1 3 1 1 1
(g) 3 3 3 1 3 1 1 1

Table. 2.6 – Bernoulli’s Cases of evidence and their sub-cases for negative evidence

Argument
(a) (b) (c) (d) (e) (f) (g)of

relevance

Argument
of

credibility

(a) 3 3 3 1 3 1 1 1
(b) 3 3 3 1 3 1 1 1
(e) 3 3 3 1 3 1 1 1
(d) 2 3 2 3 2 3 4 1 2 3 4 1 4 1 4 1
(c) 2 2 2 4 2 4 4 4
(f) 2 2 2 4 2 4 4 4
(g) 2 2 2 4 2 4 4 4

Example: Problem of laboratory error in the context of DNA profiling

As an example, consider the analysis by Thompson and his colleagues for the problem of laboratory error in the
context of DNA profiling [140]. Their analysis suggests a distinction between the event of corresponding profiles
E = {e,e} (e.g., between the profile of a trace and the profile of a person of interest) and the report R = {r,r} of
a scientist regarding the corresponding DNA profiles. In this analysis, the argument of credibility refers to the
reasoning stage that goes from the reported correspondence, r, to the event E. Their analysis supposes no false
negatives (i.e., Pr(r | e) = 1), but allows for false positive reports (i.e., Pr(r | ē)> 0). This corresponds to a type
(e) NPT configuration in the analysis pursued in this paper (Table 2.2). The reasoning these authors proposed also
involves a stage that goes from event E (i.e., corresponding profiles) to a source-level proposition H, that is, the
person of interest is (h) or is not (h̄) the source of the crime stain. Their analysis supposes that in the event of h
a correspondence is certain, hence Pr(e | h) = 1, while in the event of h̄, a correspondence e might apply with
probability γ (i.e., the so-called conditional genotype probability). This corresponds to a further NPT of type (e).
In combination, the arguments of credibility and relevance as identified in Thompson and his colleagues’ [140]
development lead to an argument of evidence of type 1 . It can readily be seen that changes in the particular
assumptions Pr(r | e) = 1 and Pr(e | h) = 1, typically the adoption of a type (d) NPT (with a′ > b′) would lead to
another argument classification (Table 2.5).
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2.3.3 Criterion based on the reversibility of the argument of evidence: Quintilian’s reversibility and nonre-
versibility, extending reversibility to inconclusive evidence, congruent and inverse reversibility

In his Institutio Oratoria, Quintilian distinguishes conclusive arguments of evidence having the same force when
reversed (e.g. ‘a man who breathes is alive, and a man who is alive breathes’ [115, 5.9.6]), from conclusive
arguments of evidence that cannot be reversed (e.g. ‘because he who walks moves it does not follow that he who
moves walks.’ [115, 5.9.6]). By relating Quintilian’s notion of reversibility to the cases and sub-cases identified in
the previous section, the following statements can be made. First, since Quintilian refers to arguments on conclusive
evidence (tekmerion), consideration can be limited to case 1 arguments. Second, such a case 1 argument of evidence
is reversible, if the implication arrow can be reversed while maintaining the validity of the expression. For example,
an argument of evidence corresponding to sub-case 1.1 r⇒ e⇒ h, is reversible if and only if r⇐ e⇐ h also applies.
Hence, an argument of evidence is reversible according to Quintilian if the relation r⇔ e⇔ h holds. In Bayesian
terms, this means that the value of the inferential force of the argument of evidence (Vr|H ) and the value of the ratio
of the posterior probabilities of H are the same, that is

Vr|H =
Pr(r | h)
Pr(r | h)

=
Pr(h | r)
Pr(h | r) . (2.5)

As noted in Section 2.2.3, arguments of type (b) and type (f) fulfill that requirement as they entail necessity in both
diagnostic and predictive reasoning. Thus, arguments of evidence that only involve deterministic relationships of the
kind (b,b), (b,f), (f,b), and (b,b) satisfy this requirement and should be called reversible arguments of evidence11.

There is, however, an important difference between the group of sub-cases (b,b) and (f,f), and the group of
sub-cases (b,f) and (f,b). The argument of relevance and the argument of credibility are inferentially congruent
in the first group, while they are inferentially inverted in the second (see Table 2.3). In other words, in all the
cases where the two sub-arguments are inferentially congruent, r implies the truth of the hypothesis of interest h
so that Vr|H = ∞. In all the cases where the two sub-arguments are inferentially inverted, r implies the truth of the
alternative hypothesis h so that Vr|H = 0.

We can formulate general conditions that allow an argument of evidence to become reversible so that Equa-
tion (2.5) applies. Such a perspective reveals that arguments on conclusive evidence are particular cases of a larger
group of reversible arguments of evidence. In fact, arguments of evidence containing type (d) reasoning stages
can also be reversible. Thus, the reversibility of an argument can also be formulated for inconclusive evidence.
In general, an argument of evidence on inconclusive evidence becomes reversible if the following two conditions
cumulatively apply (for a proof see Appendix B.1):

(i) the prior probabilities have to be equal, that is, Pr(h) = Pr(h) = 0.5;

(ii) every reasoning stage, that is, every sub-argument in the case considered here, must involve normalized
likelihoods (i.e., a+b = 1). Normalized likelihoods guarantee inferential symmetry in a reasoning stage [125]
so that, for example, Pr(r | e)/Pr(r | e) = Pr(r | e)/Pr(r | e). In other words, r supports e to the same extent
as r supports e.

The feature of inferential congruence and inferential inversion also applies to arguments on inconclusive evidence.
In particular, if the two sub-arguments are inferentially inverted, then 0 <Vr|H < 1. And if the two sub-arguments
are inferentially congruent, then 1 <Vr|H < ∞.

We have stated earlier that arguments on conclusive evidence are special cases of a larger group of reversible
arguments. They are special for two reasons. First, condition (i) is not necessary for arguments of evidence that

11Robertson and Vignaux use the expression ‘ideal piece of evidence’ that is, an event that always occurs when our hypothesis is true and
never otherwise [118]. Robertson and Vignaux’s ideal piece of evidence corresponds to the argument of type (f,f). However, it seems appropriate
to qualify every piece of evidence as being ideal as long as it is reversible in Quintilian’s sense (i.e. (b,b), (b,f), (f,b), and (b,b)).
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only contain deterministic relationships (i.e. type (b) and (f) reasoning stages) to be reversible. Irrespective of the
prior probabilities, the value of the ratio Pr(r | h)/Pr(r | h) is always either infinity or zero for such arguments.
Second, type (b) and (f) reasoning stages already contain normalized likelihoods. The specification of normalized
likelihoods is only necessary for type (d) reasoning stages.

Note further that all the other types of reasoning stages do not fulfill condition (ii). As a consequence, a basic
argument of evidence containing a reasoning stage other than of type (b), (f), or (d) cannot be reversible.

2.3.4 Criterion based on relevance: ancillary, direct, and circumstantial evidence

Some forms of evidence are directly relevant for the inference task at hand (e.g. inference to H) and others are
indirectly relevant. Generally, directly relevant items of evidence are explicitly represented in BNs. The bloodstain
on S’s garment in Scenario 1 is an example of directly relevant evidence. For directly relevant evidence a distinction
is generally made between direct evidence and circumstantial evidence [125]. Evidence is said to be direct when it is
conclusive on some issue, if the source’s claim were perfectly credible. In contrast, circumstantial evidence remains
inconclusive on some issue, irrespective of the source’s claim being perfectly credible or not. The distinction
pertains to the argument of relevance: if the latter is of necessity, then the evidence is an instance of direct evidence
and if it is of contingency, then the evidence is an instance of circumstantial evidence. Thus, all arguments of
evidence belonging to cases 1 or 2 represent direct evidence, while all arguments of evidence belonging to case 3 or
4 represent circumstantial evidence.

An item of indirectly relevant evidence is a particular piece of information that helps us to assess the strength or
weakness of reasoning stages. Such items of evidence are called ancillary evidence [125]. In the context of BNs this
would correspond to all elements of information that we use to assess the probabilities in NPTs such as, scientific
research, rules of logic, knowledge about the case at hand and our general professional experience. In Scenario 1,
for example, data on the occurrence of blood stains on clothing in the general population or our knowledge that S is
a passionate huntsman could serve as ancillary evidence to assess the strength of the argument of relevance. Facts
such as S wearing clothing with colorful patterns or S being far away at the time of our observation could serve
as ancillary evidence for the argument of credibility. Usually, ancillary evidence is not explicitly represented in a
BN. Although it can be represented, it is often not desirable to include such evidence as the model rapidly becomes
cumbersome and, by doing so, no deeper understanding is gained for the targeted inference.

2.3.5 Criterion based on the nature of the source of evidence: tangible and testimonial evidence

The primary distinction regarding the nature of the source is whether an item of evidence was produced by a human
or a non-human source. One might argue that, ultimately, all evidence is produced by a human source since no thing
can be called a sign without there being a mind who calls it as such. This ‘truism’, as Wigmore calls it [146], is not
ignored or disputed by endorsing a distinction between evidence from human and non-human sources. The aim
of such a distinction is to identify the inferentially prevalent and, thus, the more influential element in an item of
evidence.

Items of evidence produced by non-human sources are sometimes called tangible evidence [125] or physical
evidence [82]. More precisely, these names comprise all items of evidence that relate to physical traces resulting
from an event and includes measurements, test results, images, and other results of scientific analysis.12 Items
of evidence that are produced by human sources are commonly called testimonial evidence [125] or personal
evidence [82]. They cover opinions, eyewitness reports, secondhand evidence (e.g., hearsay evidence, rumor or

12For items of tangible evidence that are directly presented in court, Wigmore used the term autopic proference. Such items include, for
example, “... the production of a blood-stained knife; the exhibition of an injured limb; the viewing of premises by the jury; the production of a
document.” [146, p. 5-6] More commonly, this is also termed real evidence although for Wigmore himself real evidence included testimonial
evidence given in court [6].

65



PART III CHAPTER 2. ARTICLE - ONTOLOGY OF EVIDENCE

gossip), and expert testimony13. The distinction based on the nature of the source of evidence affects the argument
of credibility, but not the argument of relevance [6]. Notably, credibility-issues that arise when confronted with
tangible evidence include the authenticity of the item (is the item what it claims to be?) and the accuracy (does the
device measure what it claims to measure?) and reliability (are the measurements reproducible?) of the sensory
device that perceives the item. Credibility attributes associated with testimonial evidence, on the other hand, include
observational sensitivity, objectivity, and veracity [125]. These attributes will be discussed in detail in Section 2.3.5.

Tangible evidence

In cases of tangible evidence, the argument of credibility usually has the same form as depicted in Figure (2.1), but
the various probabilities involved are named in a particular way. For example, when using diagnostic devices to
analyse the nature of biological fluids, the probability a2 is called the sensitivity (of the method) and the probability
of 1−b2 the specificity (of the method). In situations where we consider a given report to be a sensor report or
closely related to a sensor report (such as the cue given by a detection dog, or human colour vision), a2 is also
sometimes known as the probability of a hit and denoted as h 14. In turn, b1 is called the false positive probability and
denoted as f (or FPP). The complementary probabilities 1−a2 and 1−b2 are called, respectively, the probability
of a miss (m) and the probability of correct rejection (c).

An application of a reasoning that considers false positive rates in the evaluation of DNA typing results is
discussed in [134, 140]. As noted earlier in Section 2.3.2, the argument of evidence put forth in these publications
corresponds to case (c,c).

Testimonial evidence

In cases of testimonial evidence the argument of credibility is build on multiple attributes. The attributes in question
are observational sensitivity, objectivity, and veracity15. Schum presents a reasoning model that incorporates these
attributes [125]. Figure 2.3 shows the reasoning pattern as BNs. In essence, the model is a chain of reasoning
with an argument of credibility composed of three sub-sub arguments. Each additional reasoning stage captures a
particular attribute of human sources. The conditioning order from top to bottom is based on the temporal succession
of the events. Thus, it encodes the following reasoning: an event e occurs, e is perceived, a belief about e is formed
based on what was observed, and then the belief about e is communicated. The argument of relevance remains
unchanged with respect to Figure 2.1.

The inductive reasoning stage from S to E represents the argument of observational sensitivity involving the
probabilities a2 and b2. The first refers to the probability of the event s, the source’s senses receiving evidence of
the event e given that e occurred. The second, refers to the probability of the event s given that e holds. There is an
important point to be made regarding the conditional probability involving the alternative proposition s. Here we do
not enquire about whether the source’s senses gave evidence of e. We focus on whether the source’s senses did not
receive evidence of e. These two things are not the same. The negation relates to the sensory reception of evidence
of e and not to the event itself.

The reasoning stage from O to S relates to the argument of objectivity and involves the probabilities a3 and b3.
At this juncture, we enquire about how probable it is that the source believes that e occurred given that the source
received sensory evidence of the event (Pr(s | o)) and given that the source did not receive such sensory evidence
Pr(o | s̄), respectively. The latter probability includes the possibility that the source received no evidence at all

13Note that authoritative records are usually considered as a distinct category apart from testimonial evidence. In the context of forensic
science, one could reasonably consider peer reviewed publications to be authoritative records.

14The probability of a hit h is not to be confounded with the hypothesis h.
15Wigmore used the terms perception, recollection, and communication. An insightful, but an essentially non-probabilistic, discourse on

testimonial evidence can be found in [146].
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Figure. 2.3 – The argument of credibility for testimonial evidence is composed of three sub-sub-arguments: the argument
of observational sensitivity, the argument of objectivity, and the argument of veracity.

regarding e. As for the alternative proposition o, note that we do not focus on whether the source believes that e
holds, but whether the source does not believe that e holds.

The final reasoning stage from R to O refers to the argument of veracity. The probabilities involved are a4 and
b4. The former is the probability of the source reporting e, given that she believes that e occurred (Pr(r | o)). The
latter represents the probability of the source reporting e, given that the source does not believe that e occurred
(Pr(r | ō)). The latter probability includes the possibility that the source holds no belief whatsoever regarding the
event. Similar to before, the alternative proposition r refers to the source’s report of e, and not to the event e itself.

Consider some important aspects of this model. First, the sensory perception (S) of an event is directly
influenced by the event itself and the conditions in which the sensory evidence is obtained. These conditions cover
two dimensions: (1) the mental and emotional state of the source and (2) the physical environment in which the
event occurred. These conditions are acknowledged by K when expressing our current state of belief, including an
explicit reference to ancillary evidence. Second, a source’s belief regarding the occurrence of some event (O) is
directly influenced by what was observed by the source. A source’s objectivity or non-objectivity is assessed by
examining the extent to which a source’s belief on an event deviates from (or concurs with) the content that the
source’s senses have received. Third, and most importantly, a source’s veracity regarding some claim cannot be
meaningfully evaluated in a framework that dissociates it from the source’s belief on that matter. Indeed, the truth or
otherwise of a source’s claim is irrelevant for the source’s veracity as long as the source communicates according to
his or her belief. A source is untruthful if and only if he or she exhibits an intent to deceive by making the effort of
communicating a claim that is contrary to his or her belief. These are all vital aspects of Schum’s and Wigmore’s
studies on testimonial evidence.

All other forms of testimonial evidence incorporate the credibility argument described in this section. Take,
for example, an item of secondhand evidence, where a witness reports the occurrence of an event that he or she
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Figure. 2.4 – (a) generic BN for interpreting an item of evidence given source-level or sub-source-level propositions. (b)
generic BN for interpreting an item of evidence given activity-level propositions. (c) generic BN for the interpretation of
an item of evidence given crime-level propositions.

had been told about by another person. Note that only the latter person has made an observation regarding the
event in question and not the witness him- or herself. Hence, the person who made the actual observation is the
primary source and the person who gives the testimony is an intermediate source. In such a case, two arguments
of credibility are concatenated, that is, one for the primary source, which is directly connected to the argument of
relevance, and one for the intermediate source, which is connected to the credibility argument of the primary source.
Following this logic one can evaluate a situation for any number of intermediary sources by adding an argument of
credibility for each additional source (for a more detailed explanation on testimonial evidence see [123, 125, 128]).

One has to keep in mind that, in general, the longer the chain of reasoning the smaller the inferential force
resulting from the argument of evidence. It follows, therefore, that the witness and the primary source should
ideally coincide or that the witness should be at least as close as possible to the primary source. The definition
of the inferential force of an item of testimonial evidence is given in Appendix B.2. Note that technically it is
possible to reduce the chain length for such reasoning chains (see Appendix B.3 for a general account on bypassing
intermediary variables and Appendix B.4 for a particular account on bypassing intermediary variables in testimonial
evidence). Such a reduction in chain length, however, does not make up for the loss of inferential force because the
reduced model still accounts for all the uncertainties involved in the original reasoning chain.

2.3.6 Criterion based on the level of propositions: sub-source-level, source-level, activity-level, and crime-level
propositions

A primary aim of forensic science is to pursue a contextualized evaluation. It is an expression of the view that an
item of tangible evidence should be embedded in the most meaningful way into the case at hand, and that this is
crucial. A key element to achieve this goal is the appropriate choice of target questions and related propositions.
Cook and his coworkers analysed and described different propositions that forensic scientists commonly encounter
when evaluating tangible evidence. They were able to observe common characteristics among different groups of
propositions. This led to a categorization of propositions that became known as ‘the hierarchy of propositions’ [23].
Originally, there were three categories, also called ‘levels’: source-level (level I), activity-level (level II), and crime-
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level (level III)16. Evett et al. [43] introduced a new level in the hierarchy called sub-level I or sub-source-level.
Sub-source-level propositions concentrate on the source of DNA, without reference to the nature of the biological
stain, such as blood, sperm, or saliva. This additional distinction may be necessary in cases involving trace quantities
of DNA that cannot be associated with visible staining.

Figure 2.4 shows examples of BNs for different levels of propositions. Figure 2.4 (a) corresponds to the argument
of evidence discussed in Section 2.2. It is a generic model to evaluate an item of evidence given source-level
propositions. The root node F represents the proposition regarding the source of some trace (e.g. h: the fingermark
comes from S; h: the fingermark comes from an unknown person).

The event of interest E relates to the result of a forensic examination such as the result of a comparison between
the DNA profile of a crime stain and the profile of a reference (or control) material. When the DNA profile from the
specimen and the DNA profile of a reference material correspond in every marker, then this is written e, otherwise e.
Similarly, the fibers found in a suspect’s car may either correspond (e) or not (ē) in substance, shape and color to
fibers composing the victim’s clothing. In the general context of tangible evidence, the probability b1 expresses the
rarity of an analytical feature in a relevant population. The scientist’s report, represented by node R, has the same
definition as that given in Section 2.2.

Figure 2.4 (b) shows a generic BN for the evaluation of transfer material given activity-level propositions. Part
of it was first described in [56] and later presented in [133] in different variations. The BN focuses on material
recovered on a suspect, potentially transferred from the scene or from the victim. H relates to the main proposition
of interest. It always relates to a clearly defined event (e.g. ‘S transported V in the trunk of his car’ or ‘S assaulted V
with a bat’). The alternative proposition is typically derived from the statements made by the suspect (e.g. ‘S tried
to help V’ or ‘S never met V’). The proposition represented by the node C enquires about whether the suspect has
been in contact with the victim, and the proposition T about whether some residue was transferred during the action
(including considerations on the persistence and recovery of the residue).

Figure 2.4 (c) depicts a generic BN for the evaluation of an item of tangible evidence given crime-level
propositions. A detailed discussion of this BN is available in [56, 133]. The node H enquires about the identity
of the criminal, such as ‘S is the offender’ (h) and ‘an unknown person is the offender’ (h). The node G is the
so-called ‘relevance node’. It not to be confused with the argument of relevance as discussed throughout this paper
(Section 2.2). In the context of evaluations given crime-level propositions, the term ‘relevance’ accounts for the
assumption that there is a true connection between the offender and the recovered trace material [130]. ‘The residue
was left by the offender during the commission of the crime’ for g, and ‘the residue was not left by the offender’
for g are common formulations for G. Hence, the fact that we consider the possibility of presence of a material
unrelated to a crime implies that a correspondence between a recovered material and a control material might be
coincidental. The probability that describes this possibility is incorporated into the probability table of the node E.
The assessment of relevance relies heavily on circumstantial information and on extrinsic features of the recovered
material. The argument of relevance can be reduced to a single stage of reasoning and then classified according to
the typology of single reasoning stages (see Appendix B.5).

The choice of the level of propositions has a substantial effect on the argument of relevance, while the argument
of credibility remains unchanged. There is widespread agreement in forensic science that the higher the level of
propositions, the more one needs to rely on extrinsic features, circumstantial information, and empirical studies.
This is due to the fact that higher levels of propositions incorporate more uncertainties, such as T , C, and G for each
of which probabilities must be assessed. Numerous publications have shown that these probabilities crucially affect
the inferential force of the argument of evidence ([e.g., 4, 133]). Imagine, for instance, a case in which scientific
findings are evaluated with respect to crime-level propositions, that is inference about the identity of the offender.
Suppose further that the scientific findings are perfectly credible and the analytical feature examined is extremely

16It is worth noting that the difference between these categories or levels is not always clearcut. There is a common understanding in the field
that the hierarchy of propositions should be considered as an interpretative guide and not as a rigid interpretative edit format [23].
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Figure. 2.5 – BN for evaluating a report R about an event E that is deemed to be relevant for an inference about a
proposition H (as defined earlier in Figure 2.1. An additional arc from H to R, called ‘warp’, is added in order to account
for a dependence of the source’s credibility on the state of H. All nodes are binary. The conditional probabilities are
defined in Section 2.3.7.

rare. On a probabilistic account, this would imply an extremely strong support for the proposition that recovered
and control material come from the same source, rather than from different sources. However, if the recovered
material was not left by the offender, then the result will have no inferential force at all with respect to propositions
at crime-level.

2.3.7 Criterion based on the nature of the source of evidence and on the hypotheses of interest: state-dependent
credibility

In some cases the credibility of a source can directly depend on the hypotheses of interest. This means that the
credibility is not equal under h and h. This is also known as ‘state-dependent credibility of a source’ [125]. Such a
situation requires an additional arc from variable H to R as is depicted in Figure 2.5. Schum named this kind of
additional connection ‘warp’. The addition of warps can be necessary in any argument of evidence especially in
testimonial evidence, where the sensitivity relative to the hypotheses may affect any attribute of the argument of
credibility17.

An important consequence of a warp is that the global inferential force of a report is no longer bounded by the
inferential force of the argument of relevance. This becomes evident by considering the equation for the inferential
force of the argument depicted in Figure 2.5

Vr|H =
Pr(e | h)[Pr(r | e,h)−Pr(r | e,h)]+Pr(r | e,h)
Pr(e | h)[Pr(r | e,h)−Pr(r | e,h)]+Pr(r | e,h)

=
a1[ah

2−bh
2]+bh

2

b1[ah
2−bh

2]+bh
2

. (2.6)

As can be seen, the probabilities a2 and b2 are different under h and under h as indicated by the superscripts. Thus,

17An example is the a situation in which a witness gives testimony on a crime that might involve a relative or a friend of the witness.
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the ratio produced by different probabilities a2 and b2 for a hypothesis can vary greatly from the one produced by
an identical drag coefficient in the numerator and the denominator.

A further observation is worthy of emphasis: In the case where ah
2 = ah

2 and bh
2 = bh

2 we have the same model as
discussed in Section 2.2.

2.4 Ontology of combinations of items of evidence

In the following sections we will extend our considerations made on single items of evidence to the combination of
multiple items of evidence.

2.4.1 Criterion based on natural redundance of events

Consider the BN in Figure 2.6 (a). The two reports R1 = {r1,r1} and R2 = {r2,r2} given by two separate sources
make claims on the same event E = {e,e}. In Schum’s notation, this is called natural redundance [125]. The
situation depicted in Figure 2.6 (b) is different. Here, R1 and R2, also given by two separate sources, concern
different events, notably E1 = {e1,e1} and E2 = {e2,e2}. Hence, R1 and R2 relate to naturally nonredundant events.

The criteria of natural redundance of events has an impact on the argument of evidence that can be readily
anticipated from the structures of the BNs of Figure 2.6. In cases where two reports concern naturally redundant
events there can and must only be a single argument of relevance since there is only one event that is relevant to the
hypotheses of interest. The argument of credibility is then a composite argument of the two reports. Cases where
two sets of reports concern two different events, require – besides an argument of credibility for each report – an
argument of relevance for each event also.

Assume that we receive two reports r1 and r2. According to Schum, the argument of evidence involving reports
that concern naturally redundant events translates into a pattern of reasoning that is depicted in Figure 2.6 (a) as a
BN. The inferential force of such an argument is given by

Vr1,r2|E =
a1 +[Vr1,r2|E −1]−1

b1 +[Vr1,r2|E −1]−1 , (2.7)

where Vr1,r2|E =Vr1|eVr2|E . The term Vr1|E and Vr2|E denote the local inferential force that each report exerts on E. It
can also be seen that the inferential force of the argument of relevance is not influenced and remains defined by
a1 and b1 as noted in Section 2.2. Irrespective of how credible the reports are, the global inferential force Vr1,r2|H
remains bounded by the inferential force of the argument of relevance (Ve|H ≥Vr1,r2|H ≥Ve,|H ). The inferential force
of an argument of evidence depicted in Figure 4.1 (b) presents itself differently

Vr1,r2|H =Vr1|H ×Vr2|H (2.8)

=
aE1

1 +[Vr1|E1 −1]−1

bE1
1 +[Vr1|E1 −1]−1

×
aE2

1 +[Vr2|E2 −1]−1

bE2
1 +[Vr2|E2 −1]−1

. (2.9)

Evidence of this type has two separate arguments of evidence for each event and the corresponding report.
Several BNs involving naturally nonredundant events have been proposed in forensic literature [133]. Such

networks can focus either situations involving combinations of different items of tangible evidence or situations
involving combinations of different aspects of a single item of tangible evidence. The former include, for instance,
the joint evaluation of results of comparative handwriting and fingermark examination, the joint evaluation of a data
base search result and correspondence between the profile of crime stain, potentially left by the offender, and the
profile of a person of interest. The latter situation involves the notion of distinct components, which was introduced
by Evett et al. in 1998 [46] in the context of shoe mark evidence, where it is common to distinguish between features
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Figure. 2.6 – (a) BN for two reports from different sources (R1, R2) that concern naturally redundant events (i.e. E).
(b) BN for two reports from different sources (R1, R2) that concern naturally nonredundant events (E1 and E2). The
dashed arcs connect two separate lines of sub-arguments and are called wefts.

due to the manufacturing process (e.g. shoe size and sole pattern) and features present due to the wear (e.g. cuts and
abrasions)18.

As noted previously, two reports, which concern naturally redundant events only have a single argument of
evidence. The reason for that is that if we were to assign a separate argument of relevance to each report we would
compute Vr1,r2|h by accounting for the relevance argument twice, although there is only one event. As a result,
Vr1,r2|h would not be bounded by the inferential force of the argument of relevance as is stipulated by Equation 2.10.
This type of flawed reasoning is also called double counting [125], and can lead to a serious over- or understatement
of the global inferential force.

Consider Figure 2.6 again. The dashed arcs indicate dependency relationships that may be required in some
cases. Unlike warps introduced in Section 2.3.7, the dashed arcs indicated here link two separate lines of reasoning.
Schum calls these kinds of arcs wefts [125]. Moreover, we recognize that there are two kinds of wefts. One kind
connects two arguments of credibility and the other connects two arguments of relevance. The former kind of weft
describes situations, where the report given by a first source, say r1, directly affects the credibility of the second
source (and vice versa). In turn, the latter kind of weft expresses the view that the knowledge on the first event,
say e1, directly affects the argument of relevance of the second event E2 (and vice versa). The impact of the first
kind of weft is not discussed here as this would exceed the scope of the paper. Readers interested in the impact of
such wefts are referred to consult [125]. The impact of wefts connecting two separate arguments of relevance is
considered in Section 2.4.3.

2.4.2 Criterion based on the direction of inferential force: contradicting, corroborating, conflicting, and
convergent evidence

When evaluating multiple items of evidence in combination, one can distinguish between two categories of combined
evidence, depending on the directions of inferential forces produced by the items. Either they all point in the same

18Such distinctions between different aspects of a particular type of marks are not limited to shoes. Similar observations can be made for
firearms, for example. Yet another area of application are fingermarks, where forensic scientists usually make a threefold distinction with
categories labelled ‘level I’, ‘level II’, and ‘level III’. These refer to, respectively, the general ridge pattern, the forms of ridge configurations
called ‘minutiae’, and the forms of pore arrangements along ridges [22].
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direction (e.g. proposition h), or they point in different directions (e.g. propositions h and h). In the first case, the
evidence is said to be ‘harmonious’. In the second case, the evidence is said to be ‘dissonant’. Extending these
considerations to include the concept of natural redundance, we can identify four distinct categories of evidence.
These have been described by Schum [125] and are summarised in Table 2.7. Reports concerning naturally redundant
events can be either contradictory or corroborating (Section 2.4.2). Reports concerning naturally nonredundant
events are either conflicting or convergent (Section 2.4.2).

Contradiction and corroboration

For reports concerning naturally nonredundant events the reasoning scheme depicted in Figure 4.1 (a) applies. The
overall inferential force of two reports implied by this reasoning structure, with respect to the proposition h is given
by

Vr1,r2|H =
a1 +[Vr1,r2|E −1]−1

b1 +[Vr1,r2|E −1]−1 ,

where a1 = Pr(e | h) and b1 = Pr(e | h). Assume that both sources S1 and S2 are credible to at least some extent so
that a2 > b2 (see Figure 2.1). Now the first source S1 reports r1, that e occurred (positive evidence), and the second
source S2 reports r2 that e did not happen (negative evidence). The likelihood ratio for these contradicting reports,
with respect to e, is:

Vr1,r2|E =Vr1|EVr2|E =
aS1

2

bS2
2
× 1−aS2

2

1−bS2
2
.

If the drag coefficient D = [Vr1|EVr2|E −1]−1 is negative, then the joint effect of the contradictory reports will favor
e1. If D is positive, the contradictory reports will favor e. If, individually, both reports would support opposite
events with the same inferential force, then the contradictory reports considered in combination have no inferential
force, i.e. Vr1,r2|E = 1.

Next, assume that the second source reported r2, thus supporting e. In such a case the reports are corroborative
and the joint inferential force is given by

Vr1,r2|H =
a1 +[Vr1,r2|E −1]−1

b1 +[Vr1,r2|E −1]−1 , (2.10)

where

Vr1,r2|E =Vr1|eVr2|E =
aS1

2

bS2
2
× aS2

2

bS2
2
.

Table. 2.7 – Four basic categories of evidence based on natural redundance criteria and on the direction of inferential
force criteria

Dissonance Harmony

Naturally redundant Contradiction Corroboration
Naturally nonredundant Conflict Convergence
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Whether a contradiction or a corroboration exists in a given situation depends on the arguments of credibility and
not on whether given evidence is positive or negative per se. In order to find out whether evidence is corroborative
or contradictory, we can employ the typology of single reasoning stages presented in Section 2.2.3 and outlined in
Table 2.3. For example, if we were given two items of positive evidence r1 and r2, and the arguments of credibility
were of type (a), r1→ e, and of type (c), r2→ e, then the evidence is contradictory although being positive in both
cases.

In this Baysesian network a special kind of redundance can arise. If one argument of credibility is of necessity,
then all the other reports, be they contradictory or corroborative, become redundant. In such a case we have
Vr1,r2|H =Ve|H . In a case where all arguments of credibility are contingent, redundance appears in a more moderate
form as long as the evidence is corroborative. Schum named this kind of redundant evidence corroboratively
redundant [125]. Suppose two corroborative reports r1 and r2 for which a2 > b2 holds (see Figure 2.1). The
inferential force of the first report is ([125]):

Vr1|H =
a1 +[Vr1|E −1]−1

b1 +[Vr1|E −1]−1 .

The inferential force of the second report given the first report is given by

Vr2|,r1,H =
Pr(r2 | r1,h)
Pr(r2 | r1,h)

(2.11)

=
Pr(e | r1,h)+ [

aS2
2

bS2
2
−1]−1

Pr(e | r1,h)+ [
aS2

2
bS2

2
−1]−1

, (2.12)

where

Pr(e | r1,h) =
Pr(e | h)aS1

2

Pr(e | h)aS1
2 +Pr(e1 | h)bS1

2
, (2.13)

Pr(e | r1,h) =
Pr(e | h)aS1

2

Pr(e | h)aS1
2 +Pr(e1 | h)bS1

2
. (2.14)

The ratio Pr(e | r1,h)/Pr(e | r1,h) measures the inferential force of e with respect to h, given that we know r1 (i.e.,
Ve|r1,H). It represents the maximal inferential force that r2 can provide at any given time. In other words, r2 can
contribute the proportion of the inferential force Ve|H that r1 left over. For example, suppose that the first argument of
credibility is one of necessity (Section 2.2.3). That is, for r1 we have bS1

2 = 0, so that Pr(e | r1,h) = Pr(e | r1,h) = 1
and Vr2|,r1,H = 1. Thus, r1 has absorbed all the inferential force, Vr1|H =Ve|H , so that there is no inferential force
left that r2 could provide for h, irrespective of how credible r2 is. If, however, the first report has zero inferential
force, that is aS1

2 = bS1
2 , then Pr(e | r1,h) = Pr(e | h) and Pr(e | r1,h) = Pr(e | h). The second report has the entire

inferential force of e (i.e., Ve|H ) at disposal. In summary, thus, if the first report is given by a credible source, then
the second report has less inferential force than it could have when no first report would be available, or if the
first report would have no credibility. Arguably, the second report is corroboratively redundant to some degree. In
general, the stronger the first report, the smaller Ve|r1,H and the less the second report can contribute and the more it
becomes corroboratively redundant.

Figure 2.7 shows a numerical example on how the values of Ve|r1,H , Vr1|H , and Vr2|r1,H change as a function of
Vr1|E . The likelihood ratios are shown as logarithms at the base of ten. To the event E, the conditional probabilities
Pr(e | h) = 0.99 and Pr(e | h) = 0.001 have been assigned. The local likelihood ratio for the argument of relevance
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Figure. 2.7 – Graphical representation of the values of Ve|r1,H , Vr1|H , and Vr2|r1,H as a function of Vr1|E . The vertical grey
line indicates where Pr(r1 | e) = Pr(r1 | e) (i.e., the argument of credibility of the first report has no inferential force:
log(Vr1|E) = 0). The horizontal grey line indicates the inferential force of the argument of relevance given that we knew
for sure that e applies (log(Ve|H) = 2.9956). The intersection of the grey lines coincides with the curve of log(Ve|r1,H),
implying that the maximal inferential force that the report r2 has at its disposal corresponds to the inferential force of
the argument of relevance log(Ve |H). Note that at any time log(r1 |H)+ log(Ve|r1,H) = log(e |H). This follows from the
fact that Vr1,r2|H is bounded by the inferential force of the argument of relevance (log(Ve|H)≥ log(Vr1,r2|H)≥ log(Ve|H)).

is, therefore, Ve|H = 990 (or log(Ve|H) = 2.9956). The credibility of the report given by the second source is
characterised by the probability assignments Pr(r2 | e) = 0.99 and Pr(r2 | e) = 0.001. The local likelihood ratio
relating to the argument of credibility is, thus, Vr2|E = 990 (or log(Vr2|E) = 2.9956). The values of the likelihood
ratio associated with the credibility of the report of the first source range from Vr1|E = 10−8 to Vr1|E = 10−8 (or
log(Vr1|E) = [−8,8]).

Conflict and convergence

Evidence is said to be conflicting if arguments of evidence support different hypotheses. Evidence is said to be
convergent if all arguments of evidence support the same hypothesis over some alternative. Whether evidence is
conflicting or converging can be examined by considering Tables 2.5 and 2.6, as long as the events E are conditionally
independent given H. In such cases, Equation (2.8) applies. If the events E are conditionally dependent given H,
then the following Equation applies

Vr1,r2|H =Vr1|HVr2|r1,H , (2.15)
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where Vr1|H is given in Equation (2.8) and

Vr2|r1,H =
Pr(e1 | r1,h)[Pr(e2 | e1,h)−Pr(e2 | e1,h)]+Pr(e2 | e1,h)+ [Vr2|E2 −1]−1

Pr(e1 | r1,h)[Pr(e2 | e1,h)−Pr(e2 | e1,h)]+Pr(e2 | e1,h)+ [Vr2|E2 −1]−1
. (2.16)

Situations where the events are conditionally dependent given H allow us to further distinguish between categories
of evidence based on the inferential interaction between these events. These categories of evidence are studied in
the next section.

2.4.3 Criterion based on inferential interaction between events: synergistic evidence, redundant evidence, and
evidence inducing directional change

A direct dependency between two separate arguments of relevance as indicated by the dashed arrow in Figure 4.1 (b)
allows these two arguments to inferentially interact. Inferential interaction can be used as a criterion to distinguish
between different forms of combined evidence involving naturally nonredundant events. The discussion will focus
on the structural relationships between the events E1, E2, and H and how they affect the inferential force of the
argument of relevance.

The likelihood ratio Ve2|H represents the inferential force that e2 exerts on H. The likelihood ratio Ve2|e1,H
represents the inferential force that e1 exerts on H, given knowledge of e2. One can ask now in what way the
knowledge of e1 affects the inferential force of e2: does it change the inferential force of e2? If so, does the
inferential force increase or decrease? Thus, the focus is on comparing Ve2|H and Ve2|e1,H . To do so, one can use the
logarithm of the inferential forces that ought to be compared, and then normalize by logVe2|H . This leads to a new
term that Schum called event redundance Re2|e1 , which is the redundance of e2 given e1

Re2|e1 =
logVe2|H − logVe2|e1,H

logVe2|H
= 1−

logVe2|e1,H

logVe2|H
. (2.17)

To analyse this expression in some further detail, it is useful to distinguish between two situations. One is that e2
supports h over h, and the other is that e2 supports h over h. In the former case Ve2|H > 1, and in the latter case
Ve2|H < 1. The case where Ve2|H > 1 is examined below. Cases where Ve2|H < 1 can be examined analogously.

If Ve2|e1,H > Ve2|H , that is the knowledge of e1 increases the inferential force of e2, then Re2|e1 < 0 and the
relationship between e2 and e1 is called synergystic. If Ve2|e1,H = Ve2|H , that is the knowledge that e1 does not
change the inferential force of e2, then Re2|e1 = 0. In other words, e2 and e1 are conditionally independent given H.
If Ve2|H >Ve2|e1,H > 1, then the inferential force of e2 decreases given the knowledge of e1, but not to the extent that
e2 starts to support h over h. In that case, e2 is less informative and said to be redundant given e1, measured by the
degree of redundance Re2|e1 . If Ve2|e1,H = 1, that is given e1, the event e2 exerts no inferential force on H. In such a
case, Re2|e1 = 1 and e2 is entirely redundant. If Ve2|H > 1 and Ve2|e1,H < 1, that is e2 alone supports h over h, but
given e1 the opposite hypothesis is supported, then Re2|e1 > 1 and indicates a directional change. Another way to
look at directional change is to say that both arguments of relevance are conflicting within a joint evaluation, while
each argument supports the same hypothesis when considered separately. An overview on how to interpret Re2|e1 is
given in Table D.1.

Through consideration of Re2|e1 , one can distinguish between arguments of relevance that are synergistic,
conditionally independent, redundant, and imply a directional change. It follows that there are combinations of
evidence of naturally nonredundant events that fall into these categories.
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Table. 2.8 – Relationship between the measure Re2|e1
and the inferential force of e2.

Re2|e1
e2 supports h over h e2 supports h over h Type of interaction

(Ve2|H > 1) (Ve2|H < 1)

Re2|e1
< 0 Ve2|e1,H >Ve2|H Ve2|e1,H <Ve2|H Synergy

Re2|e1
= 0 Ve2|e1,H =Ve2|H Ve2|e1,H =Ve2|H Cond. independence

1 > Re2|e1
> 0 Ve2|H >Ve2|e1,H > 1 Ve2|H <Ve2|e1,H < 1 }

Redundance
Re2|e1

= 1 Ve2|e1,H = 1 Ve2|e1,H = 1
Re2|e1

> 1 Ve2|e1,H < 1 Ve2|e1,H > 1 Directional change

2.5 Kinship among different manifestations of evidence

Some criteria seem to entail a structural variation in the basic argument of evidence (nature of the source, hypotheses
of interest, natural redundance, and state-dependency of credibility), while this is not the case for other criteria
(occurrence/nonoccurrence, necessity/contingency, reversibility, relevance, direction of inferential force, inferential
interaction between naturally nonredundant events). The first type of criteria is inferentially prescriptive. This
means that invoking such a criterion provides a binding definition of how to structurally arrange an argument of
evidence in terms of credibility and relevance. The second type of criteria is inferentially descriptive. Such criteria
clarify distinctions that arise within a structure of an argument of evidence. It appears that distinctions produced by
such criteria are a result of the types of reasoning stages (Section 2.2.3) that are employed within a given argument
structure, and of the inferentially prescriptive criterion that suggested the argument structure in the first place. This
implies a hierarchical relationship between inferentially prescriptive criteria and inferentially descriptive criteria in
the sense that an assessment of the latter requires a prior specification of the former. Figure 2.8 depicts a hierarchical
classification of the different criteria of the manifestations of evidence given the distinction between inferentially
prescriptive and inferentially descriptive criteria. It elicits, at the same time, the argument that is affected by a
criterion.

Inferentially descriptive criteria themselves can further be subdivided into two classes. The first class of inferen-
tially descriptive criteria covers all the criteria that relate to specific configurations of probability values assigned in
a given argument. It is denoted as ‘Probability assignment’ in Figure 2.8 and comprises the criteria of necessity
and contingency (Section 2.3.2), reversibility (Section 2.3.3), direction of the inferential force (Section 2.4.2) and
inferential interaction between naturally nonredundant events (Section 2.4.3). The criterion based on relevance
regarding direct and circumstantial evidence can be considered as a result of the criterion based on necessity and
contingency applied to the argument of relevance as pointed out in Section 2.3.4. The criterion based on relevance
is therefore depicted as a subordinate of the more fundamental criterion based on necessity and contingency. The
criterion based on inferential interaction between naturally nonredundant events (Section 2.4.3) is an inferentially
descriptive criterion based on the probability assessment and at the same time a subordinate of the inferentially
prescriptive criterion based on natural redundance (Section 2.4.1). This kinship structure accounts for the fact
that the notion of natural redundance is a conceptual prerequisite for the criterion based on inferential interaction
between naturally nonredundant events.

The second class of inferentially descriptive criteria is based on the actual observation or − to use the more
technical term used in the context of BNs − variable instantiation. As can be seen from Figure 2.8, the criterion
based on the occurrence or nonoccurrence of events (Section 2.3.1) is the only inferentially descriptive criterion
based on variable instantiation in this paper.
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Figure. 2.8 – Hierarchical relationship among different criteria that give rise to different manifestations of evidence.
A classification of different criteria is shown on the far left. The criteria themselves are shown in the three following
columns in relation to the argument they affect.
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2.6 Conclusion

“Some persons have grown very old in their attempts to find comprehensive categorizations of various subjects. (...)
In my present attempt to categorize evidence, I may fare no better (I am certainly growing older).” [125, p.115] As
recognised by Schum, finding a comprehensive categorisation of evidence is a far reaching attempt, and was not the
intention of this paper. In view of Schum’s foundational works on categorizing evidence, the ontology proposed in
this paper is incomplete. Notwithstanding, it represents a complementary perspective with extensions to the existing
bulk studies realised by Schum and Kind so far.

Single reasoning stages (Section 2.2.3) and by extension, Bernoulli’s four cases of evidence and their sub-
cases (Section 2.3.2) provide an insightful framework to accommodate a broad range of arguments of evidence.
Reversible evidence, direct evidence and circumstantial evidence, testimonial evidence, source-level evaluation
of DNA profiling results, evaluation of tangible evidence given crime-level propositions, as well arguments of
evidence involving convergence and conflict (as long as they contain no wefts) can be described and classified in
terms of Bernoulli’s four cases and their sub-cases. Arguments of evidence involving naturally redundant events
can be classified into corroboration or contradiction based on the typology of single reasoning stages as long as
they contain no wefts. This shows that the understanding of the simplest arguments of evidence is crucial for the
understanding of more complex arguments.

As argued in Section 2.5, inferentially prescriptive criteria precede inferentially descriptive criteria. It may,
therefore, be helpful for future research on categorisation of evidence to examine whether a newly identified
inferentially prescriptive criterion can give rise to further inferentially descriptive distinctions.

All the inferentially prescriptive criteria regarding single items of evidence encountered in this paper affect
either the argument of credibility or the argument of relevance, but never both. A question that naturally emerges at
this point is whether there exists an inferentially prescriptive criterion that affects both sub-arguments and if so, to
identify the prerequisite(s) that allow that particular criterion to do so.

Inferentially descriptive criteria could be further refined into those that are based on particular configurations of
probability assignments and those that are based on the variable instantiation. In this paper, we have only discussed
the criterion based on the occurrence and nonoccurrence of an event as a member of the latter descriptive criterion.
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3 Graphical probabilistic analysis of the combination
of items of evidence

ABSTRACT. Unlike the evaluation of single items of scientific evidence, the formal study and analysis
of the joint evaluation of several distinct items of forensic evidence has, to date, received some punctual,
rather than systematic, attention. Questions about the (i) relationships among a set of (usually unobservable)
propositions and a set of (observable) items of scientific evidence, (ii) the joint probative value of a collection
of distinct items of evidence as well as (iii) the contribution of each individual item within a given group of
pieces of evidence still represent fundamental areas of research. To some degree, this is remarkable since
both forensic science theory and practice, yet many daily inference tasks, require the consideration of multiple
items, if not masses of evidence. A recurrent and particular complication that arises in such settings is that
the application of probability theory, that is the reference method for reasoning under uncertainty, becomes
increasingly demanding. The present paper takes this as a starting point and discusses graphical probability
models, that is Bayesian networks, as a framework within which the joint evaluation of scientific evidence can
be approached in some viable way. Based on a review of existing main contributions in this area, the article
here aims at presenting instances of real case studies from the author’s institution in order to point out the
usefulness and capacities of Bayesian networks for the probabilistic assessment of the probative value of multiple
and interrelated items of evidence. A main emphasis is placed on underlying general patterns of inference, their
representation as well as their graphical probabilistic analysis. Attention is also drawn to inferential interactions,
such as redundancy, synergy and directional change. These distinguish the joint evaluation of evidence from
assessments of isolated items of evidence. Together, these topics present aspects of interest to both domain
experts and recipients of expert information, because they have a bearing on how multiple items of evidence
are meaningfully and appropriately set into context.

Keywords. Bayesian networks · combining items of evidence · likelihood ratio

3.1 Introduction

3.1.1 Graphical approaches to judicial inference modeling

Legal disciplines largely, including more specialist areas such as forensic science, are characterised by inference
problems that involve a variety of events among which distinct relationships, affected by uncertainty, are assumed to
hold. The use of visual representation schemes for analysing, depicting and communicating such aspects, typically
occurring in relation with legal cases, has a remarkably long history. An approach frequently quoted in this context
is that of Wigmore, which relies on an extensive, however non-probabilistic and non-quantitative, hierarchical
representation system for capturing the potentially large range of issues involved in legal cases [145, 146]. Recent
decades have seen the introduction of modern graphical probabilistic networks, in particular Bayesian networks. This
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concept has been studied for the analysis of such complex and historically famous cases like the Collins case [38],
the Sacco and Vanzetti case [79, 71], the Omar Raddad case [94] and the O.J. Simpson trial [137]. Bayesian
networks will be introduced more formally later in Section 3.3. At this point we solely note that ‘Bayesian’, useable
both as an adjective and as a noun, is a notion that stems from a theorem − Bayes’ theorem1 − that is a logical
consequence of the basic rules of probability and related concepts. It is a result that helps to understand how to treat
new evidence. In turn, the term ‘network’ is taken to refer here to a set of nodes and arcs that stand for, respectively,
propositions2 of interest and assumed relationships between propositions. Such a graph, or network, provides an
abstract, but rigorous, representation of one’s view of and attitude towards an inferential problem.

A main guiding idea of studies in graphical inference modeling, using Bayesian networks, is that they allow
one to capture rigorously core aspects of situations of reasoning under uncertainty. That is, as a kind of graphical
model based upon concepts from graph and probability theory, a Bayesian network’s graphical structure accounts
for possible relevance relationships between the various aspects or events of a problem domain under investigation.
The underlying probabilistic architecture of these models expresses beliefs about the strengths of the assumed
relationships. Newly acquired information about a given inference problem − in legal contexts typically referred to
as evidence − can then be used to update the probability of the various specified uncertain propositions. Bayesian
networks operate this updating according to Bayes’ theorem, the fundamental rule for assessing the discriminative
value of evidence in forensic science [117, 116]. During the past 20 years, there has been a regular stream of
publications on the use of Bayesian networks in forensic and legal theory and practice. These contributions converge
in their opinions that Bayesian networks provide valuable assistance to their user in coping with inferential issues
that are marked by uncertainty.

In the particular context of forensic science too, Bayesian networks have, since their development in the area of
artificial intelligence in the early 1980s, soon found their applications. Aitken and Gammerman [2], followed by
Dawid and Evett [30], were among the first to show how probabilistic network-guided thinking and analysis can
support the organisation and implementation of an evaluative framework that is not restricted to single items of
forensic evidence, but naturally extends to one that allows for a combination of evidence from a variety of sources.
The examples provided by these authors include scientific evidence in the form of fibers and bloodstains, described
in the context of well defined cases.

These formative studies have subsequently led to further developments that pertain to more generic forensic
case settings. Garbolino and Taroni [56], for example, proposed Bayesian network models for fibre scenarios with a
particular emphasis on general patterns of inference, such as evidential relevance and potential innocent transfer
(i.e., legitimate contact). In turn, Evett et al. [43] described Bayesian network approaches in order to deal with
particular complications encountered in connection with DNA profiling analyses applied to small quantities of DNA.
Yet further developments in rather specific contexts, such as the (reciprocal) cross-transfer of materials between two
persons (or objects), have been proposed by Aitken at al. [5].

Generally, the use of Bayesian networks for evaluating DNA profiling results represents a particularly lively area
of research, to which Dawid et al. [31] have contributed a seminal paper. It proposes a methodology for deriving
appropriate Bayesian network structures from initial pedigree representations of forensic identification problems.
This approach has subsequently been used in a series of other works that concentrated on selected aspects of the
assessment of forensic DNA evidence. Mortera et al. [104, 103], for example, have studied this Bayesian network
modeling approach for mixed DNA traces, including a discussion of issues such as missing individuals and silent
alleles. Following the same ideas, Bayesian network models have also been proposed for situations in which (i) the
alternative proposition is that a close relative of the suspect left the crime stain (in agreement with a probabilistic

1Although Bayes’ theorem has about a 250-year history, the attribute ‘Bayesian’ as a descriptor of a particular class of inference methods
appears to have gained more widespread use only since the middle of the twentieth century [51].

2In a rather broad sense, the term proposition is interpreted here as a statement or assertion that such-and-such is the case (e.g., an outcome or
a state of nature). It is assumed that personal degrees of belief can be assigned to it. At times, we may also use the term ‘hypothesis’, which we
use interchangeably.
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approach previously described by Evett [40]), or (ii) multiple propositions need to be considered (e.g., that the crime
stain comes from a brother of the suspect or an unrelated member of the suspect population) [131]. A further topic
approached in the book by Taroni et al. [131] is that of partial matches, that is a situation in which a suspect matches
a crime stain only partially and when a proposition of interest is that a close relative of the suspect, such as a brother,
is the source of the crime stain.

More recently, the modeling approach of Dawid et al. [31] has been extended to the object-oriented Bayesian
network environment [32]. It is based on the idea of defining generic ‘classes’ of networks, parts of which can be
used, as required, within other networks. This allows one to describe inference problems in terms of interrelated
objects, and to structure them hierarchically at different levels of abstraction. An advantage of this property is
that it is well adapted for supporting human reasoning, which tends naturally to proceed in terms of hierarchies of
abstractions, in particular where it is difficult to mentally capture all aspects of a problem simultaneously.

3.1.2 Contents and aims of this paper

Much of the formalised graphical analyses mentioned in the previous section involve substantial probabilistic
analyses. This may distract the view from the fact that there are some very general patterns of evidential reasoning
that can be set forth and discussed without reference to a particular graphical probability modeling framework. This
is illustrated, for example, by Schum’s [125] graphs for evidence analysis (also used in Kadane and Schum [79]).
Unlike Bayesian networks, that are directed in a top-down mode from uncertain target propositions to observational
instances (i.e., evidence nodes), so-called ‘Schum graphs’, as they will be termed here, work in the other direction.
That is, they are modeled in a bottom-up way in the the same way as Wigmore’s [145] reference charts. It is
the belief of the authors here that these graphs can be instructive to become acquainted with the general idea of
graphical representations for relationships among variables that are retained in a formal probabilistic analysis.
Stated otherwise, the probabilistic inference steps undertaken by a reasoner when proceeding from one item of
evidence to another can be reflected through a graphical display. The ways in which such inferential steps are
taken in different situations allows one to shed light on some generic patterns of combination. This insight also
helps to recognise viable graphical structures for more advanced graphical modeling formalisms, such as Bayesian
networks. It is for this reason that the paper here will start, in Section 3.2, with a presentation of elements of
Schum’s [125] foundational theory on probabilistic evidence combination. The aim at this point is to discuss, using
several examples, the relevance of these influential works for joint inference analyses encountered in forensic
contexts. The chosen examples will also show, however, that even basic model structures, involving only a few
nodes and a light connective structure, can readily lead to extended formulae for probabilistic calculations of
evidential value. Section 3.3 will take this as an instance to illustrate a particular feature of Bayesian networks, that
consists in their underlying probabilistic architecture. It constitutes an integral part of this class of graphical models
and distinguishes it from Schum graphs. This means, stated otherwise, that in Bayesian networks, probabilistic
calculations can be confined to the model while the user can concentrate efforts on model elicitation and structuring.
Section 3.4 will set these arguments into context by presenting and analysing aspects drawn from two real cases
involving scientific evidence. These case studies will also serve the purpose of discussing the nature of inferential
interactions that may arise when the analysis of evidential value is extended beyond single and isolated items of
evidence. A general discussion and conclusions are presented in a final Section 3.5.

The intention to approach uncertainty in evidence evaluation through probability requires the consideration of
some notational convention. Besides, it is also necessary to accept main elements and results of probability theory.
These aspects will not be reproduced here in much detail essentially because extensive literature on this topic now is
widely available [e.g., 116, 118, 4]. Throughout this paper, in particular in Section 3.3, notation commonly used
in forensic literature will be followed. Although some of the formulaic expressions may be perceived as difficult
to apprehend, it is important to emphasise that this should not be taken as a deficiency of the proposed formal
framework − that is graph and probability theory − but rather as a consequence of the level of difficulty associated

83



PART III CHAPTER 3. ARTICLE - ANALYSIS OF EVIDENCE COMBINATION

with the real-world problems that are being addressed. This viewpoint has already been put forward, elsewhere in
literature, by Friedman [53] in a discussion on the relevance of Bayesian reasoning applied to realistic settings: “If
applied to take into account all the information we have about a situation, Bayesian analysis requires unrealistically
complex calculations, but this does not suggest a problem with the theory. On the contrary, the complexity is in the
world surrounding us, and the theory would have limited value if it could not in principle represent that complexity.
Probability is a flexible template. It can take into account as much complexity as its user is able to handle.” [53, at
p. 1818]

The case studies proposed in this paper involve footwear mark evidence. This category of scientific evidence
was also involved in the recent judgment of the Court of Appeal in R v T [106]. In particular, debates involved
the handling of aspects such as general pattern and size, as well as the rarity of such descriptors and how they
may be informed by data. In a wider sense, this touches on questions of more fundamental importance, which go
beyond the instances debated within this particular judgment. Forensic scientists need a clear view of the inferential
issues that are associated with particular items of evidence, and questions of the combination of evidence are an
essential aspect of this. Such combinations may be required within a given item of evidence (i.e., combination of
distinct aspects of a given item of evidence), but questions may also extend to problems of relating several separate
items of evidence. Graphical probability modeling, and analyses based on such models, may help scientists to
refine their understanding of the various evaluative issues that are involved in a given case. The suggestion at this
juncture, and throughout this paper in general, is not, however, that graphical models ought to be part of or substitute
a scientist’s (written) report. Their primary role could be that of assisting the logical reasoning, discussing and
clear drafting of reports. This represents an important preliminary for coherent, concise and informed reporting on
forensic examinations. It is thus thought to offer support when addressing the challenging task of communicating
scientific evidence clearly and convincingly, so as to favour the correct understanding of the meaning of evidence
among recipients of expert information.

3.2 ‘Schum graphs’ for evidence analysis

3.2.1 Preliminaries

When reasoning about an item of evidence, one may find that it favours a certain hypothesis rather than others. This
can be conceptualized as the ascription of an inferential vector to a given item of evidence. Such an inferential
vector can be characterized by two main aspects, that is an inferential direction and an inferential force. When
extending this idea to practical reasoning, however, one comes to realise that one will be required to consider several
items of evidence and this will generate a whole batch of such vectors.

With respect to inferential directions, two situations can be distinguished. Either the inferential vectors will
point towards more than one hypothesis or they point towards one unique hypothesis. Following Schum [125], the
first situation is said to involve dissonant evidence whereas the second situation involves harmonious evidence. The
probabilistic underpinnings of these distinctions are considered hereafter in some further detail.

3.2.2 Dissonant evidence: Contradiction and conflict

All dissonant evidence incorporates an inferential divergence, although only some situations of dissonance can
properly be called contradictory. Schum [125] considers dissonant evidence that is not contradictory as ‘being
in conflict’. Properly speaking, a contradiction is given only if the occurrence of mutually exclusive events are
reported. In order to clarify this, let us say that source S1 states E∗, that is ‘Event E occurred’. A second source S2
states Ec∗, that is ‘Event E did not occur’.

Example 1. − In a case involving questioned documents it may be of interest to learn something about the
proposition E, that a given suspect wrote a signature on a handwritten document. Denote by Ec the proposition
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Figure. 3.1 – Generic models for (a) contradictory and corroborative inference and (b) conflicting and converging
inference. The dotted arrow applies whenever one assumes a dependency between the two events {E,Ec} and {F,Fc}
conditional upon {H,Hc}. Notice that these graphical models do not represent Bayesian networks.

that the suspect did not write the questioned signature. One cannot directly know whether or not the suspect
is the author of the questioned signature. One may therefore rely on an opinion presented by, for example, an
eyewitness. Let this source of information be denoted by S1 and the report given by this source in terms of E∗,
that is a statement that E occurred. Next, one may also have a further source of information, denoted by S2. This
source, too, reports about the proposition E, but affirms that its complement, Ec, holds. An example for such a
second source of information could be another eyewitness or a forensic document examiner.3

Given this outset, a question of interest may be how to draw an inference about a pair of ultimate propositions H
and Hc, while allowing uncertainty about the true state of the intermediate variable E. For the example introduced
above, the variable H could be, for example, the commission of a fraud, or another criminal activity, which requires
the establishment of authorship of the questioned signature at hand.

A common way to approach such a question relies on a likelihood ratio (LR), that is a fraction of two likelihoods,
each of which expresses the probability of obtaining a certain outcome, here the evidence {E∗,Ec∗}, given a
proposition of interest. Applied to the situation here, one would thus focus on the probability of the two reports,
{E∗,Ec∗}, given that H holds, and compare this assignment to that made under the assumption that Hc holds. More
formally, this is written as follows:

LRE∗,Ec∗ =
Pr(E∗,Ec∗ | H)

Pr(E∗,Ec∗ | Hc)
. (3.1)

There is now a broad agreement among legal and forensic researchers and practitioners that this fraction - indepen-
dently of the level at which propositions are formulated - represents the key element for reasoning processes that
seek to evaluate propositions in judicial contexts [e.g., 118, 3]. In particular, it is recognised that legal reasoning
can be reconstructed as inferences in accordance with Bayes’ theorem. That is, for updating odds in response to
evidence, one needs to assess the probability of that evidence relative to each of the two competing propositions and
then compare the resulting likelihoods. If the ratio of the likelihoods is one, then the evidence would be said to be
neutral, that is, it would leave the prior odds unchanged. Likelihood ratios greater (or smaller) than one would be
said to favour H over Hc (Hc over H).

Assuming a relationship of dependence between the variables as shown in Figure 3.1 (a), the likelihood ratio in

3Forensic document examiners commonly present (categoric) opinions about selected propositions of interest [84]. There is ongoing debate
about whether or not this is helpful for guiding courts in assessing the probative value of scientific evidence [132]. This relates to the wider topic
of how to actually present results of forensic examinations. This topic is beyond the scope of this paper.
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Equation (3.1) can be presented in some further detail, as proposed in [125]:4

LRE∗,Ec∗ =
Pr(E∗,Ec∗ | H)

Pr(E∗,Ec∗ | Hc)
=

Pr(E | H)+ [ h1m2
f1c2
−1]−1

Pr(E | Hc)+ [ h1m2
f1c2
−1]−1

. (3.2)

Here, h1 = Pr(E∗ | E), m2 = Pr(Ec∗ | E), f1 = Pr(E∗ | Ec) and c2 = Pr(Ec∗ | Ec). The extended form of the
likelihood ratio shown in Equation (3.2) is reproduced here because it contains the expression [(h1m2/ f1c2)−1]−1.
This part of the formula is also referred to as “drag coefficient”, as it acts like a drag upon LRE , that is the quantity
of inferential force that E exerts towards {H,Hc}. As will later be pointed out in a separate Section 3.2.4, the
drag coefficient accounts for the credibility of the statements made by the sources of interest. In particular, it will
determine the degree to which LRE∗,Ec∗ will approach the value of LRE .5

The result shown in Equation (3.2) can be further understood by considering local likelihood ratios for drawing an
inference about E, on the basis of the distinct items of evidence E∗ and Ec∗. More specifically, there is, respectively,
a likelihood ratio for item of evidence E∗, written LR′E∗ , and one for the item of evidence Ec∗, written LR′Ec∗ :

LR′E∗ =
Pr(E∗ | E)
Pr(E∗ | Ec)

=
h1

f1
, LR′Ec∗ =

Pr(Ec∗ | E)
Pr(Ec∗ | Ec)

=
m2

c2
.

A prime (‘′’) is used here to indicate that the likelihood ratio concentrates on an inference to E only, rather than to
the ultimate proposition H.

When taking the inverse of the latter likelihood ratio, then one has an expression of the degree to which Ec∗

favours Ec: LR′−1
Ec∗ = Pr(Ec∗ | Ec)/Pr(Ec∗ | E) = c2/m2. It can now be seen that the overall support of the two

statements {E∗,Ec∗} for E depends on the relative magnitude of LR′E∗ and LR′Ec∗ . In particular, in all the cases
where (h1/ f1) > (c2/m2), the evaluation of the statements will strengthen the proposition E. Conversely, if
(h1/ f1)< (c2/m2), then the other proposition, Ec, will be favored.

More generally, notice further that the global inferential force LRE∗,Ec∗ is bound by LREc and LRE so that
LREc ≤ LRE∗,Ec∗ ≤ LRE . That is, LRE represents the capacity of E to discriminate between H and Hc, given by
Pr(E | H)/Pr(E | Hc), whereas LREc that of Ec, given by Pr(Ec | H)/Pr(Ec | Hc). But usually, one will not have
confirmed knowledge of the occurrence of either E or Ec, only evidence in the form of the statements {E∗,Ec∗}.

Situations of evidence in conflict are different as they imply events that are not mutually exclusive. This is
pointed out in Figure 3.1 (b). For this model, suppose that source S1 states E∗, that is the occurrence of event E,
which is one that favours the proposition H. A second source, S2, states F∗, that another proposition F , favoring
proposition Hc, occurred. The example given hereafter illustrates this outset.

Example 2. − Consider again, as in Example 1 given above, a report E∗ that event E occurred, that is, a given
suspect wrote a signature on a questioned document. Imagine further that the questioned document bears ridge
skin marks (i.e., ‘fingermarks’). Let F denote the proposition according to which the fingermarks come from some
person other than the suspect and let F∗ denote a scientist’s report of such a conclusion.6 Conversely, let Fc denote
the proposition according to which the fingermarks come from the suspect. Assuming that the fingermarks are
found in a position (on the document) where marks from the author of the crime of interest would be expected
to be found, the proposition F can be considered relevant in an inference about the proposition H, that is ‘the
suspect is the author of the fraud’. Clearly, proposition F would favour Hc here because the probability of F can
reasonably be taken to be greater given Hc than given H. That is, stated otherwise, the likelihood ratio for F ,

4Additional information about the derivation of this result is provided in C.1.
5The likelihood ratio LRE describes the inference about H on the basis of the intermediate variable E and is given by the fraction of the two

likelihoods Pr(E | H) and Pr(E | Hc).
6Again, there is no suggestion at this point that this is an appropriate way of reporting conclusions from fingermark analyses, although we

concede that probably it still represents, currently, the most widespread practice.
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written LRF = Pr(F | H)/Pr(F | Hc), is smaller than 1. This represents support for Hc. In turn, the proposition E,
which relates to the authorship of the questioned signature, provides support for H. In fact, following Example 1,
the likelihood ratio for E is LRE = Pr(E | H)/Pr(E | Hc)> 1.7

In this example, the evidential values of the reports E∗ and F∗ by respectively, source S1 and source S2 are given by:

LRE∗ =
Pr(E∗ | H)

Pr(E∗ | Hc)
=

Pr(E∗ | E)Pr(E | H)+Pr(E∗ | Ec)Pr(Ec | H)

Pr(E∗ | E)Pr(E | Hc)+Pr(E∗ | Ec)Pr(Ec | Hc)
, (3.3)

LRF∗ =
Pr(F∗ | H)

Pr(F∗ | Hc)
=

Pr(F∗ | F)Pr(F | H)+Pr(F∗ | Fc)Pr(Fc | H)

Pr(F∗ | F)Pr(F | Hc)+Pr(F∗ | Fc)Pr(Fc | Hc)
. (3.4)

These individual likelihood ratios suppose a conditional independence8 upon knowledge of the ultimate propo-
sition H. In addition, they incorporate uncertainty about the actual − but unobserved − state of the events E
and F . This is achieved by writing a given report, for example E∗, conditioned on both E and Ec, weighted by the
probability of, respectively, E and Ec.

The two likelihood ratios, Equations (3.3) and (3.4), can also be written in a more compacted form [125]:

LRE∗ =
Pr(E | H)+ [ h1

f1
−1]−1

Pr(E | Hc)+ [ h1
f1
−1]−1

, (3.5)

LRF∗ =
Pr(F | H)+ [ h2

f2
−1]−1

Pr(F | Hc)+ [ h2
f2
−1]−1

(3.6)

where h1 = Pr(E∗ | E), f1 = Pr(E∗ | Ec), h2 = Pr(F∗ | F) et f2 = Pr(F∗ | Fc). As may be seen, the fractions h1/ f1
and h2/ f2 represent the evidential values− that is the likelihood ratios− of the reports E∗ and F∗ for discriminating
between the states of the individual events E and F .

Given the stated assumption of conditional independence, the overall evidential value of the two reports E∗

and F∗, that is LRE∗,F∗ , is given by the product of the individual likelihood ratios: LRE∗,F∗ = LRE∗ ×LRF∗ . For the
currently discussed Example 2, such an assumption seems reasonable. In fact, ridge skin surface characteristics can
be considered to be independent of handwriting characteristics.

If, however, in a more general case the events {E,Ec} and {F,Fc} need to be considered as not conditionally
independent upon {H,Hc}, then the overall likelihood ratio will be of the form LRE∗ × LRF∗|E∗ . That is, the
likelihood ratio for the second report, F∗, is conditioned upon knowledge of the first report, E∗. More formally, this
is written as LRF∗|E∗ . While LRE∗ is as defined above in Equation 3.3, the term LRF∗|E∗ involves a more extended
development that can be shown to reduce to [125]:

LRF∗|E∗ =
Pr(E | E∗,H)[Pr(F | E,H)−Pr(F | Ec,H)]+Pr(F | Ec,H)+ [ h2

f2
−1]−1

Pr(E | E∗,Hc)[Pr(F | E,Hc)−Pr(F | Ec,Hc)]+P(F | Ec,Hc)+ [ h2
f2
−1]−1

. (3.7)

Here h2 = Pr(F∗ | F) and f2 = Pr(F∗ | Fc). These latter two terms represent, respectively, the numerator and
denominator of a local likelihood ratio LR′F∗ that expresses the degree to which the report F∗ discriminates between
the intermediate propositions F and Fc.

7Further discussion of such an example, using Bayesian networks and a consideration of multiple propositions, can also be found in Taroni
and Biedermann [132].

8Conditional independence describes, broadly speaking, a setting in which the truth or otherwise of a proposition would not affect one’s belief
in another proposition, given that a third proposition is already known. It is a property that characterises one’s system of beliefs, if one maintains,
for example, the following: once proposition C is known, one’s belief in proposition A would not be altered if, in addition, proposition B would
be known. More formally stated, a variable A is said to be conditionally independent of B, given C, if and only if Pr(A | B,C) = Pr(A |C) for all
the states of A, B and C.
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There is a close relationship that one can observe with respect to the previous Equation (3.6). In fact, when E is
irrelevant for the assessment of F conditional on H, then the latter Equation (3.7) reduces to the former Equation (3.6).
That is, more formally expressed, when knowledge of E is irrelevant, then

Pr(F | E,H) = Pr(F | Ec,H) = Pr(F | H) and Pr(F | E,Hc) = Pr(F | Ec,Hc) = Pr(F | Hc)

hold, and this eliminates the product in the numerator and the denominator of the likelihood ratio LRF∗|E∗ .

3.2.3 Harmonious evidence: Corroboration and convergence

Schum [125] distinguishes two main cases of harmonious evidence, notably corroborating evidence and convergent
evidence. The former, corroboration, applies to evidence from sources that state the occurrence of the same event.
As illustrated by Example 3 below, consider two sources S1 and S2 that each state E∗, that event E occurred.
Suppose further that Pr(E | H)> Pr(E | Hc), that is event E is one that is more probable to occur if the ultimate
probandum H is true, rather than when the specified alternative, Hc, is true. Using notation introduced so far, this
expression of evidential value can also be written as LRE .

Example 3. − An illustration of a setting in which evidence is corroborating can be obtained by modifying
the previous Example 1. When assuming two independent handwriting experts, that each report E∗, that is the
proposition E defined as ‘the suspect is the source of the signature on the questioned document’, evidence from
two distinct sources is available. In such a setting, each expert reports the occurrence of the same event. In turn,
the proposition E is relevant in an inference about H, that is the proposition according to which the suspect is the
author of a given criminal event of interest.

By supposing a relation of dependence between the variables as shown in Figure 3.1 (a), the likelihood ratio for the
reports E∗1 and E∗2 by, respectively, source S1 and S2, follows the general structure defined earlier in Equation (3.1).
For the case considered here, the expression can again be developed further and shown to be as follows [125]:

LRE∗1 ,E
∗
2
=

Pr(E∗1 ,E
∗
2 | H)

Pr(E∗1 ,E
∗
2 | Hc)

=
Pr(E | H)+ [ h1h2

f1 f2
−1]−1

Pr(E | Hc)+ [ h1h2
f1 f2
−1]−1

. (3.8)

As may be seen, the overall inferential force of the two reports E∗1 and E∗2 not only depends on the the capacity of
event E to discriminate between H and Hc, expressed by the likelihoods Pr(E | H) and Pr(E | Hc), but also on the
conditional probabilities of the reports given E, that is the local likelihood ratios LR′E∗1 = h1/ f1 associated with
report 1, and LR′E∗2 = h2/ f2 associated with report 2.

Notice further that Equation (3.8) can also be extended to multiple, say n, independent sources. For such a
situation, the likelihood ratio can be shown to lead to the following:

LRE∗1 ,...,E
∗
n
=

Pr(E∗1 , ...,E
∗
n | H)

Pr(E∗1 , ...,E
∗
n | Hc)

=
Pr(E | H)+ [∏n

j=1
hi
fi
−1]−1

Pr(E | Hc)+ [∏n
j=1

hi
fi
−1]−1

. (3.9)

Such a setting is typically encountered in so-called ‘testing cases’, where distinct examiners work on a well defined
question. As pointed out by Example 4 here below, that may be an actual case or an experiment under predefined
testing conditions (such as a proficiency test).

Example 4. − Imagine a situation in which it is of interest to infer something about a proposition of the kind ‘the
suspect’s photocopier (some other printing device) was involved in the production (i.e., printing) of the questioned
document’. Next, suppose a series of experts who have all examined both questioned and known samples. In
addition, each expert provides a report on whether or not the suspect’s photocopier was involved. For the purpose of
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illustration, consider some recent proficiency testing data reported by Collaborative Testing Services Inc. in 2010.
As part of their questioned documents test No. 10-521, 149 participants correctly reported a given known source
as ‘was involved’ in the production of a given questioned document. However, there were also 12 participants that
incorrectly reported that the known source at hand ‘was not involved’.9 If one now takes the proposition E, that is
‘the suspect’s printing device was involved’, as evidence in support of a higher level proposition H, which states
the involvement of the suspect in some criminal activity, because one maintains Pr(E | H)> Pr(E | Hc), then all
statements E∗ of ‘was involved’ can be considered as corroborating. They are, however, in contradiction with
statements of the kind Ec∗, that is ‘was not involved’, following definitions and discussion presented earlier in
Section 3.2.2.

A corroboration, with respect to the proposition H, needs to meet hi > fi for every source i in order to take place.
This implies that the examination of the credibility of the sources must not be neglected even when confronted
with a case of corroboration. Notice further that the likelihood ratio in Equations (3.8) and (3.9) cannot exceed
LRE or LREc . That is, the joint value in an inference about H, based on a given number of individual sources, that
report on E, cannot be higher than that for confirmed knowledge about E (i.e., a situation in which the actual state
of E would be known). Stated otherwise, the value of individual reports for discriminating about H depends on the
capacity of individual reports in discriminating between the states of the variable E. For example, if a report E∗

is capable of ‘establishing’ E, then the likelihood ratio for E∗, that is LRE∗ , would equate that for E, that is LRE .
However, as long as E∗ − or, by extension, a collection of reports E∗1 , ...,E

∗
n − cannot ‘establish’ E with certainty,

which should be the regular case, LRE∗ < LRE .
A convergence is given when two or more sources state the occurrence of distinct events that do not support

the same intermediate hypothesis. As depicted by Figure 3.1 (b), sources S1 and S2 may report the occurrence
of the events E and F which are conditionally independent given the proposition H. This is equivalent to having
two independent strains of inference of the kind E∗→ E→ H, as illustrated in Figure 3.1 (a). In such a case, the
overall likelihood ratio for the two reports E∗ et F∗ is given by the product of the likelihood ratios associated with
the individual reports. That is, LRE∗,F∗ = LRE∗ ×LRF∗ , and Equations (3.3) and (3.4) can again be applied. An
illustration for convergence can be obtained by reconsideration of Examples 1 and 2.

Example 5. − Suppose a scientist’s report E∗, that event E occurred, that is, a given suspect wrote a signature
on a questioned document. In addition, assume further that the questioned document bears ridge skin marks.
Let F now denote − unlike in Example 2 − the proposition according to which the fingermarks come from the
suspect. With regard to this, let F∗ denote a scientist’s report of such a conclusion. Assuming again that the
fingermarks are found in a position (on the document) where marks from the author of the crime of interest would
be expected to be found, the proposition F can be considered relevant in an inference about the proposition H,
that is ‘the suspect is the the author of the fraud’. Consequently, proposition F would now favour H because the
probability of F may be taken to be greater given H than given Hc. That is, stated otherwise, the likelihood ratio
for F , written LRF = Pr(F | H)/Pr(F | Hc), is greater than one. Along with a likelihood ratio for the E, written
LRE = Pr(E | H)/Pr(E | Hc)> 1, this presents a further element in support of H, and thus implies convergence.

If, however, the events E and F are conditionally dependent upon the ultimate proposition H, then Equations (3.3)
and (3.7) need to be employed. In particular, one needs to account for the fact that when evaluating the probative
value of F , it is necessary to account for what has been observed in relation with the first source, and this is expressed
by the conditional likelihood ratio LRF |E . According to the specified probabilistic underpinning, this may lead to
the observation that the second observation F has more evidential value when E is already known, compared to a
situation in which nothing is known about the first source. In such a case, the evidence is called ‘synergic’. However,
it may also be the case that knowledge about E diminishes the inferential force of F and this would be a situation of
redundancy. This may go as far as to entail a directional change, rather than only reducing the inferential force of F .
That is, an individual consideration of a supportive event F , that is LRF > 1 (i.e., supporting H), may turn into a
support for the alternative proposition, Hc, that is LRF |E < 1.

9Summary Report available at http://www.ctsforensics.com/assets/news/3021_Web.pdf, last accessed March 8th 2011.
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3.2.4 A closer look at the drag coefficient

Consider again a situation as in Example 1, discussed in Section 3.2.2, where the report E∗ of a single expert
(source S1) is used to infer something about the occurrence of an event E. As shown in Figure 3.1 in terms of a path
starting at E∗, the event E is in turn of interest in an inference about {H,Hc}. The inferential force of the scientist’s
report is as defined earlier in Equation (3.5):

LRE∗ =
Pr(E | H)+ [ h1

f1
−1]−1

Pr(E | Hc)+ [ h1
f1
−1]−1

.

Here, the term called ‘drag coefficient’ is given by [(h1/ f1)−1]−1. It is part of both the numerator and denominator
and written as D, for short. As mentioned earlier in Section 3.2.2, D acts like an inferential drag on Pr(E | H) and
Pr(E | Hc). The drag coefficient is also encountered in other likelihood ratio formulae considered so far in this
section, differing only with respect to the probabilities that are incorporated in this expression. The underlying
mechanism that generates an inferential drag is, however, the same. There is also no difference with respect to how
the bound of the likelihood ratios based on reports comes about.

It is useful to take a closer look at some limiting cases in order to illustrate how D generates a so-called inferential
drag. Suppose that a given source, for instance S1, states E∗, but has no credibility. That is, stated otherwise,
the evidence given by S1 does not enable one to discriminate between E or Ec. This is the case whenever S1 is
equally likely to provide report E∗ given E and Ec. Alternatively, one may also say that the ‘hit probability’, that
is, the probability of report E∗ when E is in fact true, Pr(E∗ | E), equals the ‘false positive probability’, that is the
probability of report E∗ when Ec is actually true. Let us also recall that, previously, the latter two probabilities have
been written, for short, h1 and f1. So, for a situation in which h1 = f1 is assumed to hold, the drag coefficient is
[1−1]−1 = 1/0, a term which tends towards infinity. Consequently, the likelihood ratio for report E∗ becomes:

LRE∗ =
Pr(E | H)+∞

Pr(E | Hc)+∞
≈ 1.

Hence, the influence of Pr(E |H) and Pr(E |Hc), which both assume values from the range between zero and unity,
becomes negligible. The drag coefficient dominates the numerator and the denominator so that the likelihood ratio
tends towards a value of one. As may thus be seen, the failure of E∗ to discriminate between E and E∗ deprives
LRE∗ to draw advantage from the capacity of E to discriminate betwen H and Hc.

In order to pursue this analysis, now suppose a situation where S1 has maximal credibility. That is, its
hit probability is unity and that of a false positive is zero. This is just another way to say that the source S1
provides perfect evidence for disrciminating between E and Ec: it always reports E∗ when in fact E is true (i.e.,
Pr(E∗ | E) = h1 = 1) and never reports E∗ otherwiese (i.e., Pr(E∗ | Ec) = f1 = 0). It can now be seen that in such a
case the drag coefficient is [(1/0)−1]−1. While 1/0 tends towards infinity, the drag coefficient becomes [∞−1]−1,
which is virtually zero. The likelihood ratio thus becomes:

LRE∗ =
Pr(E | H)+0
Pr(E | Hc)+0

=
Pr(E | H)

Pr(E | Hc)
= LRE .

This result shows that the likelihood ratio for the report E∗ of a perfectly credible source equates that for knowing
the occurrence of E for sure. The likelihood ratio LRE∗ thus has an upper bound given by LRE .

Finally, imagine yet another situation where S1 has a hit probability of zero, but a false positive probability
of unity. This is a situation in which a given source would systematically report the opposite of what it should
state in order to be right. More formally, such a source would report E∗ whenever Ec is true (Pr(E∗ | Ec) = 1) and
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report Ec∗ when E is true (Pr(Ec∗ | E). In such a case, the drag coefficient is [(0/1)−1]−1 =−1. Consequently,
the likelihood ratio becomes

LRE∗ =
Pr(E | H)−1
Pr(E | Hc)−1

=
Pr(Ec | Hc)

Pr(Ec | H)
= LREc .

This represents the likelihood ratio for knowing the occurrence of Ec for sure and shows why the lower bound of
LRE∗ is given by LREc .

3.2.5 From Schum graphs to Bayesian networks

Throughout the previous sections it has become apparent that the extension of probabilistic value of evidence
analyses to more than one item of evidence requires consideration to be given to additional and subtle aspects.
These are not encountered when items of evidence are looked at in isolation. These aspects relate to notions that
characterise the joint occurrence of several items of evidence, such as evidential harmony and dissonance. Moreover,
the joint probative force of several items is clearly to be distinguished from the evidential value associated with
an item of evidence considered in isolation. For evidence analyses Schum graphs are important in this context
because they provide a concise representation of the variables involved as well as the structure of the argument that
is invoked for progressing from observations to unobserved propositional variables of interest.

Above all, Schum graphs remain, however, an essentially representational technique wherein probability and the
dynamics of its calculations are not explicitly incorporated. As such, these models offer only limited assistance to
their users in defining the relevant probabilistic computations. In particular, they offer no means to actually execute
these computations. This is a major difference with respect to Bayesian networks. These models have an underlying
probabilistic architecture. That is, each node contains a probability table that specifies the nature (which is, as the
name says, probabilistic) as well as the strength of the relationship to connected neighboring nodes. In addition, the
probabilistic underpinning of these models is defined in such a way that ‘entering’ evidence at some node (or group
of nodes) − that is, communicating to the model which variables have been observed − will update the probability
distributions associated with all remaining nodes according to Bayes’ theorem. This the reference rule for reasoning
in the light of uncertainty, most notably also in forensic science [118], and this is the reason why these models are
of particular interest for studying questions about forensic inference. Hereafter, this topic is pursued in further detail
in Sections 3.3 and 3.4.

3.3 Bayesian networks

A Bayesian network is a graphical model that is constructed on the basis of two main ingredients: nodes (or
vertices) and arcs (directed edges). A node can represent a propositional variable of interest that possesses mutually
exclusive states to which a probability distribution10 is associated. This probability distribution has the form of a
so-called node probability table. A requirement that stems from probability theory is that the sum of the probabilities
associated with each state of a variable must sum up to unity. That is, a variable is in exactly one of its possible
states, although it may not be known which.

In turn, directed links are represented by arrows and these connect pairs of nodes. Such connections between
nodes reflect probabilistic relevance relationships. Variables that are not directly dependent are connected through
a chain of nodes. In summary, the topology of a Bayesian network thus represents the dependance relationships
between the variables that are retained in a probabilistic analysis [108]. The notion of ‘directed path’ refers to a

10The discussion in this paper will concentrate on discrete models, since genuine continuous nodes in Bayesian networks can only be used− at
the current state of their development − with several constraints [77]. Among the principal constraints is that one can only handle conditional
Gaussian (Normal) distributions. Another constraint, a structural one, forbids the specification of a discrete node as a child of a continuous
parent.
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sequence of connections between nodes. And for a Bayesian network structure to be valid, nodes and arcs must be
combined in a way that does not lead to cycles. For this reason, Bayesian networks are also called ‘directed acyclic
graphs’.

On the basis of these definitional elements, one can extend the consideration from a static description of
relevance relationships between nodes, as it is given by a graph’s structure, to the analysis of the flow of information
within a given network structure. That is, depending whether or not to a set of nodes evidence11 is given, a path may
be ‘activated’ or ‘blocked’. This determines whether or not evidence is propagated through a path.

In order to exemplify this on a more formal account, consider a path from a node X to a node Y that leads
through a node Z to which evidence is given. In such a case, X is said to be directionally separated (or ‘d-separated’)
form Y given Z when X and Y are serially connected via Z (i.e., by X → Z → Y ) or when they are divergently
connected (i.e., by X← Z→Y ). This means that X and Y are conditionally independent, given Z. The path will thus
be said to be ‘blocked’. If, however, X and Y are linked via Z through a converging connection (i.e., X → Z← Y ),
then X and Y are not d-separated, given Z, but ‘d-connected’. Unlike in the two situations mentioned above, here X
and Y are marginally dependent given information about the intermediate node Z. Accordingly, the path is said to
be ‘activated’ [108, 77].

The technical description of a relevance relationship between nodes is often based on kinship terminology. For
example, when a node A has an arrow pointing towards another node B, then A may be called a ‘graphical parent’
and B is called a ‘child node’. A node without parents is a called ‘root node’ and its associated node probability
table contains probabilities that are not conditioned (except on circumstantial information that is otherwise not
explicitly represented by a node). All other nodes, that is nodes with entering arcs, have probability tables that
contain conditional probabilities.

A main asset of Bayesian networks consist in their ability to compute a joint probability distribution by taking
account of assumed dependencies between variables. Generally, a distribution Pr of n discrete variables X1,X2, ...,Xn
can be decomposed by the chain rule of probability calculus:

Pr(A1, ...,An) =

[
n

∏
i=2

Pr(Ai | A1, ...,Ai−1)

]
Pr(A1) . (3.10)

But if one can assume that X j is influenced exclusively by certain predecessors and is insensitive to other variables,
one can reformulate Equation (3.10) to:

Pr(A1, ..,An) =
n

∏
i=1

Pr(Ai | par(Ai)) . (3.11)

Here, par(A j) stands for the group of parents of x j. This allows for a considerable reduction of the complexity
of computations as well as the quantity of probabilities that have to be stored. The result is a joint probability
distribution that is broken up into several local distributions. Such a local distribution contains a variable with its
parents and all the distributions conditioned by every combination of the values of the parents.

3.4 Case studies in evidence combination using Bayesian networks

3.4.1 Case example 1: Footwear mark evidence

The casework example analysed in this section focuses on the joint evaluation of size and general pattern observable
on footwear marks. Consider the following outset:

11With respect to Bayesian networks, the term ‘evidence’ refers to a statement about the certainties of a node’s states. A variable whose actual
state is known is also called ‘instantiated’.
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Case example 1:12 A woman was found dead in her bed. She died because of severe injuries and wounds inflicted
by a third person. At the crime scene, footwear marks from a left and right sole of a Nike Multi Court III of
size 13US have been detected. These marks were found on the upper surface of a toilet that was located under a
bathroom window, which was suggested as the point of entry of a burglar. Marks were also found on the window
and the tiled floor of the bathroom. During subsequent investigations, the husband became the focus of attention as
it was thought that he mimicked a burglary by gaining entry through the bathroom window. The husband himself
possessed a pair of Nike Multi Court III of size 13US. They were seized at his office. Examination of the crime
scene marks indicated that all marks were made by a Nike Multi Court III, because the observed mould-design was
specific to Nike, that model and that size. This could be taken as a reliable information. Subsequent comparative
examinations with the pair of shoes seized from the suspect did not allow to ‘exclude’ this pair as being the source
of the marks found on the crime scene.

This case covers several interesting aspects, relating in part to issues in the combination of evidence, that an
analysis through Bayesian networks can help to set further into context. As a first aspect, it is often useful to start by
focusing on the definition of target propositions, which is an important requirement for a probabilistic approach to
value of evidence analyses. For the purpose of the case considered here, suppose that it is of interest to draw an
inference about propositions at the source-level, that is whether or not the suspect’s pair of shoes (some other pair of
shoes) is at the source of the marks found at the crime scene. At this juncture it seems important to emphasise that
the contextual information has an important bearing on the formulation of the alternative proposition. In fact, if it is
not the suspect’s pair of shoes that left the crime marks (i.e., proposition Fp), then, following the proposition put
forward by the defence, it is not just some other pair of shoes that left the crime marks, but a pair of shoes worn by
a burglar (referred to hereafter as Fd). This stems from the husband’s suggestion that this home was burglarized
and that his wife was killed by a burglar. This definitional detail is important because it determines the relevant
population on which one should focus. In turn, this will have a bearing on the kind of data that will be used to
inform the numerical specification of the inference model proposed here below. More generally, this allows one to
insist on the importance of defining propositions not on the basis of observations made on the crime marks, but on
the basis of actual case circumstances.

In a further step, it is necessary to capture observations upon which an inference about the proposition F is
to be based. As mentioned in the case description, there are multiple marks found on the crime scene. However,
in order to keep the analysis and discussion at a tractable level, it is decided here to regroup distinct source-level
propositions for individual marks into one. This is considered as an acceptable simplification here because, on
the basis of information available from the scene investigation and subsequent mark examination, relevance of the
marks and a single source could be reasonably allowed as assumptions. In the currently discussed case, observations
can be broadly divided into two parts, that is (i) a Nike Multi Court III general sole pattern, and (ii) a size of 13US.
Let information about general pattern be denoted by E1 with e1 referring to ‘Nike Multi Court III’. Accordingly, ē1
will refer to any sole pattern other than ‘Nike Multi Court III’. In turn, let the variable for size be denoted by E2
with e2 referring to 13US, and ē2 all sizes other than 13US.

Following discussion about relevance relationships among variables of interest, presented earlier in Section 3.2,
a dependency structure for the variables considered here could be as shown in Figure 3.2. The likelihood ratio for
both items of evidence, E1 and E2, can thus be formulated as follows (omitting circumstantial information I from
notation):

LRE1,E2 =
Pr(E1 = e1,E2 = e2 | Fp)

Pr(E1 = e1,E2 = e2 | Fd)
=

Pr(E1 = e1,E2 = e2 | Fp)

Pr(E1 = e1 | Fd)Pr(E2 = e2 | E1 = e1,Fd)
. (3.12)

In this way of providing the likelihood ratio, the numerator is not written in extended form. In fact, if the
suspect’s pair of shoes with known characteristics is the source of the crime marks, then certainly we would expect
to find marks with the same characteristics. Therefore, the value of 1 is assigned to the numerator here. This is an

12The scenario is adapted from a real case analysed at the author’s institution by Prof. Champod.
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Figure. 3.2 – Bayesian network for inference about a binary source-level proposition F (defined as ‘the suspect’s pair of
shoes is the source of the crime marks’) on the basis of observations about general sole pattern (E1) and size (E2).

expression of assumptions that cover stability over time and in substance of shoe characteristics, as well as their
reliably discernible reproduction in terms of marks.

The denominator, however, is written in more detail by invoking the third law of probability. In particular,
general pattern is chosen as a conditional for size, as implied by the graph structure adopted in Figure 3.2. This
conditioning could also have been chosen differently, but generally better data are available for sizes among general
patterns rather than for general patterns among sizes. Proceeding in this way, attention is thus first drawn to
Pr(E1 = e1 | Fd), that is the probability of encountering the general sole pattern of a Nike Multi Court III, if another
pair of shoes, worn by a burglar, is at the source of the marks found at the crime scene. According to available
data in this case (i.e., a regional database on footwear observed on individuals that came to police attention), four
individuals among 21621 were seen to wear Nike Multi Court III shoes (i.e., one pair of each of the sizes 10US,
11US, 12US and 13US). For the purpose of the current discussion, we thus accept the coarse probability assignment
Pr(E1 = e1 | Fd) = 4/21621. A summary of the probability assignments for the table of the node E1 is given in
Table 3.1.

Table. 3.1 – Conditional probabilities assigned to the table of the node E1, where e1 denotes the observation of a Nike
Multicourt III general pattern and F denotes propositions at the source-level.

F : Fp Fd

E1: e1 1 0.000185
ē1 0 0.999815

Next, attention is directed to a second term, Pr(E2 = e2|E1 = e1,Fd), that describes the conditional probability
of finding a pair of shoes of size 13US among Nike Multi Court III shoes, if another pair of shoes, worn by a burglar,
is at the source of the marks found at the crime scene. Referring again to the data mentioned above, one can see that
there is one such pair among the four instances of this model of shoes. But adopting a value of 1/4 seems somewhat
delicate here because the sample size is very limited (4 individuals). Notice that if, for example, no instance would
have been observed, a reasonable probability assignment would not have been possible without considering a
procedure that is capable of dealing with zero observations [e.g., 27, 135]. For this reason, data on sales of Nike
Multi Court III shoes in neighboring countries have been collected. These suggested a value of 3.3% which was
retained here for Pr(E2 = e2|E1 = e1,Fd).13 This value enters the probability table of the node E2 (Table 3.2) and is

13This assignment is based on the assumption that the preferences of criminals (i.e., burglars) in choosing shoes does not deviate from that of
the ‘average’ shoe customer, as reflected by the general data on sales.
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part of the quantitative specification of the Bayesian network shown in Figure 3.2. Table 3.2 shows further that the
observation of size 13US is taken to be certain under the assumption that the suspect’s pair of shoes is the source of
the crime marks. The value 0.005 for a size 13US observation given the shoe of a burglar with another sole pattern,
Pr(E2 = e2 | E1 = e1,Fd), is also derived from an appropriate database. At this point, the value is primarily added
in order to comply with the definitional requirement of Bayesian networks of having fully specified node tables. As
seen from Equation (3.12), the value is however irrelevant for the kind of likelihood ratio calculations pursued here,
essentially because the evaluation in the scenario here is based on the observation E1 = e1.14 This will be different
for further analyses discussed towards the end of this section.

Table. 3.2 – Conditional probabilities assigned to the node E2, that is shoe size, as a function of general pattern (E1)
and assumptions about the source of the marks (i.e., ‘Fp: the suspect’s pair of shoes is the source of the crime marks’
and ‘Fd : some other pair of shoes, from a burglar, is the source of the crime marks’).

F : Fp Fd

E1 : e1 ē1 e1 ē1

E2 : e2 1 1 0.033 0.005
ē2 0 0 0.967 0.995

Introducing these assignments in the likelihood ratio (3.12) leads to the following result:

LRE1,E2 =
1

Pr(E1 = e1 | Fd)Pr(E2 = e2 | E1 = e1,Fd)
=

1
4/21621×0.033

≈ 160′000. (3.13)

This means that the joint consideration of the two descriptors, general pattern and size, of the footwear mark
evidence supports the proposition Fp by a factor of 160’000, rather than the stated alternative Fd .

The specified dependency between E1 and E2, as well as the conditioning of these variables upon the proposi-
tion F allows for effects of redundance, synergy or directional change. In order to examine if, and to what degree,
one of these effect applies in the case studied here, one can compute an expression R, defined as follows [125]:

RE2=e2|E1=e1 = 1−
logLRE2=e2|E1=e1

logLRE2=e2

, (LRE2=e2 6= 0) . (3.14)

This formula compares the likelihood ratio for E2 given E1, that is LRE2=e2|E1=e1 , against the likelihood ratio
for E2 for a situation in which nothing is known about E1, that is LRE2=e2 . It can be seen that if the numerator of
the fraction is larger than the denominator, this means that the evidential value associated with E2 is stronger by
knowing the state of the variable E1, than in a situation in which nothing would be known about the latter variable.
If this condition holds, then E2 and E1 are said to be synergic in nature and R becomes smaller than zero.

When the likelihood ratios in the numerator and the denominator of the fraction take the same numerical value,
which would mean that knowledge about E1 would not influence the probative value associated with E2, then E1
and E2 are conditionally independent on F . Consequently, R would become zero.

There is yet another situation for which the expression R allows for further insight, that is when it becomes unity.
In order for R to take this value, the fraction must equate zero. This is the case when the numerator becomes zero,
and this requires the term LRE2=e2|E1=e1 to be one. If the latter likelihood ratio is one, this means that E2 is entirely
redundant in an inference about F given E1.

14As a consequence of this, any probability assignments in the columns of E1 = ē1 do not enter the considerations.

95



PART III CHAPTER 3. ARTICLE - ANALYSIS OF EVIDENCE COMBINATION

If, however, the likelihood ratio in the numerator, LRE2=e2|E1=e1 becomes smaller than one, and the likelihood
ratio associated with E2 when nothing is known about the state of E1 is greater than one, then one is confronted
with an effect of directional change, and R would become larger than one.

The expression R thus is a measure of redundancy only if R takes a value between zero and one (0 < R≤ 1).
Notice, however, that the interpretation of R as put forth here is only valid for cases where both items of evidence,
E1 and E2, favour Fp over Fd .15

Applied to the case considered here, we start by finding the conditional likelihood ratio LRE2=e2|E1=e1 , given by:

LRE2=e2|E1=e1 =
Pr(E2 = e2 | E1 = e1,Fp)

Pr(E2 = e2 | E1 = e1,Fd)
=

1
0.033

≈ 30 .

Next, we continue by finding the likelihood ratio for the denominator of the fraction in Equation (3.14), that is
LRE2=e2 . If nothing is known about the state of the first variable, E1, then uncertainty about the actual state of this
variable needs to be accounted for. The likelihood ratio LRE2=e2 can thus be developed as follows:

LRE2=e2 =
Pr(E2 = e2 | Fp)

Pr(E2 = e2 | Fd)

=
Pr(E2 = e2 | E1 = e1,Fp)Pr(E1 = e1 | Fp)+Pr(E2 = e2 | E1 = ē1,Fp)

1−Pr(E1=e1|Fp)︷ ︸︸ ︷
Pr(E1 = ē1 | Fp)

Pr(E2 = e2 | E1 = e1,Fd)Pr(E1 = e1 | Fd)+Pr(E2 = e2 | E1 = ē1,Fd)Pr(E1 = ē1 | Fd)︸ ︷︷ ︸
1−Pr(E1=e1|Fd)

=
Pr(E1 = e1 | Fp)[Pr(E2 = e2 | E1 = e1,Fp)−Pr(E2 = e2 | E1 = ē1,Fp)]+Pr(E2 = e2 | E1 = ē1,Fp)

Pr(E1 = e1 | Fd)[Pr(E2 = e2 | E1 = e1,Fd)−Pr(E2 = e2 | E1 = ē1,Fd)]+Pr(E2 = e2 | E1 = ē1,Fd)

Using the data defined so far in Tables 3.1 and 3.2 thus allows one to find the following:

LRE2=e2 =
1× (1−1)+1

4/21621× (0.033−0.005)+0.005
≈ 200 .

One can thus see that by knowing that the general pattern is that of a Nike Multi Court III (E1 = e1), the likelihood
ratio for the information about shoe size diminishes from approximately 200 to approximately 30. This means that
the evidence of the general pattern incorporates already some information about the size of the shoe and this renders
the latter aspect inferentially redundant to some degree. On the basis of these calculations, one can now proceed
with calculating RE2|E1 , for which one obtains:

RE2=e2|E1=e1 = 1−
logLRE2=e2|E1=e1

logLRE2=e2

= 1− 1.4771
2.3010

≈ 0.3581 .

The expression R thus takes a value between 0 and 1 and this indicates an effect of redundancy. Following
Schum [125], one could thus say that information on shoe size 13US, that is E2 = e2, is redundant at 0.3581 with
respect to information about Nike Multi Court III general pattern (E1 = e1).

More generally, it is interesting to note that knowledge about E1 affects the assessment of the probative value
of E2 = e2 only as long as Pr(E2 = e2 | E1 = e1,Fd) 6= Pr(E2 = e2 | E1 = ē1,Fd). Stated otherwise, information
about the general pattern e1 is only relevant for assessing the probative value of the observed size E2 = e2 as long
as that size occurs at a different rate on pattern E1 = e1 than on other patterns. It is thus not only relevant to have
accurate information about the occurrence of the size 13US among Nike Multicourt III, but also among shoes

15An interpretation of R for the opposite case can be found, for example, in Schum [125].
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Figure. 3.3 – Representation of RE2=e2|E1=e1
as a function of uncertainty about Pr(E2 = e2 | E1 = ē1,Fd). Information

about the first item of evidence E1 is irrelevant for the assessment of the second item of evidence E2 = e2 when
Pr(E2 = e2 | E1 = e1,Fd) = Pr(E2 = e2 | E1 = ē1,Fd), that is equal to probability 0.033.

with other general patterns (different from Nike Multicourt III). To some degree, this may seem counterintuitive
because, generally, under the alternative proposition (i.e., Fd) one is inclined to inquire about the occurrence of
a target characteristic only among other compatible (in terms of general pattern) potential sources. A graphical
illustration of this shown in Figure 3.3, which represents the value of RE2=e2|E1=e1 as a function of uncertainty
about Pr(E2 = e2 | E1 = ē1,Fd). As may be seen, when Pr(E2 | E1 = e1,Fd) = Pr(E2 | E1 = ē1,Fd), that is equal to
probability 0.033, then information about E1 is irrelevant for the assessment of the probative value of E2 = e2. This
would also become clear from Table 3.2, which would contain the same values in the last two columns. This would
correspond to a situation of independence and the arc from node E1 to the node E2 would entail no inferential effect.

This example emphasises the importance of examining potential dependency relationships between distinct
items of evidence. Suppose that one would have assumed, for simplicity, that the shoe size and the general pattern
are conditionally independent on the specified set of target propositions {Fp,Fd}. In such a case, one would
have obtained a likelihood ratio of 1’081’05016 instead of 160’000. This represents a difference by a factor of
approximately 6.8. Besides, this example also provides an illustration of a case in which the likelihood ratios for
each item of evidence favor Fp over Fd and this implies, consequently, a situation of convergence.

3.4.2 Case example 2: Fingermark and footwear mark evidence

Case description

The example pursued in this section is based on a case reported in Champod [21]. It involves two main and distinct
items of evidence, that is fingermark and footwear mark evidence.

16LRE1 ,E2 =
Pr(E1=e1 ,E2=e2 |Hp)
Pr(E1=e1 ,E2=e2 |Hd )

=
Pr(E1=e1 |Hp)
Pr(E1=e1 |Hd )

× Pr(E2=e2 |Hp)
Pr(E2=e2 |Hd )

= 1
0.000185 × 1

0.005 = 1′081′050
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Figure. 3.4 – Bayesian network for the joint evaluation of finger (E1) and footwear mark (E2) evidence under crime-level
propositions (H). Uncertainty about the marks is accounted for by the nodes G. Intermediate source-level propositions
that specify the suspect as the source of the marks are incorporated in terms of the nodes F. The dotted arc between
the latter two nodes indicates a possible relevance relationship (depending on the probabilities assigned to the node F2),
conditional upon H. The nodes S and U model the ridge skin configurations of, respectively, the suspect and an unknown
person.

Case example 2: After a burglary in a shop, crime scene investigators detected two footwear impressions located
between flower pots at the back of the shop. In addition three fingermarks were detected on a sliding door. The
fingermarks consisted of three arches. These were thought to represent the anatomical sequence index-middle-ring
finger of a right hand (either a triple arch, denoted A-A-A, or of an arch, a tented arch and another arch, denoted
A-T-A). After cross-checking with staff members from the shop, the police investigators retained that, on the
basis of additional circumstantial information collected on the scene (e.g., on modus operandi), the evidential
marks were in direct relation with the burglary (i.e., relevant to the incident under investigation). The same day,
another burglary was committed in the same region. Following a description provided by the victim, a suspect
was arrested. Subsequently it was found that the shoesoles and the fingerprints of the suspect ‘corresponded’ to
the marks recovered on the scene of the first burglary. On their own, the fingermarks found at the scene did not
offer sufficient quality to allow for ‘individualising’ the suspect as the source of the crime marks. Likewise, the
footwear marks could not be unequivocally associated with the suspect’s shoes. The combination of the available
evidence (sequence of three arches; two corresponding footwear impressions) nevertheless provided an interesting
link between the suspect and the crime scene.

From an investigator’s or evaluator’s point of view, a main question of interest in this scenario is that of the
suspect’s involvement in first burglary. This is a principal difference to the case discussed in the previous section
where the proposition of interest was formulated on the so-called ‘source-level’. In the case considered in this
section, propositions are defined on the ‘crime-level’, that is ‘Hp: the suspect is the criminal’ and ‘Hd : some person
other than the suspect is the criminal’. For the forensic scientist, this implies questions of the following kind: ‘What
is the value of the fingermark evidence for discriminating between Hp and Hd?’, ‘What is the probative value of the
footwear mark evidence?’, and ‘What is the joint probative value of these two items of evidence?’.

Structure for a Bayesian network

Reasoning about questions as mentioned at the end of the previous section can be represented and supported by a
Bayesian network as shown in Figure 3.4. It provides an outline of two main strains of argument that are explained
in some further detail here below. Consider first the Bayesian network component for the fingermark evidence, that
is the path leading from the node for the target proposition H to the observational variable E1. In this local network
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fragment, the node G1 takes the task of modeling the relevance of the fingermark with respect to the burglary under
investigation. The node G1 is binary with the states G1 = g1 and G1 = ḡ1, representing the propositions according
to which, respectively, the fingermarks come (g1) and do not come (ḡ1) from the person who committed the burglary
(i.e., the offender). The probabilities associated with the two possible node states are Pr(G1 = g1) = 0.99 and
Pr(G1 = ḡ1) = 0.01. They are thought to reflect a firm belief that the fingermarks are relevant to the case. In turn,
the node F1 defines a pair of source-level propositions where F1 = f1 specifies that the suspect is the source of the
crime marks and F1 = f̄1 specifies that some person other than the suspect is the source of the crime marks. The
probabilities associated with this node are essentially assignments of zero and one, as shown in Table 3.3. For
example, if the suspect is the author of the burglary (Hp) and the crime marks come from the burglar (G1 = g1), then
the crime marks must come from the suspect: Pr(F = f1 | G1 = g1,Hp) = 1. One value, however, is different from
zero and one, that is the probability that the suspect left the marks for innocent reasons, Pr(F1 = f1|G1 = ḡ1,Hd).
Here, a value of 0.01 is assigned.

Table. 3.3 – Table with conditional probabilities for the node F1 (representing propositions at the source-level), as
a function of the nodes G1 (a proposition modeling uncertainty about the relevance of the crime marks) and H
(representing propositions at the crime-level).

H : Hp Hd

G1: g1 ḡ1 g1 ḡ1

F1: f1 1 0 0 0.01
f̄1 0 1 1 0.99

The source-level node F1 acts as a conditioning for the observational variable E1, which accounts for the
observations made on the crime marks. Let E1 = e1 denote the observation of an anatomical sequence A-A-A or
A-T-A, and E1 = ē1 the observation of an other sequence (different from A-A-A and A-T-A). In addition, let U be a
binary node that accounts for the proposition that an unknown person possesses the sequences in question (A-A-A
or A-T-A), with U = u denoting the truth and U = ū the negation of this proposition. The probabilities assigned
to the latter two states are Pr(U = u) = 0.0071 and Pr(U = ū) = 0.9929. These values have been derived on the
basis of data obtained from the AFIS system of the Swiss Central Police Bureau [21]. A further node S models the
observation of the general patterns observed on the suspect, with S = s denoting the proposition that the suspect
possesses the sequence A-A-A or A-T-A, and S = s̄ denoting the negation of this proposition. The probability
values assigned to this node do not require further consideration because subsequent analyses can assume the
suspect’s ridge skin configuration as known (i.e., the node S will be fixed to the state s so that any initial probability
distribution for this node will become irrelevant). A summary of the probabilities assigned to the node E1 is given in
Table 3.4. As may be seen, the assignments of zero and one imply that the node E1 will ‘copy’ the actual ridge skin
configuration of the suspect whenever f1 holds, and that of an unknown person in all cases where f̄1 holds. Besides,
notice that the explicit representation in terms of distinct nodes of the ridge skin configuration of the suspect and
an unknown person allows one to complete the node table of E1 with zeros and ones. In a model without nodes S
and U , the probability of the occurrence of the target ridge skin configuration would need to be specified directly in
the table of the node E1.

A second strain of argument that makes up the Bayesian network shown in Figure 3.4 pertains to the footwear
mark evidence. Here, the node G2 models uncertainty about the relevance of the footwear mark. This binary
node has two states, G2 = g2 for a situation in which the footwear marks come from the offender and G2 = ḡ2
for a setting in which they do not come from the offender. In analogy to the network fragment for fingermark
evidence, ‘relevance probabilities’ of Pr(G2 = g2) = 0.99 and Pr(G2 = ḡ2) = 0.01 are defined here. The node F2
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Table. 3.4 – Conditional probabilities assigned to the node E1 (observations made on the crime marks) as a function of
the source-level proposition F1 as well as the ridge skin configuration of the suspect (S) and that of an unknown person
(U).

F1: f1 f̄1
S: s s̄ s s̄

U : u ū u ū u ū u ū

E1: e1 1 1 0 0 1 0 1 0
ē1 0 0 1 1 0 1 0 1

defines a pair of source-level propositions. The state F2 = f2 defines the suspect as the source of the crime marks
whereas F2 = f̄2 defines some person other than the suspect as the source. Notice that the probability that the
suspect was wearing the shoe corresponding to the mark, given that he was the offender and that he left the mark
(i.e., Pr(F2 = f2 | G2 = g2,Hp)) is defined as a function of the number of pair of shoes that the suspect could have
potentially worn. In the case considered here, it is assumed that the suspect is in possession of two pairs of shoes
regularly worn, so that the assignment Pr(F2 = f2 |G2 = g2,Hp) = 0.5 is retained here (later on, this probability will
be abbreviated by w). The probability that the suspect left the marks for innocent reasons, Pr(F2 = f2 |G2 = ḡ2,Hd),
is also accounted for in this node. This probability depends on whether or not the suspect is the source of the
fingermarks (proposition F1) and is expressed by, respectively, a1 and a′2. A summary of all assignments is given in
Table 3.5.

Notice that the directed link from F1 to F2 entails inferential force only when a2 6= a′2. An assignment of the
kind a2 6= a′2 may be necessary to express the belief that the probability for the suspect being the source of the
footwear marks, if he is innocent (Hd) and the footwear marks do not come from the offender (G2 = ḡ2), is different
according to the truth or falsity of the proposition according to which the suspect is the source of the fingermarks (F1).
This would be a case of asymmetric independence, which occurs when variables are independent for some but not
all of their values [131].

Table. 3.5 – Conditional probabilities assigned to the source-level node F2 as a function of the propositions at the
crime-level (node H), the relevance of the crime marks (node G2) and the source-level proposition for the fingermark
evience (node F1).

H : Hp Hd

G2 : g2 ḡ2 g2 ḡ2

F1 : f1 f̄1 f1 f̄1 f1 f̄1 f1 f̄1

F2: f2 0.5 0.5 0 0 0 0 a2 a′2
f̄2 0.5 0.5 1 1 0 0 1−a2 1−a′2

The node E2 represents the observations made on the crime marks. The pattern actually observed in this case
(and found to correspond with the suspect’s shoe) is represented by E2 = e2. All other patterns are represented
by the state E2 = ē2. The principal probabilities associated with this node are Pr(E2 = e2 | F2 = f2) = 1 and
Pr(E2 = e2|F2 = f̄2) = 0.015, derived from a relevant regional database.17

17In order to avoid that the latter assignment is directly specified in the node table of E2, it would be possible to specify the occurrence of the
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The separate lines of argument from E1 and E2, via source-level propositions F and relevance considerations G,
to ultimate propositions of interest, H, are instances of a general Bayesian network fragments for evaluating
scientific evidence under crime-level propositions, initially described in Garbolino and Taroni [56]. Here, a logical
combination of these two local lines of reasoning can be operated because of a common target node H, that is the
proposition according to which the suspect is the offender [131]. This leads to an overall network structure that can
be recognised as the classical conflict/convergence model proposed by Schum [125], discussed earlier in Section 3.2
(Figure 3.1(b)). In fact, there are the two event classes here, F1 and F2, that are not mutually exclusive, but both are
directly dependent on H. Inference about those two event classes is made on the basis of E1 and E2, respectively.
Notice further that the Bayesian network structure proposed in Figure 3.4 assumes that F1 and F2 are taken to be
asymmetrically independent on H. As will be investigated in more detail further on, effects such as redundancy,
synergy or directional change can appear in this network whenever a2 6= a′2.

Likelihood ratio analyses

Start by considering the overall likelihood ratio LRE1=e1,E2=e2 for the two items of evidence E1 and E2. It can be
written as the product of the individual likelihood ratios LRE1=e1 and LRE2=e2|E1=e1 :

LRE1=e1,E2=e2 =
Pr(E1 = e1,E2 = e2|S = s,Hp)

Pr(E1 = e1,E2 = e2 | S = s,Hd)
=

Pr(E1 = e1 | S = s,Hp)

Pr(E1 = e1 | S = s,Hd)︸ ︷︷ ︸
LRE1=e1

× Pr(E2 = e2 | E1 = e1,S = s,Hp)

Pr(E2 = e2 | E1 = e1,S = s,Hd)︸ ︷︷ ︸
LRE2=e2 |E1=e1

.

(3.15)
A more detailed examination of this likelihood ratio is pursued hereafter in two steps, by separately considering the
likelihood ratios associated with the individual items of evidence. When incorporating the model described so far
in this section in a Bayesian network software, the numerator of LRE1=e1 can be found by fixing the state of the
node H to Hp and that of the node S to s. The conditional probability of interest is then obtained at the node E1 and
takes the value 0.990071. The value for the denominator of LRE1=e1 is obtained at the same node, by leaving the
node S in state s,18 but changing that of H to Hd . The result of this propagation is 0.00719929. The high number
of decimals in this result is solely retained here in order to allow for a subsequent comparison with an algebraic
approach. In summary, thus, the following numerical result can be derived from a Bayesian network:

LRE1=e1 =
0.990071

0.00719929
= 137.5234≈ 138.

The coherence of this result can be checked against published algebraic solutions for probabilistic inference about
crime-level propositions that allow for uncertainty about the relevance of the crime mark. As established in [56], the
case considered here relates to the following likelihood ratio originally developed in [41]:

LR =
r{1+(k−1)γ}+ k(1− r)γ ′

k[rγ +(1− r){a1 +(1−a1)γ ′}]
. (3.16)

In this expression, r accounts for the probability of relevance of the mark, incorporated in the currently discussed
Bayesian network in terms of the value 0.99 for Pr(G = g1). The variable k represents the number of offenders
which, in the case here, is one. The probability that the mark was left by the suspect for innocent reasons, designated

observed pattern on some other shoe in terms of a distinct node, in analogy to what has been done above for the ridge skin configuration of an
unknown person.

18The reason for this is that, even though in the denominator one assumes an offender different from the suspect (H = Hd ), it may still be the
case that the suspect is the source of the crime stain (F1 = f1 is the case). This stems from the conditional probabilities assigned to the node F1
(Table 3.3). It is for this reason that it is important to keep information about the suspect’s ridge skin configuration as ‘known’ (S = s).
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by a1, corresponds to Pr(F1 = f1 | G1 = ḡ1,Hd) of the Bayesian network (and was assigned the value 0.01). The
terms γ and γ ′ represent the population proportions of the target analytical characteristic (here, the ridge pattern
configuration) among criminal and non-criminal individuals. For the kind of ridge skin characteristics considered
here, no differences in occurrence are assumed in the latter two categories of persons (criminal and innocent persons).
Stated otherwise, it is assumed that there is no association between ridge skin characteristics and criminal behaviour.
Analogous assumptions are regularly invoked for DNA evidence. Therefore, a single value γ ′ = γ is retained here.
It corresponds the the value assigned to the state u of the node U , that is the probability that an unknown person
would possess the ridge skin characteristics of interest (taken to be 0.0071 here). Applying these numerical values
in Equation (3.16) allows one to obtain 137.5234 which is in entire agreement with the numerical values derived
from the proposed Bayesian network.

In a second step, one can proceed analogously for the footwear mark evidence, but there are two options to
this. One consists in assuming a2 = a′2, which is a setting in which the footwear mark evidence and the fingermark
evidence would be considered independent conditionally on H. A second option consists of allowing for an
asymmetrical independence, which applies whenever a2 6= a′2.

Consider the former case first and set the probability for leaving the marks for innocent reasons, a2, to 0.01.
Then, setting the node H to, alternatively, Hp and then to Hd , allows one to find the numerator and the denominator
of the likelihood ratio LRE2=e2 :19

LRE2=e2 =
0.502575
0.0150985

= 33.28642≈ 33.

Again, the coherence of this result can, following analyses presented in [131, 14], be examined by comparison with
an algebraic approach previously published by Evett et al. [46]:

LR =
[pmrkw+ γ(1−w)]r+ γ(1− r)
γ +[pmrka2 + γ(1−a2)](1− r)

. (3.17)

This formula is obtained by updating Equation (3.16) with pmrk, that is the probability of observing the crime mark
given that the suspect’s shoe is at the source, w, the probability of the shoe available for comparison purposes being
the source, assuming the mark being left by the offender and that the suspect is the offender as well as by setting
γ ′ = γ .

In the Bayesian network discussed here, pmrk corresponds to Pr(E2 = e2|F2 = f2) which was assigned the value
of 1. The term w corresponds to Pr(F2 = f2|G2 = g2,Hp) and is taken to be 0.5. The rarity of the characteristics,
γ , is implemented in terms of Pr(E2 = e2 | F2 = f̄2), using a value of 0.015. The relevance term r corresponds
to Pr(G2 = g2) and is set to 0.99. Applying these values to Equation (3.17) leads to 33.28642. This result, too, is in
entire agreement with the result derived from the proposed Bayesian network.

Next, consider the second option for a likelihood ratio development for E2. As soon as one allows the probability
of innocently leaving the footwear mark to be affected by knowledge about the source-level proposition of the
fingermarks, the likelihood ratio for the second item of evidence E2 needs to include the conditioning on E1, as
noted earlier in Equation (3.15). For such a case, assuming a structural relationship of the variables as implied by
the Bayesian network shown in Figure 3.4, the following likelihood ratio applies:20

LRE2=e2|E1=e1 =
wr+(h2/ f2−1)−1{

a1(1−r1)
a1(1−r1)+γ[r1+(1−a1)(1−r1)]

(a2−a′2)+a′2
}
(1− r2)+(h2/ f2−1)−1

. (3.18)

19Notice that the conditioning on E1 = e1 is omitted from notation because a2 = a′2 implies conditional independence of the two items of
evidence.

20Further details on the derivation of this result is given in C.2.
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This result clearly illustrates that, on a purely formal account, likelihood ratio formulae may become increasingly
complex whenever dependencies (with respect to other items of evidence) need to be accounted for. Confining such
calculations to Bayesian networks thus provides substantial support in evidential assessment.

For the currently discussed case, suppose that one can agree on an increased probability a2, that is the suspect
being the source of the footwear mark, if he is innocent (Hd) and the crime mark does not come from the
offender (G2), whenever it is already known that he is the source of the fingermarks (F1). For the purpose of
illustration, let a2 = 0.4 while keeping a′2 = 0.01. In such a case, the likelihood ratio LRE2=e2|E1=e1 is 33.1692
(result rounded), which is almost equivalent to LRE2=e2 under conditions of conditional independence. This result
should however not be taken as a suggestion to avoid the analysis of possible dependencies. It is often useful to
investigate the effect of potential dependency relationships using varying assumptions, prior to deciding whether
simplified calculations, based on independence assumptions, can reliably be retained.

In summary, thus, the likelihood ratio for the fingermark evidence, LRE1=e1 , and for the footwear mark evidence,
LRE2=e2|E1=e1 , both support Hp rather than Hd . One is thus confronted with a situation of convergence. By
multiplying the two component likelihood ratios as defined by Equation (3.15), a value of 4562 (value rounded) is
obtained. The result for an assumption of conditional independence of the two items of evidence would be 4577,
which would be slightly less conservative. In either case, the result shows that the probative value, which is limited
to moderate for the individual items of evidence, becomes strong when considering the two items of evidence in
combination.

Analysis of redundance

In cases of asymmetric independence between F1 and F2, one can investigate possible effects of redundance. In
view of the expression defined earlier in Equation (3.14), the following relation can thus be invoked here:

RF2= f2|F1= f1 = 1−
logLRF2= f2|F1= f1

logLRF2= f2
. (3.19)

Start by considering the component likelihood ratio LRF2= f2|F1= f1 , which requires an extension to uncertainty about
the relevance of the footwear mark evidence (G2):

LRF2= f2|F1= f1 =
Pr(F2 = f2|F1 = f1,Hp)

Pr(F2 = f2|F1 = f1,Hd)

=
Pr(F2 = f2|F1 = f1,G2 = g2,Hp)

r2︷ ︸︸ ︷
Pr(G2 = g2)+

0︷ ︸︸ ︷
Pr(F2 = f2|F1 = f1,G2 = ḡ2,Hp)Pr(G2 = ḡ2)

Pr(F2 = f2|F1 = f1,G2 = g2,Hd)︸ ︷︷ ︸
0

Pr(G2 = g2)+Pr(F2 = f2|F1 = f1,G2 = ḡ2,Hd)︸ ︷︷ ︸
a2

Pr(G2 = ḡ2)︸ ︷︷ ︸
1−r2

.

Invoking notation introduced earlier in Section 3.4.2, that is Pr(F2 = f2|F1 = f1,G2 = g2,Hp) = w, one thus obtains:

LRF2= f2|F1= f1 =
wr2

a2(1− r2)
.

This result shows that, given Hp, the probability of the suspect’s shoe being the source of the footwear mark is a
consideration of the uncertainty about relevance of the crime mark, expressed in terms of r2, and the probability
of the shoe of interest being worn, expressed by w. Under the assumption that the suspect is not the author of the
crime, Hd , the probability that the suspect’s shoe is the source of the crime marks depends on the probability that the
crime marks do not come from the offender (i.e., 1− r2) as well as the probability of leaving the mark for innocent
reasons, a2.
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Invoking similar developments, one can find the likelihood ratio for F2 without a conditioning on knowledge
about F1:

LRF2= f2 =
wr2

a1(1− r1)(1− r2)(a2−a′2)+a′2(1− r2)
.

It appears worth noting that, in the case where a2 = a′2, the likelihood ratio LRF2= f2 becomes

LRF2= f2 =
wr2

a1(1− r1)(1− r2)(a2−a′2)︸ ︷︷ ︸
0

+a′2(1− r2)
=

wr2

a′2(1− r2)
=

wr2

a2(1− r2)
= LRF2= f2|F1= f1 .

It is readily seen that this will set the expression RF2= f2|F1= f1 , that is Equation (3.19), to zero. A graphical
representation of this behaviour is given in Figure 3.5.
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Figure. 3.5 – Representation of RF2= f2|F1= f1
as a function of a2

3.5 Discussion and conclusions

The joint evaluation of several items of evidence, as well as the examination of their individual contribution, is a
requirement that follows naturally from the fact that items of evidence usually do not appear in isolated, but in
concurrent ways. This gives rise to inferential interactions that go beyond those that may be encountered when
looking only at isolated items of evidence. Inferential interactions such as redundance, synergy or directional
change, are subtle topics that require an assessment on a case-based level in order to avoid possible instances of
over- or underestimations. The isolated evaluation of evidence − when there is more than one item involved − may
thus be unsafe when one is unaware of how they interact. Famous cases like People vs Collins provide illustrative
examples for this [48]. In order to capture potential effects due to evidential interactions and to set collections of
evidence appropriately in context, both forensic scientists as well as legal practitioners should thus take interest in
approaching questions in the combination of evidence with particular awareness.
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An additional layer of complication that adds to this outset is that the general context in which a joint as-
sessment of scientific evidence ought to be operated, is probabilistic. This normative, prescriptive and inevitable
requirement [97] helps to guard against a potentially fallacious, intuitive handling of uncertainties that is typical for
unaided human reasoning. When considering one item of evidence, scientists should thus assure that their evaluative
framework is amenable, on the one hand, for building upon existing knowledge, based on particular evidence, and,
on the other hand, for a logical combination with forthcoming evidence, that is evidence that has not yet been
considered. In addition, their approach must be able to cope with the fact that sources of uncertainty associated with
the evaluation of one item of evidence may be relevant when considering another piece of evidence. This task is
analytically demanding, but past and current directions of research in graphical (probabilistic) modeling offer some
viable directions for approaching this challenge.

As argued throughout this paper, graphical models allow one to clarify and to obtain a concise representation of
the structural dependencies assumed to hold among different aspects of evidence. The seminal works of Schum [125]
constitute instances of analytical approaches to direct fundamental thinking about defining appropriate expressions
of evidential value (i.e., in terms of likelihood ratio formulae). The generic patterns of reasoning defined and
instantiated in terms of so-called ‘Schum graphs’ emerge also in current Bayesian network-based approaches. As a
main additional feature with respect to Schum graphs, Bayesian networks offer a full coverage of an underlying
probabilistic architecture that allows one to confine calculations entirely to the model (i.e., when implemented
within a software environment). This allows reasoners to concentrate efforts and attention to building appropriate
network structures. A probabilistic evaluation of the kind presented in this paper supports a refined understanding
of the evidence one is examining and clarifies the inferential effects and entities one is confronted with. It also
points out, contrary to the opinion of the Court of Appeal in R v T [106], that an evaluation does not necessarily
depend upon data itself or precise numbers. Other levels of consideration, such as general principles of coherent
reasoning about a given problem and logical formalization are also integral parts of evidential reasoning. It is indeed
the Bayesian approach that even allows one to exploit tacit knowledge correctly.

As pointed out throughout this paper, even apparently ‘simple’ examples involving only two items of information
(or, evidence) may entail a great variety of inferential issues to be explored. The Schum graphs allow one to recognise
general patterns of inference towards a given target proposition whereas Bayesian networks support the extension
of these ideas to more complex strains of inference. The latter include means for the probabilistic assessment of
additional aspects such as the relevance of evidential material. A further important aspect of the use of Bayesian
networks is that they can be shown to provide results that are in agreement with existing probabilistic procedures for
the evaluation of single items of evidence. Bayesian networks thus provide a framework for implementing these
approaches in practice, but also offer a possibility to combine distinct evaluative procedures coherently. This latter
task would become increasingly difficult if it were approached on a purely algebraic level. Besides, the agreement
between results from Bayesian networks and existing inferential approaches is also important for justifying particular
Bayesian network models. This way of deriving inference models serves the purpose of illustrating that one can
propose testable Bayesian networks whose properties are not arbitrary.

It thus appears that a primary advantage of a Bayesian network based approach to analyses of the combination
of evidence consists in facilitating the locating, formal articulating and handling of relevant parameters. This can
aid scientists to bring in a more secure position whenever they are required, for example, to explain the foundations
of their reasoning and to evaluate the effect of specific parameter uncertainties. The recent judgment of the Court of
Appeal in R v T [106] clearly illustrates that there is an ongoing need for this.

The intention of the authors here is not, at the moment, to propose such models for use in written reports or for
presentation before trial. Working with Bayesian networks in forensic science is largely concerned with thinking
about the way in which scientists assess evidence in the light of propositions relevant for a given actor within legal
proceedings, and at a given juncture within a legal process. Something worthwhile has been gained if Bayesian
networks can increase the level of insight in the inductive nature of this thought process.
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4 Investigating evidential phenomena in combined ev-
idence

ABSTRACT. This paper fuses elements of Irving J. Good’s research on weight of evidence and David A.
Schum’s studies on evidence-based reasoning. The three main findings provided by such a fusion are methods
to measure inferential interactions, dissonances among items of evidence, and relative contributions of items of
evidence. All three measures are pragmatically defined in order to ensure a versatile applicability in inference
tasks involving combined evidence or masses of evidence. These measures enable a more in-depth examination
of recurrent phenomena in evidence-based reasoning, such as convergence, contradiction, redundancy, and
synergy. Most of these phenomena have − to the best of the author’s knowledge − either not been formally
described to this date, or the formal description proposed remained of limited use for evidence-based reasoning
tasks. The present research addresses this deficit in the current understanding and treatment of these evidential
phenomena.

Keywords. Weight of evidence · evidence-based reasoning · inferential interaction · dissonance · relative
contribution

4.1 Introduction

Schum’s teaching on evidence-based inferences in general, and his book ‘The Evidential Foundations of Probabilistic
Reasoning’ by David A. Schum [125] in particular, are references on reasoning about combined evidence and
masses of evidence with an importance difficult to overstate. The present article intends to extend Schum’s teachings
on combined evidence and masses of evidence with a focus on what might best be summarized by ‘evidence-based
reasoning about masses of evidence given by its probabilistic foundation’. This phrase contains three underlying
characteristics of this paper.

The first is the probabilistic foundation of evidence-based reasoning1, as emphasized in existing discourses on
the importance of probability theory for the reasoning about evidence [e.g., 125, 57, 97]. With respect to this, the
object of investigation in this paper is to extend the consideration to the different evidential phenomena emerging in
settings of combined evidence or masses of evidence.

Second, evidence-based reasoning is understood here, as an instance of probabilistic reasoning. That is, a
probabilistic reasoning is said to be an evidence-based reasoning if the bearing of some observation(s) (i.e., evidence)
on an issue of interest (e.g., hypotheses) is examined, but not if, say, the bearing of an issue of interest on possible
observations is studied. In other words, the term ‘evidence-based reasoning’ is taken to refer to inductive (or
abductive), diagnostic, or bottom-up inferences. The notion of inferential force of evidence, measured by the
likelihood ratio (see Section 4.1.4), is directly relevant in the context of this kind of reasoning [e.g., 125, 93, 134].

1The present research adopts a subjectivist or Bayesian perspective [e.g., 9, 37].
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Another form of the inferential force known in the discipline of law is the weight of evidence [81]. The notion of
weight of evidence was coined by Irving J. Good [e.g., 58, 60]. The logarithm of the likelihood ratio corresponds to
the weight of evidence. It has the advantage to be additive2. Good himself suggested the possibility to view the
expected weight of evidence as a quasiutiliy like money that can be maximized if other utilities are unavailable or
difficult to assess [66, 64].3 One could consider the weight of evidence as a currency in the world of evidence-based
reasoning. Thus, the weight of evidence has not only an intuitive appeal, but is also very instructive for investigating
evidential phenomena occurring in masses of evidence.

Third, the concepts of ‘combined evidence’ and ‘masses of evidence’ are essentially the same in nature. The
latter merely emphasizes the large number of items of evidence involved in a reasoning task so that a given mass of
evidence is a particular instance of combined evidence standing out by its size. Indeed, all the evidential phenomena
that this paper addresses can also be observed in the smallest possible combination of evidence, that is, within two
items of evidence. Schum was the first to describe most of the evidential phenomena investigated here [125]. The
contribution of this paper is to capture these phenomena more succinctly and render them measurable by using the
notion of weight of evidence. The novel analysis methods of these phenomena proposed here, renders evidential
subtleties more accessible, reveals evidential structures within reasoning patterns, and suggests general implications
for evidence-based reasoning.

4.1.1 Relevance of the present research

The use of probabilistic expert systems for evaluating has become more and more common in forensic and legal
practice [e.g., 134, 30, 94]. Most of the time the evaluation of evidence is confined to the derivation and examination
of likelihood ratios or posterior probabilities of hypotheses. Combined evidence and masses of evidence, however,
often exhibit evidential phenomena particular to a setting of combined evidence. These phenomena are likely to
produce results that are generally difficult to grasp and trace [e.g., 38, 139]. In such cases, it might not be satisfying
to confine the examination to the inferential force (or posterior probabilities) of the combined evidence. The authors
believe that clear descriptions and analysis methods of such evidential phenomena can contribute greatly to a better
understanding of evidential phenomena recurrently occurring in combined evidence and masses of evidence.

The next three sections outline basic notions of combined evidence, inferential force, and weight of evidence
that form the starting point of the present investigation.

4.1.2 Natural redundance: A criterion for the generic combinations of arguments of evidence

Schum identified two generic structures of combinations of evidence based on the concept of natural redud-
nance [125]. They are depicted in Figure 4.1 as Bayesian networks [e.g., 108, 28, 83]. Each Bayesian network
connects two reports, representing the actual evidence, to a hypothesis, representing the issues of interest. Schum
calls such structures ‘arguments of evidence’ [125]. According to P. Tillers, the use of this word “... serves as a
reminder that inference is a human construct and that complex formal analyses of evidence are also constructed,
assembled, and constituted by human actors”. [141, p. 1253] In this sense, arguments of evidence are often built
upon multiple sub-arguments, where each sub-argument tackles a different aspect of evidence. Such arguments
serve as frameworks for cascaded or hierarchical inferences [e.g., 127]. Prominent examples are the relevance of
an event E for hypotheses of interest H, or the credibility of a given report R regarding the occurrence of an event
E. The first type of sub-arguments are called arguments of relevance whereas the second are called arguments of
credibility. The distinction stems from the epistemologically crucial observation that the perception of a relevant
fact is different from the relevance of a fact for a hypothesis. The argument of credibility is concerned with observer

2The term ‘weight’ is often used shorthand for weight of evidence in this paper.
3However, the paper restricts the attention to the weight of evidence. That is, it does not extend the discussion to utility or loss functions.
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Figure. 4.1 – Generic ways of evidence combination in the form of Bayesian networks: (a) representation of a situation,
in which reports R1 and R2 refer to the same event E; (b) situation where reports R1 and R2 refer to different events E1
and E2, which are further directly connected to each other; (b’) situation where the events E1 and E2 are conditionally
independent given H.

reliability and observer errors, but not the question about the relevance of a fact4.
In situation (a), each of two reports R1 and R2, such as observations or sensor responses, refer to the same event

E, which in turn, represents the relevant fact for the hypotheses of interest H. Hence, there are two arguments of
credibility but only one argument of relevance. In situation (b), however, the two reports refer to different events
each, that is E1 and E2 respectively, and each of these two events is relevant for the hypotheses of interest. Thus,
there are two distinct lines of reasoning upon the hypotheses H. In addition, the events E1 and E2 are conditionally
dependent given the hypotheses H, which is indicated by an edge connecting the node of E1 to the node of E2.
Schum calls edges that directly connect two lines of argument wefts [125]. The situation depicted in (b’) is a special
case of (b), in which the two events are conditionally independent, given H, as indicated by the absence of a weft.
In situation (a) R1 and R2 refer to the same naturally redundant event E. In situations (b) and (b’) R1 and R2 refer
to different naturally nonredundant events. Situation (a) is a special case of situation (b), in which E1 = E2 as
shown by Schum [125]. For the derivations of the likelihood ratios from argument structures of (a) and (b’) from (b)
see D.1.

4.1.3 Harmonious and dissonant evidence

Schum identified two distinct forms of evidence in combination: harmonious and dissonant evidence [125].
Harmonious evidence refers to situations in which two or more reports support the same hypothesis over the
alternative. If all reports refer to the same event, then the reports are said to form an instance of corroborative
evidence. If, however, the reports refer to naturally nonredundant (i.e., different) events, then the reports are said to
form an instance of converging evidence.

Unlike harmonious evidence, dissonant evidence refers to situations, in which two or more reports support
different hypotheses. If the reports refer to naturally redundant events, then the reports form an instance of
contradicting evidence. If the reports refer to naturally nonredundant events, then the reports form an instance of
conflicting evidence.

4The assessment of observer errors plays an important role in evidence-based inferences. This is reflected by the fact research on that subject
are conducted from different perspectives, such as with reference to utility theory [66], to signal detection theory [123], to multiple reports from
unreliable sources [129], or false positive probabilities in DNA evidence [140]. All these studies assert that large observer error probabilities can
eliminate the inferential force of even highly relevant items of evidence.
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Thus, corroboration and contradiction inhabit the same type of argument structure depicted in Figure 4.1 (a).
Convergence and conflict also inhabit the same type of argument structure depicted in Figures 4.1 (b) and (b’). Thus,
corroboration and contradiction refer to relationships between arguments of credibility, as opposed to convergence
and conflict, which refer to relationships between entire lines of reasoning.

4.1.4 Inferential force and weight of evidence

Harmonious and dissonant evidence differ by how the inferential forces of different items of evidence relate to each
other. The inferential force of an item of evidence, such as a report, can be measured by the likelihood ratio (LR).
The LR is a number that expresses if, and to what extent, an item of evidence supports one hypothesis over another.
It appears in the odds form of the Bayes’ theorem.

Let r (r ∈ R = {r,r}) represent a report, H = {h,h} the hypotheses of interest, and I the background knowledge.
The odds form of the Bayes’ theorem is

Pr(h | r, I)
Pr(h | r, I)

=
Pr(r | h, I)
Pr(r | h, I)

Pr(h | I)
Pr(h | I)

, (4.1)

where Pr(h | r, I)/Pr(h | r, I) and Pr(h | I)/Pr(h | I) are the posterior odds and prior odds respectively (where ‘prior’
means prior to receiving r and ‘posterior’ means after having received r). The fraction Pr(r | h, I)/Pr(r | h, I) is the
LR, the measure of the inferential force that r exerts on H. Following Good’s notation, the LR will be written as
F(h : r | I) [e.g., 58, 64]. The ratios become additive when the logarithm of Equation 4.1 is taken

log
Pr(h | r, I)
Pr(h | r, I)

= logF(h : r | I)+ log
Pr(h | I)
Pr(h | I)

. (4.2)

Good calls the logarithm of the LR the ‘weight of evidence’ [e.g., 58, 64]. By adopting Good’s notation, the
logarithm of the LR can written as W (h/h : r | I). It expresses the weight of evidence provided by r in favor of h
as compared to h given I. Since the hypotheses are clear in the present case, one can retain the hypothesis in the
numerator for expressing the weight of evidence. That is, one can write W (h/h : r | I) =W (h : r | I). 5

The joint weight of evidence of n reports that are conditionally independent given H is given by the sum of the
weight of evidence of reach report ri, i ∈ {1,2, ...,n}

W (h : r1,r2, ...,rn | I) =
n

∑
i=1

W (h : ri | I). (4.3)

If, however, the reports are not conditionally independent given H then

W (h : r1,r2, ...,rn | I) =W (h : r1 | I)+
n

∑
i=2

W (h : ri | r1, ...,rn−1, I), (4.4)

which is a consequence of the multiplication law of probability.
The background knowledge I will be not be explicitly represented from now on in order to increase the clarity

of the presentation. However, one should keep in mind that all probabilistic terms in this paper are conditioned by I.

5The base of the logarithm used in this paper is 10. Thus, the weight of evidence is measured in bans [65]. For example, a report that takes
the value of LR of 100 has 2 bans (or short 2 b) of weight of evidence.
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4.1.5 Outline of the paper

Section 4.2 introduces the framework and the notation of recurrently used variables. Section 4.3 presents Schum’s
redundance measure, and explains how it can be derived from the multiplication law of probability. This derivation
enables a definition of a general measure of inferential interactions between any number of different items of
evidence6. Section 4.4 introduces a measure for dissonant and harmonious evidence, and how it can be employed
and interpreted. Section 4.5 shows a straightforward way to compare the magnitudes of weight of evidence stemming
from different sets of evidence, and discusses evidential subtleties that can be observed on the basis of such a
comparison. The discussion and conclusions are presented in the last section.

4.2 Framework for the analysis of masses of evidence

All generic structures for combining evidence considered here, dissonant or harmonious, involve a divergent
connection7, which ties two or more lines of argument to a single inference stage such as an intermediary event E or
to ultimate hypotheses of interest H. The situation of Figure 4.1 (a) incorporates a divergent connection of the form
R1← E → R2, whereas the situations (b) and (b’) incorporate divergent connections of the form E1← H→ E2.
Since the divergent connection is the point where different lines of argument merge, it is natural to suppose that this
point plays a crucial role in the emergence of different evidential phenomena such as harmony, dissonance, synergy,
redundance, and directional change.

Sections 4.2.1 and 4.2.2 introduce the general representation of a divergent connection depicted in Figure 4.2
and a corresponding notation. This general representation serves as a template for measuring and analyzing different
aspects of combined evidence.

4.2.1 General representation of a divergent connection

Figure 4.2 depicts a general representation of a divergent connection in the form of a Bayesian network, where
the consideration of wefts is omitted at this juncture and all the variables are binary. Nodes A represent ancestor
nodes, as opposed to descendant nodes denoted as D. An index k is assigned to each ancestor node in order to
indicate the number of edges separating the ancestor node from the divergent connection. The ancestor node that is
directly involved in the formation of a divergent connection has an index k = 0. The ancestor node farthest from the
divergent connection has an index of k = a. Hence, one has Ak, where k = {0,1, ...,a}.

Descendant nodes are indexed by i and j. The index i designates the line of argument (i.e. the branch number)
to which the descendant node belongs. Thus, if n lines of argument (branches) are merged in a divergent connection,
one has i = {1,2, ...,n}. Index j indicates the number of edges separating a descendant node from a divergent
connection. Descendant nodes that are directly involved in the formation of a divergent connection have the value
j = 0. The descendant node of the line of argument i that is furthest away from the divergent connection is given the
value j = di. This detailed notation is used in order to account for the fact that the number of edges di separating the
node furthest away from the divergent connection depends on the line of argument i. Thus, one has Di, j, where
i = {1,2, ...,n} and j = {0,1, ...,di}.

For example, applying this notational convention to the argument structure depicted in Figure 4.1 (a) allows one
to obtain the following: the node H would be written as A1, node E as A0, and the nodes R1 and R2 as D1,0 and D2,0
respectively.

6The measure of inferential interaction refers to Schum’s descriptions of inferential interaction. It is not to be confounded with interaction of
weight of evidence as outlined in [59].

7A divergent connection in the context of Bayesian networks refers to an arrangement in which a single node has two or more direct
descendants.
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Figure. 4.2 – Bayesian network representing a divergent connection with multiple descendant nodes. Wefts, not shown
explicitly here, may be present between any two descendant nodes.

Figure 4.2 further suggests a division of the lines of argument composed by descendant nodes into two
groups, namely a group comprising lines of argument with indexes i ∈ {1,2, ...,m} and a second group with
i ∈ {m+1,m+2, ...,n}. Such a division facilitates the comparison of one group of lines of argument with another
group. For instance, one group could contain lines of argument for which the items of evidence have already been
evaluated, while the other group contains the lines of argument for which the items have yet to be evaluated.

4.2.2 Reports and hypothetical evidence

When analyzing an inference structure it is often helpful to enquire about the basis of hypothetical evidence.
Consider, for example, Figure 4.1 (b). One can study a conclusion derived from the two reports R1 and R2 with
regard to H. In contrast to this, one could also ask how a conclusion would change if, instead of R1 and R2, one
of the events E1 or E2, or both were known. Such an analysis can be seen as an instance of evidence sensitivity
analyzes [77]. It is driven by some hypothetical evidence claiming that E1 or E2 are known, as opposed to the actual
evidence referred to as ‘report’ here. For the remaining parts of this paper, ‘evidence’ and ‘item of evidence’ are
used as umbrella terms for both hypothetical evidence and actual reports.

All the variables considered in this paper are binary Di, j = {di, j,di, j}. Thus, di, j (or di, j) represents a single
item of evidence. A set of evidence that considers all lines of argument is denoted D. For example, if there are
n = 4 lines of argument one could have a set of evidence D = {d1,2,d2,0,d3,1,d4,0}. As indicated in Figure 4.2, the
arguments are divided into two groups of lines of argument, namely one for which i ∈ {1,2, ...,m} and one for
which i ∈ {m+1,m+2, ...,n}. The subset of items of evidence that refers to the former group is denoted as Dm as
it contains m items of evidence. The one referring to the latter group is denoted as Dn−m because it contains n−m
items of evidence. Thus, the subset Dn−m is the complement of Dm in D, so that D = Dm∪Dn−m holds.
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If one considers only hypothetical evidence regarding descendants located at the same distance from the
divergent connection, such as descendants that are immediately involved in the formation of a divergent connection,
then it is instructive to make this apparent by specifying the distance j as a subscript for D, that is D0, Dm

0 , and
Dn−m

0 , where D0 = Dm
0 ∪Dn−m

0 . Similarly, D1, Dm
1 , and Dn−m

1 , where D1 = Dm
1 ∪Dn−m

1 , denotes the evidence on
nodes separated from the converging connection by two edges downwards, and so on. One can indicate sets and
subsets of evidence containing actual reports only, namely Ddi , Dm

di
and Dn−m

di
, where Ddi = Dm

di
∪Dn−m

di
. However,

if a group of evidence stemming from descendants located at different distances is to be defined, such as a mixture
of actual reports and hypothetical evidence, then no subscripts are used.

4.3 Measuring inferential interactions

Schum [125] introduced the so-called ‘redundance measure’ for two events that are conditionally dependent given
some hypotheses H (e.g., E1 and E2 in Figure 4.1 (b)). This redundance measure Re2|e1 is given by

Re2|e1 =
W (h : e2)−W (h : e2 | e1)

W (h : e2)
= 1−W (h : e2 | e1)

W (h : e2)
, (4.5)

where W (h : e2) 6= 0. Equation 4.5 quantifies the difference between the weight of evidence in favor of h provided
by e2 alone, and the weight of evidence in favor of h provided by e2 knowing that e1 occurred, relative to W (h : e2).
Schum showed that different values of Re2|e1 indicate different types of inferential interactions between the events
e1 and e2 given H (see D.2).

4.3.1 Explaining inferential interactions

Even though Equation 4.5 is intuitively appealing, it appears to be an ad hoc solution for the identification of
inferential interactions. It does not provide, for example, an explanation for the different types of inferential
interactions. This section captures and expresses inferential interactions based on the concept of weight of evidence.

By applying the multiplication law of probability, the weight of evidence that the events e1 and e2 provide in
favor of h can be written as

W (h : e1,e2) =W (h : e1 | e2)+W (h : e2) =W (h : e2 | e1)+W (h : e1). (4.6)

From this it follows that

W (h : e2)−W (h : e2 | e1) =W (h : e1)−W (h : e1 | e2). (4.7)

The left side of Equation 4.7 corresponds to the numerator in Equation 4.5. Equation 4.6 stipulates further that
W (h : e1 | e2) =W (h : e1,e2)−W (h : e2). The weight W (h : e1 | e2) in Equation 4.7 is substituted by the difference
W (h : e1,e2)−W (h : e2) to produce

W (h : e1)+W (h : e2)−W (h : e1,e2) =W (h : e2)−W (h : e2 | e1). (4.8)

Equation 4.8 covers the necessary properties to define types of inferential interactions in terms of weight of evidence
in a single identity statement, providing thus a direct explanation for these interactions. In other words, Schum’s
measure of Re2|e1 is essentially reformulating the properties of the multiplication law of probability. Table 4.1
compiles the implications of different types of inferential interactions with respect to W (h : e1,e2) for cases where
W (h : e1) > 0 and W (h : e2) > 0 (see D.3 for the derivations of these relationships from Equation 4.8). The
conditional independence between the events e1 and e2 given H = {h,h} prevents e1 and e2 to interact inferentially.
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Table. 4.1 – Types of inferential interactions in terms of weight of evidence and corresponding values for the degree of
inferential interaction for cases where W (h : e1)> 0 and W (h : e2)> 0

Definition of inferential interaction Inferential interaction in terms of W (h : e1,e2)

Synergy
W (h : e2 | e1)>W (h : e2) W (h : e1,e2)>W (h : e1)+W (h : e2)

Conditional independence
W (h : e2 | e1) =W (h : e2) W (h : e1,e2) =W (h : e1)+W (h : e2)

Partial redundance
0 <W (h : e2 | e1)<W (h : e2) W (h : e1)<W (h : e1,e2)<W (h : e1)+W (h : e2)

Complete redundance
W (h : e2 | e1) = 0 W (h : e1,e2) =W (h : e1)

Directional change
W (h : e2 | e1)< 0 W (h : e1,e2)<W (h : e1)

This property can be used to assess the inferential interaction with respect to H. Namely, one can measure the
extent, to which the combined weight of evidence W (h : e1,e2) deviates from the sum of the weights of evidence of
e1 and e2, when they are assumed to be independent given H, that is, W⊥(h : e1,e2) =W (h : e1)+W (h : e2) (the
notation W⊥(h : e1,e2) is used as a shorthand for W (h : e1,e2 | {E1 ⊥ E2},H)). The larger the deviation, the more
important is the influence of the inferential interaction on the weight W (h : e1,e2). In more formal terms, measuring
the degree of inferential interaction between e1 and e2 amounts to computing the difference between the weights
W (h : e1,e2) and W⊥(h : e1,e2) so that W⊥(h : e1,e2)−W (h : e1,e2).

4.3.2 Generalization to more than two lines of argument

To extend the analysis of inferential interaction to several events, Section 4.2.1 is invoked as a framework. Let
the set D denote the entire body of evidence. Thus, W (a0 : D) denotes the joint weight of evidence in favor of a0
provided by that body of evidence. In turn, let W⊥(a0 : D) denote the weight of evidence when all the events of
set D are assumed to be conditionally independent given the event A0 = {a0,a0}. Further, let the subset Dm ⊂ D
subsume all those items of evidence contained in the body of evidence that are conditionally dependent given the
proposition A0 on at least one other item of evidence. Conversely, the subset Dn−m ⊂ D represents all the items that
are conditionally independent given event A0. Equation 4.8, thus, becomes

W⊥(a0 : D)−W (a0 : D) =W⊥(a0 : Dm)+W⊥(a0 : Dn−m)− [W (a0 : Dm)+W (a0 : Dn−m)].

Since by definition W⊥(a0 : Dn−m) =W (a0 : Dn−m) applies, one can rewrite

W⊥(a0 : D)−W (a0 : D) =W⊥(a0 : Dm)−W (a0 : Dm). (4.9)

The weight W⊥(a0 : Dm) is computed following Equation 4.3. In contrast, W (a0 : Dm is computed following
Equation 4.4. Equation 4.9 exploits, therefore, again the difference between Equations 4.3 and 4.4, or stated
otherwise, the difference in the application of the multiplication law for items conditionally independent and
dependent given A0. Equation 4.9 serves as the basis for the measure of inferential interaction denoted as ia(a0 : D).
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The weight W⊥(a0 : Dm) is used as a reference weight so that

ia(a0 : D) =
W⊥(a0 : Dm)−W (a0 : Dm)

W⊥(a0 : Dm)
= 1− W (a0 : Dm)

W⊥(a0 : Dm)
, (4.10)

where W⊥(a0 : Dm) 6= 0. Interestingly, the concept of evidential interaction as defined by (4.10) depends only
on items of evidence conditionally dependent given A0. Items conditionally independent given A0 are not part
of this expression. In other words, for conditionally independent items of evidence, Equation 4.10 will yield
ia(a0 : Dn−m) = 0 (since W (a0 : Dn−m) =W⊥(a0 : Dn−m) as indicated above).

4.3.3 Breaking up W (a0 : Dm) into types of inferential interaction

Considerations on W (a0 : Dm) can be taken a step further by breaking the weight up into components of different
types of inferential interactions. For that purpose let Dm = Ds∪Dpr ∪Dcr ∪Ddc, where Ds ⊆Dm denotes the subset
of synergistic evidence, Dcr ⊆ Dm the subset of completely redundant evidence, Dpr ⊆ Dm the subset of partially
redundant evidence, and Ddc ⊆Dm the subset of evidence inducing directional change. By applying this partitioning
of subsets to the weight W (a0 : Dm), the weight components associated with different types of inferential interactions
are rendered explicit as follows

W (a0 : Dm) =W (a0 : Ds)+W (a0 : Dcr)+W (a0 : Dpr)+W (a0 : Ddc).

Thus, one can rewrite (4.10) as

ia(a0 : D) = 1−W (a0 : Ds)+W (a0 : Dpr)+W (a0 : Dcr)+W (a0 : Ddc)

W⊥(a0 : Dm)
, (4.11)

where, W⊥(a0 : Dm) = W⊥(a0 : Ds)+W⊥(a0 : Dpr)+W⊥(a0 : Dcr)+W⊥(a0 : Ddc) 6= 0. In order to examine the
interaction value for each type of inferential interaction separately, the measure ia(a0 : ·) can be computed for any
particular subset. For example, if one were interested in the value of the interaction measure for synergistic evidence,
then one can compute

ia(a0 : Ds) = 1− W (a0 : Ds)

W⊥(a0 : Ds)
,

and analogously for the other subsets. Table 4.2 outlines different interaction values for each subset of evidence. A
comparison of the former table with Table D.1 reveals that the interaction values and the values of Re2|e1 are identical
for each type of inferential interaction. This result suggests that the inferential interaction measure proposed here
is a general form of Schum’s measure (see Section 4.3). Note that for completely redundant evidence, one has
W (a0 : Dcr) = 0, whereas W⊥(a0 : Dcr) 6= 0.

4.3.4 Example: Interpreting values of ia(a0 : D).

Consider the Bayesian network in Figure 4.3. Four lines of argument lead to a query event A0. The items of evidence
subjected to the inference are D = {d1,0,d2,1,d3,1,d4,2}. Equation 4.9 then becomes

W⊥(a0 : D)−W (a0 : D) =W (a0 : d1,0)+W (a0 : d2,1)+W (a0 : d3,1)+W (a0 : d4,2)

−
[
W (a0 : d1,0)+W (a0 : d2,1 | d1,0)+W (a0 : d3,1 | d1,0,d2,1)+W (a0 : d4,2)

]
=W (a0 : d2,1)+W (a0 : d3,1)︸ ︷︷ ︸

W⊥(a0:Dm)

−
[
W (a0 : d2,1 | d1,0)+W (a0 : d3,1 | d1,0,d2,1)

]︸ ︷︷ ︸
W (a0:Dm)
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Table. 4.2 – Types of inferential interactions in terms of weight of evidence and corresponding values for the degree of
inferential interaction for case where W (a0 : di,·)> 0,di,· ∈ D

Definition of inferential interaction ia(a0 : ·)

Synergy
W (a0 : Ds)>W⊥(a0 : Ds) ia(a0 : Ds)< 0

Partial redundance
0 <W (a0 : Dpr)<W⊥(a0 : Dpr) 0 < ia(a0 : Dpr)< 1

Complete redundance
W (a0 : Dcr) = 0 ia(a0 : Dcr) = 1

Directional change
W (a0 : Ddc)< 0 ia(a0 : Ddc)> 1

and the impact measure is given by

ia(a0 : D) =
W (a0 : d2,1)+W (a0 : d3,1)− [W (a0 : d2,1 | d1,0)+W (a0 : d3,1 | d1,0,d2,1)]

W (a0 : d2,1)+W (a0 : d3,1)
,

where W (a0 : d2,1)+W (a0 : d3,1) 6= 0. Suppose a case, in which ia(a0 : D)= 0 resulting, in turn, from W⊥(a0 : Dm)=
W (a0 : Dm). In other words, the consideration of inferential interactions does not affect the overall weight W (a0 : D).
However, the fact that W⊥(a0 : Dm) and W (a0 : Dm) have the same magnitude, does not imply that there are no
inferential interactions. A value of ia(a0 : D) = 0 could result, for example, from a situation, where W⊥(a0 : Dm) =
W (a0 : d2,1)+W (a0 : d3,1) = 1+1 = 2 and W (a0 : Dm) =W (a0 : d2,1 | d1,0)+W (a0 : d3,1 | d1,0,d2,1) =−2+4 = 2.
This implies that inferential interactions are present among different lines of argument8, although the cumulative
effect of the inferential interactions is nil. Thus, the measure of the cumulative effect has a reduced interpretative
value. A value of ia(a0 : D) = 0, only indicates that the inferential interactions, if present, have no impact on the
joint weight of evidence W (a0 : D) or W (a0 : Dm) respectively.

However, in certain cases Equation 4.11 allows one to deduce the presence of effects of directional change
and synergy. In particular, one can show that in cases where W (a0 : di, j) ≤ 0,di, j ∈ Dm, an interaction value of
ia(a0 : D)> 1 implies that

ia(a0 : D)> 1⇐⇒−W (a0 : Ddc)>W (a0 : Ds)+W (a0 : Dpr) =⇒W (a0 : Ddc) 6= 0. (4.12)

Similarly, a value of ia(a0 : D)< 0 implies that

ia(a0 : D)< 0⇐⇒W (a0 : Ds)>W⊥(a0 : Dm)−W (a0 : Dpr)−W (a0 : Ddc) =⇒W (a0 : Ds) 6= 0. (4.13)

The proofs for the statements 4.12 and 4.13 are given in D.4.1 and D.4.2 respectively. The statements 4.12 and 4.13
suggest that in cases, where values of ia(a0 : D)> 1 or ia(a0 : D)< 0 are obtained, one can be certain of the presence
of a directional change or synergy. However, these results also suggest that values other than the ones associated with
directional change or synergy, do not allow one to conclude the absence of any inferential interactions (including
directional change and synergy). Most of the time one cannot exclude the presence of inferential interactions on the
basis of the impact measure unless the values of the weight components for each type of interaction are known.
Thus, a given value of the impact measure quantifies only the cumulative impact of inferential interactions on the
joint weight of evidence W (a0 : D).

8The inferential interactions involved are a directional change (ia(a0 : d2,1 | d1,0) = (1−(−2))/1= 2) and a synergy (ia(a0 : d3,1 | d1,0,d2,1) =
(1−4)/(1) =−3).
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Figure. 4.3 – Bayesian network with four lines of argument leading to query event A0. Three wefts are involved among
the different lines of argument.

4.3.5 Corroborative redundance and the impact measure

Let the set D = {d1,·,d2,·, ...,dn,·} contain a series of n corroborative evidence each stemming from n different
arguments of credibility. All arguments of credibility are independent given event A0. Further, let the set D relate to
the hypothesis of interest Ak where k > 0 through the intermediary event A0. The weight of evidence in favor of
hypothesis ak provided by the evidence D is given by

W (ak : D) =W (ak : di,·)+
n

∑
i=2

W (ak : d1,· | Di−1),

which can be written as

W (ak : D) =W (ak : d1,·)+
n

∑
i=2

log

(
Pr(a0 | Di−1,ak)+ [F(a0 : di,·)−1]−1

Pr(a0 | Di−1,ak)+ [F(a0 : di,·)−1]−1

)
, (4.14)

where F(a0 : di,·) denotes likelihood ratio in favor of a0 provided by the item of evidence di,·. In turn, let F(a0 : Di−1)
denote the likelihood ratio in favor of a0 provided by the set of evidence Di−1. By means of the Bayes’ theorem, the
probabilities Pr(a0 | Di−1,ak) and Pr(a0 | Di−1,ak) can be written as

Pr(a0 | Di−1,ak) =
F(a0 : Di−1)Pr(a0 | ak)

F(a0 : Di−1)Pr(a0 | ak)+Pr(a0 | ak)
(4.15)

Pr(a0 | Di−1,ak) =
F(a0 : Di−1)Pr(a0 | ak)

F(a0 : Di−1)Pr(a0 | ak)+Pr(a0 | ak)
(4.16)

where

F(a0 : Di−1) =
n

∏
i=1

Pr(di,· | a0)

Pr(di,· | a0)
.
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For the development see D.1 and D.5. In general, Equation 4.14 suggests that the weight of item di,· is bounded by

the values W (ak : di,· |Di−1) = [0, log Pr(a0|Di−1,ak)
Pr(a0|Di−1,a1)

]. More precisely, if item di,· is conclusive evidence for proposition

a0 (i.e., Pr(di,· | a0) = 0), then its weight reduces to W (ak : di,· | Di−1) = log(Pr(a0 | Di−1,ak)/Pr(a0 | Di−1,ak)).
If, however, the item di,· is completely uninformative (i.e. Pr(di,· | a0) = Pr(di,· | a0)), then its weight reduces to
W (ak : di,· | Di−1) = log1 = 0 (see also [125]).

A closer look at Equations 4.15 and 4.16 reveals an evidential subtlety that Schum named ‘corroboratively
redundant evidence’. Corroborative redundance refers to the process, in which an accumulation of weight leads to a
decrease in weight for any further item of evidence in a corroborative setting. Stated more formally, in situations
where F(a1,di,·)> 1 for all di,· ∈ D, the relationship W (ak : di,· | Di−1)>W (ak : di,·)> 0 holds. This implies that
W⊥(ak : D)>W (ak : D)> 0. Hence, the impact measure will yield 1 > ia(ak : D)> 0. In turn, in situations where
F(a1,di,·)< 1 for all di,· ∈ D, the relationship W (ak : di,· | Di−1)<W (ak : di,·)< 0 holds, and the value for impact
measure is negative.

Note further that in the case, where the reduncance is measured on the level of the event A0, that is, ia(ak : a0)
one obtains

ia(ak : a0) =
W⊥(ak : a0)−W (ak : a0)

W⊥(ak : a0)
= 1− W (ak : a0)

W⊥(ak : a0)
,

where W (ak : a0) = W⊥(ak : a0) 6= 0. The measure ia(ak : a0), thus, produces the value of exactly 1 indicating
complete redundance (see Table 4.2). In all cases, in which the inferential interaction of corroboration is measured
on the level of a0, the measure of inferential interaction must take a value of 1, because a0 is necessarily redundant
with itself. Hence, if a value other than 1 is produced, then the arguments of credibility in D do not relate to the
same event a0, and one is not in the presence of a corroboration. This result is in agreement with Schum’s findings
on corroborative redundance [127].

4.4 Describing dissonance

For establishing a measure of dissonance and harmony, the authors chose to compare the ‘expressed weight’ against
the ‘weight potential’ of the evidence. The expressed weight is the total amount of weight that the body of evidence
provides in favor of an event. The weight potential is the total amount of weight generated by the body of evidence,
regardless of which event is favored. Thus, if a body of evidence is enabled to express its entire weight potential,
then the evidence is necessarily completely harmonious. However, if it can only express some fraction of its weight
potential, then the evidence is dissonant. If no weight is expressed, although the evidence has a weight potential
(i.e., the items of evidence are not entirely irrelevant), then the dissonance is maximal in a body of evidence. Note
that the presence of conclusive evidence is not considered here. The involvement conclusive evidence produces a
situation that cannot be logically reconciled under the given assumptions. The authors believe that such situations
describe a paradoxical model, rather than dissonant evidence. A discussion on paradoxical models, however, is not
an aim in this paper.

Recall that the weight of evidence is positive, if a given event or report supports the proposition in the numerator
of the likelihood ratio (say ak), and negative if it supports the proposition in the denominator (say ak). This allows
for straightforward formulations of expressed weight and weight potential. Let Wex(ak : D) denote the weight
expressed by the evidence, and Wpot(ak : D) the weight potential of the body of evidence D so that

Wex(ak : D) = |W (ak : D)| , (4.17)

Wpot(ak : D) = |W (ak : d1,·)|+
n

∑
i=2
|W (ak : di,· | d1,·, . . . ,dn−1,·)| . (4.18)
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Table. 4.3 – Different values of Wdiss(ak : D), their implication on the relationship between Wpot(ak : D) and Wex(ak : D),
and on the characteristics of the body of evidence

Wdiss(ak : D) Wpot(ak : D) and Wex(ak : D) Characteristics

=Wpot(ak : D) Wex(ak : D) = 0 Maximum dissonance

<Wpot(ak : D) Wpot(ak : D)>Wex(ak : D) Dissonant evidence

= 0 Wpot(ak : D) =Wex(ak : D) Harmonious evidence

Thus, the absolute values of weight provided by the evidence, is the amount of weight expressed (Equation 4.17).
Conversely, the sum of the absolute values of the weights provided by each item is the potential amount of
weight provided by the evidence (Equation 4.18). Now, if the set D relates to a body of completely dissonant
evidence, then one has Wex(ak : D) = 0. If the set D relates to a body of dissonant evidence, then one has
Wex(ak : D)<Wpot(ak : D). If, however, the set D relates to a body of harmonious evidence, then the two quantities
are equal, that is, Wex(ak : D) =Wpot(ak : D). Hence, the following relationship holds

Wex(ak : D)≤Wpot(ak : D), (4.19)

which corresponds to the triangle inequality of real numbers.
A comparison can be achieved by formulating the measure of the amount of dissonance in the weight W (ak : D)

as the difference between the weight potential and the expressed weight, that is,

Wdiss(ak : D) =Wpot(ak : D)−Wex(ak : D). (4.20)

Equation 4.20 measures, therefore, the dissonance as the amount of potential weight lost due to dissonance in
the body of evidence. From the Inequality 4.19, it follows directly that 0 ≤Wdiss(ak : D). Note also that if the
items provide no weight at all (i.e., Wpot(ak : D) =Wex(ak : D) = 0), then the weight lost due to dissonance is zero.
Table 4.3 summarizes the relationship between a values of Wdiss(ak : D) and the characteristics of the evidence in
terms of harmony and dissonance.

Further, let Dm denote the subset of D that contains the items providing a positive weights, and Dn−m the subset
containing the items providing negative weights. Thus, one has W (ak : Dm) > 0 and W (ak : Dn−m) < 0, which
reduces Equation 4.20 to

Wdiss(ak : D) =


2W (ak : Dm), for W (ak : Dm)<−W (ak : Dn−m),

W (ak : Dm)−W (ak : Dn−m), for W (ak : Dm) =−W (ak : Dn−m),

−2W (ak : Dn−m), for W (ak : Dm)>−W (ak : Dn−m).

(4.21)

A formal development leading to Equation 4.21 is given in D.6.
The measures of dissonance represent at the same time measures of contradiction or conflict (see Section 4.1.3).

More precisely, if the argument structure under examination corresponds to the one of corroboration and contradic-
tion, then naturally the measure of dissonance is a measure of contradiction. If the argument structure corresponds
to the convergence and conflict model, however, then the measure of dissonance is a measure of conflict.

4.4.1 Comparing dissonances

When analyzing the effect of different probability values or different items of evidence in a given model, it might be
more informative, to examine the weight lost through Wdiss(ak : D) relative to the corresponding weight potential
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Wpot(ak : D), rather than Wdiss(ak : D) alone:

Wdiss(ak : D)

Wpot(ak : D)
= 1− Wex(ak : D)

Wpot(ak : D)
.

Consider the example, in which one obtains Wdiss(ak : D) = 1. There are different values for Wpot(ak : D) and
Wex(ak : D) to produce this amount of weight lost through. One could have Wpot(ak : D) = 1.5 and Wex(ak : D) = 0.5,
just as well as Wpot(ak : D) = 8 and Wex(ak : D) = 7. In the former case the weight lost through relative to its
weight potential is Wdiss(ak : D)/Wpot(ak : D)≈ 0.67. In the latter case, however, one obtains a quite different value:
Wdiss(ak : D)/Wpot(ak : D) ≈ 0.13. In other words, although the weight lost through is identical, the evidential
situations producing the respective dissonances are different. Hence, the value of Wdiss(ak : D) alone might not
provide a meaningful comparison for dissonances in evidence.

4.4.2 Example: Directional change is a form of dissonant evidence

As pointed out in Section 4.3, an effect of directional change entails the combined weight of evidence of two
items d1,· and d2,· to be smaller than that of d1,· alone in situations, where all the items provide weight in favor
of, say, a0 (W (a0 : d1,·,d2,·)<W (a0 : d1,·)). This a consequence of the fact that a directional change is defined as
W (a0 : d2,· | d1,·)< 0 (see D.3). It follows that the joint weight of the items d1,· and d2,· is necessarily smaller than the
weight these items have in absolute terms (|W (a0 : d1,·)+W (a0 : d2,· | d1,·)|< |W (a0 : d1,·)|+ |W (a0 : d2,· | d1,·)|).
By applying Equation 4.20 one obtains a weight lost due to dissonance larger than zero (0 <Wdiss(ak : D)). Hence,
evidence involving directional change is necessarily dissonant to a certain degree. Cases of directional change
where W (a0 : d1,·)< 0 and W (a0 : d2,·)< 0 lead to the same conclusion.

4.4.3 Example: Propagation of dissonance along two lines of reasoning

Let d1,1 ∈ D1,1 = {d1,1,d1,1} and d2,1 ∈ D2,1 = {d2,1,d2,1} designate the reports on the occurrence of the events
d1,0 ∈ D1,0 = {d1,0,d1,0} and d2,0 ∈ D2,0 = {d2,0,d2,0} respectively. Both events are relevant for the hypotheses
A0 = {a0,a0}. The two reports and the two events are independent given the hypotheses. The structure of the
reasoning model corresponds, therefore, to the one depicted in Figure 4.1 (b’). Let Wdiss0(a0 : d1,1,d2,1) denote the
amount of weight lost due to dissonance among the arguments of relevance. Conversely, let Wdiss1(ak : d1,1,d2,1)
refer to the amount of weight lost due to dissonance among the arguments of credibility. The weight lost due to
dissonance among the arguments of evidence (i.e., among the two lines of reasoning) is given by the sum of the
weight lost due do dissonance among each sub-argument. That is,

Wdiss(a0 : d1,1,d2,1) =Wdiss0(a0 : d1,1,d2,1)+Wdiss1(a0 : d1,1,d2,1), (4.22)

where Wdiss(a0 : d1,1,d2,1) and Wdiss0(a0 : d1,1,d2,1) are given by

Wdiss(a0 : d1,1,d2,1) =Wpot(a0 : d1,1,d2,1)−Wex(a0 : d1,1,d2,1),

Wdiss0(a0 : d1,1,d2,1) =Wpot(a0 : d1,0,d2,0)−Wex(a0 : d1,0,d2,0).

Note that Wdiss0(a0 : d1,1,d2,1) considers the potential weight and the expressed weight of the events that are reported,
which is not necessarily the same to events favored by the weights of the reports. In order to study dissonances
among descendant variables at varying distance from A0, assume that the argument of evidence, relevance, and
credibility of the first line of reasoning provide positive weight as shown in Table 4.4. Given such an initial
situation, there are only three possible configurations for the second line of argument to produce a dissonance. These
three configurations designated by (i)-(iii) are outlined in Table 4.4, and studied case by case (or configuration by
configuration).
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Table. 4.4 – Three possible configurations of the second line of argument (d2,·) allowing for dissonance given a fixed
first line of argument (d1,·)

d1,· d2,·

(i) (ii) (iii)

Argument of evidence W (a0 : d1,1)> 0 W (a0 : d2,1)< 0 W (a0 : d2,1)< 0 W (a0 : d2,1)> 0

Argument of relevance W (a0 : d1,0)> 0 W (a0 : d2,0)< 0 W (a0 : d2,0)> 0 W (a0 : d2,0)< 0

Argument of credibility W (d1,0 : d1,1)> 0 W (d2,0 : d2,1)> 0 W (d2,0 : d2,1)< 0 W (d2,0 : d2,1)< 0

Configuration (i) represents a situation, in which the arguments of relevance produce a dissonance. The
dissonance is passed on the arguments of evidence. The amount of weight lost due to dissonance among the
arguments of credibility is given by Equation 4.22. It can be shown that the weight lost due to dissonance
Wdiss1(a0 : d1,1,d2,1) can never be larger than zero (see D.6.1 for proof), that is,

Wdiss1(a0 : d1,1,d2,1) =Wdiss(a0 : d1,1,d2,1)−Wdiss0(a0 : d1,1,d2,1)≯ 0.

The weight lost due to dissonance Wdiss1(a0 : d1,1,d2,1) takes a value of exactly zero in most cases where Wdiss(a0 :
d1,1,d2,1) = Wdiss0(a0 : d1,1,d2,1). In all the other cases Wdiss(a0 : d1,1,d2,1) is smaller than Wdiss0(a0 : d1,1,d2,1).
This is a direct consequence of the fact that the weight of evidence for any d·,i is bounded by the weight provided by
preceding event d·,i−1 in a given line of reasoning (see D.6.1).

Configuration (ii) represents a situation, in which there is no dissonance between the arguments of relevance,
but only between the arguments of evidence. Stated otherwise, one has Wdiss0(a0 : d1,1,d2,1) = 0, and Equation 4.22
becomes Wdiss(a0 : d1,1,d2,1) =Wdiss1(ak : d1,1,d2,1)> 0.

Configuration (iii) represents a situation, in which the arguments of relevance produce a dissonance that is
nullified by the arguments of credibility. Thus, in (iii) the arguments of evidence are harmonious. In other words,
one has Wdiss(a0 : d1,1,d2,1) = 0, and therefore, Wdiss0(a0 : d1,1,d2,1) =−Wdiss1(ak : d1,1,d2,1). As can be seen, the
whole amount of weight lost due to dissonance between the arguments of relevance is reclaimed by the arguments
of credibility. Hence, the arguments of credibility produce a negative loss of weight.

The present example shows that a dissonance between two lines of reasoning decreases as it propagates away
from A0 (configuration (i) and (iii)) and increases only if a dissonance emerges along two lines of reasoning
(configuration (ii)). These properties of dissonance propagation remain valid irrespective of the length of the lines
of reasoning in an inference task.

4.5 Measuring the relative contribution of evidence items

The authors deem the examination of the contribution of items of evidence relative to some other evidence to be
informative in the context of harmonious evidence, but less so for dissonant evidence. The dissonance measure,
discussed in the previous section, is better suited to examine dissonant evidence. Thus, the discussion regarding the
relative contribution of evidence is confined to harmonious evidence.

Consider the framework of Section 4.2.1, where the set D denotes the entire body of evidence, and Dm and Dn−m

two arbitrary subsets of D. The weight provided by the body of evidence in favor of some event ak can be written as

W (ak : D) =W (ak : Dm)+W (ak : Dn−m). (4.23)
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By expressing Equation 4.23 relative to W (ak : D) one can produce measures of contribution of weight of evidence
in the form of weight ratios

1 =
W (ak : Dm)+W (ak : Dn−m)

W (ak : D)
= rc(ak : Dm/D)+ rc(ak : Dn−m/D), (4.24)

where W (ak : D) 6= 0 because the evidence is harmonious. The relative contribution measure of the weight
provided by W (ak : Dm) relative to the contribution provided by the entire body of evidence W (ak : D) (i.e.,
W (ak : Dm)/W (ak : D) ) is denoted as rc(ak : Dm/D). In turn, rc(ak : Dn−m/D) stands for the contribution of the
weight W (ak : Dn−m) relative to W (ak : D). Finally, a third measure is considered, namely rc(ak : Dn−m/Dm), which
is obtained by dividing the weight W (ak : Dn−m) by W (ak : Dm) (or by dividing rc(ak : Dn−m/D) by rc(ak : Dm/D)).
Therefore, the measures of relative contribution are ratios of different weights.

The measures rc(ak : Dm/D) and rc(ak : Dn−m/D) take values between zero and one. That is, they become zero
if either subset Dm or Dn−m produces no weight respectively (i.e., either W (ak : Dm) = 0 or W (ak : Dn−m) = 0).
The fact that the weight of the body of evidence W (ak : D) cannot be zero means that, if W (ak : Dm) = 0, then one
necessarily has W (ak : Dn−m) =W (ak : D). Conversely, if W (ak : Dn−m) = 0, then W (ak : Dm) =W (ak : D). Hence,
in terms of relative contribution one asserts that a value of rc(ak : Dm/D) = 0 implies rc(ak : Dn−m/D) = 1 and vice
versa. Finally, relative contribution values of rc(ak : Dm/D) = rc(ak : Dn−m/D) = 1/2 are obtained in cases, where
the two subsets provide the same amount of weight in favor of ak (i.e., W (ak : Dm) =W (ak : Dn−m)> 0).

The measure rc(Dn−m/Dm), however, takes a value between zero and infinity. The relative contribution value
rc(ak : Dn−m/Dm) = 0 applies in cases, in which the subset Dn−m provides no weight at all (i.e., W (ak : Dn−m) = 0).
In turn, a value of rc(ak : Dn−m/Dm) = ∞ is obtained if either the subset Dn−m provides conclusive evidence for
event ak (W (ak : Dn−m) = ∞), or if the subset Dm provides no weight at all (W (ak : Dm) = 0). Note also that a
relative contribution value of rc(ak : Dn−m/Dm) = 1 implies that both subsets provide equal amounts of weight
(W (ak : Dm) =W (a0 : Dn−m)> 0).

4.5.1 The effect of diminishing relative contribution of additional items of evidence

The relative contribution measure reveals a subtlety that is less obvious, when dealing with few items of evidence,
but becomes important as one is confronted with masses of evidence. The authors call this evidential subtlety ‘the
effect of diminishing relative contribution’.

Consider the extreme case, where Dm contains all the items of evidence but one, and Dn−m incorporates the
remaining item of evidence di,n among a total of n items of evidence. Moreover, assume that all lines of reasoning
are independent given event Ak. Equation 4.23 suggests that weight provided by the body of evidence in favor of ak
is given by

n

∑
i=1

W (ak : di, j) =
n−1

∑
i=1

W (ak : di, j)+W (ak : di,n),

which in turn can be expressed in terms of relative contributions according to Equation 4.24

rc(ak : Dm/D) = 1− rc(ak : Dn−m/D).

Next, consider what happens if n tends towards infinity. In cases, where all the items of evidence provide weight
of evidence in favor of ak (i.e. W (ak : di, j) > 0 for all di, j ∈ D), this leads to the conclusion that the last item of
evidence makes no contribution relative to the body of evidence

lim
n→∞+

∑
n−1
i=1 W (ak : di, j)

∑
n
i=1 W (ak : di, j)︸ ︷︷ ︸

=1

= 1− lim
n→∞+

W (ak : di,n)

∑
n
i=1 W (ak : di, j)︸ ︷︷ ︸

=0

.
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The same conclusion is obtained for rc(Dn−m/Dm), that is,

rc(Dn−m/Dm) =
rc(Dn−m/D)

rc(Dm/D)
= lim

n→∞+

W (ak : di,n)

∑
n−1
i=1 W (ak : di, j)

= 0.

Identical conclusions can be made for cases in which all the items of evidence provide weight of evidence in favor
of ak (W (ak : di, j)< 0 for all di, j ∈ D).

As was observed, the contribution of item di,n relative to Dm becomes zero, as n approaches infinity. Even in
less extreme cases, the following general tendency can be anticipated: When the relative contribution measures
are viewed as a function of m, the measure rc(Dn−m/D) decreases in proportion to the increase of rc(Dm/D) as m
approaches n. The measure rc(Dn−m/Dm), in turn, is initially larger than one. As m approaches n, it will eventually
take a value smaller than one, as the weight provided by the subset Dn−m becomes smaller than the weight provided
by the subset Dm (W (ak : Dn−m)<W (ak : Dm)). Finally, the measure rc(Dn−m/Dm) takes a value of zero when m
equates n.

4.5.2 Example: Relative contribution for items providing the same amount of weight and items providing
different amounts of weight.

Assume that all the items in a body of evidence D are conditionally independent given event ak. Assume further that
each of these items provide the same amount of weight. In such a case the relative contribution becomes a simple
ratio of the number of items in the corresponding set and subsets:

rc(Dn−m/Dm) =
W (ak : Dn−m)

W (ak : Dm)
=

∑
n
i=m+1 W (ak : di, j)

∑
m
i=1 W (ak : di, j)

=
(m−n)W (ak : di, j)

mW (ak : di, j)
,

and because W (ak : di,·) =W (ak : di,·) one obtains

rc(Dn−m/Dm) =
n−m

m
=

n
m
−1.

Analogously one obtains rc(Dm/D) = m/n and rc(Dn−m/D) = (n−m)/n = −m/n+ 1. Hence, the measure
rc(Dm/D) is an increasing linear function of m, rc(Dn−m/D) is a decreasing linear function of m, and rc(Dn−m/Dm)
is a decreasing exponential function of m. The two graphs in first column of Figure 4.4 depict the curves of the
relative contributions rc(Dm/D) (in grey), rc(Dn−m/D) (in black), and rc(Dn−m/Dm) respectively for n = 10 items
of evidence providing the same weight.

These properties of the relative contribution measures can be observed to a certain extent, even when the items
of evidence do not provide the same weight. Take a body of evidence D containing n = 10 items. The weight of the
items is W (ak : di,·)i∈{1,2,...,n} = {0.8,1.1,1.7,2.7,0.6,2.7,2.8,2.0,1.9,0.3}. Again, all these ten items are assumed
to be independent given event ak. The division into subsets Dm and Dn−m is applied. The two graphs in the second
column of Figure 4.4 depict the curves of the relative contributions rc(Dm/D) (in grey), rc(Dn−m/D) (in black),
and rc(Dn−m/Dm) respectively.
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Figure. 4.4 – Graphs of relative contribution measures as m progresses towards n. The graphs in the first row
side represent rc(ak : Dm/D) (in grey) and rc(ak : Dn−m/D) (in black). The graphs in the second row represent
rc(ak : Dn−m/Dm). The dotted lines indicate where W (ak : Dm)=W (ak : Dn−m), i.e. rc(ak : Dm/D)= rc(ak : Dn−m/D)= 0.5,
and rc(ak : Dn−m/D) = 1.
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4.6 Diminishing relative contribution and corroborative redundance

Section 4.3.5 pointed out that an accumulation of weight of evidence leads to a decrease in weight for any further
item of evidence in a body of corroborative evidence. This effect was called corroborative redundance. Such a
decrease in weight is not to be confounded with the effect of diminishing relative contribution of additional items
of evidence in a body of harmonious evidence. The name already indicates: corroborative redundance is a form
of redundance and leads to a decrease in weight. However, this not the case for the effect of diminishing relative
contribution. This effect leads to a decrease in relative contribution, but not to a decrease in weight. However, these
two effects are closely related. Imagine one were to examine only the arguments of credibility in a corroborating
body of evidence, then it is not an effect of corroborative redundance that emerges, but an effect of diminishing
contribution relative to the event A0. Yet, if the examination of the same body of evidence extends to the argument
of evidence, that is, from D to, say, A1, then an instance of corroborative redundance will emerge. It appears that
these two evidential subtleties differ by the perspective taken in situations of corroborative evidence. Nonetheless,
the two effects are quite different because a different perspective implies the consideration of a different conditional
dependence relationship in the reasoning pattern. In fact it is even possible to trace the origin of each effect, that is,
diminishing relative contribution and corroborative redundance, to specific terms that the weight of corroborative
evidence incorporates.

4.6.1 The origin of the effects of diminishing relative contribution and corroborative redundance in corroborative
evidence

Consider first the relative contribution of items of evidence that are assumed to be independent given a1, that is, a
body of corroborative evidence is taken as a body of convergent evidence. The contribution of the nth item relative
to the entire body of evidence is

rc⊥(a1 : dn,·/Dn−1) =
W⊥(a1 : dn,·)
W⊥(a1 : D)

.

The weight W⊥(a1 : Di−1) cannot be zero since the body of evidence is corroborative or ‘convergent’. Section 4.5.1
pointed out that if all the items of evidence provide the same weight, then the relative contribution becomes the ratio
of the number of items in each the subsets. In the present case this is that rc⊥(a1 : dn,·/Dn−1) = 1/n. However, the
relative contribution of corroborative evidence is

rc(a1 : dn,·/D) =
W (a1 : dn,· | Dn−1)

W (a1 : D)
=

log
Pr(a0|Di−1,a1)+[F(a0:di,·)−1]

−1

Pr(a0|Di−1,a1)+[F(a0:di,·)−1]
−1

log Pr(a0|a1)+[F(a0:D)−1]−1

Pr(a0|a1)+[F(a0:D)−1]−1

.

More precisely, in corroborative evidence the items di,· are conditionally dependent given event A1, while this is
not the case if A0 is given. Thus, if the arguments from D to A0 are considered, then the weight of each additional
evidence is bounded by W (a0 : di,·) =]0,∞]. 9 However, in situations of corroboration the weight of each additional

evidence di,· is bounded by the values W (a1 : di,· | Di−1) = [0, log Pr(a0|Di−1,a1)
Pr(a0|Di−1,a1)

] (see Section 4.3.5). Consider the
ratio

Pr(a0 | Di−1,ak)

Pr(a0 | Di−1,ak)
=

F(a0:Di−1)Pr(a0|ak)
F(a0:Di−1)Pr(a0|ak)+Pr(a0|ak)

F(a0:Di−1)Pr(a0|ak)
F(a0:Di−1)Pr(a0|ak)+Pr(a0|ak)

. (4.25)

9Note that since the evidence is corroborative it is assumed that the weight that each items provides in favor of a0 is larger than zero.
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As can be seen, two types of ingredients determine the ratio in question. These are, notably, probabilities and
likelihood ratios. The influence of the probabilities is considered first, and the influence of the likelihood ratios
afterwards.

If the probabilities take values of Pr(a0 | ak) = 0 and Pr(a0 | ak) = 0 (stated otherwise Pr(a0 | ak) = Pr(a0 |
ak) = 1), then one obtains Pr(a0 | Di−1,ak) = 1 and Pr(a0 | Di−1,ak) = 0. In such cases, the limit of the ratio in
Equation 4.25 is infinity. Hence, one has W (a1 : di,· | Di−1) =W (a1 : di,·) =]0,∞]. This implies that the situation is
essentially one of convergence and not of corroboration. Thus, as Pr(a0 | ak) and Pr(a0 | ak) approach zero, the
weight W (a1 : di,· | Di−1) approaches that of W (a1 : di,·). Stated otherwise, the evidence transitions from a situation
of corroboration towards a situation of convergence. At the same time the effect of corroborative redundance
diminishes, whereas that of diminishing relative contribution amplifies. The extent to which the latter effect takes
place in corroborative evidence is, therefore, ultimately defined by the probabilities Pr(a0 | ak) and Pr(a0 | ak).

The combined likelihood ratio F(a0 : Di−1), however, weakens the influence of the probabilities in Equation 4.25.
That is, the stronger the inferential force conveyed by the likelihood ratios, the closer the values taken by probabilities
Pr(a0 | Di−1,ak) and Pr(a0 | Di−1,ak) are to one, and conversely, the smaller the weight provided by item dn,· (i.e.,
W (a1 : dn,· | Dn−1)). In the extreme case, where F(a0 : Di−1) tends towards infinity, the limit of those probabilities
is exactly one, and the weight provided by item dn,· is zero. This suggests that the combined likelihood ratio
F(a0 : Di−1) reduces the weight provided by item dn,·. Thus, the effect of corroborative redundance is instigated by
likelihood ratio F(a0 : Di−1). In fact, the stronger the inferential force provided by F(a0 : Di−1), the stronger the
effect of corroborative redundance on item dn,·.

The interplay between the said probabilities and the likelihood ratios, and therefore, the interplay between the
two effects in question, appear rather intricate. Nonetheless, one can anticipate that the effect of corroborative
redundance will quickly and strikingly gain the upper hand as the items of evidence accumulate. Consider again
the probabilities Pr(a0 | Di−1,ak) and Pr(a0 | Di−1,ak) in ratio in Equation 4.25. The combined likelihood ratio
F(a0 : Di−1) assumes a value in the range of ]1,∞] in corroborative evidence 10, whereas probabilities assume
values between zero and one by definition. Given that F(a0 : Di−1) appears in the numerator and denominator of
the probabilities Pr(a0 | ak) and Pr(a0 | ak), its influence will rapidly overpower the influence of the probabilities
Pr(a0 | ak) = 0, Pr(a0 | ak) = 0, and their corresponding complements. The following example illustrates the
interplay between the effect of diminishing relative contribution and that of corroborative redundance.

4.6.2 Example: The effect of corroborative redundance on relative contribution

The present example compares the relative contribution measure and the inferential interaction measure as functions
of the number of items of evidence n that constitute a body of evidence D. Each item of evidence produces the
same inferential force in favor of a0. Stated more formally, one has F(a0 : di−1,·) = F(a0 : di,·)> 1, i = 2,3, ...,20.
Figure 4.5 depicts the result in four graphs.

The graphs in the upper row show the changes in relative contribution as the number of items n constituting
the body of evidence increases. The graphs in the lower row show the corresponding changes in the inferential
interaction measure. The graphs in the left column show the impact of varying values of the inferential force
produced by the argument of relevance, that is, F(a1 : a0) = Pr(a0 | a1)/Pr(a0 | a1). As indicated in the previous
section, the probabilities Pr(a0 | a1) and Pr(a0 | a1) define the extent to which the effect of diminishing relative
contribution takes place. The graphs in the right column show the impact of varying values of the inferential
force of the arguments of credibility (F(a0 : dn,·)). Remember that F(a0 : dn,·) defines the strength of the effect of
corroborative redundance in the evidence. The black curves in the four graphs represent identical situations defined
by the values F(a0 : dn,·) = 10 and F(a1 : a0) = 105. The dashed curves in the upper row show the contribution of

10Note that cases, where each item supports the opposite event a0 so that F(a0 : Di−1) = [0,1[, lead to the same conclusion. In fact the closer
the combined likelihood ratio takes a value to zero, the closer the probabilities Pr(a0 | Di−1,ak) and Pr(a0 | Di−1,ak) take values to zero, and
the closer the weight provided item dn,· is to zero.
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Figure. 4.5 – Relative contribution measure (upper row) and the corresponding inferential interaction measure (lower
row) as a function of number of items n in a body of evidence

the nth item relative to D regarding event a0 (i.e., rc(a0 : dn,·/D)). Since all the items are independent given A0, one
has rc(a0 : dn,·/D) = 1/n. Hence, the decrease in relative contribution depicted by this curve is exclusively due to
the effect of diminishing relative contribution. The corresponding inferential interaction measure (graphs in the
lower row), in turn, remains constant at zero indicating conditional independence among the items given A0.

As can be seen in the graphs of the upper row, the inferential force of the argument of relevance F(a1 : a0)
defines degree, to which the items are subjected to the effect of diminishing relative contribution before being
entirely subjected to the effect of corroborative redundance. However, the strength of the effect of corroborative
redundance itself is defined by the strength of the inferential force of the argument of credibility F(a0 : dm,·). As
can be seen in the upper right graph, the stronger the inferential force of the arguments of credibility the more
accentuated is the relative contribution of the nth item.

The graphs in the lower row show the inferential interaction among the items of evidence. As expected, values
of ia(a0 : D) for corroborative redundant evidence take values in the interval ]0,1], indicating the presence of
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redundance (see Section 4.3.5). In the lower left graph it can be seen that the stronger F(a1 : a0) is, the stronger the
tendency of items to adhere to the effect of diminishing relative return, before giving in entirely to the effect of
corroborative redundance, which is marked by a sharp increase in the value of ia(a0 : D). The lower right graph
shows that the stronger F(a0 : dm,·) is, the earlier the onset of the effect of corroborative redundance.

The example further suggests that the inferential interaction measure is sensitive enough to capture even weak
tendencies of redundance, and to distinguish between the effects of corroborative redundance and diminishing
relative contribution.

4.7 Conclusion

The importance of understanding evidential phenomena occurring in combined evidence is well known by practi-
tioners of law, who are involved in evidence-based reasoning on a daily basis ([e.g., 146]), and statisticians, who are
engaged in the subject of evidence interpretation (see for example Lindley’s Foreword in [4, p. xxiv]). However, the
scientific literature on these subjects remains sparse even today.

The paper proposes descriptions and methods of quantification for evidential phenomena recurrently occurring in
combined evidence and masses of evidence based on the logic of probability theory. The notion of Irving J. Good’s
weight of evidence turned out to be extremely useful for capturing and clarifying such evidential phenomena [e.g.,
58, 64]. Many of these phenomena were first described by David A. Schum from a probabilistic point of view [125].
These phenomena include different types of inferential interactions, dissonances, and the relative contribution of
items of evidence. The present research provides an intuitive and succinct description of these phenomena by
exploiting of the additive property of the weight of evidence. The measures developed on that basis are convenient
methods to analyze diverse properties of combined evidence. The general formulations of these measures widen the
scope of application to masses of evidence. A recursive and complementary application of these measurements to
sets and subsets of evidence can be envisaged in order to clarify and deepen the understanding of large bodies of
evidence not only as a whole, but also of its particular details. That is, they allow not only to identify, but also to
quantify particular relationships among items of evidence, such as synergy, directional change, and dissonance, or
general tendencies and regularities underlying the process of evidence accumulation regarding the strength of items
of evidence, such as the effect of diminishing relative contribution and different forms of redundance.

Such measures cannot only improve the understanding of combined evidence and masses of evidence in
particular cases, but also help investigating and handling combined evidence from a more general perspective.
Consider, for example, the following questions that might be pursued in the future: Does the human mind recognize
inferential interactions among items of evidence? If not, what systems and processes can be established to remediate
this problem? If yes, what are the conditions that allow the human mind to do so? How, can these conditions
be optimally exploited in probabilistic expert systems? Or: How often can dissonance be observed in combined
evidence? Is dissonance a common feature of all types of evidence, or is it more common in one type of evidence,
but less common in other types of evidence (such as DNA evidence and fingermark evidence)? If dissonance is
more common in some types of evidence, then why is that so, and what are the implications for the use of this type
of evidence?

Hence, the authors believe that the measures and methods proposed in this paper can be of great help to a
reasoner engaged in evidence-based reasoning. The simplicity of the proposed measures enables a straightforward
implementation in automated expert systems and other software environments, making the present research readily
applicable to real life problems.
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5 Aggregating DNA evidence: Probabilistic analysis of
the DNA evidence in State of Texas vs Josiah Sutton

ABSTRACT. The present paper proposes a joint analysis of four DNA typing results stemming from the
case of State of Texas vs Josiah Sutton. The case involves a sexual assault that took place in 1998. The
forensic expert, who examined the DNA typing results at the time, stated in court that a suspect named Josiah
Sutton could not be excluded as a donor. However, the forensic expert misinterpreted the DNA evidence. The
paper demonstrates that the different typing results produce an evidential phenomena that is called ‘directional
change’. A directional change, as the name already indicates, describes an interaction among items of evidence,
where the items support a different hypothesis when evaluated jointly or in isolation. Unfortunately, even today
almost nothing is known in the forensic discipline on how to combine items of DNA evidence, let alone about
the detection of directional changes. This poses a non-negligible risk of misinterpretations of forensic evidence,
which may contribute wrongful convictions in court. The authors show how Bayesian networks can be used to
combine items of DNA evidence and how to detect directional changes in the evidence.

Keywords. Bayesian networks · DNA · combining evidence · scenarios · directional change

5.1 Introduction

The present paper aggregates multiple items of DNA evidence in a single Bayesian network (BN) and presents
the inferences produced by the BN. The DNA evidence stems from a real case described and examined by W.C.
Thompson in [139]. The case in question is that of State of Texas vs Josiah Sutton. It involved a sexual assault,
and led the wrongful conviction of a person named J. Sutton. The conclusions reached by W.C. Thompson are
compared to the conclusions produced by the present model in order to validate the approach taken, and the BN
thereby produced.

The propositions of interest are formulated on the so-called ‘crime-level’ following the hierarchy of propositions
established by R. Cook and his fellow researchers in 1998 [23]. Crime-level propositions or hypotheses assign a
crime to an authorship. Common formulations of such hypotheses are, for example, ‘Mr. X is the assailant of the
crime’ and ‘An unknown person is the assailant’. The hypotheses used in this case correspond to the positions put
forth by the defense and the prosecution in the court.

To the best knowledge of the authors, no publication exists on aggregation of multiple DNA typing results under
crime-level hypotheses. The interpretation of combined evidence is generally scarce in forensic literature, although,
items of evidence occur concurrently most of the time. The authors found that a final reasoning structure for the BN
could not be established from the start. In fact, the number of variables to consider turned out to be immense. Thus,
in a first step, the authors pursued the reduction of the number of variables. Such a reduction was accomplished
by a concise formulation of the problem at hand. Namely, what is the relevance of each specimen?, what number

129



PART III CHAPTER 5. ARTICLE - SUTTON CASE

of contributors should be considered for the typing result from a given specimen?, and what are the prerequisites
for the existence of the specimens at the crime scene? A separate BN was produced for each of these questions.
They served as cornerstones for the reasoning structure of the final BN tackling the main goal of the study: the
interpretation of multiple DNA typing results given crime-level propositions. The number of contributors was
assessed with the help of a BN proposed in [12]. Meanwhile, observational errors regarding the detection of alleles
in the crime profile were included at every step. The consideration of observational errors in probabilistic models is
well known, although rarely applied in forensic practice. For a general account on the assessment of observational
errors see [125], for the effect of observational errors on DNA evidence see [140], and for its impact in diagnostic
processes see [66]. For the evaluation of the mixture profiles, the authors modified a BN first proposed in [104], and
combined the latter BN with an original BN that governs well defined contributor scenarios. The BN itself was
constructed in Hugin Researcher 8.0.1 All the computations and analyses were realized in R [25] in conjunction
with the RHugin package [85]. The RHugin package serves as an interface between the Hugin Decision Engine
(HDE) and the software environment R.

5.1.1 Case description

The case is portrayed following the description given by W. C. Thompson in [139]. The crime took place at the
parking lot of the victim’s apartment on October 25, 1998. The victim was forced into her car at gunpoint by two
men and abducted. The car, a Ford Expedition, has three rows of seats. The victim was forced to perform oral
copulation and sexual intercourse on the middle row seats. After she was set free by the assailants, she immediately
reported the crime to the police and gave a description of the offenders. The victim stated further that her last sexual
contact occurred six days before the crime. The HPDLC Serology/DNA Unit analyzed vaginal swabs and pubic hair
combings from a rape kit, a stain found on the victim’s jeans, a stain detected on the middle row seat of the Ford
Expedition. Acid Phosphatase and P-30 tests on all of theses samples returned a positive result, which is indicative
for the presence of sperm. A differential extraction was applied to the material from the vaginal swap. This produced
two fractions: the vaginal sperm fraction (containing the male DNA) and the vaginal epithelial fraction (containing
the female DNA). The DNA profiles were established using two commercial kits: the PM/DQ-alpha and D1S80 test
kits, which were marketed by Perkin Elmer and popular at the time.

Five days after the incident, the victim returned to her apartment. On the way she saw three men on the street,
whom she believed to recognize as her assailants. The victim reported her sighting to the police, who arrested the
three men thereafter. The three men were placed in the backseat of a patrol car and taken to a parking lot by the
police officers. At the parking lot, the victim identified two of the three men as her assailants, still sitting in the
patrol car and wearing their hats.

The scientific expert concluded in court that the DNA typing results were DNA mixtures consistent with Sutton,
the victim, and at least one other unknown donor for the vaginal swabs, the pubic hair combings, the jeans sample,
and the carseat sample. The expert indicated, further, that the DNA profile of J. Sutton had a relative frequency of 1
in 694’000 among the black population. The prosecution dropped all charges against Adams. Sutton, on the other
hand, was convicted.

5.1.2 DNA evidence

The DNA typing results and reference profiles are shown in Table 5.1. A box T indicates that the corresponding
allele was observed (observation of a given allele is true). In turn, a box F indicates the non-observation of
an allele (i.e., observation of a given allele is f alse). In the BNs the alleles are named by capital letters of the
alphabet in order to have a unified denomination of alleles. For instance, allele 1.1 of marker DQA (as a short for

1www.hugin.com
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HLA-DQA1) is named A, allele 1.2 is named B, and so on2. The relative allelic frequencies were published in [109].
They correspond to the Afro-American subpopulation. Note that the allelic frequencies for the marker DAQ do
not sum to 1 for unknown reasons. However, these values are automatically normalized when the BN is compiled.
Hence, this incoherence does not constitute a problem for the envisaged evaluations.

Each of the four specimens represents an item of evidence E. Accordingly, the specimen taken from the sperm
fraction3 of the vaginal swab denoted as E1, the one from debris of the pubic hair combings as E2, the one from
the stain on the victim’s the jeans as E3, and the specimen extracted from a stain on the middle-row carseat as E4.
The typing results for E1 and E2 are identical. However, for reasons unknown to the authors, the locus D1S80 was
not examined for the specimens E2 to E4. In contrast to W.C. Thompson, who had the opportunity to inspect the
original the typing results, the HPDLC Serology/DNA Unit was unable to observe allele 3 of DQA (i.e., allele D)
in specimen E3 [138]. The authors examine the DNA results from the perspective that the allele 3 of DQA was
observed in E4. It seems, therefore, reasonable to take into account observational errors regarding the detection of
alleles in the crime profiles.

5.1.3 Pre-assessment of the DNA evidence

The forensic expert stated in court that the DNA types of E1, E2, E3, and E4 were ‘consistent’ with a DNA mixture
of Sutton, the victim, and at least one other unknown donor. If that were true, then one would expect to observe
a similar or identical allelic configuration across all specimens. However, this applies only for E1 and E2. The
configurations in E3 and E4 are quite different. Moreover, the question of how a DNA mixture ‘consistent’ with the
DNA profiles of some persons pertains to the identification of assailants is not addressed. Other inconsistencies
are found, when the profiles of Adams, Sutton, and the victim are compared to the DNA results of the specimens.
Consider the following assessments on the DNA contribution by Adams, Sutton, and the victim:

Adams. Adams appears to possess several alleles that cannot be observed in any of the crime profiles, namely 1.2
DQA, B HBGG, A Gc, and 34 D1S80. Unless the analysis failed to detect these four alleles, it is not possible that
Adams contributed to any of the specimens. Even by accounting for observational errors, one expects the probability
that Adams is an assailant to be very small given the DNA evidence. In any case, it seems very unlikely4 for Adams
to be a DNA contributor to any of the specimens.

Sutton. All the alleles that Sutton seems to possess can be found in the crime profiles of E1 and E2. In contrast,
allele 1.1 DQA cannot be observed in E3 and E4, although it is found in Sutton’s profile. Conversely, the alleles B
GYPA and C HBGG were found in E3 and E4 but not in Sutton’s profile. In E3 one can further observe allele B
D7S8, which is also absent in Sutton’s profile. Thus, Sutton can be a contributor to E1 and E2. However, for E3
and E4 it is unlikely for Sutton to be a contributor, unless one (for E4) or both (for E3) alleles of marker DQA were
missed during the DNA analysis.

Victim. Allele 4.2/4.3 DQA found in the victim’s profile, is not present in any of the crime profiles. Thus, unless
this allele was missed during the analysis, the victim cannot be a contributor to any of the specimens. The remaining
alleles possessed by the victim are also present in the crime profiles.

It appears that Sutton is unlikely to be a contributor to specimens E3 and E4. Thus, E3 and E4 must come from
at least one other unknown assailant. At this point W.C. Thompson made the following crucial observation: All the

2The words ‘marker’ and ‘loci’ are used interchangeably.
3As expected, the vaginal epithelial fraction produced results that correspond to the victim’s profile. Thus, in the present analysis only the

vaginal sperm fraction is examined.
4Throughout this paper, the words ‘probably’, ‘likely’, ‘improbable’, and ‘unlikely’ are understood as in the everyday use of these terms (i.e.,

non-statistical use). Moreover, the terms ‘likely’ and ‘probable’ (also ‘unlikely’ and ‘improbable’) are used interchangeably.

131



PART III CHAPTER 5. ARTICLE - SUTTON CASE

Table. 5.1 – Allele frequencies and findings of the DNA typing results

Marker Allele (Name in BN) Frequency Specimens References
E1 E2 E3 E4 Sutton Adams Victim

HLA-DQA1 1.1 (A) 0.125 T T F F T F F
1.2 (B) 0.330 F F F F F T F
2 (C) 0.130 T T F T T F F
3 (D) 0.090 T T T T F F T

4.1 (E) 0.185 T T F F F F F
4.2/4.3 (F) 0.083 F F F F F F T

other (other) 0.058 F F F F F F F

LDLR A 0.194 T T T T T T F
B 0.806 T T T T T T T

GYPA A 0.476 T T T T T T T
B 0.524 T T T T F F T

HBGG A 0.429 T T T T T F T
B 0.238 F F F F F T F
C 0.333 T T T T F T T

D7S8 A 0.663 T T T T T T T
B 0.337 T T T F F F F

Gc A 0.087 F F F F F T F
B 0.750 T T T T T T T
C 0.163 F F F F F F F

D1S80 20 (A) 0.034 T - - - F F F
21 (B) 0.135 T - - - F F T
24 (C) 0.199 T - - - F T F
25 (D) 0.057 T - - - T F F
28 (E) 0.148 T - - - T F T
34 (F) 0.220 F - - - F T F

other (other) 0.207 F - - - F F F
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alleles of E3 and E4 are included in the allelic configurations of E1 and E2. If, therefore, E3 or E4 are connected
to the rape, then it must contain the DNA of at least one rapist (under the exclusion of the victim’s and Sutton’s
DNA, which do not correspond). In this case, the combination of alleles from E3 or E4, together with the alleles of
the victim and Sutton, should produce profiles corresponding to E1 and E2. This, however, is not the case since
allele 4.1 DQA in E1 and E2 cannot be accounted for. In short, when all the specimens are considered together then
it is unlikely for Sutton to be a contributor. As can be seen, W.C. Thompson’s reasoning does not merely involve
considerations on possible contributors. The reasoning extends to the question of how the specimens are related to
each other.

There is, however, another problem. Consider E3 and E4. It is very likely that both specimens are connected to
the crime. However, the profiles of E3 and E4 are not the same. Moreover, their profiles do not amount to the allelic
configuration of E1 and E2 even if considered together with the alleles of the victim. There are two explanations, one
of which seems much more likely than the other. The first and more likely explanation is that E3 and E4 stem from
the same person, and that the difference is due to observational errors (e.g., allele 2 DQA missed in E3 and allele B
D7S8 missed in E4). The second, much less likely, explanation is that either E3 or E4 or both are not connected to
the crime in question. Based on the evaluation in Sections 5.2 and 5.3 the second explanation is rejected and not
considered in the BN. This implies that the DNA evidence can only be analyzed on an observational level in the BN.
Otherwise, one would enter inconsistent evidence into the model.

The pre-assessment shows that the simultaneous examination of multiple typing results is not a trivial task.

5.1.4 Hypotheses of interest

The victim stated that she was assaulted by two persons. An hypothesis must, therefore, involve two persons. The
investigation suggested the two suspects, Sutton and Adams, as the assailants. If, however, Sutton and Adams are
not the assailants, then two other persons must be the assailants. Moreover, it is equally reasonable to entertain the
possibility that either Sutton or Adams could have committed the crime along with another person. This implies that
the hypotheses involve four individuals: Sutton, Adams, and two unknown persons.

Let person P1 denote Sutton, P2 Adams, and P3 and P4 each unknown assailants. On that basis, four hypotheses
H = {h1,h2,h3,h4} are formulated, where each hypothesis identifies a pair among P1,P2,P3, and P4 as the assailants.
Table 5.2 presents each hypothesis as one of four possible assailant pairings.

The two hypotheses, h1 and h2, identify P1 as an assailant. In turn, the hypotheses h3 and h4 identify persons
different from Sutton. The question of whether P1 is an assailant or not, is formulated by the two composite
hypotheses hp = {h1,h2} and hd = {h3,h4}.

Table. 5.2 – Crime-level hypotheses for the specimens

Assailant pairs H Hypotheses involving Sutton

{P1,P2} h1 hp{P1,P3} h2

{P2,P3} h3 hd{P3,P4} h4

5.1.5 Overview of the paper

Sections 5.2 and 5.3 establish the logical framework for the aggregation of the DNA evidence under the hypotheses
of H. Section 5.2 deals with the construction of the most likely worlds, in which the specimens could have been
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created. The number of contributors is discussed in Section 5.3. Based on the hypotheses, the number of contributors,
and the worlds, the different contributor scenarios are established and a corresponding BN is created. This is
discussed in Section 5.4. The BN for the typing results themselves is considered in Section 5.5. The BN for the
typing results and the BN for the contributor scenarios are assembled to form the final BN. Section 5.6 presents
the results obtained from computations based on the final BN. Finally, Section 5.7 outlines the main findings and
insights gained from the research, and concludes the paper.

5.2 Creating worlds for the specimens

The creation of worlds centers around the question of how the stains (from which the specimens were extracted)
came into existence. This involves the question about the relevance of the specimens for the crime (Subsection 5.2.1)
and the possible involvement of another person unrelated to the crime (Subsections 5.2.2). A given world is based
on the consideration of these two questions (Subsection 5.2.3). Subsection 5.2.4 refines the relevance considerations
assimilated so far. The probability of each world is then computed by using a BN designed for that purpose
(Subsection 5.2.5).

5.2.1 Assessing the relevance of the specimens

A trace or mark is usually considered to be left either by the assailant or by some other person, who was not
involved in the crime. In such situations, these two possibilities are mutually exclusive and exhaustive. However,
biological fluids (and the DNA it contains) can mix so that some part of a trace can come from an assailant and the
remaining part from the other person. In such cases, the two aforementioned possibilities are not mutually exclusive
and exhaustive. The possibility that a trace was left by the assailant is, therefore, evaluated separately from the
possibility that it was left by another person.

Let Gi = gi denote the fact that the assailants left the trace from which specimen Ei, i ∈ {1,2,3,4} was taken
and Gi = gi that the assailant(s) left no such trace. If gi applies, then the specimen is relevant for the crime [130].
Conversely, let Oi = oi denote the fact that a person other than the assailants left the trace from which Ei was
extracted, and Oi = oi that no other person left such a trace. Clearly, if a specimen was left by some other person,
then it has no inferential value regarding the authorship of the rape. In such cases, the specimen is said to be
irrelevant for the crime in question. Note that this ‘other person’ is the unknown contributor but not an assailant.

Probability of relevance Pr(gi)

Consider the probability of gi of specimen Ei,∈ {1,2,3,4}. In order for an assailant to have left a trace of sperm it
is necessary that (a) the assailant ejaculated, and (b) that he did not use a condom.5 Points (a) and (b) are assessed
by using the criminological study of O’Neal et al. from 2013 [107]. The relevant pieces of information from this
study are denoted by I1 and I2.

I1: The study suggests that the prevalence rate for the use of condoms during sexual assaults ranges from 11.7% to
15.6%. This study also indicates that younger suspects, and suspects who used a weapon during the rape are more
likely to use a condom. In the present case, the suspects were young and used a weapon during the rape.

I2: The same study suggests that suspects who used a condom ejaculated in 83.3% to 90.5% of the examined
assault cases. In the present case it is assumed that the rate of ejaculation is comparable to cases, in which condoms
are not used.

5The possibility of azoospermia is not taken into account. In fact, azoospermia is a rare condition especially among young adults, since they
are very unlikely to have undergone a vasectomy. The probability that the assailants were azoospermic at the time of the rape is, thus, considered
negligible.
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Let C1 = {c1,c1} denote the use of condom by the first assailant during the assault, which can be true (c1) or false
(c1). Let C2 = {c2,c2} denote the same but for the second assailant. Let J1 = { j1, j1} refer to the first assailant
ejaculating during the assault, which can be true ( j1) or false ( j1). Again J2 = { j2, j2} refers to the same but for the
second assailant.

The variables J1, and J2 are considered to be independent given I2 (i.e., Pr( j1, j2 | I2) = Pr( j1 | I2)Pr( j2 | I2)).
The same applies to Ci and Ji given I1 and I2 (i.e., Pr(Ci,Ji | I1, I2) = Pr(Ci | I1)Pr(Ji | I2)). However, C1 and C2 are
not considered independent because the assailants are more likely share the same mindset, rather than disparate
ones. Notably, if one assailant uses a condom, then the other is more likely to use one as well. Conversely, if one
assailant does not use a condom, then the other assailant is less likely to use a condom. Hence, C2 is conditioned by
C2 so that Pr(c2 | c1, I1)> Pr(c2 | c1, I1).

To the probability that an assailant used a condom during the assault given information I1 the probability
assignments Pr(c1 | I1) = 0.16, Pr(c2 | c1, I1) = 0.8, and Pr(c1 | c1, I1) = 0.12 are made. To the probability that the
assailant ejaculated during the assault, given information I2 the value Pr( j1 | I2) = Pr( j2 | I2) = 0.833 is assigned.

For a given specimen to be relevant, it is necessary that at least one assailant ejaculated and did not wear a
condom during the assault. In other words, the probability that a stain (from which the specimen Ei was extracted)
was left by one or both assailants is given by the sum of the probabilities of each combination of C1,C2,J1, and J2
that can produce a semen stain. In other words, one has

Pr(gi | I1, I2) = ∑
C1

∑
J1

∑
C2

∑
J2

Pr(gi |C1,J1,C2,J2, I1, I2)Pr(C1,J1,C2,J2 | I1, I2). (5.1)

BN for computing the probability of gi

Throughout this paper node names and states are written in teletype font. Query nodes are colored in grey and their
node names written in white. Evidence nodes are colored in light grey while their node names are written in black.
All the nodes are Boolean, unless indicated otherwise.

The probability of gi of specimen Ei, ,∈ {1,2,3,4} is computed with the BN in Figure 5.1. The probabilities of
ji are assigned to the true-states of the root nodes6 with the corresponding names. Conversely, the probabilities
of ci are assigned to the false-states of the corresponding nodes. As discussed previously, an assailant can only
produce a stain if he ejaculated, and did not wear a condom during the assault. Hence, the nodes J1C1 and J2C2 are
defined as logical conjunctions of J1 and C1, and J2 and C2 respectively (e.g., J1C1 = J1 ∧ C1). Finally, a relevant
stain exists, if one or both of the assailants produced a stain. Node G is, therefore, defined as a logical disjunction
of its parent nodes (i.e., G = J1C1 ∨ J2C2). The probability of gi is retrieved from node G after compiling the
network. The value Pr(gi | I1, I2)≈ 0.83 is retained from the BN.

Figure. 5.1 – BN for computing the probability Pr(gi | I1, I2) according to Equation 5.1. Once the BN is compiled, the
value for Pr(gi | I1, I2) can be retrieved from the state true of node G.

6A node without an ancestor is called ‘root node’.
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5.2.2 Probability that another person unrelated to the crime left the trace

Next, consider the probability of oi, that is, a person unrelated to the crime left the trace from which the specimen
Ei,∈ {1,2,3,4} was taken. Consider the two pieces of information derived from common sense and from the case
description:

I3: It is extremely unlikely to find semen stains on a female’s body, clothing, or in her car, unless, the female
herself was engaged in a sexual activity producing male ejaculate.

I4: An event unrelated to the rape must have occurred before or after the rape itself, but not simultaneously to the
rape. The victim stated not to have engaged in any sexual activities six days before the rape, and to have sought
out to the police immediately after the rape.

For specimen E3 and E4 this probability is judged to be extremely small. Therefore, given I3 and I4 the following
probability values are assigned: Pr(o3 | I3, I4) = Pr(o4 | I3, I4) = 0.001. In contrast, the value zero is assigned to the
probability Pr(o2 | I3, I4). It is assumed that the victim washed herself several times during these six days. Under
this assumption, it is impossible to detect seminal fluid (and DNA from semen) in the pubic area after six days.

Finally, consider the specimen E1. The case description provides the following piece of information:

I5: All the DNA typing results were produced by the PM/DQ-alpha and D1S80 test kits.

In general, the probability of obtaining a DNA profile decreases rapidly, when sperm is exposed to the vaginal
environment. In particular, [102] Mayntz-Press et al. state that:

I6: The sperm fraction in samples with extended post-coital interval may contain less than 10 sperm cells. Thus,
the quantity of DNA may be below the detection limit of autosomal STR systems. 7

Given I5 and I6 the authors consider it to be virtually impossible that the tests kits used in the present case could
detect DNA from sperm six days after its deposition in the victims vagina, that is, Pr(o1 | I3, I4, I5, I6) = 0.

5.2.3 Identifying possible worlds that can generate the specimens

Each specimen stems either from a trace left exclusively by the rapist(s), exclusively by some other person(s),
a mixture of both, or none of the above. More formally, one can associate a specimen Ei,∈ {1,2,3,4} to one
of four possible subsets: {gi,oi}, {gi,oi}, {gi,oi}, or {gi,oi}. For four specimens this means, that there are a
total of n = 44 = 256 combinations of subsets. A given combination is called a ‘world’ wk and is, thus, a set of
four subsets. Let W = {w1,w2, ...,wn} denote the set of possible worlds, and w1 represent a world in which all
the specimens derive from traces exclusively left by the rapist(s). Such a world can be represented by the set
w1 = {{g1,o1},{g2,o2},{g3,o3},{g4,o4}}. The authors use the notation wk ∼ Ei to represent the subset of wk
associated with Ei. Thus, w1 ∼ E1, for example, corresponds to {g1,o1}. The temporal dimension is not addressed
here. For example, the interest is not whether gi occurred before or after oi, when {gi,oi} applies, but only that both
occurred during the relevant timespan. Hence, the subsets as well as the worlds themselves are represented as sets
and not tuples.8

As can be seen, the number of worlds increases exponentially with the number of specimens. Thus, worlds that
are found to be impossible in the present case are excluded from consideration, before establishing an exhaustive

7In rare cases a partial DNA profile from sperm can be detected after a post-coital interval of up to seven days [102]. However, the methods
applied in this study involved more modern Y-STR systems and more sophisticated sample treatments (i.e., post-PCR purification). In an early
study from 2003 that also analyzed Y-STR markers, the DNA from the sperm donor could not be detected after 72 hours [70].

8It can readily be seen, that addressing the temporal dimension leads to an exponential increase in the complexity of the reasoning problem.
For instance, let the double (gi,oi) refer to the sequence ‘gi before oi’ and (oi,gi) to the sequence ‘oi before gi’. Note that gi and oi cannot occur
simultaneously given that I4 applies. As a result, one has: {gi,oi}↔ (gi,oi)Y (oi,gi), where Y denotes an exclusive or. Hence, by including the
temporal consideration one has doubled the possible relationships between gi and oi to examine (and tripled in the absence of I4).
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list of possible worlds. The reduction of the number of worlds is accomplished by three means. First, two further
pieces of information are invoked. Second, the consequence of a probability assignment is exploited. Third, an item
of evidence is included in the consideration of possible worlds.

Reducing the number of possible worlds by using circumstantial information

Consider the pieces of information denoted by I7 and I8:

I7: All the specimens tested positive for the p30 and the PSA tests.

I8: All the specimens were retrieved from a small, coherent geographical area, namely, from the victim’s genital
area, her jeans, and the car’s middle row seat (i.e., where the assault took place).

Information I7 suggests that all the specimens contain seminal fluid rather than some other substance testing positive.
This in turn, implies that there is a coherence in substance among the four specimens. Similarly, I8 suggests a strong
coherence in space. A joint consideration of these two pieces of information leads to the conclusion that all these
specimens are more likely to be the consequence of a single event (such as the assault in question), rather than
two or more events. For E1 and E2, it seems even reasonable to assume their unity in substance and space. Stated
otherwise, it appears inconceivable for these two specimens to be associated with different subsets of Gi and Oi (for
instance, {g1,o1} and {g2,o2}). As a consequence, these specimens are better described as a single specimen. Let,
therefore, E1′ = {E1,E2} denote the specimen, under which E1 and E2 are subsumed. The indexes for the other
specimens remain unchanged. The number of possible worlds is reduced to n = 43 = 64.

Reducing the number of possible worlds by examining the consequence of a probability assessment

In the previous section (Section 5.2.2), it was judged that Pr(o1 | I3, I4, I5, I6) = Pr(o2 | I3, I4) = 0. Hence, by
including the considerations of the previous paragraph one has Pr(o1′ | I3, I4, I5, I6, I7, I8) = 0. This, in turn, implies
that the propositions g1′ and g1′ become exhaustive. Thus, for any given world, specimen E1′ is described either
by the subset {g1′} or {g1′} (instead of {g1′ ,o1′}, {g1′ ,o1′}, {g1′ ,o1′}, or {g1′ ,o1′}). This reduces the number of
possible worlds by a half, notably, n = 2×42 = 32.

Reducing the number of possible worlds by introducing an item of evidence

Consider the fact that each specimen yielded a DNA profile. This fact is not a piece of circumstantial information,
but part of the results from the DNA analysis. It is, therefore, an item of evidence. This item enables the exclusion
of all the worlds containing {g1′}, {g3,o3}, or {g3,o3}. The number of possible worlds now is n = 1×32 = 9.

5.2.4 Refining considerations on G3 and G4

Section 5.2.1 concluded that Pr(gi | I1, I2) expresses the probability that at least one of the two assailants ejaculated
and did not use a condom during the assault. As discussed in Section 5.2.3, the pieces of circumstantial information
I7 and I8 suggest a strong coherence in substance and space among all the specimens. In consideration of these facts,
the most likely course of events is that one assailant produced a sperm stain during the assault, and that this stain
was subsequently scattered across the crime scene creating thereby the remaining stains9. A reasoning about Gi

9Such a generation of evidence by scattering of an object is also described by the fundamental forensic principle of divisible matter: ‘Matter
divides into smaller component parts when sufficient force is applied. The component parts will acquire characteristics created by the process of
division itself and retain physico-chemical properties of the larger piece’ [73, p.12]. In the present case, the chemical properties are the DNA and
other materials contained in semen.
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must address this course of events, but also allow for the less likely possibility that a stain of sperm was generated
(i.e., ji and ci) more than once during the assault.

Next consider the geographical pattern of how the stains were scattered across the crime scene. Recall that
specimen E1′ stems from the victim’s genital area, E3 from the victims jeans, and E4 from the carseat where the
assault took place. It seems safe to assume that the victim’s genital area coincides with the location at which a
stain was generated. This leads to the possibility that this stain dispersed from the genital area to the remaining
locations by subsequent actions of the assailants or the victim herself. Conversely, the course of events that the
stain was initially produced at the extraction point of either E3, E4, or some other place, and came to be located
afterwards at the victim’s genital area (including the victim’s vagina) is not convincing. Such a course of events
is not taken into account. Thus, the stains located at the extraction points of specimens E3 and E4 may be either
derived from a stain that stems from the victims genital area, or from a stain generated somewhere else. That is,
they may have dropped to their corresponding extraction points from an assailant’s penis, or from the victim’s
mouth after her having been forced to perform oral copulation. Finally, the stain associated with E3 may come from
the stain associated with E4, and vice versa. Now, one must assess how likely each of these possible courses of
events are. The case description does not provide any further information on that matter. However, general literature
provides this pieces of information [24]:

I9: It is very common in rape cases that sperm stains are found at places such as the crime scene or on the victim’s
clothing aside from the victim’s natural orifices.

Further, one can invoke common sense:

I10: In general, it is more likely for two stains to emerge, if one stain already exists; it is more likely for three stains
to emerge, if one stain already exists; and that is even more likely, if two stains exist; and so on...

In order to accomplish a reasoning pattern that embraces all these possibilities, G3 and G4 are conditioned
on G1′ , and G4 additionally on G3. The probabilities Pr(g1′ | I1, I2, I7, I8), Pr(g3 | g1′ , I1, I2, I7, I8, I10) and Pr(g4 |
g1′ ,g3, I1, I2, I7, I8, I10) are then given by Equation 5.1. Further, one has the relationships Pr(g3 | g1′ , I1, I2, I7, I8, I10)>
Pr(g3 | g1′ , I1, I2, I7, I8, I10) and Pr(g4 | g1′ ,g3, I1, I2, I7, I8, I10)> Pr(g4 | g1′ ,g3, I1, I2, I7, I8, I10)≈ Pr(g4 | g1′ ,g3,
I1, I2, I7, I8, I10)> Pr(g4 | g1′ ,g3, I1, I2, I7, I8, I10). Hence, the lower bound is defined by Equation 5.1 for the proba-
bility of any given gi,∈ {1′,2,4}.

The probability of a world is, therefore, conditioned by G1′ to G4, O3 and O4, and all the pieces of information
these variables invoke. From now on, the entire body of information is denoted by the set I = {I1, I2, ..., In} (at this
point one has n = 10). Any further information used later is added to I. The probability of each world is computed
by using the BN presented in the following section. The probability values discussed are outlined in Table 5.3.

5.2.5 Bayesian network for computing the probability of each world

Figure 5.2 depicts the BN established for computing the probabilities of the different worlds. Note that node G1
represents variable G1′ . The probabilities of Table 5.3 are assigned to the true-states of the nodes G1, G3, G4, O3,
and O4. The nodes GO3 and GO4 are numbered. They possess the states 1, 2, 3, 4. State 1 corresponds to the subset
{gi,oi}, state 2 to {gi,oi}, state 3 to {gi,oi}, and state 4 to {gi,oi}, where i = {3,4}. Therefore, the probability
value of 1 is assigned to a given state, if it is in correspondence with the state configuration given by its parental
nodes, and 0 otherwise. The design of node W (worlds) is guided by an analogous reasoning. It is numbered and
possesses ten states 1, 2, 3, ..., 9, 99. Each state from 1 to 9 corresponds to one of the nine worlds (see Section 5.2.3).
The probability value 1 is given to a state, if it corresponds to the state configurations of its parental nodes, and 0
otherwise. All the other worlds are pooled in state 99, which receives the probability value 1, unless, the parental
configuration corresponds to one of the nine worlds. In the latter case, the value 0 is assigned. Node R1 sets state
99 of W to zero. This operation rescales the probabilities exclusively over the worlds 1 to 9. Node R1 is defined
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Table. 5.3 – Probability values assigned to each event g1′ ,g3,g4,o3, and o4 given the corresponding pieces of information,
and the possible configurations of conditioning events

Event Conditioned by Information Pr(·)

g1′ I1, I2, I7, I8 0.83

g3 g1′ I1, I2, I7, I8, I10
0.90

g1′ 0.83

g4 g1′ ,g3

I1, I2, I7, I8, I10

0.92
g1′ ,g3 0.90
g1′ ,g3 0.90
g1′ ,g3 0.83

o3 I3, I4 0.001

o4 I3, I4 0.001

as a negation of state 99, that is, W = ¬99, and serves to enter the evidence that sperm stains were found at each
extraction point. Node R2 rescales the probabilities over an arbitrary number of chosen worlds. It is defined as
a logical disjunction of the worlds, over which the probabilities are to be rescaled. In the present case one has
W=1 ∨ W=2 ∨ W=3. Its use is clarified shortly. In the meantime, consider the probabilities obtained for each world
in the middle column of Table 5.4. As can be seen, the world w1 (where each specimen is directly linked to an
assailant) is by far the most probable world. The next probable worlds are w2 and w3, where either specimen E3 or
E4 is associated with a mixed stain from an assailant, and from some other person not involved in the crime. In
the following examination of the DNA profiles, only the worlds w1 to w3 are considered. In order to do so, the
probabilities of the worlds are rescaled over w1, w2 and w3. This is accomplished by instantiating R2 = true. The
rescaled probabilities are listed in the outer right column.

Figure. 5.2 – BN for computing the probability of each possible world
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Table. 5.4 – Marginal probabilities of each world wk. Event e represents the evidence that sperm stains were found at
the extraction points of each specimen.

W Pr(wk | e,I) Pr(wk | k < 4,e,I)

w1 = {{g1′},{g3,o3},{g4,o4}} 0.99781 0.998
w2 = {{g1′},{g3,o3},{g4,o4}} 0.00100 0.001
w3 = {{g1′},{g3,o3},{g4,o4}} 0.00100 0.001
w4 = {{g1′},{g3,o3},{g4,o4}} 0.00011
w5 = {{g1′},{g3,o3},{g4,o4}} 0.00009
w6 = {{g1′},{g4,o4},{g4,o4}} 0.9998e-6
w7 = {{g1′},{g3,o3},{g4,o4}} 0.1087e-6
w8 = {{g1′},{g4,o4},{g4,o4}} 0.8694e-7
w9 = {{g1′},{g3,o3},{g4,o4}} 0.1207e-7

5.3 Assessing the number of contributors for each specimen

The number of DNA contributors in a crime stain can rarely be known with certainty. Moreover, the inferential force
that a profile generates on these hypotheses may vary greatly depending on the number of contributors considered in
the hypotheses. Methods that apply probability theory to address this problem have been known for quite some
time in forensic science [17, 91, e.g.]. The present study employs the BN proposed in [12]. This BN is tailored for
inferring the number of contributors in a DNA profile, and is presented later in Subsection 5.3.2. This BN assesses
the number of contributors in terms of probabilities on the basis of the alleles observed in a DNA specimen, and the
circumstantial information available. An inference executed by the model is discussed in Subsection 5.3.1. The
results obtained for the present case are presented in Subsection 5.3.3.

5.3.1 Inferring the number of contributors from DNA typing results

Let N = {1,2, ...,n} denote the number of contributors and Ai the set of alleles analyzed in specimen Ei, i∈ {1′,3,4}.
The underlying inference is given by the Bayes’ theorem

Pr(N | Ai,I) =
Pr(Ai | N,I)Pr(N | I)

Pr(Ai | I)
,

where Pr(Ai | I) = ∑N Pr(Ai | N,I)Pr(N | I). The probability of interest is Pr(N | Ai,I).
Let Pj denote a possible DNA contributor, and P = {P1,P2, ...,Pn} the set of DNA contributors considered. In

the present case a mixture with a maximum of five contributors per specimen was considered. In other words, one
has N = {1,2,3, ...,5} and, therefore, Pn = P5.

Further let L = {L1,L2, ...,Ln} denote the set of all the markers analyzed by the kits, and Ll a single marker. In
the present case there are n = 7 markers, where L1,L2, ...,L7 represent the markers HLA-DQA, LDLR, ..., D1S80
respectively (see Table 5.1).

A single allele is denoted as Ak,i, that is, the kth allele examined in the ith specimen. An allele can be present
Ak,i = ak,i or absent Ak,i = ak,i in a specimen DNA. The observation of the presence or absence of an allele is denoted
as A∗k,i = {a∗k,i,a∗k,i}, and the set of all observations as A∗i . As will be seen later, two distinct observations are
envisaged for a single allele for the markers L1 to L6 of specimen E1′ (i.e., k ≤ 19). If the observations themselves
are to be specified, then A∗1,k,1′ and A2∗

2,k,1′ are used to denote the first and the second observation respectively.
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The variable A∗o,k,1′ ,k ≤ 19 is written when the observation is not intended to be specified. When the variable
A∗k,1′ ,k ≤ 19 is used in a statement, then this is meant to imply both observations equally (i.e., A∗1,k,1′ and A2∗

2,k,1′ ).
In the present case, the inference is not based on the actual presence or absence of an allele, but the observation

of its presence or absence. One computes, therefore, the probabilities Pr(N | A∗i ,I) rather than Pr(N | Ai,I).

5.3.2 BN for computing the probability of the number of contributors.

The BN is shown in Figure 5.3 by using the plate notation10. The subgraph in the upper plate is replicated for every
possible contributor Pj considered (i.e., ∀Pj ∈ P). The subgraph in the lower plate is replicated for every marker
examined (i.e., ∀Ll ∈ L).

The nodes PjLlpg and PjLlmg represent the paternal genotype (pg) and maternal genotype (pg) respectively
that a person Pj possesses at locus Ll . These nodes are labelled by the letter of the alphabet. Each state represents
an allele of the marker considered (i.e., Ak,i). For example, node PjL1pg has seven (A to F) and PjL2pg two states
(A and B). To each allele state its corresponding allele frequency is assigned. The allele frequencies were listen in
Table 5.1.

Node N represents the number of persons that contributed to a DNA. The node is numbered, and each state
corresponds to the number of contributors. In the present case, there are states numbered from 1 to 5.

The node Nj inquires whether person Pj is a DNA contributor to the specimen. Hence, node Nj is defined by the
function N ≥ j. The nodes PjA1l to PjAnl refer to whether person Pj possesses an allele Ak,i and take the value
true if PjLlpg or PjLlmg contain the allele Ak,i, and if further Nj holds. These nodes are, thus, defined by the
logical expression {PjLlpg ∨ PjLlmg} ∧ Nj.

The nodes isA1l to isAnl enquire whether the allele Ak,i is contained in the DNA of the specimen. Hence,
a profile possesses Ak,i, if at least one Pj ∈ P possesses this allele. These nodes are, therefore, defined as logical
disjunctions of PjA1l, that is, ∨P PjA1l.

The nodes obsA1l to obsAnl enquire whether the allele Ak,i contained in the DNA, was actually observed
or not (A∗k,i). These nodes codify, therefore, observational errors. The values Pr(a∗k,i | ak,i,I) = 0.02 and Pr(a∗k,i |
ak,i,I) = 0.001 are retained for the probabilities of false negative and false positive respectively (i.e., probabilities
for the errors of the first and second kind).11 Recall that specimen E1′ subsumes E1 and E2. Even though E1 and E2
are considered to be a single specimen, each observation of an allele is still taken into account. In other words, the
alleles of the markers L1 to L6 were observed twice (i.e., E1 and E2), whereas loci L7 only once (i.e., E1). In the
present BN, this circumstance is translated by creating two observational nodes for each allele of loci L1 to L6 when
examining specimen E1′ . For example, the nodes obsA11_1 and obsA11_2 are the observational nodes for isA11.
These two observational nodes correspond to the variables A∗1,1,1′ and A∗2,1,1′ respectively.

Finally, the node R is used to rescale the probabilities of the number of contributors Pr(N | A∗i ,I) to desired
maximum and/or minimum number of contributors.

5.3.3 Results for the probabilities of the number of contributors

The prior probabilities of N (Pr(N | I)) used, and the posterior probabilities (Pr(N | Ai,I)) calculated are outlined
Table 5.5. Note that different prior probabilities are used for specimen E1′ , and E3 and E4. This is because given
I3, I4, I5,and I6, one does not expect to find DNA from another person not involved in the assault (see Section 5.2.2).
Hence, a number of contributors larger than N =3 was considered impossible. For specimens E3 and E4 the situation
is different. Namely, given that these specimens were taken from stains openly exposed to the environment, the
possibility of residual DNA from a person not involved in the assault is judged to be possible but unlikely.

10Repetitive elements of a BN are represented as subgraphs in rectangles so called ‘plates’. The number of times a subgraph is replicated
(including arcs that cross plate edges) is indicated in the corner of each plate [20]

11The notation Pr(a∗k,i | ak,i,I) is used as a shorthand for Pr(A∗k,i = a∗k,i | Ak,i = ak,i,I) throughout this paper.
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Figure. 5.3 – Generic BN for computing the probability of the number of contributors in a given profile. After the
compilation of the BN, the observations are entered in the nodes obsA1l to obsAnl. The probabilities for the number
of contributors are retrieved from node N.

For each specimen, the same BN was used for computing the posterior probabilities of N. More precisely,
nodes obsLlA1 were instantiated to true if the allele Ak,i was observed in specimen Ei, and false otherwise. The
posterior probabilities were then extracted from node N. This process was repeated for each specimen, that is, for
each i ∈ {1′,3,4}.

As the resulting posterior values indicate, the most likely number of contributors for specimen E1′ is N = 3, and
for specimens E3 and E4 each N = 1. For a further evaluation of the profiles only the most likely, and the second
most likely number of contributors were retained for each specimen. The probabilities obtained after rescaling are
given in Table 5.6.

Table. 5.5 – Prior and posterior probabilities for the number of contributors

N Pr(N | I) Pr(N | A1′ ,I) Pr(N | I) Pr(N | A3,I) Pr(N | A4,I)

1 0.7 1.682e-15 0.7 9.3992e-1 9.677e-1
2 0.2 2.216e-2 0.2 5.7116e-2 3.1621e-2
3 0.1 9.778e-1 0.09 2.9298e-3 6.7627e-4
4 0.0 0 0.009 3.1186e-5 5.0233e-6
5 0.0 0 0.001 3.9789e-7 5.6392e-8
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Table. 5.6 – Posterior probabilities retained after rescaling

N Pr(N | 1 < N < 4,A1′ ,I) Pr(N | N < 3,A3,I) Pr(N | N < 3,A4,I)

1 0 0.94 0.97
2 0.02 0.06 0.03
3 0.98 0 0

5.4 Possible contributor scenarios for aggregating multiple DNA typing results

The variables W and N set the corenerstones for the compilation of possible contributor scenarios under H (see
Tables 5.4 and 5.6). The role of these two variables is twofold. On the one hand, they help to identify the possible
contributor scenarios. On the other hand, they are directly included in the definition of a possible contributor
scenario. In other words, they not only serve as a stepping stone for reasoning about those scenarios, but they also
play an active role in the final BN. A general account on the specification of the scenarios is given Subsection 5.4.1.
The role played by W and N in the scenarios is portrayed in detail in Subsection 5.4.2. Subsection 5.4.3 addresses
the distinction between ‘actual contributor’ and ‘potential contributor’, as well as the relationships between the
specimens. This subsection also explains how an actual contributor relates to the hypotheses H. Subsection 5.4.4
deals with the derivation of a reasoning pattern that includes all the considerations discussed in the previous
subsection. The BN created on the basis of that reasoning pattern is presented in Subsection 5.4.5.

5.4.1 Specifying scenarios

Let Ni refer to the number of contributors for specimen Ei, i ∈ {1′,3,4}. The set of possible contributors considered
for specimen Ei is denoted as Pi. Let P1 to P4 represent the four potential assailants, P5 the victim and P6 the
individual not involved in the assault (i.e., the ‘other person’ from Section 5.2.1). A scenario represents a donor
configuration, and corresponds itself to a set of persons Pj’s involved in that configuration. One has, for example,
S1,1 = {P1,P2} or S2,1 = {P1,P3}. Again, the temporal dimension (i.e., the sequence according to which the different
persons contributed to a stain) is not taken into account. Note also that for a given number of contributors, and
for a given world wk ∈W , each specimen can only have four possible scenarios. Remember that there are only
two actual assailants and four potential assailants. Moreover, in any given world wk ∈W the assailant(s) sperm is
present in a specimen. In other words, (a) a specimen contains the sperm of either both assailants, in which case one
has a pair among four potential assailants, and therefore, n =

(4
2

)
= 4 possible scenarios; or (b) a single assailant,

in which case one has n =
(4

1

)
= 4 possible scenarios. All the scenarios are listed in Table 5.7 and Table 5.8 for

specimens E1′ , and E3 and E4 respectively. The scenarios are explained step by step in the subsequent subsections.
The discourse follows the order of the columns in the Tables 5.7 and 5.8 from left to right.

5.4.2 Number of contributors and worlds

For specimen E1 there is only one variant of subset associated with each world, that is, {g1′}. Thus, if N = 2
applies, then the contributor configurations are given by the combinations of two assailants out of the four possible
individuals P1 to P4 (S1≤s≤4,1). If one has N = 3, then the possible scenarios are essentially the same, except that
this time, the victim P5 is included in every scenario (S5≤s≤8,1). Given the fact that {g1′} applies, a person unrelated
to the assault cannot have contributed to the stain. Thus, person P6 does not figure in any scenario of specimen E1.
Therefore, for E1 one has a total of |S1|= 8 scenarios.

For specimens E3 and E4 there are two variants of subsets associated with each world, which are {gi,oi}, i ∈
{3,4} and {gi,oi}, i ∈ {3,4}. The difference between E3 and E4, is that the variant {gi,oi} appears in w3 for E3,
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Table. 5.7 – Possible contributor scenarios for E1′

N1′ P1′ \{·} H Ss,1′

2

P1′ \{P3,P4,P5} h1 {P1,P2}

S1≤s≤4,1
P1′ \{P2,P4,P5} h2 {P1,P3}
P1′ \{P1,P4,P5} h3 {P2,P3}
P1′ \{P1,P2,P5} h3 {P3,P4}

3

P1′ \{P3,P4} h1 {P1,P2,P5}

S5≤s≤8,1
P1′ \{P2,P4} h2 {P1,P3,P5}
P1′ \{P1,P4} h3 {P2,P3,P5}
P1′ \{P1,P2} h3 {P3,P4,P5}

Table. 5.8 – Possible contributor scenarios for Ei, i ∈ {3,4}

W Ni Pi \{·} H Ss,1′ Ss,i

¬wk,k ∈ {3,2}

1

Pi \{P2,P3,P4,P5,P6} h1,h2 S1,1,S2,1,S5,1,S6,1 {P1}

S1≤s≤4,i
Pi \{P1,P3,P4,P5,P6} h1,h3 S1,1′ ,S3,1′ ,S5,1′ ,S7,1′ {P2}
Pi \{P1,P2,P4,P5,P6} h2,h3,h4 S2≤s≤4,1′ ,S6≤s≤8,1′ {P3}
Pi \{P1,P2,P4,P5,P6} h4 S4,1′ ,S8,1′ {P4}

2

Pi \{P3,P4,P5,P6} h1 S1,1′ ,S5,1′ {P1,P2}

S5≤s≤8,i
Pi \{P2,P4,P5,P6} h2 S2,1′ ,S6,1′ {P1,P3}
Pi \{P1,P4,P5,P6} h3 S3,1′ ,S7,1′ {P2,P3}
Pi \{P1,P2,P5,P6} h4 S4,1′ ,S8,1′ {P3,P4}
Pi \{P2,P3,P4,P6} h1,h2 S1,1′ ,S2,1′ ,S5,1′ ,S6,1′ {P1,P5}

S9≤s≤12,i
Pi \{P1,P3,P4,P6} h1,h3 S1,1′ ,S3,1′ ,S5,1′ ,S7,1′ {P2,P5}
Pi \{P1,P2,P4,P6} h2,h3,h4 S2≤s≤4,1′ ,S6≤s≤8,1′ {P3,P5}
Pi \{P1,P2,P4,P6} h4 S4,1′ ,S8,1′ {P4,P5}

wk,k ∈ {3,2}

1 - - - - -

2

Pi \{P2,P3,P4,P5} h1,h2 S1,1′ ,S2,1′ ,S5,1′ ,S6,1′ {P1,P6}

S13≤s≤16,i
Pi \{P1,P3,P4,P5} h1,h3 S1,1′ ,S3,1′ ,S5,1′ ,S7,1′ {P2,P6}
Pi \{P1,P2,P4,P5} h2,h3,h4 S2≤s≤4,1′ ,S6≤s≤8,1′ {P3,P6}
Pi \{P1,P2,P4,P5} h4 S4,1′ ,S8,1′ {P4,P6}
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but in w2 for E4. Otherwise, all the other subsets associated with the worlds correspond to the variant {gi,oi}. Thus,
if {gi,oi} and N = 1 hold, then the scenarios correspond to each potential assailant P1 to P4 (S1≤s≤4,i). If {gi,oi}
and N = 2 apply, then they refer to either all possible a pairings of possible assailants (S5≤s≤8,i), or each possible
assailant along with P5 (S9≤s≤12,i). Now, consider {gi,oi}. Logically {gi,oi} and N = 1 are incompatible. Thus
no scenario exists for such a conjunction. Finally, if {gi,oi} and N = 2 apply, then the scenarios correspond to a
pairing of a possible assailant with P6 (S13≤s≤16,i). Hence, an individual not involved in the assault P6 can only be a
contributor in S13≤s≤16,i. Each of the specimens E3 and E4 have a total of |S3|= |S4|= 16 scenarios.

5.4.3 Adding considerations on the contributors, the hypotheses, and the scenarios of E1′

One has to enquire whether or not a given person Pj is a contributor to a specimen Ei. Clearly, if there is no
contributor, there can be no specimen in the first place. For this purpose, let Pi denote the set of possible contributors
specified for specimen Ei, that is P1′ = {P1,P2, ...,P5} or Pi = {P1,P2, ...,P6}, i ∈ {3,4}. Next, if a specimen
is composed of a mixture of DNA from, say, P1 and P2 exclusively, then this is written as P1′ \ {P3,P4,P5} or
Pi \{P3,P4,P5,P6}, i ∈ {3,4}. Thus, P1′ \{P3,P4,P5} or Pi \{P3,P4,P5,P6}, i ∈ {3,4} state {P1,P2} as the actual
contributors out of the possible contributors P1′ or Pi respectively. Stated otherwise, it is not only defined whose
DNA is (actually) in the specimen, but also whose DNA is (actually) not in the specimen.

For a definition of each scenario it is necessary − but not sufficient − to consider who actually contributed to a
given stain or not. Consider, for example, scenario S5,1′ = {P1,P2,P5}. It can only occur if g1′ applies, that is, if the
corresponding stain was left by the assailants. However, being a contributor does not qualify as being an assailant,
otherwise P5 could also be an assailant, which she is obviously not. Consequently, after having specified the actual
contributors, one has to further qualify which of the actual contributors are the assailants. Such a qualification of an
actual contributor being an assailant is established by invoking the hypotheses H.

Finally, consider the scenarios of E1′ . If, say, it contains P1 as an actual contributor, then one can directly exclude
all the scenarios that contain P4 in Ei, i ∈ {3,4} (and vice versa) because there is no scenario in which P1 and P4
appear together. Similarly, if it contains P1 and P2 then one can exclude all the scenarios that contain P3 and P4 (and
vice versa). Therefore, the scenarios of E1′ directly influence the scenarios in E3 and E4, and vice versa.

5.4.4 Identifying the reasoning structure for a BN

As can be seen from Tables 5.7 and 5.8, each scenario Ss,1′ is defined by a unique configuration of N1′ , P1′ \{·}, and
H; the scenarios Ss,3 and Ss,4 further include W and Ss,1′ . Thus, the probability of each scenario Ss,1′ is conditioned
by N1′ , Pi \{·}, H, and additionally by W,N1′ ,Pi \{·}, and H for the scenarios Ss,i, i ∈ {3,4}. Moreover, as was
discussed in the previous section a given Ss,i, i ∈ {3,4} can only occur if certain scenarios Ss,1′ apply. This fact
can be accounted for by conditioning a given Ss,i, i ∈ {3,4} on the corresponding scenarios Ss,1′ , as outlined in
Table 5.8. Moreover, since one, and only one scenario Ss,i, i ∈ {3,4} must have occurred for each specimen, one
has Pr(S1′ | I) = Pr(Si | I) = 1. Further, N3 and N4 are conditioned on W . By doing so one can establish that
Pr(N3 = 2 | w3,I) = Pr(N2 = 2 | w2,I) = 0.

Note, the variables Ni, and additionally W for Ss,3 and Ss,4, provide no discrimination among scenarios in the
groups listed in the outer right column of Tables 5.7 and 5.8. Stated otherwise, if a uniform (prior) probability
distribution is assigned to the hypotheses H, and to the actual contributors to a specimen, then each scenario within
such a group has the same probability value. A discrimination among these scenarios can only be achieved either on
the basis of (a) the DNA profiles influencing the probability that a possible contributor is an actual contributor, or
(b) some other evidence that allows to discriminate among the states of H.
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5.4.5 BN for the contributor scenarios

Figure 5.4 shows a BN handling the scenarios. All the nodes are Boolean, except for H, W, and N1 to N4. These are
numbered. Node H possesses the states from 1 to 4, where each number corresponds to the hypothesis h1 to h4. A
uniform distribution is assigned to the hypotheses, that is, Pr(h1 | I) = Pr(h2 | I) = ....= 0.25. Node R represents
the hypotheses {hp,hd}, and is defined as a logical disjunction of H = 1 and H = 2. Thus, hp is true, whenever
an H involves P1 as an assailant, but false otherwise. Node W stands for the worlds. It possesses the states 1 to
3, each representing the world w1 to w3 respectively. The probability values in the third column of Table 5.4 are
assigned to each corresponding state. The nodes N1 to N4 refer to the number of contributors and each state to the
actual number of contributors. Therefore, N1 possesses the states 2 and 3, whereas N3 and N4 possess the states 1
and 2. The posterior probabilities of Table 5.6 are assigned to each corresponding node and state. However, for
N3 and N4, which are conditioned on W, these posterior probabilities are only valid given certain worlds. That is,
one has to account for the fact that Pr(N3 = 2 | w3,I) = Pr(N2 = 2 | w2,I) = 0. The nodes Ss1 to Ss4 represent
the scenarios. Each scenario node converges towards the evidence nodes xorS1 to xorS4. Each is defined as an
exclusive or over all the scenarios of a given specimen Ei, i ∈ {1′,3,4} (i.e., YSiSs,i). By instantiating these nodes as
true, one assures that all the scenarios of a specimen Ei are mutually exclusive so that Pr(Si | I) = 1 (i ∈ {1′,3,4}).
The nodes PjinE1 to PjinE4 represent the possible contributors. For each of the latter nodes, a uniform prior
distribution is assumed, because their probability is already captured by the variables W , and N1′ to N4 through the
scenarios. The possible contributor nodes are then connected to the BN for the evaluation of the DNA profiles,
which is discussed later in Section 5.5.

A scenario node is defined as a logical conjunction of its parent nodes, so that the node represents a conclusive
formulation of the scenario it refers to according to Tables 5.7 and 5.8. For instance, scenario S1,1′ refers to P1 and
P2 as the actual contributors. The corresponding node S11 negates all the nodes PjinE1 except for P1inE1 and
P2inE1. As a consequence, P1 and P2 are qualified as actual contributors to E1. Moreover, H=1 (i.e., H = h1) and
N1=2 (i.e., N1′ = 2) must cumulatively apply. Thus, one has S11 = (H=1 ∧ N1=2 ∧ P1inE1 ∧ P2inE1 ∧P1′\P1,P2¬
PjinE1).

The scenarios of specimens E3 and E4 are further conditioned by scenarios of E1. This is indicated by the
two dashed arcs in Figure 5.4.12 For example, take scenario S1,3 which can only occur if one scenario among
S1,1,S2,1,S5,1,S6,1 applies. Therefore, the node for this scenario is defined as S31 = ( (S11 ∨ S21 ∨ S51 ∨ S61) ∧
(H = 1 ∨ H=2) ∧¬W=3 ∧ N3=1 ∧ P1inE3 ∧P3\P1¬ PjinE3). All the other scenario nodes can be defined following
an analogous procedure.

At this point it is important to state that P1 to P4 cannot have left a semen stain at the corresponding extraction
points, unless, they were the assailants. The only person who could have left a semen stain for reasons unrelated to
the crime is P6, who intervenes among the scenarios of E3 and E4. In other words, for a complete stranger, such as
P1 to P4, to have left the semen stains at these locations for reasons unrelated to the crime is deemed impossible.

This BN is revealing on how to construct a framework of scenarios for the aggregation of different DNA typing
results. However, it is extremely inefficient from a computational point of view. This model was broken down into
its logical components in order to render it more efficient for calcaulations. This less revealing but more efficient
model is shown in Appendix E.1.

5.5 The evaluation of the DNA typing results

The BN for the evaluation of the DNA typing results is essentially based on a model for DNA mixture profiles
proposed in [104]. A general account of that model is given in Subsection 5.5.1. The reader interested in a detailed

12The authors are aware that the two arcs in the figure are a notational abuse, and that they do not represent the actual dependence relationship
among the scenario variables. However, they were added for instructive purposes. That is, as a reminder that further dependence relationships
have to be considered among these variables. It is for this reason that only dashed arcs were used.
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Figure. 5.4 – BN for handling the scenarios of all the specimen

discussion on this model is requested to consult the said paper. The main purpose of this section is to explain the
adjustments carried out on Mortera et al.’s model for multiple specimens. The latter adjustments are discussed in
Subsection 5.5.2.

5.5.1 A generic BN for mixture profiles

Figure 5.5 shows a generic BN for the evaluation of multiple typing results from different specimens. As can be seen,
the BN is very similar to the one used for inferring the number of contributors in Section 5.3.2. It is represented by
using three plates. The subgraph in the first plate is replicated for each possible contributor considered (∀Pj ∈ P). It
is referred to as the ‘person-subgraph’. The nodes in this plate are discussed first. The second plate instructs us
to replicate the corresponding subgraph for each marker Ll that was examined (∀Ll ∈ L). It is referred to as the
‘locus-subgraph’. Finally, the last plate is the specimen-subgraph. It is replicated for each specimen that is analyzed
(∀Ei, i = 1,2, ...,n).

The nodes PjLlpg, PjLlmg, and PjA1l to PjAnl are exactly the same as in Section 5.3.2. Node PjLlgt
refers to person Pj’s genotype at locus Ll . This node is labelled. That is, each state is represented by a string. In
the present case the string stands for a possible genotype (e.g., ‘AA’, ‘AB’, or ‘BB’). The probability value 1 is
assigned for state configurations of PjLlpg and PjLlmg corresponding to the state of PjLlgt, and 0 otherwise
(e.g., PjLlgt = AA if PjLlpg = A and PjLlmg = A). However, for markers that contain numerous alleles, it might
be useful not to consider all the genotypes but only the most likely ones. In such cases, a state other can be added
to pool all the genotype states that one does not wish to consider explicitly. The nodes PjinEi are the same as
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previously discussed. They are also connected to the BN for the contributor scenarios (see Section 5.4.5). The nodes
PjA1linEi to PjAnlinEi are defined as logical conjunctions of their parent nodes (e.g., PjA1linEi = PjinEi ∧
PjA1l). In other words, person Pj can contribute an allele, say, A1,l,i to Ei only if he possesses this allele, and if he
actually contributed to Ei.

The nodes A1lEi to AnlEi refer to the whether an allele Ak,l,i is present at the locus Ll in the profile from
specimen Ei. Naturally, such an allele is present if at least one Pj possesses such an allele. Hence, these nodes
are defined as logical disjunctions (e.g., A1lEi = ∨P PjA1linEi). The nodes obsA1lEi to obsAnlEi include
considerations on observational errors. They are the same as discussed in Section 5.3.2.

As indicated by the plates, the genotype of a person at a given marker (represented by PjLlgt, PjLlpg, and
PjLlmg) as well as the presence of a certain allele in that person’s genotype (represented by PjA1l to PjAnl) is not
replicated for each specimen Ei. This describes the belief that the genotype of a person − and, therefore, the alleles
it contains − remains stable from one specimen to another.

Figure. 5.5 – Generic BN for evaluating multiple typing results of mixture profiles. The observations are instantiated at
the observational nodes colored in dark grey. The nodes colored in light grey are exactly the same as in the BN of
Figure 5.4. These nodes connect the BN for the scenario to the BN for the typing results.

5.5.2 Adapting the generic BN to the case

The BN presented in the previous section was adapted to the case in question. The first and third modifications are
due to the particularity of case itself. The second modification is performed in order to reduce the size of the BN.

First, the number of possible contributors is not the same for all the specimens. Five persons are considered for
the first specimen E1′ but six persons for the other two specimens. As a result, the person-subgraph for specimen
E1′ is established for five possible contributors P1 to P5, but for six possible contributors P1 to P6 for specimens
E3 and E4. Note that in the present case, the graph for the genotype and its alleles (comprising the nodes P6Llgt,
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P6Llpg, and P6Llmg, and P6A1l to P6Anl) was created once for both specimens E3 and E4. This, stems from the
assumptions that P6 is the same person in E3 and E4. If assumed otherwise, then one such graph must be provided
separately for each specimen.

Second, observational errors are not considered for the reference profiles. Stated otherwise, if for example, the
genotype AB was observed for P1 at L2 (LDLR), then it is assumed that this genotype is certain13. This decision
allows for a considerable reduction in size of the BN. Namely, one is not held to model the genotype and its alleles
for all the persons whose genotypes are known (i.e., P1, P2 and P3). Whether a specimen Ei contains a given allele
Ak,i stemming from these individuals can be entirely governed by the question of whether a contribution occurred or
not (i.e., by the nodes PjinEi).

Third, for the same reasons as was done with the BN for the computation of the probability of the number of
contributors (see Section 5.3.2), the observational nodes are duplicated for each allele in loci L1 to L6 of E1′ . An
example of how the BN in Figure 5.5 was adapted is shown in Appendix E.2.

5.6 Inferences and analyses

The question raised by the case is whether Sutton is an assailant or not. This is the question that is investigated here.
Remember that hp = h1∨h2 and hd = h3∨h4 denote the hypotheses of the prosecution and the defense respectively.
The present study focuses on the inferential force that the typing results exert on the hypotheses {hp,hd}, and
the inferential interactions among the typing results from the different specimens. However, the analysis of each
allele and each locus is omitted here. The inferential force is measured by the weight of evidence (WoE) and
the likelihood ratio (LR). The present discourse uses the notation suggested by I.J. Good [58, 64, e.g.]. A short
explanation on how to compute the LR and WoE of the typing results is given in Subsection 5.6.1. Subsection 5.6.2
explains how the observations were instantiated, and how the relevant probabilities were retrieved. The WoE and
LR obtained from the computations with the final BN are presented and discussed in Subsection 5.6.3. The analysis
of the inferential interactions among the specimens, as well as the inferential dissonance among the specimens
are analyzed in Subsections 5.6.4 and 5.6.5 respectively. Some measurements used for this analysis are published
elsewhere by the present authors. Other measurements were published in [125]. Subsection 5.6.6 examines the
posterior probabilities of the hypotheses and the scenarios of each specimen.

5.6.1 Likelihood ratio and weight of evidence for the present case

In order to produce an LR or WoE, the probabilities Pr(A∗k,i | hp,I) and Pr(A∗k,i | hd ,I) must be retrieved.14 Moreover,
The alleles, and by extension the loci, inform H through the scenarios. The scenarios of each specimen are mutually
exclusive and interconnected with the scenarios from other specimens. The alleles and the loci are not independent
given H. The LR for the typing results of all the specimens is, therefore, given by

F(hp : A∗1′ ,A
∗
3,A

∗
4 | I) = F(hp : A∗1′ | I)F(hp : A∗3 | A∗1′ ,I)F(hp : A∗4 | A∗1′ ,A∗3,I), (5.2)

13The reasoning behind this choice is that DNA from living individuals can be retested if necessary. However, this might not always be
possible for DNA from a crime stain due to its strictly limited quantity.

14Strictly speaking, the alleles are not only conditioned by the hypothesis and the circumstantial information, but also by the known genotypes
of persons P1,P2, and P5. However, for a better visibility the genotypes are not explicitly listed after the conditioning bar.
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where

F(hp : A∗1′ | I)
= F(hp : A1∗

1,1,1′ | I) ∏
A∗

1′\A
1∗
1,1,1′

F(hp : A∗k,l,1′ | obsA1,l,1′ ,A
∗
2,l,1′ , ...,A

∗
n−1,l,1′ ,I)

=
Pr(A1∗

1,1,1′ | hp,I)
Pr(A1∗

1,1,1′ | hd ,I)
∏

A∗
1′\A

1∗
1,1,1′

Pr(A∗k,l,1′ | A∗1,l,1′ ,A∗2,l,1′ , ...,A∗n−1,l,1′ ,hp,I)
Pr(A∗k,l,1′ | A∗1,l,1′ ,A∗2,l,1′ , ...,A∗n−1,l,1′ ,hd ,I)

,

(5.3)

F(hp : A∗3 | A∗1′ ,I)
= F(hp : A∗1,1,3 | A∗1′ ,I) ∏

A∗3\A∗1,1,3
F(hp : A∗k,l,3 | A∗1,l,1′ ,A∗2,l,3, ...,A∗n−1,l,3,A

∗
1′ ,I)

=
Pr(A∗1,1,3 | A∗1′ ,hp,I)
Pr(A∗1,1,3 | A∗1′ ,hd ,I) ∏

A∗3\A∗1,1,3

Pr(A∗k,l,3 | A∗1,l,3,A∗2,l,3, ...,A∗n−1,l,3,A
∗
1′ ,hp,I)

Pr(A∗k,l,3 | A∗1,l,3,A∗2,l,3, ...,A∗n−1,l,3,A
∗
1′ ,hd ,I)

,

(5.4)

F(hp : A∗4 | A∗1′ ,A∗3,I)
= F(hp : A∗1,1,4 | A∗1′ ,A∗3,I) ∏

A∗4\A∗1,1,4
F(hp : A∗k,l,4 | A∗1,l,4,A∗2,l,4, ...,A∗n−1,l,4,A

∗
1′ ,A

∗
3,I)

=
Pr(A∗1,1,4 | A∗1′ ,A∗3,hp,I)
Pr(A∗1,1,4 | A∗1′ ,A∗3,hd ,I) ∏

A∗4\A∗1,1,4

Pr(A∗k,l,4 | A∗1,l,4,A∗2,l,4, ...,A∗n−1,l,4,A
∗
1′ ,A

∗
3,hp,I)

Pr(A∗k,l,4 | A∗1,l,4,A∗2,l,4, ...,A∗n−1,l,4,A
∗
1′ ,A

∗
3,hd ,I)

.

(5.5)

The WoE of all the specimens is given by taking the logarithm of the LRs (for which the base of 10 is used in this
paper). In that way the quantities become additive

W (hp : A∗1′ ,A
∗
3,A

∗
4 | I) =W (hp : A∗1′ | I)+W (hp : A∗3 | A∗1′ ,I)+W (hp : A∗4 | A∗1′ ,A∗3,I) (5.6)

where

W (hp : A∗1′ | I)
=W (hp : A∗1,1,1′ | I) ∑

A∗
1′\A

∗
1,1,1′

W (hp : A∗k,l,1′ | obsA1,l,1′ ,A
∗
2,l,1′ , ...,A

∗
n−1,l,1′ ,I), (5.7)

and similarly

W (hp : A∗3 | A∗1′ ,I)
= F(hp : A∗1,1,3 | A∗1′ ,I) ∑

A∗3\A∗1,1,3
W (hp : A∗k,l,3 | A∗1,l,1′ ,A∗2,l,3, ...,A∗n−1,l,3,A

∗
1′ ,I), (5.8)

and

W (hp : A∗4 | A∗1′ ,A∗3,I)
=W (hp : A∗1,1,4 | A∗1′ ,A∗3,I) ∑

A∗4\A∗1,1,4
W (hp : A∗k,l,4 | A∗1,l,4,A∗2,l,4, ...,A∗n−1,l,4,A

∗
1′ ,A

∗
3,I). (5.9)
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Equations 5.2 to 5.9 produce LRs and WoEs following a joint consideration of all the specimens. However, it is
also possible to compute the LR and WoE of each specimen in isolation. That is, without taking into account the
reciprocal influences among the different specimens. This implies that the observed alleles of one specimen are
never conditioned by the observed alleles of another specimen. The LR obtained under these settings is denoted as
F⊥(·), and given by

F⊥(hp : A∗1′ ,A
∗
3,A

∗
4 | I) = F(hp : A∗1′ | I)F(hp : A∗3 | I)F(hp : A∗4 | I). (5.10)

Analogously, the WoE is denoted as W⊥(·), and given by

W⊥(hp : A∗1′ ,A
∗
3,A

∗
4 | I) =W (hp : A∗1′ | I)+W (hp : A∗3 | I)+W (hp : A∗4 | I). (5.11)

Finally, recall that the typing results can only be explained by taking into account observational errors, or by
considering highly improbable worlds and number of contributors. However, since the present research only
considers the most likely worlds and number of contributors, this means that the DNA typing results can only be
examined based on obsAi. An evaluation of the results based on Ai leads to the propagation of inconsistent evidence
in the network. More precisely, the typing results are impossible under any given hypothesis and scenario.

5.6.2 Node instantiations and probability retrievals

All the observations on the DNA profiles made are entered into the BN by an instantiation of the corresponding
observational node. For the present BN, the authors used two different sets of values for the probabilities of
observational errors for the computation of the LRs and WoEs. The first set consists of the same probability values
used for the computation of the probability of the number of contributors, namely Pr(a∗k,i | ak,i,I) = 0.02 and
Pr(a∗k,i | ak,i,I) = 0.001 (‘error 1’ as short for ‘observational errors 1’). The second set of values is Pr(a∗k,i | ak,i,I) =
0.001 and Pr(a∗k,i | ak,i,I) = 0.001 (‘error 2’ as short for ‘observational errors 2’). Hence, the error probabilities are
smaller for the set ‘error 2’ than ‘error 1’.

In order to retrieve the probabilities for the joint evaluation of the specimens, one has to instantiate xorS1 =
true, xorS3 = true, and xorS4 = true. This operation d-connects15 all the scenarios within a specimen, and
as a consequence, also between the specimens. Next, the probabilities at the nodes obsAklEi need to be retrieved
for each observation made on the typing results (see Table 5.1).

The probability retrieval for the evaluation of the specimens in isolation is slightly different. Namely, xorS1 =
true, xorS3 = true, or xorS4 = true is instantiated exclusively for the specimen considered in isolation. That
is, if one were to focus on specimen, say E1′ , then xorS1 = true is entered but no instantiation is specified for the
nodes xorS3 and xorS4. This prevents the communication among the subgraphs associated with each specimen.
Naturally, the probability retrievals and instantiations at the observational nodes were realized exclusively for the
targeted specimen. The probabilities at the observational nodes are retrieved by following the same procedure used
for the joint evaluation of the specimens. In other words, one is following the computation shown in Equations 5.3
or 5.7 analogously for all the specimens.

In general, all observation regarding an allele A∗k,l,i are conditionally dependent given H. Thus, in any case, a
given observation must be instantiated after its probability is retrieved, and remain so for the probability retrieval
at the next observational node of the specimen. If the probabilities of the observational nodes should be further
conditioned by observations from other specimens, then the corresponding instantiations have the to be carried
out beforehand (this includes the instantiations at the nodes xorS1 = true, xorS3 = true, and xorS4 = true).
For instance, the probability retrieval for the computation of the WoE W (hp : A∗1′ | A∗3,A∗4,I) requires instantiations

15D-connection refers to the setup of a communication pathway between two or more parts of a graph. In contrast, d-separation refers to the
transection of such a communication path [108].
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at the observational nodes of specimen E3 and E4 corresponding to the findings A∗3 and A∗4. Next the probabilities
at the observational nodes have to be retrieved. For example, in specimen E1′ the allele 1.1 DQA was observed
twice: once for E1, and once for E2. After instantiating R = true (i.e., hp = {h1,h2}) the marginal probability
is retrieved at the true-state (i.e., allele 1.1 DQA was observed) of the first observational node obsA11E1_1.
This marginal probability corresponds to Pr(a∗1,1,1′ | hp,I). The same procedure is repeated with R = false (i.e.,
hd = {h3,h4}) producing Pr(a∗1,1,1′ | hd ,I). Node obsA11E1_1 = true is instantiated before the probabilities
at the second observational node obsA11E1_2 are retrieved. By instantiating alternatively R = true and R =
false the probabilities Pr(a∗2,1,1′ | a∗1,1,1′ ,hp,I) and Pr(a∗2,1,1′ | a∗1,1,1′ ,hd ,I) can be retrieved respectively. Next,
obsA11E1_2 = true is instantiated. The next observation is the absence of 1.2 DQA in the typing results. Thus,
by instantiating alternatively R = true and R = false the marginal probabilities at the false state of node
obsA21E1_1 correspond to Pr(a∗1,2,1′ | a∗1,1,1′ ,a∗2,1,1′ ,hp,I) and Pr(a∗1,2,1′ | a∗1,1,1′ ,a∗2,1,1′ ,hd ,I) respectively.

In short, the marginal probabilities are retrieved at the relevant state of the observational node once under
R=true and once under R=true. If the allele was observed in the DNA typing results, then the relevant state at the
observational node is true and false otherwise. Before retrieving the probabilities at the subsequent observational
node the present observational node is instantiated according to the observation made (i.e., true if the allele
was observed in the DNA typing results and false otherwise). As a consequence, the observational nodes are
cumulatively instantiated one after another across all loci of the DNA typing results of the specimen.

5.6.3 LR and WoE of the specimens

The LRs and WoEs produced by the model are shown in Table 5.9. The row for the joint inferential force correspond
to the computations following Equations 5.2 and 5.6 respectively. Conversely, the row for the inferential force of
the specimens in isolation follows the computation according to Equations 5.10 and 5.11. As can be seen from
the results, the joint evaluation of the specimens produces inferential forces against the hypotheses that Sutton
is an assailant (hp = {h1,h2}) and supporting, in turn, the alternative hypotheses hd = {h3,h4}. However, if the
specimens are evaluated in isolation hd is favored, rather than hp. This suggests the presence of inferential interaction
between the typing results from the different specimens. The subject of inferential interaction is examined later.
Note also, the inferential forces produced by the joint consideration vary significantly for different observational
error probabilities. In contrast, only small variations can can be observed for the inferential forces produced by an
isolated evaluation of the specimens. This suggests that smaller observational error probabilities have a stronger
effect on the inferential forces in the joint evaluation setting than in the isolated setting. An exhaustive list of the
individual WoEs of each allele is given in Appendix E.3.

Table. 5.9 – LRs and WoEs of the DNA typing results

Joint Isolated

Error 1
LR 0.185 10.197

WoE -0.733 1.009

Error 2
LR 0.007 9.333

WoE -2.190 0.970

5.6.4 Inferential interaction among the specimens

A previous article by the authors showed how Schum’s redundance measure [125] can be generalized for an arbitrary
number of items of evidence (see article in Chapter 4 of Part III). This extended measure was named ‘inferential
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interaction measure’, and is based on the WoE-metric for the inferential force. The inferential interaction measure
portraits the difference arising between items of evidence that are independent given some hypotheses and those that
are not independent, when the multiplication rule of probability is applied. In other words, it unveils the difference
between Equation 5.6 and 5.11, and is given by

ia(hp : A∗1′ ,A
∗
3,A

∗
4 | I) =

W⊥(hp : A∗1′ ,A
∗
3,A

∗
4 | I)−W (hp : A∗1′ ,A

∗
3,A

∗
4 | I)

W⊥(hp : A∗1′ ,A
∗
3,A

∗
4 | I)

, (5.12)

where W⊥(hp : A∗1′ ,A
∗
3,A

∗
4 | I) 6= 0. For a single specimen, say, E1′ one has

ia(hp : A∗1′ | A∗3,A∗4I) =
W⊥(hp : A∗1′ | I)−W (hp : A∗1′ | A∗3,A∗4,I)

W⊥(hp : A∗1′ | I)
, (5.13)

where W⊥(hp : A∗1′ | I) 6= 0.
As was shown in the article reproduced in III.4, an interaction value ia[·]< 0 demonstrates the presence of a

synergistic relationship among the examined items of evidence. Stated otherwise, the inferential force of an item of
evidence increases upon the knowledge on some other item of evidence. A value ia[·]> 0 establishes the presence
of a directional change among the items. That is, the inferential force changes its direction (i.e., supporting the
opposite hypothesis) upon the knowledge on some other item of evidence. Table 5.10 outlines the interaction values
obtained according to Equations 5.12 and 5.13, and their corresponding WoEs.

The results show that the directional change is the prevalent inferential interaction among the three typing
results. Specimen E1′ supports hp over hd , when considered in isolation, but it supports hypothesis hd over hp, when
considered together with the other specimens. The situation is reversed for the typing results of E3. Specimen E4 is
an exception as it exhibits a synergistic relationship with the other specimens. The dominating inferential interaction
is that of a directional change as can be seen from the last row of Table 5.10. It is possible to retrace the origin of
these inferential interaction values by examining the WoEs of each allele in each specimen. Such an examination,
however, would exceed the scope of this paper, and is omitted. The most important finding is the presence of a
directional change among the specimens. Namely, an evaluation of each specimen in isolation provides weight in
favor of the hypothesis that Sutton is an assailant, whereas the opposite is true, when the specimens are evaluated
jointly. This finding is in agreement with Thompson’s observations in [139].

Table. 5.10 – Inferential interaction among the typing results of the three specimens

ia(hp : · | I) Interaction type
Error 1 Error 2 Error 1 Error 2

E1′
W (hp : A∗1′ | A∗3,A∗4,I) -0.118 -0.116

1.06 1.06 Directional change
W (hp : A∗1′ | I) 1.923 1.925

E3
W (hp : A∗3 | A∗1′ ,A∗4,I) 0.450 1.645

1.94 4.44 Directional change
W (hp : A∗3 | I) -0.479 -0.478

E4
W (hp : A∗4 | A∗1′ ,A∗3,I) -2.717 -4.182

-5.24 -7.76 Synergy
W (hp : A∗4 | I) -0.435 -0.477

All
WoE according to Equation 5.6 -0.733 -2.190

1.73 3.26 Directional change
WoE according to Equation 5.11 1.009 0.970
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5.6.5 Dissonance among the specimens

A directional change always stems from a dissonance among the inferential forces of different items of evidence
(see article in Chapter 4 of Part III). A dissonance among items of evidence implies that some amount of inferential
force is lost, since forces pointing in opposite directions compensate each other by nullification. The amount of
inferential force lost due to a dissonance can be measured based on the WoE. The potential weight produced by a
collection of items is the total amount WoE produced, irrespective of directionality of the inferential force of each
item. It is denoted as Wpot(·). The WoE expressed by a collection of items of evidence is the totalWoE produced by
accounting for the directionality of the inferential force of each item. It is denoted as Wex(·). The WoE lost due to
dissonance Wdiss(·) is given by the difference between the potential weight and the weight expressed so that

Wdiss(hp : A∗1′ ,A
∗
3,A

∗
4 | I) =Wpot(hp : A∗1′ ,A

∗
3,A

∗
4 | I)−Wex(hp : A∗1′ ,A

∗
3,A

∗
4 | I), (5.14)

where

Wpot(hp : A∗1′ ,A
∗
3,A

∗
4 | I) = |W (hp : A∗1′ | I)|+ |W (hp : A∗3 | A∗1′ ,I)|+ |W (hp : A∗4 | A∗1′ ,A∗3,I)|,

Wex(hp : A∗1′ ,A
∗
3,A

∗
4 | I) = |W (hp : A∗1′ | I)+W (hp : A∗3 | A∗1′ ,I)+W (hp : A∗4 | A∗1′ ,A∗3,I)|.

(5.15)

The amount of WoE lost through can never be negative since Wpot(·)≥Wex(·), and it is zero only if the items of
evidence are harmonious (i.e., absence of dissonance). The WoE lost through, the corresponding potential WoE
and expressed WoE are outlined in Table 5.11. As expected, the weight lost through is larger than zero in any case,
indicating the presence of dissonance among the specimens. Notice that the actual amount of weight lost through is
almost the same between ‘error 1’ and ‘error 2’. However, by considering the weight lost through relative to their
potential weights (Wdiss(·)/Wpot(·)) the difference becomes remarkable. For ‘error 1’ the weight lost relative to the
potential weight is roughly 85% (i.e., 3.97/4.7). For ‘error 2’, however, one has 65% (i.e., 3.98/6.17), that is, a
relative loss smaller by 20%. Stated otherwise, even though the actual amount of weight lost through is almost the
same between ‘error 1’ and ‘error 2’, in proportion to the potential weight produced by the specimens, there is a
reduction in dissonance. It appears that the smaller the observational errors, the less dissonant the typing results of
the specimen.

Table. 5.11 – Dissonance among the typing results of the three specimens

WoE potential WoE expressed WoE lost through
Wpot(hp : · | I) Wex(hp : · | I) Wdiss(hp : · | I)

Error 1 4.70 0.73 3.97
Error 2 6.17 2.19 3.98

5.6.6 Scenarios and posterior probabilities of H

Figure 5.6 outlines the posterior probabilities of H, and of the scenarios of each specimen, that is, after instantiating
all observations in the BN. As can be seen, irrespective of the observational error probabilities applied, the
observations provoke the same tendencies in the probability distributions of the hypotheses and the scenarios.
Consider the posterior probabilities of the hypotheses. The most likely hypothesis is h4 irrespective of whether
probabilities of ‘error 1’ or ‘error 2’ were applied. For ‘error 1’ this posterior probability amounts to 84%, and for
‘error 2’ even to 99% (see Appendix E.4). Thus, given the DNA typing results it is far more likely that two unknown
persons are the assailants, rather than any other hypothesis considered in this paper and by the court. The most likely
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contributor scenario for specimen E1′ is the one involving two unknown assailants (S4,1′ ), followed by the much less
likely scenario of Sutton and an unknown assailant (S2,1′). The same pattern is proportionally repeated among the
scenarios S5,1′ to S8,1′ , however, on a much smaller range of probabilities. For the specimens E3 and E4 none of the
most likely contributor scenarios involve Sutton or Adams as assailants. The most likely scenarios involve either
unknown assailant P3 (i.e., S3,·) or P4 (i.e., S4). This is expected, since the typing results of these specimens do not
correspond to Sutton’s or Adams’ DNA profiles. Note also, that for both, ‘error 1’ and ‘error 2’, the probabilities of
scenarios S3,· and S4,· seem to gravitate around the probability value of 50%. This result coincides with an intuitive
reasoning approach. Namely, since Sutton’s and Adams’ DNA profile do not correspond, some other persons must
be the contributors. If it is only one contributor (the most likely number of contributors for these specimens) it must
be either assailant P3 or P4. Given that their DNA profile is unknown, one cannot discriminate between these two
scenarios. Hence, P3 and P4 appear to be equally likely candidates.

One concludes that the DNA evidence suggests neither Sutton nor Adams as an assailant. Given the circumstan-
tial information considered here, the allele frequencies employed, and the reasoning pattern applied, it is logically
inconceivable to arrive at a different conclusion. The probability values of the scenarios can found in Appendix E.5.

5.7 Discussion and Conclusion

The paper presented a BN that aggregates DNA typing results stemming from four distinct specimens on the one
hand, and probabilistic analyses on the typing results based on that BN on the other. Meanwhile, each typing result
was treated as a mixture profile. The hypotheses of interest were, whether the suspects Sutton and Adams, one of
the suspects together with an unknown person, or two unknown persons, committed the sexual assault. The logical
organization of the specimens in the light of crime-level hypotheses turned out to be the most challenging task of
the present study. Up to date, no publication on how to accomplish a combination of different typing results exists
to the best knowledge of the authors. Indeed, the literature on the probabilistic combination of items of evidence
is very scarce in general. This meant that the method for the logical organization of the typing results had to be
established almost from scratch. The model created produced inferences that corroborate the findings on the typing
results made by W.C. Thompson.

5.7.1 Model creation

The authors chose to extend well known concepts for the evaluation of single items of evidence given crime-level
propositions. These concepts involve (a) the relevance of the DNA from specimens for the crime in question, and
(b) the probability that the DNA is present in the specimen for reasons unrelated to the crime in question [56, 130].
Based on these two concepts, the authors enumerated the different ‘worlds’, where each world represents a possible
setting of (a) and (b) that could have produced the specimens in question. In the present case the initial number of
worlds was 256. Generally, the total number of worlds depends sensibly on the number of specimens: the number of
worlds increases exponentially relative to the number of specimens. The number of worlds is reduced by different
strategies, all of which are essentially based on the exploitation of circumstantial information and forensic expert
knowledge. The authors emphasize that without any further information an examination of every single world must
be envisaged, which might well be impossible to accomplish from a practical standpoint. However, the rigorous
application of circumstantial information and forensic expert knowledge, enables the exclusion of worlds that are
impossible to have occurred. A further enquiry on the probability of each worlds, allows us to discriminate between
likely and unlikely worlds. The present study retained the three most probable worlds, each possessing a probability
of 0.998, 0.001, and 0.001 respectively. Next, the probability of the number of contributors was computed for
each specimen. The BN applied for that purpose was proposed in [12]. Again, only the most probable number of
contributors were retained for each specimen. Based on the collection of three likeliest worlds, the likeliest number
of contributors, and the hypotheses of interest, a logical framework defined upon sets of contributor scenarios can be
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Figure. 5.6 – Posterior probabilities of the hypotheses and the contributor scenarios given the DNA typing results of all
the specimens

established for each specimen. A BN reproducing this logical framework was created. This BN served as a gateway
to relate the DNA typing results to the hypotheses. The typing results were modeled based on the BNs proposed
in [104]. The BN creation process lead to the insight that circumstantial information not only dictates the choice of
the relevant population for probability assignments, but also the reasoning pattern itself (i.e., the BN), when items of
evidence are combined. That is, such information governs the number of possible worlds and, consequentially, also
the number of possible contributor scenarios. BNs require complex reasoning processes to be made transparent and
thought through in detail. This enables a clear demonstration on how circumstantial information was employed,
what scenarios were considered, and what reasoning structure was applied.
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5.7.2 Results produced by the model

The result obtained from computations based on the proposed BN, corroborate the assessments on the typing results
made by W.C. Thompson in [139]: the DNA evidence in this case provides no reasonable basis for supporting the
guilt of Sutton. More precisely, if the typing results of each specimen are considered in isolation, then they support
the hypothesis that Sutton is one of the assailants. However, the support is very weak (i.e., LR ≈ 10 or WoE ≈ 1).
In contrast, if the typing results are evaluated jointly, then they clearly support the hypothesis that Sutton is not an
assailant of the crime (i.e., LR ≈ 0.185 and WoE ≈−0.733). The analysis showed further that assigning smaller
observational error probabilities to the typing results increases the support in favor of Sutton not being an assailant
(i.e., LR ≈ 0.007 and WoE ≈ −2.190). Smaller observational error probabilities also produced smaller relative
dissonances among the specimens. The most important feature of the present DNA typing results is, however, the
inferential interaction among the different specimens. Namely, the directional change regarding the supported
hypothesis, when the evidence is considered in isolation, or in conjunction. This feature was clearly recognized by
W.C. Thompson, although, not named as such. David A. Schum was the first person, who gave a clear probabilistic
description of the phenomenon he called ‘directional change’ [125]. The existence of this phenomena is, thus,
known for quite some time. However, a discussion on the dangers and prevalence of directional change in forensic
case work, or literature is unknown to the authors. Forensic evidence is predominantly evaluated in isolation, and
presented to courts from that perspective. This implies that almost nothing is known about the exposure of forensic
evidence to such inferential interactions, and about the misinterpretation of evidence due to inferential interactions.

5.7.3 Conclusion

The authors conclude: evidence must be interpreted holistically and not as isolated parts. Such holistic interpretations
can only be accomplished based on circumstantial information, and a rigorous application forensic expert knowledge.
BNs are invaluable tools for the holistic interpretation of evidence, and can help to render the expert’s workflow
transparent.

Acknowledgements

This work has beed supported by the Swiss National Science Foundation [grant number 100014_150276].

157





A Appendix: Example of average uncertainty and in-
formation redundance in general patterns of finger-
prints

Tables A.1 and A.2 outline the relative frequencies of general patterns of fingerprints in a sample of the Spanish
population as observed by Gutièrrez et al. in [67]. Let X = {x1,x2,x3,x4} denote the set of four different general
patterns examined in this publication: arch, ulnar loop, radial loop, and whorl. The maximum average uncertainty
Hmax(X) is obtained if each pattern has the same probability of occurring so that Pr(x1) = ...= Pr(x4) = 1/4 (i.e.,
uniform distribution of the patterns). Thus, the maximum average uncertainty is given by

Hmax(X) =−
4

∑
i=1

Pr(xi) log2 Pr(xi) =−4× 1
4

log2
1
4
= 2bits.

The values of the relative frequencies shown in Tables A.1 and A.2 are assigned to the corresponding probabilities
Pr(xi). The average uncertainty of the general pattern H(X) for the thumb of the left hand is given by

H(X) =−0.0556× log2 0.0556−0.5707× log2 0.5707−0.0152× log2 0.0152−0.3586× log2 0.3586
≈ 1.3160 bits,

and its information redundance is

R = 1− H(X)

Hmax(X)
= 1− 1.3160

2
≈ 0.3420,

which is a dimensionless quantity. The values for the other fingers in Tables A.1 and A.2 were computed in the
same manner. Note, however, that frequency values of 0.0 are omitted when computing the average uncertainty.

The average uncertainty represents the average information transmitted (produced) by an event (here the general
pattern X). It can also be interpreted as the average amount of surprise that we associate with an event [90]. Indeed,
the larger the average uncertainty the larger the element of surprise, and therefore the more informative the event
becomes. Conversely, the smaller the average uncertainty the less surprising, and therefore informative, is the event
for us.

Figure A.1 outlines the average uncertainty and the information redundance for each finger on each hand. As
can be seen, the little finger has the smallest average uncertainty. The general pattern is the least informative for this
finger. This is also reflected in the the relative frequencies: 83.84% of the general patterns of this finger (on both
hands) are ulnar loops. Hence, you can expect to observe an ulnar loop almost all the time. This is expressed by a
high redundance value of 0.6108 (remember that 0≤ R < 1). In contrast, the general pattern of the index has the
largest average uncertainty and the smallest redundance value among the fingers. Hence, the general pattern on the
index is most informative and the least redundant as compared with the other fingers.
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Table. A.1 – Relative frequencies of general patterns, average uncertainty, and information redundance for the fingers of
the left hand

Thumb Index Middle finger Ring finger Little finger

Frequency: Arch 0.0556 0.0909 0.0758 0.0354 0.0202
Ulnar Loop 0.5707 0.4141 0.7424 0.6010 0.8384
Radial Loop 0.0152 0.1212 0.0253 0.0051 0.0101
Whorl 0.3586 0.3737 0.1566 0.3586 0.1313

Average uncertainty H(X) in bits 1.3160 1.7409 1.1542 1.1815 0.7785
Information redundance R 0.3420 0.1300 0.4229 0.4093 0.6108

Table. A.2 – Relative frequencies of general patterns, average uncertainty, and information redundance for the fingers of
the right hand

Thumb Index Middle finger Ring finger Little finger

Frequency: Arch 0.0202 0.0964 0.0556 0.0556 0.0101
Ulnar Loop 0.5455 0.3198 0.7626 0.7626 0.8384
Radial Loop 0.0 0.1574 0.0 0.0 0.0051
Whorl 0.4343 0.4264 0.1818 0.1818 0.1465

Average uncertainty H(X) in bits 1.1132 1.7955 0.9771 0.9771 0.7250
Information redundance R 0.4434 0.1022 0.5114 0.5114 0.6375
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Figure. A.1 – Average uncertainty H(x) and information redundance R of the general pattern for each finger and each
hand
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B Appendix: Probabilistic ontology of evidence and
its combinations

B.1 Reversibility of inconclusive arguments of evidence

By applying condition (ii) we can rewrite b1 = 1−a1 and b2 = 1−a2. The inferential force of the argument of
evidence is then given by

Vr|H =
a1 +[ a2

1−a2
−1]−1

(1−a1)+ [ a2
1−a2
−1]−1 ,

which corresponds to the ratio Pr(h | r)/Pr(h | r) if the argument is reversible. The posterior probabilities of R can
be developed by using the Bayes’ theorem so that

Pr(h | r) = Pr(r | h)Pr(h)
Pr(r)

,

Pr(h | r) = Pr(r | h)Pr(h)
Pr(r)

.

Since Pr(h) can be eliminated in the ratio Pr(r | h)Pr(h)/Pr(r | h)Pr(h) we have

Pr(h | r)
Pr(h | r) =

Pr(r | h)
Pr(r | h) ×

Pr(r)
Pr(r)

=
Pr(r | e)Pr(e | h)+Pr(r | e)Pr(e | h)
Pr(r | e)Pr(e | h)+Pr(r | e)Pr(e | h) ×

Pr(r)
Pr(r)

.

By applying condition (ii) we can rewrite

Pr(h | r)
Pr(h | r) =

a2a1 +(1−a2)(1−a1)

(1−a2)a1 +a2(1−a1)
× Pr(r)

Pr(r)
.

The ratio Pr(r)/Pr(r) can be developed by extending the conversation

Pr(r) =∑
E

∑
H

Pr(r | E)Pr(E | H)Pr(H),

Pr(r) =∑
E

∑
H

Pr(r | E)Pr(E | H)Pr(H).
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By applying condition (ii) to the ratio Pr(r)/Pr(r) we obtain

Pr(r)
Pr(r)

=
a2a1Pr(h)+(1−a2)(1−a1)Pr(h)+a2(1−a1)Pr(h)+(1−a2)a1Pr(h)
a2a1Pr(h)+(1−a2)(1−a1)Pr(h)+a2(1−a1)Pr(h)+(1−a2)a1Pr(h)

.

The impact of the prior probabilities Pr(h) and Pr(h̄) is therefore confined in the ratio Pr(r)/Pr(r). The identity
Pr(h) = Pr(h), that is condition (i), assures that the numerator and the denominator of Pr(r)/Pr(r) are also identical.
As a consequence, Pr(r)/Pr(r) = 1 and

Pr(h | r)
Pr(h | r) =

Pr(r | h)
Pr(r | h) ,

which corresponds to the inferential force of r (Vr|H ):

Pr(r | h)
Pr(r | h) =

a2a1 +(1−a2)(1−a1)

(1−a2)a1 +a2(1−a1)
=

a2
1−a2

a1 +(1−a1)

a1 +
a2

1−a2
(1−a1)

=

a2
1−a2

a1 +1−a1

a1 +
a2

1−a2
− a2

1−a2
a1

=
−a1[

a2
1−a2
−1]−1

a2
1−a2

a1−a1− a2
1−a2

=
−a1[

a2
1−a2
−1]−1

a1[
a2

1−a2
−1]− a2

1−a2

=
−a1− [ a2

1−a2
−1]−1

a1−
a2

1−a2
[

a2
1−a2

−1]

=
−a1− [ a2

1−a2
−1]−1

a1− ([ a2
1−a2
−1]−1 +1)

=
a1 +[ a2

1−a2
−1]−1

(1−a1)+ [ a2
1−a2
−1]−1

=Vr|H .

B.2 Drag coefficient of chains of reasoning and testimonial evidence

In singly connected chains of reasoning, each variable has one incoming and one outgoing directed arc at most
(serial connection). The numerator of the likelihood ratio at the i-th reasoning stage of a total of n reasoning stages is
denoted by ai and the corresponding denominator is denoted by bi. For n reasoning stages Equation (2.1) becomes,
following Schum [125],

Vr|H =
a1 +Dn

b1 +Dn
, (B.1)

where

Dn = Dn−1 +
bn

∏
n
i=1(ai−bi)

= Dn−1 +
1

∏
n−1
i=2 (ai−bi)

[
an

bn
−1]−1. (B.2)

As can be seen from Equation (B.1), the inferential drag is recursively accumulated with every additional reasoning
stage. Thus, in general, the longer the argument based on a SCCR, the larger the inferential drag, and the weaker the
inferential force.

The BN for the item of testimonial evidence is a chain of reasoning with three stages (i.e. perceptional sensitivity,
objectivity, and veracity). The inferential force is therefore given by

Vr|H =
a1 +D4

b1 +D4
=

a1 +
b2

(a2−b2)
+ b3

(a2−b2)(a3−b3)
+ b4

(a4−b4)(a4−b4)

b1 +
b2

(a2−b2)
+ b3

(a2−b2)(a3−b3)
+ b4

(a4−b4)(a4−b4)

.
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B.3. BYPASSING AN INTERMEDIARY VARIABLE

B.3 Bypassing an intermediary variable

The operation of bypassing an intermediary variable requires two conditions that must cumulatively apply [28]:
(i) the variable to be bypassed is neither a query variable (such as H) nor an evidence variable (such as R); (ii) the
variable to be bypassed cannot have more than one child variable.
Let X be the variable to bypass and x ∈ X a variable state. Let Y be the child of X and y ∈ Y a variable state. Then
the NPT of Y has to be updated in order to ‘inherit’ the properties of X . Such an update is realized according to the
following rule

Pr′(y | pa(X), pa(Y )) = ∑
x∈X

Pr(y | x, pa(Y ))Pr(x | pa(X)), (B.3)

where, pa(X) denotes the parents of X and pa(Y ) the parents of Y apart from X .

B.4 Bypassing intermediary variables in the argument of credibility of testimonial evidence

In the context of evaluating the report provided by a human source, let ahum
2 and bhum

2 be probabilities required
to subsume all three attributes constituting the argument of credibility (observational sensitivity, objectivity, and
veracity) into a single reasoning stage. The inferential force that a report R exerts upon E is obtained by using
Equations (B.1) and (B.2)

Vr|e =
a1 +

b2
(a2−b2)

+ b3
(a2−b2)(a3−b3)

b2 +
b2

(a2−b2)
+ b3

(a2−b2)(a3−b3)

=
ahum

1

bhum
2

.

The conditional probabilities ahum
2 and bhum

2 can be simplified to

ahum
2 = a1(a2−b2)(a3−b3)+b2(a3−b3)+b3,

bhum
2 = b1(a2−b2)(a3−b3)+b2(a3−b3)+b3.

(B.4)

This reduction of chain-length by bypassing variables S (observational sensitivity) and O (objectivity) allows us
to compare testimonial evidence to tangible evidence (e.g., physical sensors) by letting them perform the same
task [125]. This makes it possible to classify an item of human testimony according to Bernoulli’s cases and
sub-cases.

B.5 Bypassing the intermediary variables G and F

Start by bypassing variable F by writing

Pr(e | h) = Pr(e | f )Pr( f | h)+Pr(e | f )Pr( f | h) = a1,

Pr(e | h) = Pr(e | f )Pr( f | h)+Pr(e | f )Pr( f | h) = b1.

Assume that Pr(e | f ) = 1 and Pr(e | f ) = γ . Thus, we can write

Pr(e | h) = Pr( f | h)+ γPr( f | h),
Pr(e | h) = Pr( f | h)+ γPr( f | h).
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Figure. B.1 – Bypassing the intermediary variables S and O in the argument of credibility of testimonial evidence.

Next, extend the conversation to variable G to obtain

Pr(e | h) =Pr( f | g,h)Pr(g)+Pr( f | g,h)Pr(g)+ γ[Pr( f | g,h)Pr(g)+Pr( f | g,h)Pr(g)],

Pr(e | h) =Pr( f | g,h)Pr(g)+Pr( f | g,h)Pr(g)+ γ[Pr( f | g,h)Pr(g)+Pr( f | g,h)Pr(g)].

It is common in forensic literature to denote Pr(g) more shortly as r, which is also called the ‘relevance
term’ [133]. Pr(g) is, therefore, (1− r). Logical assignments of 1 and 0 apply to, respectively, Pr( f | g,h) and
Pr( f | g,h) for the case where only one offender is involved [56]. The complementary events thus have probabilities
Pr( f | g,h) = 0 and Pr( f | g,h) = 1. For instance, Pr( f | g,h) is the probability of the suspect being the source of
the trace ( f ) given that the trace was left by the offender during the commission of the crime (g) and given that the
suspect is the offender (h). The above assignment thus means that given g and h , the event f is taken to be certain.
As a consequence, the expression for a1 can be rewritten as

a1 = r+(1− r)γ.

Further logical assignments are Pr( f | g,h) = 0 and Pr( f | g,h) = 1 [56]. The term Pr( f | g,h) is the probability
that the suspect’s trace is at the scene for reasons unrelated to the crime. This probability is commonly written p in
forensic literature. Thus, Pr( f | g,h) = 1− p. For Pr(e | h) one can then obtain

b1 = p(1− r)+ γ[r+(1− p)(1− r)].

The inferential force of the argument of relevance is therefore given by

Ve′|h =
a1

b1
=

r+(1− r)γ
p(1− r)+ γ[r+(1− p)(1− r)]

.
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B.5. BYPASSING THE INTERMEDIARY VARIABLES G AND F

Figure. B.2 – Bypassing the intermediary variables of the BN for the evaluation of tangible evidence given crime-level
propositions.

This corresponds therefore to type (a) argument of relevance. If, however, r = 1 then the argument of relevance is of
type (c).
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C Appendix: Graphical probabilistic analysis of the
combination of items of evidence

C.1 Development of Equation (3.2)

In order to develop Equation (3.2) from Equation (3.1), an ‘extension of the conversation’ to the intermediate,
unobserved variable E, is necessary:

LRE∗,Ec∗ =
Pr(E∗,Ec∗|H)

Pr(E∗,Ec∗|Hc)
=

Pr(E∗,Ec∗|E)Pr(E|H)+Pr(E∗,Ec∗|Ec)Pr(Ec|H)

Pr(E∗,Ec∗|E)Pr(E|Hc)+Pr(E∗,Ec∗|Ec)Pr(Ec|Hc)
.

Then one can consider that the joint probability of the two reports {E∗,Ec∗}, given E, is given by the product of the
conditional probabilities of the individual reports, given E, because of their conditional independence as implied by
Figure 3.1 (a). For h1 = Pr(E∗ | E), m2 = Pr(Ec∗ | E), f1 = Pr(E∗ | Ec) and c2 = Pr(Ec∗ | Ec), one thus obtains:

LRE∗,Ec∗ =

h1m2︷ ︸︸ ︷
Pr(E∗,Ec∗|E)Pr(E|H)+

f1c1︷ ︸︸ ︷
Pr(E∗,Ec∗|Ec)

1−Pr(E|H)︷ ︸︸ ︷
Pr(Ec|H)

Pr(E∗,Ec∗|E)︸ ︷︷ ︸
h1m2

Pr(E|Hc)+Pr(E∗,Ec∗|Ec)︸ ︷︷ ︸
f1c1

Pr(Ec|Hc)︸ ︷︷ ︸
1−Pr(E|H)

=
Pr(E|H)h1m2−Pr(E|H) f1c2 + f1c2

Pr(E|Hc)h1m2−Pr(E|Hc) f1c2 + f1c2
=

Pr(E|H)[ h1m2
f1c2
−1]+1

Pr(E|Hc)[ h1m2
f1c2
−1]+1

=
Pr(E|H)+ [ h1m2

f1c2
−1]−1

Pr(E|Hc)+ [ h1m2
f1c2
−1]−1

.

C.2 Development of LRE2=e2|E1=e1

For a case in which the fingermark and the footwear mark are asymmetrically independent (i.e., whenever a2 6= a′2;
Table 3.5), the likelihood ratio for the footwear mark evidence (E2) is conditioned on the fingermark evidence E1:

LRE2=e2|E1=e1 =
Pr(E2 = e2|E1 = e1,S = s,Hp)

Pr(E2 = e2|E1 = e1,S = s,Hd)
. (C.1)
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When assessing uncertainty about E2, one needs to account for uncertainty about F2. Using notation introduced so
far, the likelihood ratio thus develops as follows:

LRE2=e2|E1=e1 =


h1︷ ︸︸ ︷

Pr(E2 = e2|F2 = f2)Pr(F2 = f2|E1 = e1,S = s,Hp)
+Pr(E2 = e2|F2 = f̄2)︸ ︷︷ ︸

f2

Pr(F2 = f̄2|E1 = e1,S = s,Hp)︸ ︷︷ ︸
1−Pr(F2= f2|E1=e1,S=s,Hp)




h2︷ ︸︸ ︷
Pr(E2 = e2|F2 = f2)Pr(F2 = f2|E1 = e1,S = s,Hd)
+Pr(E2 = e2|F2 = f̄2)︸ ︷︷ ︸

f2

Pr(F2 = f̄2|E1 = e1,S = s,Hd)︸ ︷︷ ︸
1−Pr(F2= f2|E1=e1,S=s,Hd)


=

Pr(F2 = f2|E1 = e1,S = s,Hp)h2−Pr(F2 = f2|E1 = e1,S = s,Hp) f2 + f2

Pr(F2 = f2|E1 = e1,S = s,Hd)h2−Pr(F2 = f2|E1 = e1,S = s,Hd) f2 + f2

=
Pr(F2 = f2|E1 = e1,S = s,Hp)+ [ h2

f2
−1]−1

Pr(F2 = f2|E1 = e1,S = s,Hd)+ [ h2
f2
−1]−1

Accounting for uncertainty about G2, that is the relevance of the footwear mark, the numerator extends to:

Pr(F2 = f2|E1 = e1,S = s,Hp) = Pr(F2 = f2|E1 = e1,S = s,G2 = g2,Hp)Pr(G2 = g2)︸ ︷︷ ︸
r2

+Pr(F2 = f2|E1 = e1,S = s,G2 = ḡ2,Hp)Pr(G2 = ḡ2)︸ ︷︷ ︸
1−r2

,

where

Pr(F2 = f2|E1 = e1,S = s,G2 = g2,Hp) =Pr(F2 = f2|F1 = f1,G2 = g2,Hp)︸ ︷︷ ︸
w

Pr(F1 = f1|E1 = e1,S = s,Hp)

+Pr(F2 = f2|F1 = f̄1,G2 = g2,Hp)︸ ︷︷ ︸
w

Pr(F1 = f̄1|E1 = e1,S = s,Hp)︸ ︷︷ ︸
1−Pr(F1= f1|E1=e1,S=s,Hp)

=w,

and

Pr(F2 = f2|E1 = e1,S = s,G2 = ḡ2,Hp) =Pr(F2 = f2|F1 = f1,G2 = ḡ2,Hp)︸ ︷︷ ︸
0

Pr(F1 = f1|E1 = e1,S = s,Hp)

+Pr(F2 = f2|F1 = f̄1,G2 = ḡ2,Hp)︸ ︷︷ ︸
0

Pr(F1 = f̄1|E1 = e1,S = s,Hp)

=0.

Thus, Pr(F2 = f2|E1 = e1,S = s,Hp) = wr2.

In the denominator one has:

Pr(F2 = f2|E1 = e1,S = s,Hd) = Pr(F2 = f2|E1 = e1,S = s,G2 = g2,Hd)Pr(G2 = g2)︸ ︷︷ ︸
r2

+Pr(F2 = f2|E1 = e1,S = s,G2 = ḡ2,Hd)Pr(G2 = ḡ2)︸ ︷︷ ︸
1−r2
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where

Pr(F2 = f2|E1 = e1,S = s,G2 = g2,Hd) = Pr(F2 = f2|F1 = f1,G2 = g2,Hd)︸ ︷︷ ︸
0

Pr(F1 = f1|E1 = e1,S = s,Hd)

+Pr(F2 = f2|F1 = f̄1,G2 = g2,Hd)︸ ︷︷ ︸
0

Pr(F1 = f̄1|E1 = e1,S = s,Hd)

= 0

and

Pr(F2 = f2|E1 = e1,S = s,G2 = ḡ2,Hd) = Pr(F2 = f2|F1 = f1,G2 = ḡ2,Hd)︸ ︷︷ ︸
a2

Pr(F1 = f1|E1 = e1,S = s,Hd)

+Pr(F2 = f2|F1 = f̄1,G2 = ḡ2,Hd)︸ ︷︷ ︸
a′2

Pr(F1 = f̄1|E1 = e1,S = s,Hd)︸ ︷︷ ︸
1−Pr(F1= f1|E1=e1,S=s,Hp)

= Pr(F1 = f1|E1 = e1,S = s,Hd)(a2−a′2)+a′2.

From here, a further development of Pr(F1 = f1|E1 = e1,S = s,Hd) is needed. Consider thus Bayes’ theorem:

Pr(F1 = f1|E1 = e1,S = s,Hd) =
Pr(E1 = e1|S = s,F1 = f1)Pr(F1 = f1|Hd)(
Pr(E1 = e1|S = s,F1 = f1)Pr(F1 = f1|Hd)
+Pr(E1 = e1|S = s,F1 = f̄1)Pr(F1 = f̄1|Hd)

)
where

Pr(E1 = e1|S = s,F1 = f1)Pr(F1 = f1|Hd) = Pr(E1 = e1|S = s,F1 = f1)︸ ︷︷ ︸
1

× [Pr(F1 = f1|G1 = g1,Hd)︸ ︷︷ ︸
0

Pr(G1 = g1)

+Pr(F1 = f1|G1 = ḡ1,Hd)︸ ︷︷ ︸
a1

Pr(G1 = ḡ1)︸ ︷︷ ︸
1−r1

]

= a1(1− r1)

and

Pr(E1 = e1|S = s,F1 = f̄1)Pr(F1 = f̄1|Hd) = [Pr(E1 = e1|U = u,F1 = f̄1)︸ ︷︷ ︸
1

Pr(U = u)︸ ︷︷ ︸
γ

+Pr(E1 = e1|U = ū,F1 = f̄1)︸ ︷︷ ︸
0

Pr(U = ū)]

× [Pr(F1 = f̄1|G1 = g1,Hd)︸ ︷︷ ︸
1

Pr(G1 = g1)︸ ︷︷ ︸
r1

+Pr(F1 = f̄1|G1 = ḡ1,Hd)︸ ︷︷ ︸
1−a1

Pr(G1 = ḡ1)︸ ︷︷ ︸
1−r1

]

= γ{r1 +(1−a1)(1− r1)}.
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One thus has:

Pr(F1 = f1|E1 = e1,S = s,Hd) =
a1(1− r1)

a1(1− r1)+ γ[r1 +(1−a1)(1− r1)]
.

The likelihood ratio LRE2=e2|E1=e1 initially defined in Equation (C.1) thus becomes:

LRE2=e2|E1=e1 =
wr+[h2/ f2−1]−1{

a1(1−r1)
a1(1−r1)+γ{r1+(1−a1)(1−r1)} (a2−a′2)+a′2

}
(1− r2)+ [h2/ f2−1]−1

.

Note that when a2 = a′2, one obtains

LRE2=e2|E1=e1,S=s =
wr+[h2/ f2−1]−1

a′2(1− r2)+ [h2/ f2−1]−1

which is equivalent to a result of an algebraic approach previously presented in [46].
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D Appendix: Investigating evidential phenomena in
combined evidence

D.1 Derivation of argument structures of (a) and (b’) from (b)

Let R1 = {r1,r1} and R2 = {r2,r2} represent the two reports, E1 = {e1,e1} and E2 = {e2,e2} the two events
corresponding to each report, and H = {h,h} the hypotheses of interest. Assume that we received two reports
r1 ∈ R1 and r2 ∈ R2. Then the inferential force provided by both reports upon H, following the argument structure
shown in Figure 4.1 (b), is given by

Pr(r1,r2 | h)
Pr(r1,r2 | h)

=
Pr(r1 | h)
Pr(r1 | h)

Pr(r2 | r1,h)
Pr(r2 | r1,h)

,

where

Pr(r1 | h)
Pr(r1 | h)

=
Pr(r1 | e1)Pr(e1 | h)+Pr(r1 | e1)

1−Pr(e1|h)︷ ︸︸ ︷
Pr(e1 | h)

Pr(r1 | e1)Pr(e1 | h)+Pr(r1 | e1)Pr(e1 | h)︸ ︷︷ ︸
1−Pr(e1|h)

=
Pr(e1 | h)[Pr(r1 | e1)−Pr(r1 | e1)]+Pr(r1 | e1)

Pr(e1 | h)[Pr(r1 | e1)−Pr(r1 | e1)]+Pr(r1 | e1)

=
Pr(e1 | h)+ [Pr(r1|e1)

Pr(r1|e1)
−1]−1

Pr(e1 | h)+ [Pr(r1|e1)
Pr(r1|e1)

−1]−1

and similarly

Pr(r2 | r1,h)
Pr(r2 | r1,h)

=
Pr(r2 | e2)Pr(e2 | r1,h)+Pr(r2 | e2)

1−Pr(e2|r1,h)︷ ︸︸ ︷
Pr(e2 | r1,h)

Pr(r2 | e2)Pr(e2 | r1,h)+Pr(r2 | e2)Pr(e2 | r1,h)︸ ︷︷ ︸
Pr(e2|r1,h)

=
Pr(e2 | r1,h)[Pr(r2 | e2)−Pr(r2 | e2)]+Pr(r2 | e2)

Pr(e2 | r1,h)[Pr(r2 | e2)−Pr(r2 | e2)]+Pr(r2 | e2)

=
Pr(e2 | r1,h)+ [Pr(r2|e2)

Pr(r2|e2)
−1]−1

Pr(e2 | r1,h)+ [Pr(r2|e2)
Pr(r2|e2)

−1]−1
.
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The probabilities Pr(e2 | r1,h) and Pr(e2 | r1,h) can further be developed so that

Pr(r2 | r1,h)
Pr(r2 | r1,h)

=
Pr(e2 | e1,h)Pr(e1 | r1,h)+Pr(e2 | e1,h)

1−Pr(e1|r1,h)︷ ︸︸ ︷
Pr(e1 | r1,h)+[Pr(r2|e2)

Pr(r2|e2)
−1]−1

Pr(e2 | e1,h)Pr(e1 | r1,h)+Pr(e2 | e1,h)Pr(e1 | r1,h)︸ ︷︷ ︸
1−Pr(e1|r1,h)

+[Pr(r2|e2)
Pr(r2|e2)

−1]−1
.

Finally, one obtains for the inferential force of r2

Pr(r2 | r1,h)
Pr(r2 | r1,h)

=
Pr(e1 | r1,h)[Pr(e2 | e1,h)−Pr(e2 | e1,h)]+Pr(e2 | e1,h)+ [Pr(r2|e2)

Pr(r2|e2)
−1]−1

Pr(e1 | r1,h)[Pr(e2 | e1,h)−Pr(e2 | e1,h)]+Pr(e2 | e1,h)+ [Pr(r2|e2)
Pr(r2|e2)

−1]−1
. (D.1)

Derivation of (a) from (b) To say that the events E1 and E2 are naturally redundant is equal to saying that E1 = E2.
Therefore, the inferential force of r2 (D.1) becomes

Pr(e1 | r1,h)[Pr(e2 | e1,h)−Pr(e2 | e1,h)]+Pr(e2 | e1,h)+ [Pr(r2|e2)
Pr(r2|e2)

−1]−1

Pr(e1 | r1,h)[Pr(e2 | e1,h)−Pr(e2 | e1,h)]+Pr(e2 | e1,h)+ [Pr(r2|e2)
Pr(r2|e2)

−1]−1
=

Pr(e1 | r1,h)+ [Pr(r2|e1)
Pr(r2|e1)

−1]−1

Pr(e1 | r1,h)+ [Pr(r2|e1)
Pr(r2|e1)

−1]−1
.

As a result, the inferential force that the two reports exert on H is given by

Pr(r1,r2 | h)
Pr(r1,r2 | h)

=
Pr(e1 | h)+ [Pr(r1|e1)

Pr(r1|e1)
−1]−1

Pr(e1 | h)+ [Pr(r1|e1)
Pr(r1|e1)

−1]−1

Pr(e1 | r1,h)+ [Pr(r2|e1)
Pr(r2|e1)

−1]−1

Pr(e1 | r1,h)+ [Pr(r2|e1)
Pr(r2|e1)

−1]−1
,

which is identical to the inferential force following the argument structure involving two reports relating to a single
event as depicted in Figure 4.1 (a).

Derivation of (b’) from (b) If E1 and E2 are conditionally independent given H, then the inferential force of
r2 (D.1) becomes

Pr(e1 | r1,h)[Pr(e2 | e1,h)−Pr(e2 | e1,h)]+Pr(e2 | e1,h)+ [Pr(r2|e2)
Pr(r2|e2)

−1]−1

Pr(e1 | r1,h)[Pr(e2 | e1,h)−Pr(e2 | e1,h)]+Pr(e2 | e1,h)+ [Pr(r2|e2)
Pr(r2|e2)

−1]−1
=

Pr(e2 | h)+ [Pr(r2|e2)
Pr(r2|e2)

−1]−1

Pr(e2 | h)+ [Pr(r2|e2)
Pr(r2|e2)

−1]−1
.

The joint inferential force of both reports is therefore given by

Pr(r1,r2 | h)
Pr(r1,r2 | h)

=
Pr(e1 | h)+ [Pr(r1|e1)

Pr(r1|e1)
−1]−1

Pr(e1 | h)+ [Pr(r1|e1)
Pr(r1|e1)

−1]−1

Pr(e2 | h)+ [Pr(r2|e2)
Pr(r2|e2)

−1]−1

Pr(e2 | h)+ [Pr(r2|e2)
Pr(r2|e2)

−1]−1
,

which corresponds to the inferential force of the argument structure depicted in Figure 4.1 (b’).
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D.2 Interpretation of Re2|e1

Table. D.1 – Relationship between the measure Re2|e1
and the inferential force of e2

Re2|e1 e2 supports h over h e2 supports h over h Type of interaction
(W (h : e2)> 1) (W (h : e2)< 1)

Re2|e1 < 0 W (h : e2 | e1)>W (h : e2) W (h : e2 | e1)<W (h : e2) Synergy
Re2|e1 = 0 W (h : e2 | e1) =W (h : e2) W (h : e2 | e1) =W (h : e2) Cond. independence
1 > Re2|e1 > 0 W (h : e2)>W (h : e2 | e1)> 1 W (h : e2)<W (h : e2 | e1)< 1 }

Redundance
Re2|e1 = 1 W (h : e2 | e1) = 1 W (h : e2 | e1) = 1
Re2|e1 > 1 W (h : e2 | e1)< 1 W (h : e2 | e1)> 1 Directional change

D.3 Derivations for types of inferential interaction in terms of weight of evidence

In the case where both items of evidence provide weight in favor of h (W (h : e1) > 0 and W (h : e2) > 0), the
following derivations apply:

Synergy The events e1 and e2 are said to be inferentially synergistic given the hypotheses H if the inequality
W (h : e2 | e1) > W (h : e2) holds. A reformulation of this inequality into 0 > W (h : e2)−W (h : e2 | e1), and by
applying Equation 4.8 leads to the conclusion that the joint weight of evidence of e1 an e2 is larger than the sum of
each weight, that is, W (h : e1,e2)>W (h : e1)+W (h : e2).

Conditional independence The events e1 and e2 are said to be conditionally independent given the hypotheses
H if Pr(e2 | e1,H) = Pr(e2 | H). In other words, one has W (h : e2 | e1) =W (h : e2). Hence, W (h : e2)−W (h : e2 |
e1) = 0, and from Equation 4.8 it follows that W (h : e1,e2) =W (h : e1)+W (h : e2).

Redundance An event e2 is said to be redundant given e1, if 0 < W (h : e2 | e1) < W (h : e2) holds. Hence,
Equation 4.8 states that the lower boundary of the joint weight of evidence in favor of h provided by e2 and e1 is
W (h : e1) <W (h : e1,e2), and that the upper boundary is W (h : e1,e2) <W (h : e1)+W (h : e2) (i.e., W (h : e1) <
W (h : e1,e2)<W (h : e1)+W (h : e2)). In other words, the domain of values associated with redundance is bounded
by the values of complete redundance (W (h : e1,e2) =W (h : e1)) and conditional dependence (W (h : e1,e2) =W (h :
e1)+W (h : e2)).

Complete redundance Event e2 is said to be completely redundant given e1 and the hypotheses H, if W (h : e2 |
e1) = 0 holds. In such cases Equation 4.8 reduces to W (h : e1,e2) =W (h : e1).

Directional change The occurrence of event e1 is said to induce a directional change in e2 given hypotheses H
(i.e., event e2 supports h once e1 is known to have occurred), if W (h : e2 | e1) < 0 holds. From Equation 4.8 it
follows that W (h : e1,e2) < W (h : e1). The derivations for cases where W (h : e1) < 0 and W (h : e2) < 0 can be
obtained analogously.

173



PART III APPENDIX D. EVIDENTIAL PHENOMENA

D.4 Values of ia(a0 : D) and their implication on the presence of a directional change or
synergy

D.4.1 Proving that ia(a0 : D)> 1 implies W (a0 : Ddc) 6= 0.

The statement that in all cases, where W (a0 : di, j)> 0,di, j ∈ Dm, an interaction value larger than one implies the
presence of an effect of directional change (W (a0 : Ddc) 6= 0) is to be proven here. The proof is established by
exploiting the fact that a value of ia[W (a0 : D)]> 1 being equivalent to W⊥(a0 : Dm)<−W (a0 : Dm), implies that
W (a0 : Ddc) 6= 0. More formally we have,

ia(a0 : D)> 1⇐⇒W⊥(a0 : Dm)<−W (a0 : Dm), and (D.2)

W⊥(a0 : Dm)<−W (a0 : Dm) =⇒W (a0 : Ddc) 6= 0. (D.3)

The equivalence stated in D.2 follows directly from Equation 4.10. This equation is used again as a starting point
for the demonstration of statement D.3, notably

ia(a0 : D) =
W⊥(a0 : Dm)−W (a0 : Dm)

W⊥(a0 : Dm)
> 1,

from where it follows that

−W (a0 : Dm)> 0

−W (a0 : Ds)−W (a0 : Dpr)−W (a0 : Ddc)> 0.

Finally, one obtains

−W (a0 : Ddc)>W (a0 : Ds)+W (a0 : Dpr).

For this inequality to hold, it is necessary that W (a0 : Ddc) 6= 0 since W (a0 : Ds) ≤ 0, W (a0 : Dpr) ≤ 0, and
W (a0 : Ddc) ≥ 0 by definition (see D.3). This result allows Statement D.2 and D.3 to be rewritten in a more
informative manner

ia(a0 : D)> 1⇐⇒−W (a0 : Ddc)>W (a0 : Ds)+W (a0 : Dpr) =⇒W (a0 : Ddc) 6= 0.

By applying the same reasoning to situations, in which W (a0 : di, j)< 0,di, j ∈ Dm one obtains

ia(a0 : D)< 1⇐⇒−W (a0 : Ddc)<W (a0 : Ds)+W (a0 : Dpr) =⇒W (a0 : Ddc) 6= 0.

D.4.2 Proving that ia(a0 : D)< 0 implies W (a0 : Ds) 6= 0’.

In situations, in which W (a0 : di, j) > 0, where di, j ∈ Dm a value of ia(a0 : D) < 0 indicates that Ds 6= 0. More
precisely, one has the relationships

ia(a0 : D)< 0⇐⇒W⊥(a0 : Dm)>W (a0 : Dm), and (D.4)
W⊥(a0 : Dm)>W (a0 : Dm) =⇒W (a0 : Ds) 6= 0. (D.5)

The equivalence in D.4 follows directly from Equation 4.10, which is used − just as in D.4.1 − to prove the
implication in D.5. Notably,

ia(a0 : D) =
W⊥(a0 : Dm)−W (a0 : Dm)

W⊥(a0 : Dm)
> 0,
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where W⊥(a0 : Dm) 6= 0. Thus,

W (a0 : Dm)>W⊥(a0 : Dm)

W (a0 : Ds)+W (a0 : Dpr)+W (a0 : Ddc)>W⊥(a0 : Dm),

and finally one has

W (a0 : Ds)>W⊥(a0 : Dm)−W (a0 : Dpr)−W (a0 : Ddc).

For this inequality to hold, it is necessary that an effect of synergy is present (W (a0 : Ds) 6= 0) since W⊥(a0 : Dm),
and W (a0 : Dpr) take values larger than zero each and W (a0 : Ddc) a value smaller than zero by definition (see D.3).
Thus one can write

ia(a0 : D)< 0⇐⇒W (a0 : Ds)>W⊥(a0 : Dm)−W (a0 : Dpr)−W (a0 : Ddc) =⇒W (a0 : Ds) 6= 0.

Applying an analogous reasoning to situations, in which W (a0 : di, j)< 0, where di, j ∈ Dm leads to

ia(a0 : D)> 0⇐⇒W (a0 : Ds)<W⊥(a0 : Dm)−W (a0 : Dpr)−W (a0 : Ddc) =⇒W (a0 : Ds) 6= 0.

D.5 Development of Equation 4.15

D.5.1 Development of Pr(a0 | Di−1,a1).

By using the Bayes’ theorem Pr(a0 | Di−1,a1) becomes

Pr(a0 | Di−1,a1) =
Pr(Di−1 | a0)Pr(a0 | a1)

Pr(Di−1 | a0)Pr(a0 | a1)+Pr(Di−1 | a0)Pr(a0 | a1)
=

F(a0 : Di−1)Pr(a0 | a1)

F(a0 : Di−1)Pr(a0 | a1)+Pr(a0 | a1)

The probability Pr(a0 | Di−1,a1) can be developed analogously.

D.6 Deriving values of Wdiss(ak : D)

Let Dm denote the subset of items providing positive weight and the subset Dn−m the subset of items providing
negative weight. Equation 4.20 can be written as

Wdiss(ak : D) =

Wpot(ak:D)︷ ︸︸ ︷
|W (ak : Dm)|+

∣∣W (ak : Dn−m)
∣∣− Wex(ak:D)︷ ︸︸ ︷∣∣W (ak : Dm)+W (ak : Dn−m)

∣∣
=W (ak : Dm)−W (ak : Dn−m)−

∣∣W (ak : Dm)+W (ak : Dn−m)
∣∣ . (D.6)

The expressed weight can take three possible values, that is, it can be (i) larger than zero, (ii) exactly zero, or (iii)
smaller than zero. A case-by-case analysis of Equation D.6 produces Equation 4.21:
Case (i). A value of Wex(ak : D)> 0 is obtained if W (ak : Dm)<−W (ak : Dn−m) and Equation D.6 becomes

Wdiss(ak : D) =W (ak : Dm)−W (ak : Dn−m)−
(
−W (ak : Dm)−W (ak : Dn−m)

)
= 2W (ak : Dm).

Case (ii). A value of Wex(ak : D) = 0 is obtained if W (ak : Dm) =−W (ak : Dn−m) and Equation D.6 becomes

Wdiss(ak : D) =Wpot(ak : D) =W (ak : Dm)−W (ak : Dn−m),

which is equivalent to 2W (ak : Dm) and −2W (ak : Dn−m) respectively.
Case (iii). A value of Wex(ak : D)> 0 is obtained if W (ak : Dm)>−W (ak : Dn−m) and Equation D.6 becomes

Wdiss(ak : D) =W (ak : Dm)−W (ak : Dn−m)−
(
W (ak : Dm)+W (ak : Dn−m)

)
=−2W (ak : Dn−m).
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D.6.1 Proving that Wdiss1(a0 : d1,1,d2,1)≤ 0 in configuration (i)

Section 4.4.3 and D.6 showed that Wdiss(ak : D) takes three different values depending on whether the expressed
weight is larger, equal, or smaller than zero (i.e. case (i) to (iii)). The same applies for Wdiss(a0 : d1,1,d2,1) and
Wdiss0(a0 : d1,1,d2,1) each. Hence, there are 32 possible cases when considering the amount of Wdiss(a0 : d1,1,d2,1)
relative to that of Wdiss0(a0 : d1,1,d2,1). The proof given here consists of showing that the relationship Wdiss(a0 :
d1,1,d2,1)>Wdiss0(a0 : d1,1,d2,1) is false in each of the 32 possible cases. The 32 cases are denoted by two roman
numerals such as, for instance, case (i.ii), where the first numeral corresponds to the case of Wdiss(a0 : d1,1,d2,1) and
the second to the case of Wdiss0(a0 : d1,1,d2,1).
Note also that in a line of reasoning the weight for any evidence d·,i is bounded by the weight provided by the
preceding event d·,i−1 in that line, that is, W (a0 : d·,i−1)≤W (a0 : d·,i)≤W (a0 : d·,i−1) (see [125, 78]). Thus, applied
to the present case, where the two lines of reasoning are independent given A0, one has W (a0 : d1,1)≤W (a0 : d1,0)
and −W (a0 : d2,1)≤−W (a0 : d2,0) (with equality only if Pr(d1,1 | d1,0) = 0 and Pr(d2,1 | d2,0) = 0 respectively).
In case (i) for Wdiss(a0 : d1,1,d2,1) one has

W (a0 : d1,1)<−W (a0 : d2,1)⇒Wdiss(a0 : d1,1,d2,1) = 2W (a0 : d1,1).

• Case (i.i). One has W (a0 : d1,0) < −W (a0 : d2,0)⇒Wdiss0(a0 : D1) = 2W (a0 : d1,0), and W (a0 : d1,1) ≤
W (a0 : d1,0). Since Wdiss(a0 : D1) = 2W (a0 : d1,1) ≤Wdiss0(a0 : D1) = 2W (a0 : d1,0) one concludes that
Wdiss1(a0 : d1,1,d2,1)≤ 0.

• Case (i.ii). One has W (a0 : d1,0) = −W (a0 : d2,0)⇒Wdiss0(a0 : d1,1,d2,1) = W (a0 : d1,0)−W (a0 : d2,0) =
2W (a0 : d1,0). Thus, one concludes that Wdiss1(a0 : d1,1,d2,1)≤ 0 for the same reasons as in case (i.i).

• Case (i.iii). One has W (a0 : d1,0) > −W (a0 : d2,0)⇒Wdiss0(a0 : D1) = −2W (a0 : d2,0), −W (a0 : d2,1) ≤
−W (a0 : d2,0), and W (a0 : d1,1) < −W (a0 : d2,1). Moreover, W (a0 : d1,1) < −W (a0 : d2,0) applies. As a
consequence, one has Wdiss(a0 : d1,1,d2,1) = 2W (a0 : d1,1)<Wdiss0(a0 : D1) =−2W (a0 : d2,0) and concludes
that Wdiss1(a0 : d1,1,d2,1)< 0.

In case (ii) for Wdiss(a0 : d1,1,d2,1) one has

W (a0 : d1,1) =−W (a0 : d2,1)⇒Wdiss(a0 : d1,1,d2,1) =W (a0 : d1,1)−W (a0 : d2,1) = 2W (a0 : d1,1) =−2W (a0 : d2,1).

• Case (ii.i). One has Wdiss0(a0 : D1) = 2W (a0 : d1,0) (see case (i.i)), which implies Wdiss(a0 : d1,1,d2,1) =
2W (a0 : d1,1)≤Wdiss0(a0 : D1) = 2W (a0 : d1,0). Hence, one has Wdiss1(a0 : d1,1,d2,1)≤ 0.

• Case (ii.ii). One has Wdiss0(a0 : d1,1,d2,1)= 2W (a0 : d1,0) (see case (i.ii)), which implies Wdiss(a0 : d1,1,d2,1)=
2W (a0 : d1,1)≤Wdiss0(a0 : d1,1,d2,1) = 2W (a0 : d1,0). Thus, one has Wdiss1(a0 : d1,1,d2,1)≤ 0.

• Case (ii.iii). One has Wdiss0(a0 : d1,1,d2,1) = −2W (a0 : d2,0) (see case (i.iii)), which implies Wdiss(a0 :
d1,1,d2,1) =−2W (a0 : d2,1)≤Wdiss0(a0 : D1) =−2W (a0 : d2,0). Thus, one has Wdiss1(a0 : d1,1,d2,1)≤ 0.

In case (iii) for Wdiss(a0 : d1,1,d2,1) one has

W (a0 : d1,1)>−W (a0 : d2,1)⇒Wdiss(a0 : d1,1,d2,1) =−2W (a0 : d2,1).

• Case (iii.i). One has Wdiss0(a0 : D1) = 2W (a0 : d1,0) (see case (i.i)). Given that W (a0 : d1,1) ≤W (a0,d1,0)
and W (a0 : d1,1)>−W (a0 : d2,1), it follows that −W (a0 : d2,1)<W (a0,d1,0). Hence, Wdiss(a0 : d1,1,d2,1)<
Wdiss0(a0 : d1,1,d2,1) one has Wdiss1(a0 : d1,1,d2,1)< 0.
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• Case (iii.ii). For W (a0 : d1,0) = −W (a0 : d2,0) one has Wdiss0(a0 : d1,1,d2,1) = −2W (a0 : d2,0). Since,
−W (a0 : d2,1)≤−W (a0 : d2,0) it follows that Wdiss0(a0 : d1,1,d2,1) =−2W (a0 : d2,1)≤Wdiss(a0 : d1,0,d2,0) =
−2W (a0 : d2,0) and one concludes Wdiss1(a0 : d1,1,d2,1)≤ 0.

• Case (iii.iii). One has Wdiss0(a0 : D1) = −2W (a0 : d2,0) (see case (i.iii)). For the same reasons as in case
(iii.ii) one concludes that Wdiss1(a0 : d1,1,d2,1)≤ 0.

Note that in cases (i.iii) and (iii.i) the relationship Wdiss1(a0 : d1,1,d2,1)< 0 was obtained and Wdiss1(a0 : d1,1,d2,1)≤ 0
the in all the remaining cases. Thus, in situations of configuration (i) the assertion Wdiss1(a0 : d1,1,d2,1) =Wdiss(a0 :
d1,1,d2,1)−Wdiss0(a0 : d1,1,d2,1)≯ 0 holds.
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E Appendix: State of Texas vs Josiah Sutton

E.1 Computationally optimized BN for contributor scenarios

The BN for the scenarios of specimen E1′ is outlined first, followed by the BN for the specimens E3 and E4.
BN for scenarios of E1′ . The nodes H and N1 remain unchanged. Table E.1 outlines the node definitions from

top to bottom and from left to right in BN shown in Figure E.1. Nodes that connect to other BNs are colored in
light grey and their names are written in black (i.e., P1inE1 to P5inE1, and H1E1 to H4E1, and P1E1 to P3E1).
Node xorS1toS8 is an evidence node and H a query node. Two things happen by instantiating xorS1toS8. First,
mutual exclusiveness is established among S1≤s≤8,1′ ∈ S1′ so that Pr(S1′ | I) = 1. Second, the nodes for the possible
contributors are P1inE1 to P5inE1 d-connected to H through the mutually exclusive scenarios of S1.

BN for scenarios of E3 and E4. The nodes H, W, N3 and N4 are the same as those discussed in Section 5.4.5.
Table E.2 outlines the node definitions from top to bottom and from left to right in BN shown in Figure E.2. The
BNs for the scenarios of specimens E3 and E4 are essentially the same. Therefore, only the node definitions and the
BN for E3 are shown. The difference is refined to the nodes S1to43Wnot3 to S9to123Wnot3 and S13to163Wnot3,
and S1to44Wnot2 to S9to124Wnot2 and S13to164Wnot2 as shown in the table. Again by instantiating true in
xorS1to163, the mutual exclusiveness among the scenarios is established and the hypothesis node is d-connected
to the nodes representing the possible contributors.
In order to assemble the BNs for the contributor scenarios of all the specimens one has to merge nodes that are
identical. These are H, HP1 to HP4, W, S11S51 to S41S81, and P1Ss1 to P3Ss1.
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Table. E.1 – Node definitions for the BN of contributor scenarios of E1′

Node Definition Purpose

P1inE1 to P5inE1 Boolean, uniform distribution Setting up possible contributors P1′

P34notinE1 to P12notinE1 e.g., ¬P3inE1 ∧ ¬P4inE1 Exclude possible contributors
P12inE1 to P34inE1 e.g., P1inE1 ∧ P2inE1 Include possible contributors
P12E1 to P34E1 e.g., P12inE1 ∧ P34notinE1 Actual contributors among P1, ..,P4

P12isE1 to P34isE1 e.g., P12E1 ∧ ¬P5inE1 Exclude possible contributor P5

P125isE1 to P345isE1 e.g., P12E1 ∧ P5inE1 Include possible contributor P5

S11 P12isE1 ∧ H=1

Account for H
S21 P13isE1 ∧ H=2
S31 P23isE1 ∧ H=3
S41 P34isE1 ∧ H=4
S51 to S81 cf., S11 to S41
xorS11S21 S11 Y S21 Setting up m.e.* between S1,1′ and S2,1′

xorS31S41 S31 Y S41 Setting up m.e.* between S3,1′ and S3,1′

xorS51S61 S51 Y S61 Setting up m.e.* between S5,1′ and S6,1′

xorS71S81 S71 Y S81 Setting up m.e.* between S7,1′ and S8,1′

xorS11toS41 xorS11S21 Y xorS31S41 Setting up m.e.* among S1≤s≤4,1′

xorS51toS81 xorS51S61 Y xorS71S81 Setting up m.e.* among S5≤s≤8,1′

N1is2 xorS1toS41 ∧ N1 = 2 Establish N1′ = 2 for S1≤s≤4,1′

N1is3 xorS5toS81 ∧ N1 = 2 Establish N1′ = 3 for S5≤s≤8,1′

xorS1toS8 N1is2 Y N1is3 Setting up m.e.* among S1≤s≤8,1′

S11S51 S11 ∨ S51

Used to condition Ss,i, i ∈ {3,4} on Ss,1′

S21S61 S21 ∨ S61
S31S71 S31 ∨ S71
S41S81 S41 ∨ S81
P1Ss1 S11S51∨ S21S61
P2Ss1 S11S51∨ S31S71
P3Ss1 S21S61∨ S31S71 ∨ S41S81

*mutual exclusiveness
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Table. E.2 – Node definitions for the BN of contributor scenarios of E3 and E4

Node Definition Purpose

P1inE3 to P6inE3 Boolean, uniform distribution Setting up possible contributors P3

P12inE3 to P34inE3 e.g., P1inE3 ∧ P2inE3 Include possible contributors
P34notinE3 to P12notinE3 e.g., ¬P3inE3 ∧ ¬P4inE3 Exclude possible contributors
P12E3 to P34E3 e.g., P12inE3 ∧ P34notinE3 Establish actual contributors among P1 to P4

P234notinE3 P34notinE3 ∧ ¬P2inE3

Exclude possible contributors
P134notinE3 P34notinE3 ∧ ¬P1inE3
P124notinE3 P12notinE3 ∧ ¬P4inE3
P124notinE3 P12notinE3 ∧ ¬P3inE3
P1E3 to P4E3 e.g. P234notinE3 ∧ P1inE3 Establish actual contributor P1 to P4

P56notinE3 ¬P5inE3 ∧¬ P6inE3 Exclude possible contributors P5 and P6

P5not6inE3 P5inE3 ∧¬ P6inE3 Include P5 and exclude P6

P6not5inE3 ¬P5inE3 ∧ P6inE3 Include P6 and exclude P5

P12isE3 to P46isE3 e.g., P12E3 ∧ P56notinE3 Establish actual contributors among P3

P12isE3E1 to P34isE3E1 e.g., P12isE3 ∧ S11S51
Account for scenarios S1′P1isE3E1 to P46isE3E1* e.g., P1isE3 ∧ P5Ss1

HP1 H=1 ∨ H=2 Isolate assailant P1

HP2 H=1 ∨ H=3 Isolate assailant P2

HP3 H=2 ∨ H=3 ∨ H=4 Isolate assailant P3

HP4 H=4 Isolate assailant P4

S13 to S43 e.g., P12isE3E1 ∧ H = 1
Account for H

S53 to S163 e.g., P1isE3E1 ∧ HP1
xorS1to23 to xorS15to163 e.g., S13 Y S23

Setting up m.e.
xorS1to43 to xorS13to163 e.g., xorS1to23 Y xorS3to43
S1to43Wnot3 to S9to123Wnot3 e.g., xorS1to43 ∧¬ W = 3 Establish W 6= 3 for S1≤s≤12,3

S13to163Wnot3 e.g., xorS13to163 ∧ W = 3 Establish W = 3 for S13≤s≤16,3

For S4 one has
S1to44Wnot2 to S9to124Wnot2 e.g., xorS1to44 ∧¬ W = 2 Establish W 6= 2 for S1≤s≤12,4

S13to164Wnot2 e.g., xorS13to164 ∧ W = 2 Establish W = 2 for S13≤s≤16,4

S1to43Nis2,
e.g., S1to43Wnot3 ∧ N3 = 2 Establish N3 = 2 for S1≤s≤4,3 and S9≤s≤16,3S9to123Nis2, and

S13to163Nis2
S5to83Nis1 S5to83Wnot3 ∧ N3 = 1 Establish N3 = 2 for S5≤s≤8,3

xorS1to83 and xorS9to163 e.g., S1to43Nis2 Y S9to123Nis2
Setting up m.e.

xorS1to163 xorS1to83 Y xorS9to163

*Note, that P4 can only be a contributor if S41S81 applies. Hence, there is no need to isolate P4 in a single node as was done for
P1 with P1Ss1.
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Figure. E.1 – BN for handling the scenarios of S1′
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E.2 Locus modeling for LDLR

Figure E.3 shows the BN used for evaluating the typing results for all three specimens at locus L2 (LDLR). The outer
brackets annotated by specimen represent the subgraphs for the evaluation of the marker L2 for the corresponding
specimen. The nodes in that subgraph associated with the specimen possess suffixes indicating their affiliation to
the specimen (i.e., -E1, -E3, and -E4). Note also that the genotype of each person is only created once, that is for P1
to P5 along with the subgraph associated with E1′ , and P6 along with the subgraph associated with E3. However,
their corresponding nodes possess no suffixes indicating the specimen in their name. This highlights the fact that the
genotype of a person is affiliated to the person himself but not to the the specimen. The node definitions for these
nodes are as described in Section 5.5. The nodes P1inE1 to P5inE1, P1inE3 to P6inE3, and P1inE4 to P6inE4
remain exactly the same as before and were created once for each specimen. These are the nodes that connect to the
BN for the contributor scenarios. The remaining brackets are annotated with the conjunction or disjunction symbols.
The nodes embraced by these brackets are defined as logical conjunctions and disjunctions of their parent nodes.
The other loci were constructed analogously and vary only regarding the number of alleles they possess.
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Figure. E.3 – BN for evaluating the typing results of marker L2 for all three specimens
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E.3 Results for the computation of WoE and LR regarding the question of weather Sutton is
an assailant or not

Table. E.3 – WoE of each allele, where the specimens are considered jointly.

Allele
W (hp : obsA1′ | I) W (hp : obsA3 | obsA1′ ,I) W (hp : obsA4 | obsA1′ ,obsA3,I)

Error 1 Error 2 Error 1 Error 2 Error 1 Error 2

1.1 DQA 4.896953e-01 4.896953e-01 -9.040374e-03 -2.993216e-05 -6.784527e-06 -1.236032e-04
1.2 DQA 1.080890e-01 1.083075e-01 -2.269334e-06 -1.939803e-11 3.227787e-09 -1.053216e-10
2 DQA 2.923574e-01 2.919095e-01 4.395348e-01 4.753759e-01 -1.493273e+00 -2.514227e+00
3 DQA -4.237306e-02 -4.225744e-02 2.565181e-02 8.414982e-04 -6.917515e-01 7.904631e-03
4.1 DQA -7.393097e-02 -7.380779e-02 -4.586104e-01 -4.762677e-01 -5.225200e-01 -1.493236e+00
4.2/4.3 DQA -6.294434e-02 -6.301437e-02 4.117635e-04 6.398949e-07 -9.907414e-01 -9.961593e-01
other DQA 4.146608e-15 4.821637e-16 -2.783044e-07 -2.946503e-07 -3.031043e-04 -3.659946e-04

A LDLR 2.380921e-01 2.380921e-01 -2.368358e-01 -2.368731e-01 7.515001e-05 -3.236420e-04
B LDLR 1.065125e-03 1.065651e-03 -1.608808e-03 -1.692454e-03 2.259615e-04 1.944489e-05

A GYPA 3.402475e-02 3.404226e-02 -7.488293e-02 -7.788652e-02 4.240599e-04 1.289654e-05
B GYPA -8.670682e-02 -8.677364e-02 1.265243e-01 1.305224e-01 -1.586006e-01 -1.541305e-01

A HBGG 4.878020e-02 4.880945e-02 -5.496909e-02 -5.667072e-02 1.538954e-04 -3.204213e-05
B HBGG 2.032571e-01 2.034157e-01 7.699710e-05 -3.001932e-06 -9.896642e-04 -1.084754e-03
C HBGG -1.175926e-01 -1.177323e-01 1.546352e-01 1.580841e-01 7.125000e-05 -1.929296e-04

A D7S8 5.634194e-03 5.637917e-03 -3.909567e-02 -3.940541e-02 1.088239e-04 -1.126366e-05
B D7S8 -1.568720e-01 -1.568711e-01 1.900820e-01 1.904063e-01 1.140496e+00 9.759675e-01

A Gc 7.901676e-02 7.905834e-02 9.932158e-06 -3.466362e-07 -1.346097e-04 -2.310922e-03
B Gc 4.418692e-04 4.414413e-04 3.550712e-06 8.922776e-09 3.645673e-09 2.124992e-12
C Gc 1.702418e-01 1.703772e-01 3.524921e-05 -5.161000e-07 -2.192079e-04 -3.790766e-03

20 D1S80 -2.831001e-01 -2.831597e-01 - - - -
21 D1S80 -4.067892e-01 -4.095781e-01 - - - -
24 D1S80 -1.591810e+00 -1.679658e+00 - - - -
25 D1S80 1.142455e+00 1.143455e+00 - - - -
28 D1S80 1.861009e+00 2.021184e+00 - - - -
34 D1S80 3.499234e-02 1.410091e-03 - - - -
other D1S80 3.553468e-02 1.331101e-03 - - - -
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Table. E.4 – WoE of each allele, where each specimen is considered in isolation.

Allele
W (hp : obsA1′ | I) W (hp : obsA3 | I) W (hp : obsA4 | I)

Error 1 Error 2 Error 1 Error 2 Error 1 Error 2

1.1 DQA 1.127565e+00 4.896953e-01 -6.268951e-01 -2.813092e-01 -6.154154e-01 -2.760765e-01
1.2 DQA 2.488842e-01 1.083075e-01 -3.216665e-01 -1.945143e-01 -3.302723e-01 -1.984645e-01
2 DQA 6.731777e-01 2.919095e-01 -8.400561e-02 -1.163595e-03 1.168671e-01 2.312748e-03
3 DQA -9.756758e-02 -4.225744e-02 -6.112695e-02 -2.124136e-03 -2.325595e-01 -8.218724e-03
4.1 DQA -1.702323e-01 -7.380779e-02 1.426850e-02 1.846253e-03 8.466582e-03 2.849330e-03
4.2/4.3 DQA -1.449347e-01 -6.301437e-02 -2.062532e-02 -1.325255e-04 -4.371378e-02 -2.735682e-04
other DQA -1.211253e-13 8.804310e-14 -1.032992e-06 -2.566668e-08 -2.585248e-06 -6.193033e-08

A LDLR 5.482272e-01 2.380921e-01 -9.001128e-04 -2.050075e-04 6.464492e-03 -3.994464e-04
B LDLR 2.452541e-03 1.065651e-03 -2.705628e-04 -5.653528e-05 1.011683e-03 -1.338895e-04

A GYPA 7.834489e-02 3.404226e-02 -6.943639e-04 -1.544682e-04 3.966223e-03 -3.273143e-04
B GYPA -1.996498e-01 -8.677364e-02 -3.289287e-03 -3.094306e-04 -6.669965e-03 -8.574484e-04

A HBGG 1.123206e-01 4.880945e-02 1.247287e-03 -2.626899e-04 4.850867e-03 -7.622002e-04
B HBGG 4.680167e-01 2.034157e-01 3.143007e-03 6.977744e-04 7.720935e-03 1.646427e-03
C HBGG -2.707670e-01 -1.177323e-01 -1.073731e-03 -2.670972e-04 7.674363e-03 -8.219244e-04

A D7S8 1.297321e-02 5.637917e-03 -3.395431e-04 -9.437831e-05 3.450265e-03 -2.676100e-04
B D7S8 -3.612110e-01 -1.568711e-01 -4.700629e-03 -5.505020e-04 2.825292e-02 1.800781e-03

A Gc 1.819428e-01 7.905834e-02 1.817361e-03 2.460510e-04 1.016238e-02 2.087866e-04
B Gc 1.017441e-03 4.414413e-04 -2.050459e-04 -3.918724e-05 2.212039e-03 -2.077229e-05
C Gc 3.919963e-01 1.703772e-01 2.450779e-03 4.392031e-04 2.559932e-02 3.755731e-04

20 D1S80 -6.518620e-01 -2.831597e-01 - - - -
21 D1S80 -9.366668e-01 -4.095781e-01 - - - -
24 D1S80 -3.665278e+00 -1.679658e+00 - - - -
25 D1S80 2.630601e+00 1.143455e+00 - - - -
28 D1S80 4.285131e+00 2.021184e+00 - - - -
34 D1S80 8.057283e-02 1.410091e-03 - - - -
other D1S80 8.182163e-02 1.331101e-03 - - - -
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E.4 Posterior probabilities of H

Table. E.5 – Posterior probabilities of H

Posterior probabilities
h1 h2 h3 h4

Error 1 3.139338e-32 1.562185e-01 1.465165e-24 8.437815e-01
Error 2 4.472688e-47 6.410677e-03 1.690472e-34 9.935893e-01

E.5 Probabilities of the scenarios

Table. E.6 – Posterior probabilities of each scenario Ss,i

Scenarios
Pr(Ss,1′ | A∗1′ ,A∗3,A∗4,I) Pr(Ss,3 | A∗1′ ,A∗3,A∗4,I) Pr(Ss,4 | A∗1′ ,A∗3,A∗4,I)
Error 1 Error 2 Error 1 Error 2 Error 1 Error 2

S1,i 3.519133e-43 1.821919e-55 3.347282e-14 5.201095e-17 2.540382e-07 1.897841e-07
S2,i 1.534932e-01 6.410393e-03 1.568539e-37 1.781598e-52 4.499045e-37 5.912073e-52
S3,i 2.922752e-25 6.410393e-03 5.764686e-01 5.029782e-01 4.265627e-01 4.972019e-01
S4,i 8.175203e-01 9.935095e-01 4.209310e-01 4.965689e-01 4.215299e-01 4.967753e-01
S5,i 3.139338e-32 4.472688e-47 7.607106e-42 3.342425e-60 1.309285e-41 4.483963e-59
S6,i 2.725353e-03 2.840879e-07 3.347098e-05 1.182586e-08 2.966946e-03 9.131375e-06
S7,i 1.172890e-24 1.725839e-36 7.535579e-31 1.086494e-44 3.669249e-31 5.265075e-45
S8,i 2.626115e-02 7.980058e-05 5.998413e-04 2.275267e-05 3.071794e-05 8.741191e-08
S9,i - - 4.025857e-08 3.313212e-12 1.480442e-01 5.857877e-03
S10,i - - 1.886520e-31 1.134917e-47 2.621879e-31 1.824821e-47
S11,i - - 1.289026e-03 3.696254e-05 3.474798e-04 1.851456e-05
S12,i - - 6.445755e-04 3.578080e-05 3.443375e-04 1.850134e-05
S13,i - - 2.668948e-08 4.107609e-11 1.611565e-04 1.163449e-04
S14,i - - 3.685653e-31 4.384680e-46 1.648614e-31 2.271331e-46
S15,i - - 1.816764e-05 1.787385e-04 1.120041e-05 1.339438e-06
S16,i - - 1.523849e-05 1.786409e-04 1.163655e-06 8.599962e-07

Pr(Si | A∗1′ ,A∗3,A∗4,I) 1 1 1 1 1 1
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