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ARTICLE INFO ABSTRACT

Keywords: Signaling in brain networks unfolds over multiple topological scales. Areas may exchange information over local
Brain networks circuits, encompassing direct neighbours and areas with similar functions, or over global circuits, encompassing
Connectome ) distant neighbours with dissimilar functions. Here we study how the organization of cortico-cortical networks
;tir;catrl::};funcnon mediate localized and global communication by parametrically tuning the range at which signals are trans-

mitted on the white matter connectome. We show that brain regions vary in their preferred communication
scale. By investigating the propensity for brain areas to communicate with their neighbors across multiple scales,
we naturally reveal their functional diversity: unimodal regions show preference for local communication and
multimodal regions show preferences for global communication. We show that these preferences manifest as
region- and scale-specific structure-function coupling. Namely, the functional connectivity of unimodal regions
emerges from monosynaptic communication in small-scale circuits, while the functional connectivity of trans-
modal regions emerges from polysynaptic communication in large-scale circuits. Altogether, the present findings
reveal that communication preferences are highly heterogeneous across the cortex, shaping regional differences
in structure-function coupling.

Network communication

1. Introduction

The brain is a network of anatomically connected neuronal popula-
tions (Bullmore and Sporns, 2009). This complex web of connections
functions as a communication network, promoting signaling between
brain regions (Avena-Koenigsberger et al., 2018; Graham and Rock-
more, 2011). A tendency for neuronal populations with similar func-
tions to connect with each other gives rise to a nested hierarchy of in-
creasingly polyfunctional neural circuits, spanning multiple topological
scales (Hilgetag et al., 2000; Kaiser et al., 2010; Zhou et al., 2006).

Studies of network communication typically conceptualize signalling
events as a global process, eschewing the possibility that communica-
tion takes places over multiple topological scales. Namely, areas may
preferentially exchange information over small compact circuits encom-
passing direct neighbours and areas with similar functions, or over more
extensive circuits encompassing more distant neighbours with dissimilar
functions. An intuitive example is the worldwide air transportation net-
work. The purpose of regional or domestic flights permitting transit be-
tween a country’s regions is different from the purpose of international
flights permitting transit between international hubs. The importance of
an airport in this network will correspondingly depend on the type of
flight considered. For example, Denver’s and Philadelphia’s airports are
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important for domestic flights within the United States, while airports
in New York, Los Angeles or Chicago are important for international
flights (Guimera et al., 2005). In other words, the topological role of a
node in the network depends on the scale at which it is evaluated.

By the same token, individual brain areas may exhibit characteristic
interactions and communication patterns at multiple topological scales.
The modular structure of the brain (Hilgetag and Kaiser, 2004), in con-
cert with a prominent connective core of high degree areas (van den
Heuvel et al., 2012; Van Den Heuvel and Sporns, 2011), creates condi-
tions in which information can be either segregated into local clusters
of highly interconnected brain regions, or globally integrated (Zamora-
Lopez et al., 2009; 2010). For instance, an area may facilitate the inte-
gration of information among its local neighbours, but lack the capacity
to globally broadcast signals across the whole brain. In other words, the
functional diversity of a region — who it can communicate or interact
with - should depend on scale.

A salient recent finding in connectomics is that structure-function
coupling is region-specific, such that structural and functional connec-
tivity are highly correlated in sensory cortex but poorly correlated in
transmodal cortex (Baum et al., 2020; Preti and Van De Ville, 2019;
Vazquez-Rodriguez et al., 2019). One prominent hypothesis is that func-
tional connectivity in transmodal regions is less predictable because
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of the larger number of parallel and re-entrant pathways in these re-
gions, as well as micro-architectural features that cannot be directly
captured by macroscale structural connectivity (Buckner and Krienen,
2013; Vazquez-Rodriguez et al., 2019; Wang et al., 2019). An alter-
native hypothesis, which we directly test here, is that structural con-
nectivity supports communication at multiple scales. Thus, there is
no structure-function decoupling in transmodal cortex per se. Rather,
structure-function coupling exists for all regions, but occurs in a scale-
specific manner at different regions.

Here we study how communication between brain regions unfolds
over multiple scales. For a given region, we systematically define local
neighborhoods of increasing size. We then track how the centrality of
individual brain regions varies as the sizes of the probed neighborhoods
increase. We show that centrality varies across scales, and that these
variations are shaped by functional diversity. We demonstrate that the
unimodal-transmodal functional gradient naturally emerges from the
scale preferences of individual areas, such that unimodal regions are
central locally and transmodal regions are central globally. Finally, we
demonstrate that structure-function coupling is scale-specific, such that
the functional connectivity profiles of unimodal regions are better cap-
tured by communication within small-scale structural neighbourhoods,
while the functional connectivity profiles of transmodal regions are bet-
ter captured by communication within large-scale structural neighbour-
hoods.

2. Results

The results are organized as follows. We delineate multiscale neigh-
borhoods by parametrically tuning the range at which signals are trans-
mitted on the white matter connectome. We subsequently investigate
the propensity for brain areas to communicate with their neighbours
across multiple scales using a weighted measure of regional closeness
centrality. Finally, we consider how the similarity in two areas’ embed-
ding predicts their functional connectivity. See Fig. S1 for an overview
of the different measures. Data sources include (see Materials and Meth-
ods for detailed procedures):

e Structural connectivity. Structural connectomes were generated for
N =67 healthy participants (source: Lausanne University Hospi-
tal). Individual weighted network were reconstructed using diffusion
spectrum imaging and deterministic streamline tractography.

e Functional connectivity. Functional connectivity was estimated in the
same individuals (N = 67) using resting-state functional MRI (rs-
fMRI).

Analyses were performed using a network parcellation of 1000 cor-
tical nodes (Cammoun et al., 2012). They were subsequently repeated
using coarser resolutions (114, 219 and 448 nodes) and an indepen-
dently collected dataset (HCP; N = 327) (see Materials and Methods for
more information on the Validation dataset).

Multiscale regional centrality

We first characterize local neighborhoods, in each structural connec-
tome, using unbiased random walks. Specifically, we use the transition
probabilities of a random walker seeded in an individual brain region to
delineate its local neighborhood (see Methods for more details). Transi-
tion probabilities were measured for 100 time scales ¢, logarithmically
spaced between 10~ and 10'-5. Fig. 1a shows the effect of varying the
scale of a random walk initiated at nodes located in the posterior cin-
gulate (red), superior parietal (blue), transverse temporal (green) and
insular (purple) cortices, with r =2, =5 and ¢t = 10. As ¢ is increased,
the random walks are longer and the size of the probed neighborhood
becomes larger, allowing us to consider communication over more ex-
pansive portions of the network.

To investigate how the role of different brain regions varies across
scales, we measure a region’s closeness to other nodes in its local neigh-
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borhood. Closeness centrality is typically computed as the average of
local scores measuring the inverse of the shortest path between a region
of interest and each individual region in the network. Here we weight
the local scores, for individual nodes, according to their proximity to
the region of interest using the transition probability vector as a weight
function (see Methods). This weight function reflects the intuition that
the greater the number of electrochemical synapses a signal has to tra-
verse, the greater the conductance time and potential attenuation of that
signal (Fornito et al., 2016). When studying local interactions between
proximal neuronal populations, distant neighbors become less relevant
because signals cannot reach them as readily (Trusina et al., 2005). By
measuring how easily a brain region can communicate with neighbors
characterized across different topological scales, we obtain a multiscale
measure of closeness centrality (Cpy)-

For each time scale, we computed the C, i of every brain region.
Fig. 1b shows regional values of Cp,; as ¢ increases, averaged across
subjects. To allow for comparisons between scales, C,,,;; scores are
standardized relative to the distribution of scores obtained at individ-
ual scales. The centrality trajectories of four sample brain regions are
highlighted, and others are shown in grey. The relative centrality of in-
dividual brain regions varies considerably with increasing scale, such
that some areas are more central, and some are less central, depending
on the size of their neighbourhood. Fig. 1c illustrates the centrality of
every brain region, averaged across subjects, for four different topolog-
ical scales. Locally, we observe clusters of highly central brain regions
distributed across the whole brain; the clusters gradually evolve into
larger-scale systems at more global scales.

Multiscale functional diversity

In homogeneous networks where nodes have similar topological
characteristics, the local centrality of a node is expected to be simi-
lar to its global centrality. However, in heterogeneous networks, lo-
cal attributes do not necessarily mirror global attributes (Estrada and
Hatano, 2008). For instance, one node may have strong connectivity
with a small number of nodes, while another node may have moderate
but diverse connectivity with a larger number of nodes. The former is
more central in a local sense, while the latter is more central in a global
sense. The differential contribution of the two nodes to global commu-
nication, arising from their respective functional diversity, is reflected
by their different closeness trajectories.

We illustrate this concept using an artificial network with a pre-
defined modular architecture. The network of n=2000 nodes has two
equally-sized communities, which are each further divided into two sub-
communities (see Methods for the exact parameters used to construct the
network). A two-dimensional embedding of the network, generated us-
ing the ForceAtlas2 algorithm (Jacomy et al., 2014), is represented in
Fig. 2a. Four nodes, labelled from i) to iv), are highlighted. To under-
stand their contribution to global communication, it is important to not
only measure the strength of their interactions with their direct neigh-
bors (i.e. degree), but to also quantify the diversity of their connections.
In a modular network, a node’s connection diversity can be character-
ized using the participation coefficient (Guimera and Amaral, 2005).
Nodes (ii) and (iv) have a large participation coefficient, meaning that
they preferentially form connections with nodes outside their own com-
munities while nodes (i) and (iii) have a small participation coefficient
(Fig. 2b), meaning that they preferentially form connections with nodes
within their own communities. Since node (i) preferentially forms con-
nections with nodes inside its own community, its global centrality is
smaller than its local centrality, but since node (iv) preferentially forms
connections with nodes outside its own community, its global centrality
is larger than its local centrality. The same reasoning applies to nodes
(ii) and (iii). These variations in centrality arising from the diversity of
a node’s connections can be quantified using the slope of their closeness
trajectories. In the case of a modular network with pre-defined commu-
nities, nodes with a positive slope have a large participation coefficient
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Fig. 1. Multiscale regional centrality | (a) An unbiased random-walk process can be used to delineate local neighborhoods around individual brain regions of the
structural connectome. As 7, the number of iterations, is increased, the topological size of the characterized neighborhoods gets larger. Random walk process can be
initiated, for example, in the posterior cingulate gyrus, (red), in the superior parietal gyrus (blue), in the transverse temporal gyrus (green) or in the insula (purple),
and can delineate neighborhoods of different sizes (r = 2; r = 5, r = 10). (b) The weights of a node’s transition probability vector are used to compute a multiscale
measure of closeness centrality (C,,,;; see Methods for more details). Grey lines represent the centrality of individual brain regions, averaged across subjects, as ¢
increases. The centrality scores are standardized for each time scale 7. Highlighted in red, blue, green and purple are the centrality trajectories of the four individual
brain regions shown in (a). A node’s relative centrality varies largely depending on the scale of the neighborhoods. (¢) The relative importance of a brain region in
local communication processes can be evaluated by ranking C,,,; scores within small neighborhoods (7 = 1; left-most). Its relative importance in global processes
(global centrality) can be evaluated by ranking C,,; scores within large neighborhoods (¢ = 10, right-most). The importance of a brain region in communication
processes unfolding at intermediate scales can be similarly evaluated (e.g. t =2 or t = 5). Darker colors indicate brain regions with large C,,,; ranks while lighter
colors indicate brain regions with low C,;; ranks. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

while nodes with a negative slope have a small participation coefficient
(Fig. 2d). Interestingly, slopes can be measured for any value of 7, high-
lighting the diversity of a node’s connections at the chosen scale. Slopes
are correlated with local measures of diversity, such as clustering coef-
ficient (negative correlation), when computed for small values of ¢, and
are correlated with increasingly more global measures of diversity as ¢
increases (Fig. 2e).

In the brain, a functionally diverse region has a topological position
favoring communication across different functional modules. As such,
diverse regions have properties that better support global integration
(Bertolero et al., 2017; Power et al., 2013). To identify functionally di-
verse brain regions across scales, we computed the local slopes in the
closeness centrality of individual nodes as ¢ increases. Fig. 3a shows the
Chulti trajectories of four nodes located in the posterior cingulate, supe-

rior parietal, transverse temporal and insular cortices (from Fig. 1a,b),
colored according to their slope. Highly diverse brain regions have a
positive slope (red) and less diverse brain regions have a negative slope
(blue). Fig. 3b shows how the topographic distribution of these slopes
on the brain varies across scales. Importantly, these slopes considers the
diversity of a node’s relationships across a neighborhood of arbitrary
size, as opposed to a measure like participation coefficient, which only
measures the diversity of its direct connections.

To demonstrate how transitions in local closeness can highlight the
functional diversity of a brain region at multiple scales, we computed
seven measures capturing a node’s connection diversity at different
topological scales. These measures are nodal strength, clustering coef-
ficient and participation coefficients computed with respect to modular
partitions of the networks into 16, 12, 9, 6 and 4 communities. For each



V. Bagzinet, R. Vos de Wael, P. Hagmann et al. Neurolmage 243 (2021) 118546

d 1B 2B b

——

participation (4) participation (2)

(i)
[ ]

@ — strength —— (-) clustering ~ — participation (2)
l — closeness —— participation (4)
0.04 o
< 0.754
_U)
] c 0.504
8—0.00- @©
= € 0.25
O
0.00 1
—0.044 (9')-
10° 10! 10° 10!
t t

Fig. 2. Closeness trajectories in stochastic block models | (a) Two-dimensional representation of a hierarchical modular network (n=2000 nodes) generated
using a stochastic-block model. Its community structure is composed of two large communities (labelled B) as well as four smaller communities (labelled A). (b)
Participation coefficients of individual nodes for a 4-communities partition (left) and for a 2-communities partition (right). Nodes with large participation coefficients
are located at the borders between the communities. (¢) Closeness (C,,,;) trajectories of the network’s nodes, with the trajectories of the four numbered nodes in
panel (a) highlighted in red, blue, green and purple. Pairs of nodes with the same global closeness centrality (red-purple; green-blue), have different trajectories (top),
as anticipated by their respective locations in the low-dimensional embedding. Variations in a node’s closeness can be quantified by measuring the local variations
(slope) in their centrality (bottom). (d) Closeness trajectories of the network’s nodes, colored according to their participation coefficients given a 4-communities
parcellation (left) and a 2-communities parcellation (right). Nodes with a large participation coefficient show a positive slope and nodes with a small participation
coefficient show a negative slope. (e€) Spearman correlation between topological measures of diversity and the closeness slopes over a range of time scales. Clustering
coefficient is negatively correlated with the slopes at small time scales while the two participation coefficients are strongly correlated with the slopes at larger time
scales. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

of the seven measures, we averaged the scores obtained across subjects
and correlated them with the Cp,; slopes. Fig. 3c shows the correla-
tions between these measures and the local slopes evaluated across time
scales. Measures are ordered from top to bottom according to the scale
at which they are maximally correlated with the closeness slope. Local
measures, such as strength and clustering coefficient, tend to be max-
imally correlated at lower scales (r = 1.69 and ¢ = 3.90, respectively).
Participation coefficients — indexing the diversity of inter-modular links

tion coefficient), without the need to explicitly define or assume a hard
partition.

Optimal communication scales

What is the optimal scale at which individual brain regions commu-
nicate? Fig. 4a shows the scale (¢) at which the centrality of individual
brain regions in the structural connectomes peaks (t,p;). The #,p; values

for a given partition — tend to be correlated with local variations in
closeness at greater values of 7. Furthermore, as the partition resolution
is gradually decreased, from 16 to 4 communities, optimal correlations
are obtained at larger values of ¢. Altogether, these results demonstrate
that variations in a node’s centrality are mediated by its functional di-
versity. Interestingly, the present method serves to highlight functional
diversity without a predefined partition, making it a complementary
measure to more traditional diversity statistics (such as the participa-

were averaged across subjects. Cooler colors indicate regions that prefer-
entially communicate locally while warmer colors indicate regions that
preferentially communicate globally. In general, we observe preference
for local communication in primary sensory regions (pericalcarine cor-
tex, transverse temporal cortex, post-central gyrus) and in the limbic
cortex; conversely, we observe preference for global communication in
association cortex, including dorsolateral prefrontal cortex and superior
parietal cortex.
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Fig. 3. Multiscale functional diversity | (a) The functional diversity of a brain region is quantified as the amplitude of the local variations in a region’s closeness
centrality (s/ope) as ¢ varies. (b) Slopes can show different topographic distribution, for select values of r. Highly diverse brain regions have a positive slope (red)
while less diverse brain regions have a negative slope (blue). (c) Slope scores are correlated, as ¢ increases, with other measures of connection diversity (node
degree, clustering coefficient, participation coefficients for partitions of 16, 12, 9, 6 and 4 communities). Local measures of diversity such as degree and clustering
coefficient (negative) are correlated with the centrality slopes measured at intermediate scales, with peaks at t = 1.69 (r=0.80) for node degree and 7 = 3.90 (r=0.83)
for clustering coefficient (negative). Participation coefficients, viewed as meso-scale measures of functional diversity, are also correlated with a node’s local variation
in centrality. The scale at which the correlation peaks highlights the size of the communities used to compute the participation coefficient, with larger values of ¢
measuring the role of brain regions inside larger communities. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

Fig. 4 b shows the distribution of optimal values of  for seven in-
trinsic functional networks (Yeo et al., 2011). These distributions are
represented as heatmaps such that the nodes in the intrinsic functional
networks are vertically ordered and colored based on their 7,y values.
The mean of the distributions for the seven networks are significantly
different from one another following Bonferroni correction (p<0.001),
except for the mean t,,; scores of the dorsal attention and default-mode
networks (p=0.45) and for the dorsal attention and fronto-parietal net-
works (p=0.04). These heatmaps highlight a differentiation between
limbic and unimodal (somatomotor and visual) networks versus multi-
modal networks (default-mode, dorsal-attention and fronto-parietal net-
works). Fig. 4¢ shows, in the same way, the distribution of 7,,; values for
seven cytoarchitectonic classes defined by the von Economo atlas (von
Economo and Koskinas, 1925; von Economo et al., 2008; Véasa et al.,
2018; Vértes et al., 2016). The means of the distributions for the pri-
mary sensory (ps) and association (assl) classes are significantly differ-
ent from the mean of the other six cytoarchitectonic classes following
Bonferroni correction (p<0.001). These heatmaps again highlight a dif-
ferentiation between sensory and association areas.

To explore the link between scale preferences and function, we ex-
tracted brain maps of probabilistic associations between functional key
words and individual voxels using the Neurosynth meta-analytic engine
(Yarkoni et al., 2011). We then correlated those meta-analytic maps with
the centrality of individual regions across scales, and extracted the scale
at which each region’s centrality displays the greatest correlation with
a particular term. We find that terms associated with unimodal sensory
and motor functions and integration display peak correlations with the
distribution of centrality values measured at local scales, and terms as-
sociated with higher-order cognitive functions display peak correlations
at global scales (Fig. 4d).

We also compared the averaged C,,,; of the seven intrinsic func-
tional networks and cytoarchitectonic classes, as ¢ increases, to the av-
erage Cpui Of these intrinsic networks and classes in randomized net-
works with preserved degree sequences (Fig. S2). We find that the vari-
ations in Cp,; are larger in the empirical networks than those in the
randomized networks. In other words, variations in the centrality of a
node are not trivially expected from their degree.
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Fig. 4. Optimal communication scales | (a) Topographic representation of the ¢ values at which the multiscale closeness centrality of individual brain regions
of the structural connectome peaks (z,,,). The scores are averaged across participants. Sensory regions are optimally central for low values of + and multimodal
regions are optimally central for large values of ¢. (b) Heatmaps of the distribution of optimal scale values for individual brain regions, averaged across subjects, for
seven intrinsic functional networks (Yeo et al., 2011). The nodes in each heatmap are vertically ordered and colored based on their 7,,, scores. (¢) Heatmaps of the
distribution of optimal scale values for individual brain regions, averaged across subjects, for seven cytoarchitectonic classes defined from the von Economo atlas
(von Economo and Koskinas, 1925; von Economo et al., 2008; Vasa et al., 2018; Vértes et al., 2016). (d) Scale at which the C,,; distributions display the greatest
correlation with 123 meta-analytic maps extracted from Neurosynth (Yarkoni et al., 2011). The height and color of each bar represent the average value of ¢ across
participants while the error bars represent the standard deviation across participants. Terms associated with unimodal sensory-motor functions and integration display
peak correlations with the distribution of centrality values measured at local scales (low values of 1), and terms associated with higher-order cognitive functions
display peak correlations at global scales (large values of 7). Yeo intrinsic networks: lim = limbic network, sm = somatomotor network, vis = visual network, va =
ventral attention network, dmn = default mode network, da = dorsal attention network, fpn = frontoparietal network. Von Economo classes: ps = primary sensory
cortex, pss = primary/secondary sensory cortex, limbic = limbic cortex, insular = insular cortex, ass2 = association cortex 2, pm = primary motor cortex, assl =
association cortex 1.

ing structural connectome (Bettinardi et al., 2017; Goni et al., 2014;
Suéarez et al., 2020). A variety of pair-wise measures have been pro-
posed to predict functional connectivity from the structural connectivity
between brain regions, including structural connectivity strength, path

Multiscale structure-function coupling

We next investigate how multiscale connection patterns influence
structure-function coupling. Functional connectivity between pairs of

brain regions is typically computed as a correlation between the time
series of their respective fMRI BOLD signals. Coherent fluctuations in
neural activity are thought to arise from interactions on the underly-

length, search information, path transitivity (Goni et al., 2014) and com-
municability (Bettinardi et al., 2017). Most of the proposed measures
of structure-function coupling assume a single-scale, global relationship
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Fig. 5. Multiscale structure-function coupling | (a) Neighborhood similarity for =1, =2, t=5 and =10. The neighborhood similarity between pairs of brain
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averaged across subjects. (e) Topographic distribution of the first (principal) gradient of functional connectivity estimated using diffusion map embedding, which
reflects the main organizational axis of the brain, ranging from primary sensory and motor regions to transmodal regions (Huntenburg et al., 2018; Margulies et al.,
2016). (f) Relationship between the principal gradient of functional connectivity and 10g 7, (r=0.57; pgy, = 2x1074).

between the two (but see (Abdelnour et al., 2014; Bettinardi et al., 2017)
for their use of multiscale measures).

Here we assess structure-function coupling across multiple scales.
By measuring the similarity between the neighborhoods of two brain
regions defined at different values of 7, we ask how similar the dynam-
ical processes unfolding around them are (Schaub et al., 2019). We hy-
pothesize that nodes with overlapping neighborhoods (i.e. large neigh-
borhood similarity) will display greater functional coupling than nodes
that are part of different neighborhoods (Misic et al., 2015). We hence
quantified, for each structural connectome, the neighborhood similarity
of pairs of brain regions by computing the pairwise cosine similarity be-
tween their transition probability vectors, for every value of 7 (Fig. 5a).

For every subject, we then measured the Pearson correlation be-
tween the functional connectivity and the neighborhood similarity of
edges with positive functional connectivity weights. Measuring this cor-
relation for every value of ¢ (Fig. S3a), we find the largest correlation
at t = 2.69 (mean = 0.22, SD = 0.03). Fig. S3b shows the distribution of
individual correlation scores for each measure. The mean of the max-
imal correlations between functional connectivity and neighborhood
similarity was significantly larger than the mean of the correlations ob-
tained by correlating the functional connectivity matrix to the weights of
the structural network’s adjacency matrix (mean = 0.12, SD = 0.02; p <
10740), the weights of the structural network’s shortest paths matrix
(mean = 0.16, SD = 0.03; p < 10720), and the weights of the structural

network’s communicability matrix (mean = 0.16, SD = 0.02; p < 10~2%).
The mean of these correlations was also significantly larger than the
mean correlation between functional connectivity and Euclidean dis-
tance (mean = 0.20, SD = 0.03; p = 0.00046). These results are in accor-
dance with previous results demonstrating that incorporating multiscale
processes into structure-function coupling predictions is advantageous
((Abdelnour et al., 2014; Bettinardi et al., 2017)).

Importantly, the present framework does not assume that structure-
function relationships are uniform across the brain, and instead opens
the possibility that functional interactions occur at different scales for
different brain regions. To investigate this possibility, we computed the
Spearman correlations between the neighborhood similarity profiles and
positive-valued functional connectivity profiles of individual brain re-
gions. We averaged the correlations obtained across individual connec-
tomes for each value of 7, and identified the maximal correlation (py, )
of every brain region (Fig. 5b). We find that the optimal scale for which
this regional correlation is maximal varies considerably across brain re-
gions (Fig. 5¢).

As discussed in the previous section, the optimal communication
scale of brain regions varies along a unimodal-multimodal axis. We
therefore hypothesize that the scale that best captures structure-function
coupling for individual regions — the scale at which the correlation be-
tween neighborhood similarity and functional connectivity is maximal
- similarly varies along a unimodal-multimodal axis. Fig. 5d shows the
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topographic distribution of the ¢ values at which the correlation be-
tween neighborhood similarity and functional connectivity is maximal
(tmax)- We see that the pattern indeed outlines the putative unimodal-
transmodal hierarchy, such that functional connectivity profiles of uni-
modal regions are better captured by smaller neighbourhoods (small
1), while functional connectivity in transmodal regions is better cap-
tured inside more extensive neighbourhoods. This relationship with the
unimodal-transmodal hierarchy is highlighted by a significant correla-
tion (r = 0.57, Pspin = 2% 10~*) between the optimal values of ¢ and the
first (principal) gradient of functional connectivity (Figs. 5e, f). This
continuous gradient, which can be estimated using diffusion map em-
bedding, is thought to reflect the main organizational axis of the brain,
ranging from primary sensory and motor regions to transmodal regions
(Huntenburg et al., 2018; Margulies et al., 2016). The magnitude of the
regional correlations (Fig. 5b) were not significantly correlated with the
optimal scale of a brain region (r = 0.25, pgyi, = 0.09) and with the first
(principal) gradient of functional connectivity (r = 0.24, Pspin = 0.21),
suggesting that structure-function coupling is not weaker in multimodal
regions per se, but rather, that structure-function coupling is scale-
specific.

We next compare the maximal correlations obtained with neighbor-
hood similarity (p,) to the correlations obtained with two topological
measures, namely shortest path (pg,) and communicability (pcor), and
with a geometric measure, namely Euclidean distance (pq). These mea-
sures have been previously used to study variations in local structure-
function coupling (Vazquez-Rodriguez et al., 2019). Fig. S4a shows the
relationship between the regional correlations obtained with neighbor-
hood similarity and the correlations obtained by comparing functional
connectivity to the other measures. The optimal correlations obtained
with neighborhood similarity were generally larger than those obtained
with the three measures. We next compute the difference between the
correlation scores obtained with neighborhood similarity and the corre-
lation scores obtained with the other three measures. We find that the
largest local differences are observed in multimodal brain regions (Fig.
S4b). Namely, for all three measures, neighborhood similarity was rel-
atively better at predicting functional connectivity in multimodal brain
regions. For all three measures, we found a significant correlation be-
tween the first (principal) gradient of functional connectivity and the
local differences (Fig. S4c). Altogether, these results demonstrate that
while other measures perform as well (or better) in the prediction of
functional connectivity in sensory regions, neighborhood similarity is
significantly better at predicting functional connectivity in multimodal
brain regions.

Sensitivity and replication

We ultimately asked if the results are sensitive to different processing
choices, if they are replicable with different parcellations and if they are
replicable in an independently acquired dataset. In the present report,
we delineated local topological neighborhoods using unbiased random
walks. To ensure that the observed results are not dependent on our
choice of this particular dynamical process, we repeated the analyses
using personalized PageRank vectors (i.e. random-walks with restarts)
and the normalized Laplacian matrix (i.e. diffusion process). These alter-
native dynamical processes also allow for multiscale investigations with
a parameter that can be tuned to constrain their length (see Methods for
more details). We also repeated the analyses using binarized networks,
and to ensure that the log transformation of the streamline densities did
not bias the results, we replicated all experiments using the streamline
densities scaled to values between 0 and 1 as the weights of the struc-
tural connections (instead of their log-transform). To ensure that the re-
sults do not depend on parcellation resolution (Zalesky et al., 2010), we
replicated all experiments with the same dataset, but parcellated into
114, 219 or 448 cortical brain regions. Finally, to ensure that the re-
sults were replicable in an independently acquired dataset, we repeated
our analyses in a Validation dataset (HCP, N=201), which was parcel-
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lated according to a functional parcellation of 800 nodes (Schaefer et al.,
2018). We obtain similar results for all sensitivity and replication exper-
iments. The optimal communication scales are presented in Fig. S5 and
Fig. S6 shows their relationship with the #,,; values presented in the
main text. Fig. S7 shows the topographic distributions of 7, values, and
Fig. S8 shows that those distributions are significantly correlated with
the principal FC gradient. Finally, Fig. S9 shows that as the parcellations
get more fine-grained, structure-function coupling must be predicted by
considering dynamical processes unfolding in larger neighborhoods.

3. Discussion

In the present report, we study how inter-regional communication
between brain regions occurs over multiple topological scales. By trac-
ing the trajectory of a region’s closeness in expanding neighborhoods,
we identify topological attributes that mediate transitions from more
localized communication to more global communication. We find that
less diverse unimodal regions show preference for local communica-
tion and more diverse multimodal regions show preferences for global
communication. These preferences manifest as scale-specific structure-
function relationships with the functional connectivity of unimodal re-
gions emerging from local communication in small-scale circuits and
the functional connectivity of multimodal regions emerging from global
communication in large-scale, poly-synaptic, circuits.

Numerous reports have found evidence of regional differences in cen-
trality measures (Buckner et al., 2009; Gong et al., 2009; Hagmann et al.,
2008; van den Heuvel and Sporns, 2013; Sporns et al., 2007; Zamora-
Lépez et al., 2010; Zuo et al., 2012). These studies were however per-
formed at a single scale, eschewing the possibility that communication
occurs across a spectrum of local, intermediate and global scales (Avena-
Koenigsberger et al., 2019). In other words, they overlook the possibility
that proximal populations with similar functions engage in a different
mode of communication from more distant populations with dissimilar
functions. Some studies, which also relied on random-walkers, inves-
tigated the multiscale community structure of brain networks (Bacik
et al., 2016; Betzel et al., 2013) and showed the existence of multi-
ple organizational scales in the brain. Our findings expand on these
results as well as on previous work interested in the multiscale archi-
tecture of the brain (Betzel and Bassett, 2017) by highlighting the ex-
istence of regional heterogeneities in scale preferences. Future research
could be directed towards identifying which scales are most informa-
tive (Klein and Hoel, 2020), or towards understanding how different
types of biologically important dynamics, including information inte-
gration (Chang et al., 2020), synchronizability (Bassett et al., 2006),
controllability (Gu et al., 2015) and complexity (Tononi et al., 1998),
are constrained at multiple scales.

Heterogeneities in scale preferences naturally reveal the functional
diversity of brain regions, which is typically estimated from the num-
ber of direct connections within- vs. between-modules (Guimera and
Amaral, 2005; Pedersen et al., 2020). Regions with diverse connection
profiles, with links to many specialized communities, are theoretically
well-placed to integrate information from multiple domains (Bertolero
etal., 2018; 2015; 2017; Power et al., 2013; Zamora-Lépez et al., 2010).
By considering interactions over multiple hops, we not only characterize
the diversity of a node’s direct connections, but also the diversity of its
higher-order relationships with other regions. Moreover, our method al-
lows for the characterization of functional diversity across a continuous
range of scales, eliminating the need to partition the network into com-
munities. This property may prove to be methodologically convenient
and theoretically desirable for two reasons. First, brain networks pos-
sess prominent community structure at multiple scales, and there may
not exist a single “characteristic” scale (Betzel and Bassett, 2017; Bet-
zel et al., 2013). Second, the community structure of the brain may not
be exclusively assortative (Betzel et al., 2018b; Faskowitz et al., 2018;
Pavlovic et al., 2014), yet most community detection algorithms assume
the presence of assortative communities (Fortunato, 2010). By track-
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ing functional diversity over a range of expanding neighbourhoods, we
avoid having to make assumptions about the presence, nature or scale
of communities.

By identifying the optimal scale at which a brain region can com-
municate with neighboring regions, we find that regions participating
in fewer integrative functions, such as primary visual, auditory and
somatosensory cortices, optimally communicate at local scales. Con-
versely, polysensory regions in association or transmodal cortex opti-
mally communicate at global scales. In other words, we show that a
region’s functional specialization naturally emerges from its anatomi-
cal connectivity (Mars et al., 2018; Passingham et al., 2002). We also
find that neurosynth-derived functional activation maps can be ordered
along this hierarchy such that terms associated with unimodal sensory
and motor functions are more strongly correlated with centrality scores
computed at local scales while terms associated with high-order cog-
nitive processes are highly correlated with centrality scores computed
at global scales. In other words, we find that the functional signature
of a cognitive term reflects the scale of the communication processes
associated with it.

Our results are naturally intertwined with the concept of segregation
and integration in the brain (Sporns, 2013): local connectivity among
regions with similar functions promotes specialized information process-
ing whereas global connection patterns among regions with dissimilar
functions promote integrative information processing. Future research
could be directed toward understanding how scale preferences change
with age. It has indeed been demonstrated that connectivity becomes
less segregated with age (Betzel et al., 2014), and these changes may
affect the scale at which communication processes unfold.

By tracing the trajectory of a brain region across multiple topolog-
ical scales, we highlight a continuous gradient of localized versus dis-
tributed processing (Ito et al., 2020). Our results are in line with an
emerging literature emphasizing large-scale gradients of cortical orga-
nization (Goulas et al., 2018; Hilgetag and Goulas, 2020; Huntenburg
et al., 2018; Margulies et al., 2016; Paquola et al., 2019). Our findings
offer a possible explanation for how these large-scale gradients emerge
from the brain’s structural embedding. Namely, at individual topologi-
cal scales, areas may appear to preferentially form connections with a
subset of others areas, manifesting as specific communities. As we zoom
across multiple scales, however, we reveal a layered organization of in-
terdigitated connections among areas, yielding an organizational axis
of scale-specific organizational characteristics, including centrality and
connection diversity. It is noteworthy that, from a geometric perspec-
tive, unimodal brain regions tend to have preferentially short-distance
connections and multimodal regions have preferentially long-distance
connections (Oligschlédger et al., 2017; 2019; Sepulcre et al., 2010). Our
results are therefore consistent with recent theories suggesting that the
main role of long-distance connections is to enhance the functional di-
versity of a brain region (Betzel and Bassett, 2018).

This localized-distributed gradient is further highlighted by local
variations in structure-function coupling. The similarity of local struc-
tural neighborhoods best predicts functional connectivity in sensory ar-
eas, suggesting that interactions among these regions unfold mainly
over local, small-scale neighbourhoods. Conversely, functional connec-
tivity in multimodal brain regions is best predicted by the topolog-
ical similarity of large-scale neighborhoods, suggesting that interac-
tions among these regions unfold mainly over more extensive, large-
scale neighbourhoods. These results build upon recent reports showing
that structure-function coupling is region specific (Baum et al., 2020;
Demirtas et al., 2019; Preti and Van De Ville, 2019; Suérez et al., 2020;
Vézquez-Rodriguez et al., 2019; Wang et al., 2019). It has been previ-
ously hypothesized that these variations in structure-function coupling
can be explained by an untethering of functional connectivity from
anatomical and genetic gradients in association regions (Buckner and
Krienen, 2013). Indeed, the reconfiguration of local micro-circuitry in
these regions, which is marked by a greater number of parallel and re-
entrant pathways, may lead to greater signal variance and render struc-
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tural connectivity less effective overall in predicting functional interac-
tions. Here, we demonstrate that there is no dissociation between struc-
tural and functional properties. In fact, this observation that structure-
function coupling is weaker in transmodal regions is explained by the
increasing scales at which communication processes unfold. Functional
connectivity in sensory regions is easier to predict from structural con-
nectivity because it is mediated by direct communication on the struc-
tural connectome, while functional connectivity in multimodal region is
harder to predict from structural connectivity because it is mediated via
more indirect, polysynaptic communication pathways (Bettinardi et al.,
2017).

The present findings should be interpreted with respect to several im-
portant methodological considerations. We focused on the topological
organization of networks reconstructed from diffusion-weighted imag-
ing data using computational tractometry. This approach is prone to
systematic false positives and false negatives (Maier-Hein et al., 2017,
Thomas et al., 2014). In addition, the connectomes generated are undi-
rected, naturally limiting inferences about causal influence. We did,
however, ensure that our results did not trivially depend on confounding
factors by replicating our results using (1) different dynamical processes
to generate neighborhoods, (2) different weights for our structural con-
nectivity matrices, (3) a different parcellation resolution and (4) an in-
dependent validation dataset.

Altogether, the present findings demonstrate that exclusively consid-
ering communication at the global level might obscure functionally rele-
vant features of brain networks. By studying regional embedding across
multiple topological scales, we reveal a continuous range of communi-
cation preferences that shape structure-function relationships. In doing
so, we take a step towards conceptually linking long-standing ideas in
neuroscience such as integration and segregation, functional hierarchies
and connection diversity.

4. Methods
Network reconstruction

All analyses were performed in two independently collected and pre-
processed datasets, one collected at the Lausanne University Hospital
(N = 67; Discovery) (Griffa et al., 2019) and one as part of the Human
Connectome Project S900 release (N = 327; Validation) (Van Essen et al.,
2013).

Discovery dataset

The N = 67 participants of the Discovery dataset (age 28.8 + 9.1
years, 40% females) were scanned in a 3-Tesla MRI Scanner (Trio,
Siemens Medical, Germany). Informed consent was obtained for all sub-
jects (the protocol was approved by the Ethics Committee of Clinical Re-
search of the Faculty of Biology and Medicine, University of Lausanne,
Switzerland. Details regarding data acquisition, pre-processing and net-
work reconstruction are available at (Griffa et al., 2019). Briefly, the
data acquisition protocol included a magnetization-prepared rapid ac-
quisition gradient echo (MPRAGE) sequence (1mm in-plane resolution,
1.2mm slice thickness), a diffusion spectrum imaging (DSI) sequence
(128 diffusion-weighted volumes and a single b0 volume, maximum
b-value 8,000 s/mm?, 2.2 x 2.2 x 3.0 mm voxel size), and a gradi-
ent echo-planar imaging (EPI) sequence sensitive to blood-oxygen-level-
dependent (BOLD) contrast (3.3 mm in-plane resolution and slice thick-
ness with a 0.3-mm gap, TR 1,920 ms, resulting in 280 images per par-
ticipant). Grey matter was parcellated into either 114, 219, 448 or 1000
equally sized parcels (Cammoun et al., 2012). The Connectome Mapper
Toolkit was used for the initial signal processing (Daducci et al., 2012)
while gray and white matter were segmented from the MPRAGE volume
using freesurfer (Desikan et al., 2006).

Structural connectivity matrices were reconstructed for individ-
ual participants using deterministic streamline tractography on recon-
structed DSI data. 32 streamline propagations were initiated per diffu-
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sion direction and per white matter voxel. The weights of the edges cor-
respond to the log-transform of the streamline density, scaled to values
between 0 and 1. fMRI volumes were corrected for physiological vari-
ables (regression of white matter, cerebrospinal fluid, as well as motion),
BOLD time series were subjected to a lowpass filter and motion ”scrub-
bing” (Power et al., 2012) was performed. Functional connectivity ma-
trices were constructed by computing the zero-lag Pearson correlation
coefficient between the fMRI BOLD time series of each pairs of brain
regions.

Validation dataset

The Validation dataset acquisition protocol included a high angular
resolution diffusion imaging (HARDI) sequence and four resting state
fMRI sessions. All analyses were performed in a subset of N = 327 un-
related participants (age 28.6 + 3.73 years, 55% females). Out of the
original 898 subjects of the S900 release of the HCP, 82 were discarded
because they had missing functional or structural scans and another 353
were discarded to remove familial relationships across subjects. In the
remaining 463 subjects, 184 were monozygotic twins, so we only con-
sidered one member of each pair. 20 subjects were also removed at Qual-
ity Control, and 24 were removed because they lacked DWI images. The
participants were scanned in the HCP’s custom Siemens 3T "Connectome
Skyra” scanner. Informed consent was obtained for all subjects (the pro-
tocol was approved by the Washington University Institutional Review
Board as part of the HCP). Further information regarding the acquisition
protocol is available at (Van Essen et al., 2013) while more information
regarding the preprocessing and the network reconstruction is available
at (Park et al., 2021).

Briefly, the dMRI data was acquired with a spin-echo EPI sequence
(TR=5,520 ms; TE=89.5 ms; FOV=210 x 180 mm 2; voxel size=1.25 mm
3; b-value=three different shells i.e., 1,000, 2,000, and 3,000 s/mm
2; number of diffusion directions=270; and number of b0 images=18)
and the rs-fMRI data was acquired using a gradient-echo EPI sequence
(TR=720 ms; TE=33.1 ms; FOV=208 x 180 mm 2; voxel size=2 mm 3;
number of slices=72; and number of volumes=1,200). The data was
pre-processed according to the HCP minimal preprocessing pipelines
(Glasser et al., 2013).

Structural connectomes were reconstructed from the dMRI data us-
ing the MRtrix3 package (Tournier et al., 2019). Fiber orientation dis-
tributions were generated using a multi-shell multi-tissue constrained
spherical deconvolution algorithm (Dhollander et al., 2016; Jeurissen
et al., 2014). The initial tractogram was generated with 40 million
streamlines, with a maximum tract length of 250 and a fractional
anisotropy cutoff of 0.06. Spherical-deconvolution informed filtering of
tractograms (SIFT2) was used to reconstruct whole brain streamlines
weighted by cross-section multipliers (Smith et al., 2015). To ensure
that our results were not confounded by the parcellation scheme or res-
olution, grey matter was parcellated with a different parcellation. This
time, grey matter was parcellated into 800 cortical regions according
to the Schaefer functional atlas (Schaefer et al., 2018). Functional con-
nectivity matrices were constructed for individual subjects by comput-
ing the zero-lag Pearson correlation coefficient between the fMRI BOLD
time series of each pairs of brain regions. The functional weights of the
four resting-state sessions were then averaged for each individuals.

Yeo intrinsic networks and von Economo classes

To facilitate our analyses, nodes of the brain networks were strat-
ified according to their membership to seven intrinsic functional net-
works and seven cytoarchitectonic classes. The seven intrinsic func-
tional networks were identified by applying a clustering technique
on resting-state fMRI data from 1000 subjects. More details can be
found in (Yeo et al., 2011). The seven resting-states parcellation, in
the FreeSurfer fsaverage5 surface space, was first downloaded from
https://github.com/ThomasYeoLab/CBIG/. We then attributed to each
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parcel of the 1000 nodes Cammoun parcellation the most common in-
trinsic network assignments of its vertices. The seven cytoarchitectonic
classes consist in an extended version of the classical von Economo atlas
(von Economo and Koskinas, 1925; von Economo et al., 2008). The class
of each parcel was manually assigned based on visual comparison with
the von Economo and Koskinas’s parcellation and anatomical landmarks
(Vésa et al., 2018; Vértes et al., 2016).

Multiscale topological neighborhoods

Local neighborhoods were characterized by modelling dynamical
process initiated from individual nodes in the networks. By control-
ling the length of these processes, we controlled the topological size
of the delineated neighborhoods. Our main results relied on unbiased
random-walks. We further replicated our results using random walks
with restarts and a heat-diffusion process.

Unbiased random-walks

Given a weighted adjacency matrix A where 4;; corresponds to the
weight of the edge connecting nodes i and j, the probability that a
walker at node i transitions to node j in a single iteration is given by
%, where d; is the strength of node i and corresponds to the sum of the

wleights of the edges leaving the node. For the experiments presented
in the main text, the weights of the adjacency matrix were chosen as
the log-transform of the streamline densities, scaled to values between
0 and 1. As such, transition probabilities are larger between regions con-
nected by denser streamlines. We also replicated our experiments using
the streamline densities scaled to values between 0 and 1 as weights (no
log transform), and using the binary connectome. The overall transition
probabilities of a network can be represented in a transition matrix P
such that:

P=D"'A, 0

where D is the diagonal matrix with the value D;; corresponding to the
strength of node i. Given an initial distribution of random walkers p(0),
it is possible to compute the distribution of these random walkers at a
discrete time 7, p(?):

p() = pOP". @

The vector p(r) indicates the proportion of walkers located at any
other node at time 7. We initiate this random walk process on a single
node i by setting the initial distribution p(0) to be equal to 0 everywhere,
and be equal to 1 in position i. This initial vector can be written as e;.
The transition probability vector at time 7, given that the random walk
process was started on node i can then be written as:

pli) = eP". 3

The discrete-time random walk process defined above can be ”con-
tinuized” by considering the interval of time between two moves as an
exponential random variable with A = 1 (Masuda et al., 2017). The tran-
sition probability vector, for a random walk process initiated on node i,
is then given by:

p(t]i) = e;(e7 ), e))

where L,,, = I — P is the graph random-walk normalized Laplacian.

By initiating a random-walk process from a single node, we can mea-
sure the topological proximity between this node and the other nodes in
the network. By increasing the value of ¢, we increase the length of the
random-walks, and consequently measure the topological proximity of
nodes in larger neighborhoods. We measured the transition probabilities
for 100 time scales ¢, logarithmically spaced between 10~% and 10!,

Random-walks with restarts

A variant of this equation consists in adding to this random-walk
process an additional probability that the random walker randomly tele-
ports itself back to the seed node. Random walks with teleportation are
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the basis for the PageRank algorithm (Brin and Page, 1998) and ensure
that random walks on directed networks do not get trapped in absorbing
states. The equation, given that the random walk process is initiated on
a single node i, is defined as follows:

ptle, i) = (@eP' + (1 — a)e;, ®)

where « corresponds to the damping factor. By varying the damping
factor, we can decrease the probability of restart of the random walks
and therefore increase their length. More specifically, the probability
that a random-walks is of length / (Prob[L = I]) is geometrically related
to the value of the parameter a:

Prob,[L=11=(-a). (6)

Ultimately, the stationary distribution of this Markov chain, which
can be computed using the power iteration method, indicate the prob-
ability that random walkers of a certain length, starting from a single
source node, reach other nodes in the network. We computed the sta-
tionary distribution, also known as the personalized PageRank, for 99
values of «, linearly spaced between 0.01 and 0.99.

Diffusion

An alternative method to dynamically measure the topological prox-
imity of brain regions in a network consists in modelling a heat-diffusion
process on the network. More specifically, the Laplacian matrix (L) of
the network is used to compute the distribution of some material at time
t, given that the process was initiated at node i:

p(t|i) = e;(e™™),;. 0]
where
L=1-D"'2AD"'/2, ®

Again, by varying the value of ¢, we can vary the size of the neigh-
borhoods on which the diffusion process unfolds, and therefore measure
the topological proximity of nodes in the network given dynamical pro-
cesses unfolding at increasingly large scales. We measured the transition
probabilities for 100 time scales ¢, logarithmically spaced between 100
and 10",

Multiscale closeness centrality

Measures of network centrality often consider a node’s relationship
with all of the other nodes. For instance, the closeness centrality of a
node in a network can be measured by computing the inverse of its
averaged topological distance to the other nodes in the network:

n—1
2 i
where n corresponds to the number of nodes in the network parcellation
and ¢,; corresponds to the weighted shortest path between nodes i and
j.

Cli)= ©

To capture the centrality of a node at different scales, we propose a
new measure. This measure consists in computing the multiscale close-
ness centrality of a node as a weighted average using the probability
vector p as a weight function prioritizing the node’s relationships with
nodes that are topologically close over nodes that are topologically re-
mote. Specifically, given a scale-dependent weight vector p(¢|i), the mul-
tiscale closeness centrality of a node i for the specified scale ¢ is defined
as:

Cmulti(ilt) = (10)

1

X 0Dy -

The topological distance between a pair of connected nodes i and
j was measured as the inverse of the connection weight between the
two nodes, and the topological shortest paths between pairs of nodes
were subsequently retrieved using the Dijkstra’s algorithm. The code
to compute this multiscale measure of closeness centrality is available
in the project’s github repository (https://github.com/netneurolab/
bazinet_multiscale)
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Multiscale functional diversity

Analogous to techniques like Infomap (Rosvall and
Bergstrom, 2008), we make use of the fact that highly intercon-
nected regions trap random-walkers to capture the functional diversity
of individual nodes in a network. As walkers centered on a node diffuse
over larger neighborhoods, they start to encounter distinct functional
clusters. These transitions in the local architecture of the network
give rise to variations in centrality. A node that preferentially forms
connections with functionally similar nodes will have a decreasing
trajectory while a node that preferentially forms connections with
dissimilar nodes will have an increasing trajectory. The slope of C 4
reflects how the importance of a node diminishes or increases across
scales. The slope in the centrality of a node i, for a scale 7 is computed
as the central difference approximation:

Cmulti(ilt +h - Cmulti(ilt —h)
2h ’
where £ is the spacing between each value of 7.

slope(ilt) = (11

Probabilistic activation maps

Using the Neurosynth meta-analytic engine (Yarkoni et al., 2011) we
extracted brain maps of probabilistic associations between functional
key words and individual voxels, synthesized from results from more
than 15,000 published fMRI studies. The probabilistic measures, which
consist in the probability that a given term is reported in a study and
that there is activation observed in a given voxel, can be interpreted
as a quantitative representation of how regional fluctuations in activity
are related to psychological processes. We analyzed the functional maps
associated to 123 cognitive and behavioural terms from the Cognitive
Atlas ((Poldrack et al., 2011), ranging from umbrella terms (“attention”,
“emotion”) to specific cognitive processes (“visual attention”, “episodic
memory”), behaviours (“eating”, “sleep”), and emotional states (“fear”,

“anxiety”).
Clustering coefficient

The clustering coefficient of a node corresponds to the number of
triangles attached to it, normalized by the maximum number of possible
triangles that could be attached to the node (Watts and Strogatz, 1998):

21,
12)

TR

where k; is the degree of node i and ¢, is the number of triangles attached
to node i. A weighted version of the clustering coefficient, which can be
viewed as a measure of the average ”intensity” of triangles around a
node, can also be expressed as follows (Onnela et al., 2005):

2 T ¢
Z(wijwjkwki)s’

—c 13
ik, = 1) 4 (13)

C,@0) =
where jj, is the weight of the connection between nodes j and k, di-
vided by the largest weight in the network. The clustering coefficients
were computed using the Brain Connectivity Toolbox (https://github.
com/aestrivex/bctpy) (Rubinov and Sporns, 2010).

Community detection

Communities are groups of nodes with dense connectivity among
each other. The Louvain method was used to identify a commu-
nity assignment or partition that maximizes the quality function Q
(Blondel et al., 2008):

1 S8
0= z [A,.j - y%]é(ci.cj),

LJ

14

where 4;; is the weight of connection between nodes i and j, s; and
s; are the directed strengths of i and j, m is a normalizing constant, ¢;
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is the community assignment of node i and the Kronecker §-function
5(u, v) is defined as 1 if u = v and 0 otherwise. The resolution parameter
y scales the importance of the null model and effectively controls the
size of the detected communities: larger communities are more likely to
be detected when y < 1 and smaller communities (with fewer nodes in
each community) are more likely to be detected when y > 1.

To detect stable community assignments for our structural connec-
tomes, we first constructed a consensus network from the individual
connectomes. This network was generated such that the mean density
and edge length distribution observed across individual participants was
preserved (Betzel et al., 2018a; Misi¢ et al., 2018; 2015). The edges
were weighted as the average weight across individual networks for
which these edges existed. Using this consensus network, we initiated
the algorithm 100 times at each value of the resolution parameter and
consensus clustering was used to identify the most representative parti-
tions (Lancichinetti and Fortunato, 2012). This procedure was repeated
for a range of 100 resolutions between y = 0.25 and y = 7.5. We then
quantified the similarity between pairs of consensus partitions using
the z score of the Rand index (Traud et al., 2011). We next identi-
fied five values of y at which the generated partitions showed high mu-
tual similarity and persisted through stretches of y values. This proce-
dure yielded partitions of 4, 6, 9, 12 and 16 communities (correspond-
ing to y=0.54, 1.08, 2.06, 2.85, 7.16). The whole procedure was im-
plemented using code available in the netneurotools python toolbox
(https://github.com/netneurolab/netneurotools).

Participation coefficient

Given a partition, we quantify the diversity of a node’s connections
to multiple communities using the participation coefficient (Guimera and
Amaral, 2005). The participation coefficient is defined as

2
pci=1—2[¥] s

ceC

where s, is the total strength of node i, s;(c) is the strength of i in com-
munity ¢ and the sum is over the set of all communities C. Nodes with a
low participation coefficient are mainly connected with nodes in a sin-
gle community, while nodes with a high participation coefficient have
a diverse connection profile, with connections to multiple communi-
ties. The participation coefficients were computed using the Brain Con-
nectivity Toolbox (https://github.com/aestrivex/bctpy) (Rubinov and
Sporns, 2010).

s)

Autocorrelation-preserving permutations

To assess the significance between the principal functional connec-
tivity gradient and 7,,,, we relied on autocorrelation-preserving per-
mutations and generated null distributions that preserve the spatial
autocorrelation of the original brain map. By preserving this autocor-
relation, we ensure that the null distributions do not violate the as-
sumption of exchangeability and that permutation tests will not gen-
erate inflated p-values (Alexander-Bloch et al., 2018; Markello and
Misic, 2021). To generate autocorrelation-preserving permutations, we
first created a surface-based representation of the Cammoun atlas on
the FreeSurfer fsaverage surface using the Connectome Mapper toolkit
(https://github.com/LTS5/cmp, (Daducci et al., 2012)). We identified
the vertices closest to the center-of-mass of each parcel and used the
spherical projection of the fsaverage surface to define spherical coor-
dinates for each parcel. We then applied randomly-sampled rotations
to the spherical atlas and reassigned each parcel to the closest parcel
following this rotation. Each rotation was applied to one hemisphere
and then mirrored to the other hemisphere. This process was repeated
10,000 times using code available in the netneurotools python toolbox
(https://github.com/netneurolab/netneurotools). The empirical distri-
butions were then compared to these spatially-autocorrelated nulls and
two-sided p-values (py;;,) were computed.
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Neighborhood similarity

The pairwise neighborhood similarity of nodes in the network, for a
particular scale 7 can be represented in a matrix S(r), where S;;(t) corre-
sponds to the cosine similarity between the transition probability vectors
of nodes i and j, for the scale 7:

__plhp@l)
[l adn)GRIN
The code to compute neighborhood similarity is available in the

project’s github repository (https://github.com/netneurolab/bazinet_
multiscale).

S;0n=1 (16)

Communicability

For a binary adjacency matrix A, communicability is defined as

o [An]i'
Cy= Zg) —= =My, a7

with walks of length » normalized by n!, ensuring that shorter,
more direct walks contribute more than longer walks (Estrada and
Hatano, 2008). For a weighted adjacency matrix, this definition can be
extended as

C;; = (exp(D™'/2AD™/2)), . (18)

where D is the diagonal degree matrix (Crofts and Higham, 2009). The
code to compute communicability in weighted networks is available
in the netneurotools python toolbox (https://github.com/netneurolab/
netneurotools).

Principal FC gradient

The principal gradient of functional connectivity is thought to re-
flect the main organizational axis of the brain, ranging from primary
sensory and motor regions to transmodal regions (Huntenburg et al.,
2018; Margulies et al., 2016). This gradient can be reconstructed us-
ing diffusion map embeddding, a nonlinear dimensionality reduction
algorithm (Coifman et al., 2005). The algorithm seeks to project a set
of embeddings into a lower-dimensional Euclidean space. Briefly, the
similarity matrix among a set of points (in our case, the correlation ma-
trix representing functional connectivity) is treated as a graph, and the
goal of the procedure is to identify points that are proximal to one an-
other on the graph. In other words, two points are close together if there
are many relatively short paths connecting them. A diffusion operator,
representing an ergodic Markov chain on the network, is formed by tak-
ing the normalized graph Laplacian of the matrix. The new coordinate
space is described by the eigenvectors of the diffusion operator. We set
the diffusion rate a = 0.5. The eigenvalues A were divided by 1 — 1 to
provide noise robustness and eliminate the need for a diffusion time (t)
parameter. For each dataset and parcellation, the principal gradient was
computed on a consensus functional connectivity matrix computed by
averaging the pairwise correlations obtained across individuals and set-
ting the negative values to 0. The procedure was implemented using the
mapalign Toolbox (https://github.com/satra/mapalign).

Generative model

A stochastic block model (Holland et al., 1983) was used to generate
an artificial network. The edge probability matrix P was defined to gen-
erate an hierarchically modular network of 2000 nodes with a layer of 4
equally-sized communities and another of 2 equally-sized communities:

0.05 0.0125  0.005 0.005

pP= 0.0125 0.05 0.005 0.005 (19)
0.005 0.005 0.05 0.0125
0.005 0.005  0.0125 0.05
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The specific probabilities were also chosen so that the two-
dimensional embedding clearly delineates the four communities of the
network. The network was generated using the NetworkX package
(Hagberg et al., 2008). The two-dimensional embedding of this network
was generated using the ForceAtlas2 algorithm (Jacomy et al., 2014).

Data and code availability

The Discovery dataset (Lausanne) is available at https://doi.org/
10.5281/zenodo.2872624 and the Validation dataset (Human Con-
nectome project) is available at https://www.humanconnectome.org/
study/hcp-young-adult. The code used to conduct the analyses pre-
sented in this paper is available at https://github.com/netneurolab/
bazinet_multiscale.
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