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SIMULATION OF RUIN PROBABILITIES FOR
RISK PROCESSES OF MARKOVIAN TYPE

HANSJORG ALBRECHER* JOSEF KANTOR

Abstract

We consider a generalisation of the classical risk model, where consecutive claims may
be dependent according to a Markovian structure represented by a copula function
for the joint distribution function of the claims. For various marginal claim size
distributions and copula functions ruin probabilities are simulated via Monte Carlo
and an importance sampling technique for variance reduction is developed.

1 Introduction

In classical risk theory the surplus process U(t) of an insurance company is described by
Ut)=u+ct— Zi]ipl(t) X;, where u > 0 is the initial capital, ¢ is the constant premium
income density and ¢ denotes time. The claim number process Np(t) is a homogeneous
Poisson process with intensity A and the claim amounts X1, Xo, ... are iid random variables
with common distribution function F'; where F' has a finite mean y. Let us define T' =
min{t : t > 0 and U(¢) < 0} as the time when ruin occurs (i.e. the surplus becomes
negative for the first time) with the understanding that 7' = oo if ruin does not occur.
Furthermore let 9(u) = Pr(T < oo) denote the probability of ruin considered as a function
of the initial surplus u. The usual net profit condition ¢ > Ay ensures that lim, o ¥ (u) =
0. If there exists an R > 0 such that

/oo eRT(1 — F(z))ds =
0

>0

then for all u > 0 the inequality 9(u) < e f* holds and if moreover [°zef*(1 —
F(z))dz < oo, then
lim efy(u) = C, (1)

UuU—>00

where C' < oo is a constant. Equation (1) is called the Cramer-Lundberg approximation
and R is the so-called Lundberg exponent (see e.g. GRANDELL [9]).

In many situations the assumption of independence among different claims is too restrictive
(e.g. the insurance of natural events) and it is of particular interest to obtain results
similar to (1) for dependent scenarios (see ALBRECHER [1] for a discussion of several
types of dependency structures relevant in risk theory). GERBER [8] and PrROMISLOW
[15] consider dependencies between annual gains of an insurance company according to a
moving average as well as to an autoregressive model and under some assumptions they
derive an approximation in the spirit of (1), where R is a function of the underlying

*Supported by the Austrian Science Foundation Project S8308-MAT



dependency structure.
NYRHINEN [13] recently showed by means of large deviation techniques that for a general
dependency structure the appropriate definition of the Lundberg exponent is

R = sup{tc(t) < 0} € [0, 00, (2)

where tS
log E(e*"
w and ¢(t) = limsup c,(t)

n n—00

cn(t)

in the sense that then (under several conditions)
. 1 _
ulggou logy(u) = —R (3)

(see [13] for details). Here the risk process is rewritten as a random walk S, = u+3Y ;- ; Y;,
where Y; = ¢(T; — T;—1) — X; and T}, is the time of occurrence of the kth claim.

However, for a given dependence structure it is usually very intricate to check the validity
of the assumptions underlying (3) and then to calculate the Lundberg exponent according
to (2). Whenever analytical or numerical results are not available, simulation can help to
get information about the behavior of the process of interest. Especially the development
of fast computers has made stochastic simulation a popular experimental tool also in risk
theory (see for example ASMUSSEN [2] for a survey on the subject).

The aim of this paper is to use Monte Carlo simulation to gain more insight into the sen-
sitivity of the Lundberg exponent on the degree of dependence among subsequent claims
X;. We simulate the risk process for a Markovian dependence structure, but in a more
general framework than Gerber and Promislow in that our approach allows for arbitrary
marginal distributions. For that purpose we use copulas for combining the risks. The
notion of copulas has recently been identified to be a powerful tool for modelling depen-
dence structures in insurance and finance (cf. [4], [6] and [7]). For a general introduction
to copulas we refer to NELSEN [12] and techniques of determining the appropriate copula
function for given data are surveyed e.g. in JOE [10].

In Section 2 we describe in more detail the underlying dependency model that we use. In
Section 3 we present the simulation technique and we develop an appropriate importance
sampling technique suitable for the dependent scenario in order to reduce the variance of
our Monte Carlo simulations. Section 4 gives the simulation results for various underlying
copula functions and these results are discussed in Section 5.

2 The Dependency Risk Model

We consider a dependence structure of Markovian first-order type among subsequent
claims X; expressed by a one-parameter bivariate copula function, i.e. the joint distri-
bution function H(z;, z;+1) of two successive claims is given by

H(zi, iy1) = Cp(F(zi), F(zit1)),

where Cy(u,v) denotes a bivariate copula function with dependency measure 6 and F is
the marginal distribution function of the claims (the marginal distributions of the claims



are assumed to be identical). An attractive feature of the copula representation of depen-
dence is that the dependence structure is fully characterized by the copula (and thus does
not depend on the marginals) and, moreover, is invariant under increasing and continuous
transformations of the marginals.

In order to compare the impact of the choice of the copula on the ruin probability for
various copula functions, we need a dependence measure that is independent of the choice
of the marginal distributions. For a bivariate copula C Spearman’s rank correlation coef-
ficient

px,y =12 //[C(u,'u) — wv| dudv (4)
[0,1]?

for two random variables X and Y fulfills this requirement (px,y is also called grade cor-
relation coefficient as it is identical to Pearson’s product-moment correlation coefficient
for the grades F(X) and F(Y) of X and Y, respectively; see NELSEN [12] for details).
px,y is a measure of concordance from which it follows that —1 < pxy < 1, px x =1
and, if X and Y are independent, pxy = 0 (as the copula of two independent ran-
dom variables is C(u,v) = wv). Furthermore, if C; and C5 are two copulas such that
C1 < Oy, then pg?}) < pggi/), where <. denotes the concordance ordering (i.e. C; <. Co
iff C1(u,v) < Cy(u,v) for all u,v in [0,1]). Techniques for statistical estimation of px y
from given data can be found in TJ@STHEIM [17].

In our investigations we will focus on positive dependence (i.e. p > 0) and to the following
copula functions, which all interpolate between independence F(z;, z;11) = F(z;)F(zit1)
(i.e. p=0) and the Fréchet upper bound F(z;,z;+1) = minjeqiip1y F(z;) (e.g. p = 1).
Moreover all of the following copulas are absolutely continuous and symmetric in the two
arguments, have support on all of [0,1]2 and an increasing dependence parameter as the
dependence increases (in the sense that they are increasing in <.):

A) Gaussian copula:

e l(u) o (v) 1 —(s% — 20st + t?)
Ga —
rwo=[ [ it maey e ©

where 0 < 8 < 1 and ® is the univariate standard normal distribution function. This
copula function is also called Normal Copula. Note that for normal marginal distribution
functions, C{%(®(z), ®(y)) is the standard bivariate normal distribution with correlation
coefficient 6.

B) Frank copula:

_ efﬁu _ efﬁv)
(1 )(1 ) | "

1
Cg(u,v):—alog (1— A= c?)

where 0 < ¢ < oo and we have independence for 4 — 0 and comonotonic dependence for
¥ = 0.

C) Gumbel copula:

Cg”(u,v) = exp [_ {(— log u)ﬂ + (—log y)ﬁ}

™|

|\ 7)

3



where 1 < 8 < oo is the parameter that controls the amount of dependence between U
and V; B =1 gives independence and the limit of CﬂG” for 8 — oo leads to comonotonic
dependence. This copula, unlike the Gaussian and the Frank copula, has upper tail de-
pendence (a definition which relates to the amount of dependence in the upper-quadrant
tail of a bivariate distribution, cf.[10]).

We now show the desirable property that for this choice of copulas the dependence of the
stationary first order Markov chain decreases with lag.

Proposition 1 Let X1, Xo,... be a stationary first-order Markov chain with underlying
copula function given by (5),(6) or (7), and denote the bivariate distribution for X;, X;
by Fij. In addition, let F2) (z1,22) = F(z1)F(x2). Then for allm > 2 and pxy >0

F(Z)'<c""<cF1m'<c""<cF13'<cF12 (8)

Proof: According to Theorem 8.3 of [10] it suffices to show that the transition distribution
H(z|z1-1) = Co1 (F(x1)|F (w¢-1)) is stochastically increasing (SI), that is

Pr(Xy > x| X¢—1 = x4-1) is increasing in z;_1 V ;.

Here Cy;(u,v) denotes the conditional distribution function of u given v. Defining a
bivariate “more regression dependent” ordering <s; among bivariate distributions, one
can show that the copulas (A),(B) and (C) above are increasing in <g; with respect to
their dependence parameter (see [10]). But from Theorem 2.11 in [10] it then follows that
Cyp(u,v) is ST and as F' is a monotone function, we thus have H (z¢|z;-1) is SL O

3 Simulation technique

3.1 Monte Carlo Simulation

The risk process U(t) = u+ct — Ei]ipl(t) X; can be simulated by randomly drawing sample
paths according to the homogeneous Poisson process Np(t) for the claim arrivals and
according to the given marginal distributions and copula structure of the claims X;, each
sample path starting at U(0) = u. By counting the trajectories that lead to ruin and
dividing this number by the total number N of simulated trajectories, we get an unbiased
estimator for the ruin probability 1 (u)

D) = 3 D147, ©)

where A is the set of all trajectories W; that lead to ruin. As we only consider cases where
P(u) < 1 it will frequently happen that U(t) — oo as t — oo without U ever becoming
negative. It is therefore necessary to stop the process at some time (for a number of risk
models it is possible to circumvent this problem by relating the surplus process to another
process which leads to ruin with certainty (cf. [2]), a method which is not applicable in our
case). This is done at time Ty; for suitably large Ty, which will of course lead to a down-
ward bias in the estimate of 1 (u), but for T; large enough this bias becomes negligible (in



our simulations we have increased T; until practically no difference in the value of (9) was
observable by further increasing Ty;). Instead of considering a finite time Ts; one could
employ an upper surplus barrier as a stopping criterion for trajectories not leading to ruin
(i.e. fix a number u > u and stop every realization at T' = min{7,, inf{U(t) > u}}, where
T, is the time of ruin). If U(T) < 0, a ruin is recorded, otherwise a nonruin is recorded.
Again, if @ is chosen large enough, the downward bias becomes negligible. However, the
first technique is more suitable for our purposes as will become clear in the next section.

For the Markovian structure of first order among consecutive claims expressed through
the bivariate copula C(u,v), recursive simulation using univariate conditional densities
is appropriate. That is, given the claim X; = xz;, we have the following algorithm for
simulating X; 11 (where F(z;) = u):

1. Generate a uniformly distributed random variable ¢ on (0,1)

2. Define v = c(fl)(t), where ¢, V) is the quasi-inverse of ¢, and

u(v) = PV <ol =u] = Jim UFBBDZOWD) _ O, ) )

3. Take X; 1 = F~!(v).

Thus, starting with U(0) = u we simulate exponentially distributed inter-occurrence times
Ty, (which is done by the well-known inversion method) and increase the surplus by cT},
followed by a claim which reduces the surplus (where the claim is generated by the above
algorithm). This procedure is repeated until ruin has occurred or the stopping criterion
for non-ruin is fulfilled. After N simulation runs we get the estimate (9).

For the generation of uniformly distributed random variables there are a lot of efficient
algorithms available in the literature. We use an improved version of a so-called Minimal
Standard generator which is based on a multiplicative congruential algorithm (see e.g.
PRESS ET AL. [14]).

Section 4 gives the simulation results for exponential, normal, Pareto and gamma marginal
distributions of claim sizes, respectively. In order to assess the differences for ruin proba-
bilities for given dependency parameters among various marginal distributions and copula
structures, the value for the mean and the value for the variance are taken constant for
the first three of these marginal distributions of the claim sizes. Concretely we chose mean
g = 10 and variance o? = 100, where the value of o2 is determined by the exponential
distribution. For the simulation of the risk process with gamma-distributed claim sizes
(given in Section 4.3), we chose the parameters such that again y = 10, but 02 = 50. In

this way some insight on the impact of the coefficient of variation CoV= 7"};?;())() of the
claim size distribution on the ruin probability can be gained.

In all the simulations we have A = 15 and ¢ = 210. For the stopping time we chose
Ts; = 600, which is the time, when on average 9000 claims have occurred. If one observes
sample paths of the surplus process, it turns out that this choice of Ty; is very generous
and practically no difference in the final value of ¥ (u) is caused by this truncation.



For all copula structures and marginal distributions (u) is simulated for the values
u = 85,130, 175,220,265 and p = 0,...,0.6 in steps of 0.1 (p=0 corresponds to the inde-
pendent case). The idea behind this choice of values for u is that in principle we want to
estimate @(u) for large u to get an idea about a possible existence of a Lundberg expo-
nent. However, since most of the following simulations are done by Crude Monte Carlo,
the magnitude of the probability to be simulated must not be lower than some threshold,
which depends on the number N of simulation paths, in order to ensure a good estimate
(for risk models with independent increments some sophisticated rare events simulation
techniques have been developed to circumvent this problem, see e.g. ASMUSSEN [2] and
ASMUSSEN and BINSWANGER [3]).

Using (4) we can for each copula function determine the values of the dependence param-
eter that correspond to the value of Spearman’s p:

Spearman’s p | 6 (Gaussian copula) | 8 (Gumbel copula) | ¥ (Frank copula)

0 0 1 0

0.1 0.105 1.07 0.60
0.2 0.209 1.16 1.22
0.3 0.313 1.26 1.88
0.4 0.416 1.38 2.61
0.5 0.518 1.54 3.45
0.6 0.618 1.75 4.47

These values have been inserted in (5),(6) and (7), respectively to determine the quasi-
inverse of the conditional density function (10) of the corresponding copula needed for the
generation of the claim sizes.

Each simulation is carried out by 10 independent simulation runs with 3000 sample paths
each, i.e. N=30000. These 10 estimators are then used to calculate the final estimate
(u) and the empirical variance s2 of 9)(u). The values of the estimates are given together
with their 95% confidence interval corresponding to s2. In addition the simulated data
are depicted in a diagram with logarithmic scale, where datapoints belonging to the same
value of p are connected by straight lines. The values of R(p), which are calculated for
each p by common least-squares regression of log 1/;(u) against u, are depicted in a separate
figure and the corresponding regression line of R against p is drawn and given analytically
in the figure.

3.2 Importance sampling in a dependent scenario

Usually the probability of ruin is a small number and thus the direct estimation by rel-
ative frequency is rather inefficient in the sense that too many observation runs must be
undertaken to obtain a satisfying estimate. For a closely related risk model it is possible
to develop an importance sampling technique which considerably improves this situation.
Namely we rewrite the risk process as a random walk S, = u + Y " | V; (see Section 1),
where S, denotes the surplus after the nth claim and Y; = ¢(7; — T;-1) — X; (recall that T
is the occurrence time of the kth claim) and consider a Markovian dependence structure
according to a given copula function among the consecutive random variables Y; instead
of X;. Let us denote the distribution function of Y; by F, (where the subscript ¢ indicates
that it is a compound distribution) and let furthermore T' = inf{n : u + S, < 0} be the



time of ruin. Then the ruin probability until claim M is defined by 9 (u, M) = P(T < M).
In the case where the Y; are independent we have

M M
Qp(u, M) = nzzjl/(T:n) dH(yl,. .. ,yn) = ;[T:n) ch(yl) ch(yn)

(where H denotes the joint distribution function of Y1,...,Y;) or briefly

b, M) = / LrerndFu(ys) - dF(yr). (1)

Importance sampling now suggests to replace the true distribution F,. (with density f.)
by a simulation distribution G (with density g), where F, << G and G is chosen in a way
to reduce the variance of the simulation. As shown in COTTRELL ET AL. [5] the smallest
variance is obtained, if about half of the trajectories lead to ruin before the Mth claim (at
this point it becomes apparent why for our purposes it is preferable to truncate the risk
process at some time Ty, instead of a barrier u as discussed in Section 3.1).

In the case of independent Y; the importance sampling technique is well-known (see e.g.
LEHTONEN AND NYRHINEN [11]): Simulate the random walk with distribution G instead
of F, and let Zy,Z,,..., Z1 denote the sequence of independent G-distributed random
variables generated in the j-th single replication in the simulation. Then the correction
factor for the j-th replication is

T dF, f(z)

T
(4 _ _
Yy = Ple (Zi) Yyr<my = Zl:{ oz Lir<nmys (12)

=1

where z; is the outcome of the simulation of Z;, and the importance sampling estimator

~

P(u, M) is now defined by
. Ny )
Ilp(ua M) = Z Ta
j=1
where N is the number of replications. It is straightforward to show that this is an unbiased
estimator of ¥ (u, M).

We now want to adapt this technique to our situation of dependent Y; according to a
Markovian model of first order. Similar to (11) we can write

¥ (u, M) :/1{T§M}dH(yla---;yT) =
= [ trcany £eun) flunlun) felonlyn, o) -+ oyl -2 e -+ dyr
and due to the first order Markovian structure this is equal to
900 M) = [ Lrcan Felo) Flwnlyn) elunlye) - Feyrlyr )i - dyr.

It is assumed throughout this section that 0 < f.(y) < oo (Vy € R) to avoid complications
with the conditional densities.



If now F, is replaced by G, this leads for each replication j to a correction factor

dy(j) _ fe(z1) H?ZQ fc(zi|zi,1) 1 "
¢ 9(21) [Tizy 9(zil2i-1) {rmy (13)

where the z; denote the outcome of the simulation of the random variable Z;. The impor-
tance sampling estimator in the dependent case is then given by

. N dy(j)
Plu, M) =) —& (14)
j=1
Since
av @\ [ fel) T felyilyi) oo -
E( YG) = /lg(yl)ningg(yﬂyi—ﬂ Lir<mry Q(yl)gg(yzmﬂdyl dyr

T

- / 1{T5M}fc(yl)HfC(f‘/z'|yi—1)dy1---dyT
1=2

= ¢(U’M),

we have E(ﬁ(u, M)) = (u, M), i.e. the estimator (14) is unbiased.

Again, if M is chosen suitably large, (14) will be a good approximation for the ruin prob-
ability 9 (u). In order to implement the above algorithm we see from (13) that we need to
calculate the conditional densities f(y;|y;—1) according to the given copula structure and
the (compound) marginal distributions.

Section 4.1 gives the results of this simulation technique. Due to the complexity of the
calculations of the conditional densities involved, we confined the application of importance
sampling in this paper to the case of exponential marginals for the claim sizes and the
bivariate copulas of Gumbel and Frank. For the ease of computation, the simulation
distribution G is chosen to be of the same type as F., but with the parameters changed
such that about half of the trajectories lead to ruin. We use an adaptive algorithm to find
appropriate values for the parameters. The simulations have also been done by ordinary
Monte Carlo (which is often called “Crude Monte Carlo” (CMC)) for the same choice of
parameters (and dependence among Y;) to allow a comparison of the empirical variances of
these two simulation algorithms. As can be seen in Tables 4.4 and 4.5, the outperformance
of importance sampling (IS) over CMC is striking (on average the empirical variance is
reduced by a factor of 10).



4 Simulation Results

In the sequel all values are rounded to their last digit.

4.1 Exponential marginals
TABLE 4.1: SIMULATED RUIN PROBABILITIES FOR EXPONENTIALLY DISTRIBUTED CLAIMS
AND GUMBEL’S COPULA (USING IMPORTANCE SAMPLING)
F~Exp(0.1), GumC, c=210, A=15, N=30000
p\u || 85 [ 130 | 175 [ 220 | 265
0 (6.39£0.02) E-02 | (1.83%0.17) E-02 | (4.63£0.51) E-03 | (1.20£0.53) E-03 | (4.00£2.00) E-04
0.1 || (8.99%0.41) E-02 | (3.23%0.23) E-02 | (1.07%0.11) E-02 | (3.37%0.51) E-03 | (1.30%0.42) E-03
0.2 || (1.34£0.06) E-01 | (5.47£0.21) E-02 | (2.33%£0.13) E-02 | (9.37%1.06) E-03 | (4.20£1.00) E-03
0.3 || (1.83£0.04) E01 | (8.99£0.21) E-02 | (4.10£0.15) E-02 | (2.13£0.20) E-02 | (1.04%0.08) E-02
0.4 || (2.34£0.03) E-01 | (1.36%0.03) E-01 | (7.50%0.19) E-02 | (4.2940.15) E-02 | (2.44%0.12) E-02
0.5 || (3.13£0.03) E-01 | (1.99+0.04) E-01 | (1.26+0.04) E-01 | (7.96+0.30) E-02 | (5.0740.24) E-02
0.6 || (3.87£0.06) E-01 | (2.76£0.07) E-01 | (1.98+0.04) E-01 | (1.44+0.03) E-01 | (1.03£0.03) E-01
1 0,035
u=85. u=130 u=175 u=220 u=265
— 0,03
\\
0,1 0,025
\\k\ i WA
~-rho=05 0,01
~_ ——rho=0,6 - 349 E-02 *tho + 2.75 Ex N
. ~. o005 R=-3.49 E-02 *rho + 2.75 E-02
\ 0 T T
0 01 02 03 04 05 06 07
0,0001 rho
FIGURE 4.1: F~Exp(0.1), GUMBEL’S COPULA
TABLE 4.2: SIMULATED RUIN PROBABILITIES FOR EXPONENTIALLY DISTRIBUTED CLAIMS
AND FRANK’S COPULA (USING IMPORTANCE SAMPLING)
F~Exp(0.1), FraC, c=210, A=15, N=30000
p\u [[ 85 [ 130 [ 175 [ 220 [ 265
0 (6.21£0.08) E-02 | (1.75£0.05) E-02 | (4.79£0.17) E-03 [ (1.35£0.05) E-03 | (3.44£0.18) E-04
0.1 || (9.18£0.11) E-02 | (3.12+£0.05) E-02 | (9.99+0.25) E-03 | (3.35%0.10) E-03 | (1.1240.07) E-03
0.2 || (1.25%0.02) E-01 | (5.11£0.13) E-02 | (2.0240.07) E-02 | (7.87+0.33) E-03 | (3.1340.16) E-03
0.3 || (1.67£0.02) E-01 | (7.96%0.19) E-02 | (3.66%0.17) E-02 | (1.70+0.06) E-02 | (8.00%0.25) E-03
0.4 || (2.17£0.03) E-01 | (1.19£0.02) E-01 | (6.34%0.02) E-02 | (3.42%0.18) E-02 | (1.87%0.12) E-02
0.5 || (2.81£0.02) E01 | (1.71£0.03) E-01 | (1.05+0.02) E-01 | (6.47£0.35) E-02 | (3.94%0.25) E-02
0.6 || (3.49£0.04) E-01 | (2.44%0.04) E-01 | (1.66%0.04) E-01 | (1.14%0.04) E-01 | (7.75%0.28) E-02
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FIGURE 4.2: F~ExP(0.1), FRANK’S COPULA




TABLE 4.3: SIMULATED RUIN PROBABILITIES FOR EXPONENTIALLY DISTRIBUTED CLAIMS AND NORMAL COPULA

F~Exp(0.1), NorC, ¢=210, A=15, N=30000
o\ u || 85 | 130 | 175 | 220 | 265
0.0 (6.35+0.31) E-02 | (1.7440.17) E-02 | (5.231+0.79) E-03 | (1.03+0.48) E-03 | (1.67+1.03) E-04
0.1 (9.47+0.24) E-02 | (3.30£0.27) E-02 | (1.124+0.16) E-02 | (4.37+0.47) E-03 | (1.2740.42) E-03
0.2 (1.38+0.03) E-01 | (5.64+0.23) E-02 | (2.48+0.15) E-02 | (1.04+0.11) E-02 | (3.93%0.47) E-03
0.3 (1.81+0.04) E-01 | (9.27£0.27) E-02 | (4.561+0.17) E-02 | (2.36+0.17) E-02 | (1.2440.14) E-02
0.4 (2.4140.05) E-01 | (1.4240.05) E-01 | (7.9940.30) E-02 | (4.70+0.17) E-02 | (2.6240.15) E-02
0.5 (3.04+0.04) E-01 | (1.96+0.05) E-01 | (1.274+0.03) E-01 | (8.72+0.29) E-02 | (5.61+0.16) E-02
0.6 (3.69£0.04) E-01 | (2.67£0.05) E-01 | (1.96+0.04) E-01 | (1.41£0.03) E-01 | (1.0440.03) E-01
' u=85 u=130 ‘ u=175 ‘ u=220 ‘ =265 ‘ 0,035 1
——— 0,03 .
\\\ \
0,1 0,025
\ \\ - \
S~ 3 00
2 on O~ T Z 0015 d \
g T~ 0,01 Q
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o0 \ 0 ! ! !
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FIGURE 4.3: F~ExP(0.1), NORMAL COPULA
TABLE 4.4: COMPARISON OF EMPIRICAL VARIANCES OF 1/}(u) FOR CRUDE MONTE CARLO (CMC)
AND IMPORTANCE SAMPLING (IS) FOR GUMBEL'S COPULA
[p\uv | u==85 [ u= 130 [ u=175 [ u=220 [ u=265
CMC 1S CMC 1S CMC 1S CMC 1S CMC S
0 1.18E-05 | 5.50E-06 | 7.40E-06 | 1.97E-07 | 6.77E-07 | 2.89E-08 | 7.38E-07 | 1.48E-08 | 1.07E-07 | 1.53E-09
0.1 4.52E-05 | 6.25E-06 | 1.37E-05 | 9.33B-07 | 3.30E-06 | 3.54E-07 | 6.77E-07 | 1.25B-07 | 4.77E-07 | 8.51E-09
0.2 1.14E-04 | 1.28E-05 | 1.10E-05 | 4.61E-06 | 4.40E-06 | 9.93E-07 | 2.94E-06 | 4.46E-07 | 2.63E-06 | 9.00E-08
0.3 5.76E-05 | 9.68E-06 | 1.10E-05 | 3.47B-06 | 6.14E-06 | 3.06E-06 | 1.08E-05 | 1.89B-06 | 1.75E-06 | 8.68E-07
0.4 2.20E-05 | 5.11E-05 | 2.76E-05 | 1.11E-05 | 9.78E-06 | 1.54E-05 | 5.93E-06 | 1.45B-06 | 3.79E-06 | 1.35E-06
0.5 3.31E-05 | 3.21E-05 | 4.65E-05 | 2.63B-05 | 4.82E-05 | 1.65E-05 | 2.22E-05 | 9.79B-06 | 1.51E-05 | 4.46E-06
0.6 1.23B-04 | 7.52B-05 | 1.29E-04 | 6.94E-05 | 4.35E-05 | 2.41B-05 | 2.31E-05 | 4.42E-05 | 2.40E-05 | 2.54B-05
TABLE 4.5: COMPARISON OF EMPIRICAL VARIANCES OF @(u) FOR CRUDE MONTE CARLO (CMC)
AND IMPORTANCE SAMPLING (IS) FOR FRANK’S COPULA
[P\ ] u=85 [ u= 130 [ u=175 [ u=220 [ u=265
CMC 1S CMC 1S CMC 1S CMC 1S CMC S
0 1.77E-05 | 1.75E-06 | 3.73E-06 | 6.52E-07 | 6.49E-07 | 7.69B-08 | 4.62E-07 | 8.08E-09 | 1.56E-07 | 8.76E-10
0.1 1.59E-05 | 3.54E-06 | 6.60E-06 | 8.52E-07 | 4.02E-06 | 1.66E-07 | 1.89E-06 | 2.62E-08 | 4.99E-07 | 1.38E-08
0.2 3.06E-05 | 1.07E-05 | 1.05E-05 | 4.82B-06 | 3.21E-06 | 1.30E-06 | 1.43E-06 | 2.83B-07 | 4.89E-07 | 7.29E-08
0.3 3.26B-05 | 5.84E-06 | 1.57E-05 | 8.63E-06 | 5.63E-06 | 7.23BE-06 | 5.25E-06 | 1.03E-06 | 4.31E-06 | 1.65E-07
0.4 2.08E-05 | 2.73E-05 | 2.32E-05 | 6.53B-06 | 1.97E-05 | 5.00E-06 | 9.49E-06 | 7.97BE-06 | 2.03E-06 | 3.67E-06
0.5 4.79E-05 | 1.29E-05 | 3.93E-05 | 2.12E-05 | 2.04E-05 | 1.02E-05 | 2.94E-05 | 3.91E-05 | 5.80E-06 | 1.60E-05
0.6 3.99E-05 | 4.75E-05 | 3.15E-05 | 5.77B-05 | 2.53E-05 | 4.84E-05 | 3.60E-05 | 5.12B-05 | 2.80E-05 | 1.98E-05
4.2 Normal marginals
TABLE 4.6: SIMULATED RUIN PROBABILITIES FOR NORMALLY DISTRIBUTED CLAIMS AND (GUMBEL’S COPULA
F~N(10,100), GumC, c¢=210, A=15, N=30000
o\ u || 85 | 130 | 175 | 220 | 265
0.0 (8.4440.29) E-02 | (2.39£0.27) E-02 | (7.371+0.82) E-03 | (2.23+0.46) E-03 | (5.33+1.65) E-04
0.1 (1.02+0.03) E-01 | (3.58+0.13) E-02 | (1.184+0.10) E-02 | (3.63+0.72) E-03 | (1.7040.48) E-03
0.2 (1.2840.02) E-01 | (5.1440.25) E-02 | (1.974+0.15) E-02 | (8.00+1.33) E-03 | (3.734+0.50) E-03
0.3 (1.53+0.03) E-01 | (6.96+0.20) E-02 | (3.524+0.15) E-02 | (1.53+0.08) E-02 | (7.2040.80) E-03
0.4 (1.86+0.04) E-01 | (9.67+0.34) E-02 | (4.75+0.19) E-02 | (2.68+0.18) E-02 | (1.37+0.12) E-02
0.5 (2.284+0.03) E-01 | (1.31£0.04) E-01 | (7.724+0.11) E-02 | (4.60+0.15) E-02 | (2.6940.17) E-02
0.6 (2.70£0.04) E-01 | (1.76+0.03) E-01 | (1.15+0.04) E-01 | (7.75+0.21) E-02 | (5.2040.27) E-02
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TABLE 4.7: SIMULATED RUIN PROBABILITIES FOR NORMALLY DISTRIBUTED CLAIMS AND FRANK’S COPULA

F~N(10,100), FraC, =210, A=15, N=30000

p\u || 85 | 130 | 175 [ 220 | 265

0.0 [ (8.43+0.33) E-02 [ (2.60+0.18) E-02 | (7.00+0.84) E-03 | (2.23£0.55) E-03 [ (9.00+4.03) E-04
0.1 || (9.60+0.32) E-02 | (3.12+0.17) E-02 | (1.07+0.08) E-02 | (3.63£0.73) E-03 | (9.33+£3.17) E-04
0.2 || (1.16£0.04) E-01 | (3.96%0.15) E-02 | (1.49£0.17) E02 | (6.20£1.17) E-03 | (2.27£0.44) E-03
0.3 || (1.34£0.02) E-01 | (5.37+£0.23) E-02 | (2.02£0.16) E-02 | (7.57£1.12) E-03 | (3.10£0.37) E-03
0.4 || (1.62£0.04) E-01 [ (7.10£0.28) E-02 | (3.1740.21) E-02 | (1.37£0.12) E-02 | (6.23£0.84) E-03
0.5 || (1.95£0.01) E-01 [ (9.21£0.27) E-02 | (4.73£0.21) E-02 | (2.44+0.13) E-02 | (1.12+0.14) E-02
0.6 || (2.34£0.04) E-01 [ (1.2940.04) E-01 | (6.8840.22) E-02 | (4.00£0.16) E-02 | (2.04£0.13) E-02
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TABLE 4.8: SIMULATED RUIN PROBABILITIES FOR NORMALLY DISTRIBUTED CLAIMS AND NORMAL COPULA

F~N(10,100), NorC, ¢=210, A=15, N=30000

p\u || 85 [ 130 | 175 [ 220 | 265

0.0 [ (8.42+0.19) E-02 [ (2.63+0.17) E-02 | (7.07£0.73) E-03 | (2.23£0.38) E-03 [ (7.67£2.27) E-04
0.1 || (9.75+0.21) E-02 | (3.15+0.19) E-02 | (1.06+0.12) E-02 | (3.77£0.42) E-03 | (1.07£0.30) E-03
0.2 || (1.15+0.03) E-01 | (4.30+0.19) E-02 | (1.55+0.12) E-02 | (5.17£0.79) E-03 | (2.17£0.45) E-03
0.3 || (1.40+0.04) E-01 [ (5.60+0.26) E-02 | (2.26+0.14) E-02 | (8.67+0.79) E-03 [ (3.53+0.60) E-03
0.4 | (1.63+0.03) E-01 [ (7.50+0.37) E-02 | (3.30+0.22) E-02 | (1.66+0.13) E-02 | (6.80+0.93) E-03
0.5 || (2.02+0.04) E-01 [ (1.0420.03) E-01 | (5.4440.28) E-02 | (2.72+0.22) E-02 | (1.27+0.13) E-02
0.6 || (2.47£0.05) E-01 | (1.40£0.02) E-01 | (8.04%0.23) E-02 | (4.64+0.23) E-02 | (2.81£0.17) E-02
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4.3 Gamma marginals

TABLE 4.9: SIMULATED RUIN PROBABILITIES FOR GAMMA DISTRIBUTED CLAIMS AND GUMBEL’S COPULA

F~T(2,5), GumC, c=210, A=15, N=30000

p\u [ 85 [ 130 | 175 [ 220 | 265

0.0 [ (2.57£0.13) E-02 [ (4.70£0.71) E-03 [ (7.33%£3.17) E-04 [ (1.00£0.83) E-04 | (3.33+0.91) E-05
0.1 || (3.95+0.32) E-02 | (8.03£0.96) E-03 | (2.10£0.44) E-03 | (4.00£2.23) E-04 | (1.67+1.39) E-04
0.2 || (5.30£0.25) E-02 | (1.35£0.12) E-02 | (4.30£0.53) E-03 | (1.43£0.53) E-03 | (4.67£1.65) E-04
0.3 || (7.07£0.22) E-02 | (2.54£0.16) E-02 | (9.00£1.15) E-03 | (3.80+0.66) E-03 | (1.47+0.23) E-03
0.4 || (8.77£0.28) E-02 | (3.71£0.21) E-02 | (1.7430.07) E-02 | (8.37£0.98) E-03 | (4.1740.43) E-03
0.5 || (1.18+0.03) E-01 [ (5.98+0.30) E-02 | (2.97+0.15) E-02 | (1.7440.21) E-02 | (8.87+1.14) E-03
0.6 || (1.50+0.03) E-01 [ (8.72+0.22) E-02 | (5.21£0.21) E-02 | (3.57+0.22) E-02 [ (2.08+0.13) E-02
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TABLE 4.10: SIMULATED RUIN PROBABILITIES FOR GAMMA DISTRIBUTED CLAIMS AND FRANK’S COPULA

F~1(2,5), FraC, c=210, A=15, N=30000

p\u [ 85 | 130 | 175 [ 220 | 265

0.0 (2.78%£0.19) E-02 | (4.90£0.55) E-03 | (6.67£2.61) E-04 | (1.00£0.95) E-04 | (3.33%£6.20) E-05
0.1 (3.2610.14) E-02 | (6.07£0.70) E-03 | (1.00£0.38) E-03 | (2.00+£1.37) E-04 | (6.67£6.20) E-05
0.2 (3.65£0.20) E-02 | (8.27£0.75) E-03 | (1.43£0.37) E-03 | (4.00£1.37) E-04 | (1.00£1.32) E-04
0.3 (4.8440.24) E-02 | (1.08+0.12) E-02 | (2.37£0.66) E-03 | (7.00£1.95) E-04 | (1.67£1.03) E-04
0.4 (5.794£0.22) E-02 | (1.53£0.17) E-02 | (4.57£0.77) E-03 | (1.1340.37) E-03 | (3.67£1.95) E-04
0.5 (7.62+0.21) E-02 | (2.3440.14) E-02 | (8.37£0.97) E-03 | (2.37£0.55) E-03 | (7.00+1.72) E-04
0.6 (9.574£0.32) E-02 | (3.56+0.22) E-02 | (1.43£0.12) E-02 | (4.7040.65) E-03 | (1.93£0.32) E-03
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TABLE 4.11: SIMULATED RUIN PROBABILITIES FOR GAMMA DISTRIBUTED CLAIMS AND NORMAL COPULA

F~1(2,5), NorC, ¢c=210, A=15, N=30000

p\u ][ 85 [ 130 [ 175 [ 220 | 265

0.0 [ (2.30£0.16) E-02 [ (4.27+0.59) E-03 | (5.67£2.93) E-04 [ (1.00£1.32) E-04 | (3.33+6.20) E-05
0.1 [ (3.15+0.17) E-02 | (5.97+0.81) E-03 | (1.43£0.37) E-03 | (3.00£1.95) E-04 | (6.67+8.26) E-05
0.2 || (3.93£0.23) E-02 | (9.60£0.94) E-03 | (2.27£0.41) E-03 | (5.67+1.55) E-04 | (2.00£1.37) E-04
0.3 || (5.02+0.26) E-02 | (1.36+0.11) E-02 | (3.27£0.76) E-03 | (9.67+4.18) E-04 | (1.67+1.03) E-04
0.4 || (6.80£0.24) E-02 | (2.06£0.12) E-02 | (6.37+0.91) E-03 | (1.9740.67) E-03 | (5.33+2.30) E-04
0.5 || (8.70+0.21) E-02 | (3.16+0.16) E-02 | (1.16£0.13) E-02 | (4.07+0.37) E-03 | (1.6040.39) E-03
0.6 || (1.13+0.02) E-01 [ (4.99+0.17) E-02 | (2.1940.22) E-02 | (1.03+0.13) E-02 [ (4.00+0.65) E-03
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4.4 Pareto marginals

TABLE 4.12: SIMULATED RUIN PROBABILITIES FOR PARETO DISTRIBUTED CLAIMS AND (GUMBEL’S COPULA

F~ Par(2.41,5.85), GumC, c=210, A=15, N=30000

p\u || 85 [ 130 [ 175 [ 220 [ 265

0.0 [ (5.02£0.30) E-02 | (2.43£0.45) E-02 | (1.3420.25) E-02 | (8.60£1.67) E-03 | (6.43+1.22) E-03
0.1 || (6.67£0.39) E-02 | (3.31£0.62) E-02 | (2.14%0.40) E-02 | (1.40%0.27) E-02 | (1.04£0.20) E-02
0.2 || (8.08£0.48) E-02 | (4.59£0.27) E-02 | (3.2120.60) E-02 | (2.1940.41) E-02 | (1.64%+0.10) E-02
0.3 || (9.38£0.55) E-02 | (5.71£0.34) E-02 | (3.99£0.24) E-02 | (2.80%£0.52) E-02 | (2.23+0.13) E-02
0.4 || (1.11£0.07) B-01 | (7.25+0.43) BE-02 | (5.22+0.31) E-02 | (3.83%+0.23) E-02 | (2.98+0.18) E-02
0.5 || (1.29+0.08) B-01 | (8.95+0.53) F-02 | (6.7120.40) B-02 | (5.1620.30) B-02 | (4.21£0.25) E-02
0.6 || (1.50£0.09) B-01 | (1.10£0.02) E-01 | (8.53%0.50) B-02 | (7.17%0.42) BE-02 | (5.71£0.11) E-02
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TABLE 4.13: SIMULATED RUIN PROBABILITIES FOR PARETO DISTRIBUTED CLAIMS AND FRANK’S COPULA

F~ Par(2.41,5.85), FraC, c=210, A=15, N=30000

p\u || 85 130 [ 175 [ 220 [ 265

0.0 [ (5.43%0.18) E-02 | (2.33£0.11) E-02 | (1.30£0.12) E-02 | (9.10£1.33) E-03 | (5.93+0.84) E-03
0.1 || (5.46£0.33) E-02 | (2.47£0.24) E-02 | (1.43%0.15) B-02 | (8.4740.92) E-03 | (6.13+1.08) E-03
0.2 || (5.70£0.25) E-02 | (2.62£0.14) E-02 | (1.5920.10) E-02 | (9.50%0.83) E-03 | (7.40+1.24) E-03
0.3 || (6.39£0.27) E-02 | (3.17£0.20) E-02 | (1.5520.08) E-02 | (1.03%£0.10) E-02 | (6.43+0.55) E-03
0.4 || (6.92+0.22) E-02 | (3.03£0.23) E-02 | (1.6920.10) B-02 | (9.80+£1.29) E-03 | (7.10+0.90) E-03
0.5 || (8.10£0.29) B-02 | (3.76£0.17) E-02 | (1.9240.10) B-02 | (1.13%£0.15) E-02 | (8.10£0.92) E-03
0.6 || (9.13£0.45) B-02 | (4.42+0.23) B-02 | (2.41£0.19) B-02 | (1.3940.10) B-02 | (9.10+0.83) E-03
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TABLE 4.14: SIMULATED RUIN PROBABILITIES FOR PARETO DISTRIBUTED CLAIMS AND NORMAL COPULA

F~ Par(2.41,5.85), NorC, c=210, A=15, N=30000

N ] &

[ 130

[ 175

[ 220

[ 265

0.0

(5.1240.33) E-02

(2.45£0.14) E-02

1.4340.14) E-02

(9.23£1.27) E-03

(5.77£0.61) E-03

( ) ) )
0.1 || (5.78%0.23) E-02 | (2.69£0.09) E-02 | (1.5220.12) E-02 | (8.97£1.59) E-03 | (5.90+0.69) E-03
0.2 || (6.25+0.29) E-02 | (3.07£0.16) E-02 | (1.7820.18) B-02 | (1.1040.12) B-02 | (8.67+0.67) E-03
0.3 || (6.83£0.35) E-02 | (3.43£0.19) E-02 | (2.02£0.17) B-02 | (1.24%0.12) E-02 | (8.10£0.86) E-03
0.4 || (8.31£0.29) B-02 | (4.14+0.30) B-02 | (2.49%0.14) B-02 | (1.53+0.18) B-02 | (1.03+0.13) E-02
0.5 || (9.71£0.53) B-02 | (5.23£0.24) E-02 | (3.2120.21) B-02 | (2.1620.16) B-02 | (1.4620.10) E-02
0.6 || (1.15+0.03) E-01 | (6.60+£0.30) E-02 | (4.5620.31) BE-02 | (3.0640.21) E-02 | (2.20+0.08) E-02
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5 Discussion

The simulation results of Section 4 clearly indicate, that for surplus processes with light-
tailed marginal distributions for the claim sizes a Lundberg exponent still exists, if depen-
dence of the above kind is introduced into the model (note that the diagrams are drawn
on logarithmic scale for the 1)-axis). If the degree of (positive) dependence increases, the
numerical value of the Lundberg exponent decreases. Moreover, the simulated data sug-
gest that the Lundberg exponent is a linear function of Spearman’s p for the range of p
under consideration, which in turn indicates that p is a suitable measure for the degree of
dependence also in this respect (by calculating the corresponding F-statistic, it turns out
that the hypothesis of a linear relationship between p and R holds on a 99%-significance
level for each of the above regression lines).

On comparison of the ruin probabilities of the corresponding processes for fixed p among
the different copula structures, the simulation results show that, whereas Frank’s copula
and the Gaussian copula yield relatively similar results, the impact of p on 1 is much more
pronounced in the case of the Gumbel copula, for any simulated marginal distribution of
the claim sizes. Apart from the numerical values of the ruin probabilities this can also
be seen by comparing the slopes of the regression lines R = R(p) (for the light-tailed
distributions). Due to the upper tail dependence property of the Gumbel Copula this was
somewhat to be expected. Altogether these results indicate that the knowledge of p and
the marginal distributions alone can lead to quite different results for the ruin probability
depending on the copula used.

Note once again that the estimates of Table 4.1 and 4.2 stand somehow separate in that
they refer to a model where the consecutive r.v. ¢(T; — T;—1) — X; instead of the claims
X; alone are dependent according to the given copula structure.

Tables 4.9, 4.10 and 4.11 show that a reduction of the coefficient of variation of the claim
size distribution leads to a considerable reduction of the ruin probability for any of the
investigated copula structures. Since for each estimate we have N = 30000 simulation
runs, the accuracy of probability estimates of order 10~* for CMC is rather poor, which
is reflected by the confidence intervals in the last rows of these three tables. We have
nevertheless included these values in the tables to allow comparisons with the other claim
size distributions (for p = 0 the exact value of ¥ (u) in Tables 4.9, 4.10 and 4.11 can be
calculated by standard techniques (see e.g. SIEGL AND TICHY [16]) and it turns out that
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the first two significant digits of the corresponding estimates obtained in Table 4.9 are
actually accurate).

Of course, in case of Pareto distributed claim sizes, the notion of a Lundberg exponent
is meaningless, but information on the behavior of the ruin probability for various de-
pendence structures of a representative of heavy-tailed claim size distributions is of inde-
pendent interest. From Tables 4.12, 4.13 and 4.14 it follows that the difference of ruin
probabilities for fixed p among the copulas is more pronounced than for light-tailed claim
size distributions.

Finally, as can be seen in Tables 4.4 and 4.5, the importance sampling technique for a
dependent scenario developed in this paper is a considerable improvement to the CMC-
algorithm in terms of variances. In principle it can be applied to any risk process of this
type whenever it is possible to calculate the conditional densities involved.
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