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Abstract 
 
Vesicle trafficking between intracellular compartments of eukaryotic cells is mediated 
by conserved protein machineries. In each trafficking step, fusion of the vesicle with 
the acceptor membrane is driven by a set of distinctive SNARE proteins that assemble 
into tight four-helix bundle complexes between the fusing membranes. During 
evolution about twenty primordial SNARE types were modified independently in 
different eukaryotic lineages by episodes of duplication and diversification. Here we 
show that two major changes in the SNARE repertoire occurred in the evolution of 
animals, each reflecting a main overhaul of the endomembrane system. In addition, 
we found several lineage-specific losses of distinct SNAREs, particularly in 
nematodes and platyhelminthes. The first major transformation took place during the 
transition to multicellularity. The primary event that occurred during this 
transformation was an increase in the numbers of endosomal SNAREs, but the 
SNARE-related factor Lgl also emerged. Apparently, enhanced endosomal sorting 
capabilities were an advantage for early multicellular animals. The second major 
transformation during the rise of vertebrates resulted in a robust expansion of the 
secretory set of SNAREs, which may have helped develop a more versatile secretory 
apparatus. 
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Introduction 
 

A defining feature of eukaryotic cells is their complex system of internal 
compartments. Directional transport between the compartments is mediated by 
vesicles that bud from a donor organelle and then fuse with an acceptor organelle. As 
each of the internal compartments serves a specific and vital cellular function, it must 
maintain its identity during vesicle trafficking. This is achieved by specific protein 
machineries that tightly regulate each transport step (Bonifacino and Glick 2004; 
Behnia and Munro 2005; Cai et al. 2007). It has been recognized that several of the 
key machineries involved in vesicle trafficking steps appear to be the result of gene 
duplications, followed by diversifications (Cavalier-Smith 2002; Dacks and Field 
2007). For example, in each trafficking step the core of the protein machinery 
involved in the fusion process is composed of members of the so-called SNARE 
(Soluble NSF Attachment Protein REceptors) protein family (Hong 2005; Jahn and 
Scheller 2006). SNARE proteins are small cytoplasmatically orientated membrane-
associated proteins with a relatively simple domain architecture. In most SNARE 
proteins, an extended coiled coil segment, the so-called SNARE motif, is directly 
adjacent to a single trans-membrane domain at the C-terminal end. As a common 
mechanism, the SNARE motifs of heterologous sets of SNARE proteins assemble in 
a zipper-like fashion into tight four-helix bundle units between two membranes, a 
process that clamps the membranes together and initiates fusion. The SNARE 
machinery has diversified only modestly in the course of eukaryotic evolution. In fact, 
we were able to show that a basic set of twenty types of SNARE proteins is conserved 
in all eukaryotes, suggesting that they constitute the set of SNARE genes of the proto-
eukaryotic cell (Kloepper et al. 2007).  

In the previous study, we recognized that the basic set of SNARE genes had 
been independently modified by paralogous expansion in several different eukaryotic 
lineages (Kloepper et al. 2007). So far, an increase in the number of SNARE genes 
has been observed mainly in animals and in land plants (Bock et al. 2001; Dacks and 
Doolittle 2004; Yoshizawa et al. 2006; Dacks and Field 2007; Sanderfoot 2007). A 
genome-wide inspection of the first four eukaryotic species sequenced came to the 
conclusion that mammals (e.g. Homo sapiens) contain an enlarged set of secretory 
SNAREs compared to invertebrates (e.g. the fruitfly Drosophila melanogaster and the 
round worm Caenorhabditis elegans). Since the number of SNARE genes in the two 
invertebrates was comparable to that of the yeast Saccharomyces cerevisiae, the 
authors concluded that multicellular organisms do not necessarily require an enlarged 
repertoire of SNARE proteins (Bock et al. 2001). Rather, they proposed, the 
enlargement of the secretory SNAREs took place in mammals. In other studies, by 
contrast, it was suggested that in both, animals and land plants, the increase in the 
number of SNAREs, in particular the ones involved in secretion, occurred much 
earlier in evolution, paralleling the leap from single to multicellular organisms 
(Sanderfoot et al. 2000; Dacks and Doolittle 2004). On that account, the idea has been 
put forward that the secretory pathway of multicellular organisms requires an 
additional level of complexity compared to that of their single-cell predecessors 
(Dacks and Field 2007; Sanderfoot 2007). Only with an increased number of 
secretory SNARE proteins, according to this idea, an individual cell within a tissue is 
able to deliver material to different regions of its plasma membrane. This line of 
reasoning, however, neglects the fact that the capability to transport and secrete 
material to specific regions of the plasma membrane is an essential part of the life 
cycle of every eukaryotic cell, multicellular or unicellular (Soldati and Schliwa 2006). 
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For example, polarized secretion is the basis of the well-studied process of 
asymmetric enlargement of the budding daughter cell during cytokinesis in the single-
cell yeast Saccharomyces cerevisae (Brennwald and Rossi 2007). Furthermore, 
multicellular species are found throughout the eukaryotic kingdoms, for example in 
the lineage of fungi, yet all inspected fungi species appear to maintain an almost 
unchanged basic set of SNARE proteins throughout evolution (Kloepper et al. 2007). 
Moreover, considerably enlarged SNARE repertoires, including extra secretory 
SNAREs, have been detected in several unicellular eukaryotes, for example for the 
ciliate Paramecium tetraurelia with its multifaceted endomembrane system (Kloepper 
et al. 2007). Together, these observations cast doubt on a strict correlation between 
the increase in the number of secretory SNARE genes and the emergence of 
multicellularity. 

So far, all accounts of SNAREs in animals were based on only few model 
organisms. In addition, in the previous studies, some more-derived SNAREs have not 
been included (Bock et al. 2001; Dacks and Doolittle 2004; Yoshizawa et al. 2006). 
Thus, it still remains unclear exactly which SNARE factors have been added at which 
point during animal evolution. Clearly, in order to gain deeper insights into 
adaptations of the metazoan endomembrane system, a much broader database 
containing the SNARE repertoires of species that represent most major branches of 
the complex evolutionary tree of animals must be used. In addition, not only the 
number of SNARE genes but, more importantly, the evolutionary history of the 
different functional SNARE types needs to be reconstructed more thoroughly. Only 
this knowledge will allow us to address a series of pressing questions: How did the 
transition to multicellularity affect the endomembrane system? Are the changes 
mostly observable in the SNAREs actually involved in the exocytotic step of the 
secretory pathway? Is it possible to associate the rise or loss of certain SNARE factors 
with specific lineages within animals? Are the routes of the secretory pathway indeed 
comparable between various animal species?  

In order to answer these questions, we considerably expanded our previous 
collection (Kloepper et al. 2007) by integrating sequences from a multiplicity of 
different animal species, making use of the abundance of new genomic data that have 
been established lately. A point-by-point account of the SNARE repertoires was 
facilitated by our recent classification of the multigene SNARE family, with its 
largely improved ability to distinguish between orthologues and paralogues (Kloepper 
et al. 2007). Moreover, this approach allows us to integrate new SNARE sequence 
data from genome and EST projects quickly. Only this allowed us to pinpoint the 
changes in the SNARE sets throughout all metazoan lineages investigated. In 
addition, we constructed phylogenetic trees for each individual SNARE subgroup. All 
these factors enabled us to infer a probable sequence of events for the observed 
changes in the SNARE repertoire during animal evolution. 

We discovered that during metazoan evolution, two major changes in the 
SNARE repertoire have occurred. The first major change took place during the 
transition from single to multicellular organisms. During this transition, mostly 
SNARE proteins involved in endosomal trafficking were duplicated and diversified, 
as well as some SNAREs involved in secretion. In addition, SNARE-related factors 
like the tumor suppressor lethal giant larvae (Lgl), which plays a key role in 
establishing epithelial cell polarity, originated. The second major change took place in 
the lineage of vertebrates, where the secretory SNARE repertoire in particular 
enlarged drastically. 
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Materials and Methods 
 
Sequences 

In a recent classification of SNARE proteins, we published a set of more than 2000 
protein sequences from 145 eukaryotic species, including 811 sequences from 59 
metazoan species (Kloepper et al. 2007). These sequences were classified into twenty 
distinct groups. Here, we used the established HMM models (Kloepper et al. 2007) to 
classify the SNAREs of newly available metazoan genomes and EST libraries. We 
gathered 1234 additional sequences from the nr-database at NCBI and various 
genome projects (DOE Joint Genome Institute (JGI); Baylor College of Medicine, J. 
Craig Venter Institute and Broad Institute) and various EST databases. 
After removing sequences with more than one occurrence, sequences which seemed 
to be misassembled, or sequences which failed an a visual verification, we obtained a 
set of 1774 unique SNARE sequences from 177 metazoan species. In addition, we 
identified sequences of two SNARE-related protein families using an extensive blast 
search on the nr-database at NCBI, identifying 37 sequences of lethal giant larvae 
(Lgl) and 41 sequences of Sec22-like. Both proteins exhibit a very high N-terminal 
sequence similarity to tomosyn and Sec22, respectively, but, interestingly, have lost 
their SNARE domain. Since we were especially interested in pinpointing the 
emergence of innovations within the SNARE set of metazoans, we supplemented our 
collected sequences with a set of 31 sequences from two choanoflagellates and two 
sequences from two ichthyosporeans (JGI and EST data). All species and SNARE 
sequences used in this study are listed in Suppl Table 1. These newly classified 
sequences were integrated into the SNARE database (Kloepper et al. 2007) for public 
access, which can be accessed via our projects homepage 
(http://bioinformatics.mpibpc.mpg.de/snare/). Any sequence set used in the 
phylogenetic analysis was aligned using muscle (Edgar 2004) with standard settings. 
Sites with more than 25 percent gaps were removed from the alignments. After 
removing those sides, we removed aligned sequences which contained more than 50 
percent gaps. The reduced alignments are available via the supplementary section of 
our projects homepage. 
 
Phylogeny 
The phylogenetic reconstruction was separated into two parts and was carried out 
essentially as described (Kloepper et al. 2007). Firstly, we reconstructed a tree from 
the conserved alignments using IQPNNI (Important Quartet Puzzling and Nearest 
Neighbor Interchange) (Vinh le and Von Haeseler 2004) with a gamma distribution as 
a model for rate heterogeneity. The estimation for the gamma distribution parameter 
used four rate categories. Additionally, the proportion of invariable sites was 
estimated from the data, an the Jones, Taylor and Thornton (JTT-) distance matrix 
was used as a substitution matrix, and the stopping rule of the algorithm was used but 
the algorithm had to run for at least the suggested number of iterations. All other 
settings of the application were set to default values. For each edge of the constructed 
tree, we estimated the confidence using Likelihood-Mapping.  Secondly, we used the 
phylip package (Felsenstein 1998) to apply a distance-based bootstrap analysis with 
1000 replicates. We used standard settings for seqboot, the JTT distance matrix once 
again and also a gamma distribution (with parameter approximation from tree-puzzle) 
for protdist and standard options for neighbour. Whenever necessary, we used a 
random seed of nine. Because bootstrap values have been shown to be systematically 
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biased, we used the almost unbiased (AU) test (Shimodaira 2002) to correct for this. 
The site wise log-likelihoods needed for the AU-test were obtained using a modified 
version of phyml (Guindon and Gascuel 2003) and the test was performed using 
consel (Shimodaira and Hasegawa 2001). We joined the results of both estimations 
using the tree of IQPNNI as a starting point and labeled the inner edges of the tree 
with their Likelihood-Mapping and corrected bootstrap support values. All trees can 
be downloaded via the supplemental section of our projects homepage. The trees are 
stored in Nexus format and can be interactively explored using, for example, 
SplitsTree 4 (Huson and Bryant 2006). 
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Results 
 
In order to catalog the SNARE inventory of animals, we complemented our previous 
collection (Kloepper et al. 2007) with newly published genomes and ESTs from 
different animal species, obtaining an overall set of 1839 SNARE sequences from 177 
different metazoan species. This data set was complemented by 31 sequences from 
two choanoflagellates and 2 sequences from two ichthyosporeans, both of which are 
believed to be closely related to metazoans. All sequences and species used in this 
study are listed in Suppl. Table 1 and can also be found in our SNARE data base on 
our projects homepage. The data set comprises about 55 species with nearly complete 
sets of SNAREs (Suppl. Table 2). These sequences were classified into their 
corresponding basic subgroups according to our recently established HMM profiles. 
The classification scheme served as the framework to reconstruct the history of these 
changes. It is based on the highly conserved SNARE motif, as the other sequence 
regions are usually less conserved. However, we observed that within the animal 
kingdom, other sequence regions are also usually well conserved. Therefore, we 
constructed alignments of the entire sequences for each subgroup using muscle (Edgar 
2004). Sites with more than 25 percent gaps were removed from the alignments. In 
addition, we excluded all sequences which contained more than 50 percent gaps. The 
length of these conserved alignments varied from 99 sites for the R.IV subgroup to 
292 sites for the Qa.I subgroup. 

Based on these alignments, we constructed phylogenetic trees for each of the 
fundamental SNARE types. When we used SNARE protein sequences from several 
other eukaryotic kingdoms as an outgroup, we observed that the different SNARE 
sequences from animals usually congregated within the phylogenetic trees and were 
well separated from the outgroup (data not shown), substantiating the view that 
animals constitute a monophyletic group. 
 
The secretory SNARE set of Choanoflagellates is metazoan-like 

The multicellular progenitor of animals, the urmetazoan, is believed to have 
evolved from an unicellular flagellated protist, probably closely related to extant 
heterotrophic, single-cell choanoflagellates (Brooke and Holland 2003; King 2004). 
In order to investigate whether SNARE genes were modified during this pivotal 
transition, we collected SNARE sequences from the genome of the choanoflagellate 
Monosiga brevicollis and supplemented these data with EST sequences from another 
choanoflagellate, Monosiga ovata. We detected a relatively simple repertoire of 
SNARE proteins in M. brevicollis, in principal consisting, except for a few 
duplications, of the basic set of SNARE proteins we had recently deduced for the 
proto-eukaryotic cell. Comparable basic sets of SNAREs can be found in green algae 
and fungi, for example. It should be noted, however, that we cannot rule out the 
possibility that the genome data of M. brevicollis is incomplete or that M. brevicollis 
has secondarily lost some SNARE factors. 

In general, our phylogenetic analysis places M. brevicollis closer to metazoans 
than to other eukaryotes, supporting the notion that choanoflagellates are indeed 
closely related to the unicellular ancestor of animals. In particular, the secretory 
SNAREs of choanoflagellates are closely related to the set of animal SNAREs 
believed to mediate regulated secretion. For example, the SNAP-25 like sequences 
(Qbc-SNARE) from choanoflagellates contain a stretch of cysteines at the C-terminal 
end of their Qb-SNARE motif. These cysteines are known to be palmitoylated and 
serve as a membrane-anchor for animal SNAP-25 (Veit et al. 1996). 
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An enlarged set of endosomal SNAREs in multicellular animals 

In order to reconstruct the SNARE repertoire of the metazoan ancestor, we 
compared the set of SNARE genes of lower metazoans with that of choanoflagellates. 
Remarkably, in comparison to the basal SNARE set of M. brevicollis, we detected a 
considerably enlarged repertoire of SNARE and SNARE-related genes in cnidarians, 
particularly in Nematostella vectensis, and also in the placozoan Trichoplax 
adhaerens, bringing to light a clear expansion of the SNARE repertoire during the 
transition from single-cell to multicellular organisms. Notably, both phyla exhibit a 
very similar SNARE repertoire, including several new molecular “inventions” (see 
Fig. 1a for the current view of the phylogenetic relationships of metazoans). 
Remarkably, we observed that the SNARE sets of the lower metazoans are very 
similar to those of various bilaterians, suggesting that the extended SNARE repertoire 
was already present in the last common ancestor of lower metazoans and bilaterians. 

Our rigorous classification analysis was able to delineate which of the original 
functional SNARE types were duplicated during this first phase of expansion. In 
detail, we found at least nine evolutionary novel SNARE types in lower metazoans 
compared to single-cell choanoflagellates (Fig. 1b; for details, see also Supp. Table 
2), suggesting the presence of a more multifaceted membrane trafficking system in 
metazoans in general. Notably, the exact function of most of these new factors and 
whether they were ubiquitously expressed is not entirely clear yet. Remarkably, most 
of these changes occurred in SNAREs involved in endosomal trafficking steps. 

Besides the canonical R-SNARE Vamp7 (also referred to as Ti-Vamp; R.III-
type), two additional endosomal R-SNAREs, Vamp7-like and Vamp4, were detected 
in lower metazoans (Fig. 1b). In animals, Vamp7 is involved in endosomal trafficking 
towards lysosomes (Advani et al. 1998; Advani et al. 1999), but it has also  been 
implicated in secretion from lysosomal compartments (Martinez-Arca et al. 2003; 
Marcet-Palacios et al. 2007; Pocard et al. 2007). The function of the additional, R-
SNARE Vamp7-like (not described to date), which is only present in lower 
metazoans, is unknown. However, its domain structure is almost identical to Vamp7, 
suggesting a similar function for both factors. Interestingly, in the phylogenetic tree 
(Fig. 2a), Vamp7-like appears to be closely related to endobrevin/Vamp8, which only 
exists in vertebrates. Endobrevin does not contain an N-terminal extension. It is 
therefore possible that Vamp7-like has lost the entire N-terminal profilin-like domain, 
giving rise to the novel R-SNARE endobrevin in the vertebrate lineage. Endobrevin 
was originally identified as an endosomal R-SNARE (Advani et al. 1998; Wong et al. 
1998b), but later has been shown to be involved in regulated secretion of pancreatic 
zymogen granules (Wang et al. 2004; Wang et al. 2007). The third metazoan R.III-
type SNARE, Vamp4, contains a shorter N-terminal extension comprising a highly 
conserved double-leucine motif followed by an acidic cluster (Advani et al. 1998). 
This region is important for its interaction with the cytosolic coat adaptor, AP-1, that 
targets Vamp4 to the TGN (Peden et al. 2001; Hinners et al. 2003; Zeng et al. 2003; 
Tran et al. 2007). 

In choanoflagellates, we found only one Qa.III.b-SNARE, Syx7, whereas two 
additional endosomal syntaxins were found in most metazoans, Syx17 and Syx20 
(Fig. 1b). Syx17 is the most deviated SNARE of the Qa.III.b-group in animals (Fig. 
2b). Originally, Syx17 had been implicated in trafficking towards the smooth-
surfaced ER (Steegmaier et al. 2000), but this function is debated (Zhang et al. 2005). 
Notably, and in contrast to all other known SNARE proteins, all Syx17 possess two 
adjacent transmembrane regions at the C-terminal end (Steegmaier et al. 2000). Syx20 
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is a SNARE gene we had first discovered in vertebrates only (Kloepper et al. 2007). A 
more detailed phylogenetic analysis of all Qa.III.b-type SNAREs (Fig. 2b) in animals 
now indicates that this factor is present in several other branches of metazoans as 
well. In insects, this factor originally has been termed Syntaxin 13. This nomenclature 
is somewhat confusing, since the name Syx13 (also called Syx12) (Advani et al. 
1998; Tang et al. 1998d) is usually reserved for a Qa.III.b-SNARE closely related to 
Syx7 that is found only in vertebrates (Wong et al. 1998a) (see also below). We 
therefore propose to generally use the name Syx20 for this Qa.III.b-type. 

Furthermore, two independent genes encoding for Qb.III.b-SNAREs, Vti1a 
and Vti1b (Advani et al. 1998; Xu et al. 1998), were found in most metazoans (Fig. 
1b). Both are thought to function in early and late endosomal trafficking, respectively. 
A set of two independent Vti1 genes is present in M. brevicollis as well, although our 
analysis is not able to determine whether these genes correspond to the split of Vti1a 
and Vti1b found in metazoans (Suppl. Data) or if these two genes represent an 
independent duplication. 

In addition to the enlargement of the endosomal SNARE set, some other (non-
endosomal) SNAREs have been duplicated in this first expansion phase. Instead of 
the single secretory Qbc-SNARE (Qbc.IV) SNAP-25 discovered in M. brevicollis, the 
metazoan ancestor probably possessed three different Qbc-SNARE genes; SNAP-25 
(Oyler et al. 1989), SNAP-29 (Steegmaier et al. 1998; Wong et al. 1999) and SNAP-
47 (Holt et al. 2006) (Fig. 1b). In contrast to SNAP-25, both SNAP-29 and SNAP-47 
do not own a stretch of cysteines in the center of the linker between the two SNARE 
motifs. In the phylogenetic tree (Fig. 2c), SNAP-29 and SNAP-47 are well separated 
from SNAP-25. As with several of the other novel SNAREs mentioned above, the 
exact function of SNAP-29 and SNAP-47 is not entirely clear. Both SNAP-29 and 
SNAP-47 show a widespread distribution on intracellular organelles. SNAP-29 is 
thought to be involved in trafficking within the Golgi apparatus, but has also been 
suggested to mediate constitutive secretion, whereas the function of SNAP-47 is not 
known so far. 

Besides the bona-fide SNARE factors, i.e. proteins that posses a functional 
SNARE motif, we found two additional factors that are clearly derived from SNARE 
genes (Fig. 1b and Fig. 3a). One is Sec22-like (also referred to as Sec22a (Hay et al. 
1996)), which is derived from the R.I-SNARE Sec22 (Sec22b) that functions in 
trafficking between the ER and the Golgi apparatus (Hay et al. 1997; Liu and Barlowe 
2002). Sec22-like carries a profilin-like N-terminal domain closely related to Sec22, 
but instead of a C-terminal SNARE motif, it carries three consecutive C-terminal 
transmembrane domains. Sec22-like is localized to the ER, but its function is 
unknown (Hay et al. 1996; Tang et al. 1998b). 

The second novel factor is Lethal giant larvae (Lgl), which has a function in 
establishing epithelial cell polarity in multicellular animals (Vasioukhin 2006; Wirtz-
Peitz and Knoblich 2006). Lgl is derived from tomosyn (Pobbati et al. 2004; 
Fasshauer and Jahn 2007), a regulatory R-SNARE (R.Reg) that is thought to be 
involved in polarized secretion (Fig. 1b). As tomosyn does not contain a 
transmembrane anchor at the end of its R-SNARE motif, it cannot serve as a 
fusogenic R-SNARE; instead, it is thought to regulate the accessibility of the 
SNARE-acceptor complex for the R-SNARE residing on secretory vesicles. Tomosyn 
carries a large N-terminal domain composed of two consecutive seven-bladed β-
propeller domains (Hattendorf et al. 2007). Lgl possesses a very similar N-terminal 
domain, but it has lost the C-terminal R-SNARE motif.  

Furthermore, animals, like several other eukaryotic lineages, for example 
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fungi and plants, usually possess two different Qc.II-SNAREs, which are thought to 
participate in consecutive trafficking steps within the Golgi apparatus. Nevertheless, it 
remains unclear, whether a duplication of an original Qc.II-SNARE occurred only 
once in the eukaryotic ancestor or whether the pair of Qc.II-SNAREs in animals, Bet1 
(Hay et al. 1996) and Gs15 (Xu et al. 1997), arose by an independent duplication. 
 
Losses and gains of individual SNARE genes in different animal-lineages 
The increased set of 29 to 30 different SNARE proteins in urmetazoans discovered in 
this study, has been modified differently in different lineages of animals. We 
discovered nested duplications, particularly in vertebrates, and probably independent 
losses of individual factors in different lineages of invertebrates. Typically, gene 
losses affected the novel metazoan SNAREs rather than the basic repertoire. A 
schematic overview of the observed lineage-specific changes in the SNARE 
repertoire is given in Suppl. Table 2. 

The genes SNAP-47 and Sec22-like were often lost, for example in 
nematodes, platyhelminths, insects, and crustaceans, and also in tunicates. 
Furthermore, we were unable to detect the Qc.II SNARE Gs15 in nematodes and 
insects. Loss of this gene must have occurred independently in both lineages, which 
are often grouped together as ecdysozoans, as we found Gs15 to be present in 
crustaceans and arachnidans, both of which are grouped with insects to the 
arthropods. 

Both nematodes and platyhelminths have lost, probably independently, the 
endosomal SNAREs Vti1b (Qb.III.b) and Syx8 (Qc.III), of which the latter belongs to 
the basic SNARE set. Both proteins are thought to cooperate in one SNARE unit 
during transport from early towards late endosomes. Interestingly, it has been 
observed that mice deficient in Vti1b were viable and fertile, but had reduced 
amounts of Syx8, whereas the quantity of the other putative complex components, 
endobrevin and Syx7, was not changed (Atlashkin et al. 2003). This suggests that 
Syx8 and Vti1b are functionally tightly linked. Yet upon first inspection, we noted 
that the fruitfly Drosophila melanogaster contained Syx8 but apparently only one 
Vti1 gene. However, as we observed that several other insects, e.g. Anopheles 
gambiae, possess two different Vti1 genes, we re-inspected the genome of D. 
melanogaster and discovered a second, so far not annotated Vti1b gene on 
chromosome 3R. In addition, we came across a loss of the R.III-SNARE Vamp4 
within holometabolous insects: so far, we have discovered Vamp4 only in Orthoptera 
(grasshoppers) and Hymenoptera (bees, wasps and ants), but not in Coleoptera 
(beetles), Lepidoptera (butterflies and moths), or Diptera (flies). In nematodes as well 
as in platyhelminthes, only one copy of R.III-SNAREs was found, suggesting that 
they have secondarily lost the novel types. However, the assignment of their R.III-
SNAREs to the three metazoan types, Vamp7, Vamp7-like/endobrevin and Vamp4, is 
challenging, because the sequences are rather deviated, something that is frequently 
observed for SNARE sequences from these two phyla.  

Besides several gene losses in “invertebrates” discussed above, we also came 
across several nested duplications within these lineages, mostly of secretory SNAREs. 
For example, the fruitfly possesses a duplicated set of SNAREs involved in regulated 
secretion, the Qbc-SNAREs SNAP-24 and SNAP-25 (Niemeyer and Schwarz 2000; 
Vilinsky et al. 2002), and the R-SNAREs syb (Sudhof et al. 1989; Chin et al. 1993) 
and nsyb (DiAntonio et al. 1993). Furthermore, we noticed that even the simple 
animal Trichoplax adhaerens possesses an enlarged set of secretory SNAREs.  
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Two rounds of whole-genome duplications gave rise to the enlarged set of 
secretory SNAREs in vertebrates 
A much more pronounced enlargement by nested duplications of the SNARE 
repertoire occurred in the vertebrate lineage: several SNARE genes can be found in 
multiple copies in vertebrates, while invertebrates and basal deuterostomes typically 
possess only one orthologue. This observation is consistent with two consecutive 
rounds of whole genome duplications that are believed to have occurred early in 
vertebrate evolution (Ohno 1970; Holland 2003; Panopoulou and Poustka 2005).  

Notably, the gene duplications in vertebrates mostly affected the secretory 
SNAREs. For example, duplication of the SNAP-25 gene gave rise to a second, 
closely related Qbc-SNARE, SNAP-23 (Ravichandran et al. 1996; Wang et al. 1997). 
It is possible that the alternative splicing of SNAP-25, caused by duplication of exon 
5 (Bark and Wilson 1994), into two different gene products, SNAP-25a and b, also 
occurred in the vertebrate lineage. Even more extensive were the duplications of the 
secretory syntaxin (Qa.IV) and synaptobrevin (R.IV) genes, yielding a multiplicity of 
new gene products (Fig. 1b). The large set of secretory syntaxins (Qa.IV) in 
vertebrates renders the phylogenetic tree more complex (Fig. 2d). The changes in the 
secretory apparatus also involved the regulatory R-SNARE tomosyn. Vertebrates 
usually contain two different tomosyn genes (Groffen et al. 2005) and the related 
factor amisyn (Scales et al. 2002), which, like tomosyn, does not possess a TMR. In 
contrast to tomosyn, however, amisyn carries a shorter N-terminal region that is 
homologous to the N-terminal region of the exocyst component Sec3 (Scales et al. 
2002). Moreover, the tomosyn-related gene Lgl was duplicated in vertebrates. In 
addition, we unearthed a few more duplications outside of the secretory set. For 
example, a duplication of an ancestral Qc.III gene gave rise to Syx6 (Bock et al. 
1996) and Syx10 (Tang et al. 1998c) in vertebrates. In addition, an ancestral Qa.III.b 
SNARE was duplicated, giving rise to Syx7 and Syx13 in vertebrates. These two 
Qa.III.b SNAREs are thought to mediate distinct endosomal trafficking steps 
(Antonin et al. 2000; Collins et al. 2002; Zwilling et al. 2007). Furthermore, the 
duplication yielded two Sec22-like genes in vertebrates, which had originally been 
termed Sec22a (Hay et al. 1996) and Sec22c (Tang et al. 1998b). 
 
A third round of whole genome duplication in bony fishes 
The second genome duplication in the vertebrate lineage probably occurred before the 
divergence of chondrichthyes (i.e. cartilaginous fishes). This is supported by EST 
sequences from Leucoraja erinacea and Squalus acanthias. The position of more 
basic vertebrates, like the sea lamprey Petromyzon marinus, in relation to the two 
rounds of genome duplication is not entirely clear. Up to now, only few EST 
sequences of SNARE proteins from the sea lamprey have been available. For 
example, we found a fragmentary sequence that is closely related to the secretory 
syntaxins Syx11 and Syx19. Both factors are closely related and probably arose in a 
second round of genome duplication. This suggests that at least one whole genome 
duplication must have taken place in this organism. 

Furthermore, our data support the notion that a third whole genome 
duplication (3R) took place in the lineage of teleost fishes (Meyer and Van de Peer 
2005); (Panopoulou and Poustka 2005), since we found several duplications of 
secretory SNAREs in teleosts. For example, the aforementioned Syx11 gene was 
duplicated. In addition, several factors involved in intracellular trafficking steps were 
affected. For example, two independent sequences for Sec20, Sec22, Gos28, 
endobrevin, and possibly also Syx5 were found (Suppl. Table 2). It should be noted, 
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however, that this assessment is preliminary, as the genome assemblies of fishes often 
appear to be partly fragmentary. 
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Discussion 
 
The transition to multicellularity was a pivotal step during the evolution of animals 
from their protozoan ancestors. Staying together as a multicellular organism brought 
about radical changes in lifestyle and cellular organisation, yet the basic cellular 
functions needed to be preserved. The emergence of multicellularity also launched the 
development of different cell types. The way for multicellular traits like intercellular 
cohesion, communication, and differentiation was paved by molecular innovations. 
Indeed, several domain architectures found in proteins involved in these processes are 
largely unique to animals (Brooke and Holland 2003; King 2004).  

Phylogenetic studies of the animal kingdom often focus on protein families 
involved in processes related to multicellularity. For example, the evolutionary 
history of animal-specific homeobox genes, particularly of the collection of Hox and 
ParaHox genes, which are transcription factors involved cell differentiation in 
animals, have been intensively studied (Garcia-Fernandez 2005; Lemons and 
McGinnis 2006). These genes participate in the developmental program that shapes 
animal morphology. Obviously, the body form is acted upon strongly by natural 
selection, whereas it is less clear whether vital cellular functions like vesicular 
trafficking are also affected in multicellular organisms.  

In fact, the family of SNARE proteins has diversified only modestly in the 
course of eukaryotic evolution (Kloepper et al. 2007). Probably, the proto-eukaryotic 
cell contained about twenty different SNARE proteins to catalyze the vesicular 
trafficking steps between the main compartments found in contemporary cells 
(Kloepper et al. 2007). We have now found this type of basic repertoire of SNARE 
genes in several eukaryotic organisms including the choanoflagellate M. brevicollis, 
an organism that is thought to be closely related to the unicellular ancestor of animals 
(Brooke and Holland 2003; King 2004). In fact, it has been shown that the precursors 
of several of the molecular building blocks that were largely exploited during animal 
evolution already existed in choanoflagellates (King and Carroll 2001; King et al. 
2003; Segawa et al. 2006; Abedin and King 2008; King et al. 2008; Ruiz-Trillo et al. 
2008). In line with this notion, many of the SNAREs of M. brevicollis are closely 
related to the ones from metazoans. In particular, the secretory set of SNAREs (type 
IV) from M. brevicollis closely resembles the set of SNAREs from multicellular 
animals, i.e. Syx1, SNAP-25 and Syb1. This set of SNAREs, which is commonly 
attributed to regulated secretion, is highly conserved in all animals. 

Remarkably, we uncovered a major increase in the set of SNARE proteins that 
probably occurred upon emergence of multicellularity in animals, i.e. before the split 
of basal metazoans and bilaterians. This expansion alludes to a major overhaul of the 
endomembrane system during this critical period in metazoan evolution. The 
expanded, primordial metazoan set is largely conserved in most animal phyla. In 
particular, placozoans, cnidarians, annelids, molluscs, and lower deuterostomes 
usually have only marginally modified SNARE repertoires. Moreover, the SNAREs 
from these phyla often form relatively short branches in our phylogenetic trees, 
reflecting their basal character. This can even be seen for the SNAREs from the faster 
evolving urochordates (Dehal et al. 2002), which, together with cephalochordates and 
vertebrates, make up the chordates. 

The nature of the first expansion of the metazoan SNARE set alludes to a 
larger genome change, possibly whole genome duplication(s), at the base of animal 
evolution. Although the function of SNARE proteins does not allow for larger domain 
re-arrangements, we came across a few of these examples during the first phase of 
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expansion: Syx17, Lgl, Sec22-like and Vamp4. Some of these re-arrangements, in 
particular the acquisition of additional transmembrane domains in Syx17 and Sec22-
like, are clear evolutionary novelties that corroborate the monophyletic origin of all 
animals inspected. However, it should be borne in mind that although the species used 
for our analysis provided a significant coverage of most main extant metazoan 
lineages, at the time, only limited sequence information for the basal metazoans, the 
phyla Porifera and Ctenophora, are available. Nevertheless, the few SNARE 
sequences collected from poriferans suggest that the first phase of expansion of the 
SNARE repertoire occurred already before the split of the poriferans. 

In contrast to previous claims that animals generally possess an enlarged set of 
secretory SNARE proteins (Dacks and Doolittle 2004; Yoshizawa et al. 2006; Dacks 
and Field 2007), our more detailed analysis now demonstrates that most novel 
SNAREs that arose during the first expansion originated from SNAREs involved in 
endosomal trafficking, whereas the major expansion of secretory SNAREs only 
occurred later, during the rise of vertebrates. But why in particular did the number of 
endosomal SNAREs increase during the emergence of multicellularity in animals? 
Although unicellular eukaryotes already have the ability to segregate different types 
of secretory proteins and to deliver them to different subdivisions of the plasma 
membrane (Soldati and Schliwa 2006), our analysis suggests that this capability has 
been largely amplified in animals, where the majority of cells are polarized, facing 
two different environments. It is possible that these morphological changes provided a 
fertile soil for adaptations of the endosomal SNARE repertoire. The differentiation of 
cells is initiated by genetic programs under the control of secreted morphogenic cues. 
Indeed, in the last few years, it has become clear that the endocytic pathways play 
important roles not only in secretion of these cues, but also in modulation of their 
signal transduction in the receiving cell (Gonzalez-Gaitan 2003; Rodriguez-Boulan et 
al. 2005; Emery and Knoblich 2006; Leibfried and Bellaiche 2007). In fact, 
endosomal SNARE proteins have been shown to be important for establishing cell 
polarity (Lu and Bilder 2005; Balklava et al. 2007). For example, the loss of the early 
endosomal SNARE protein Syx7 (in Drosophila, also referred to as avalanche) 
strongly resembles the phenotypes of Drosophila neoplastic tumor-suppressor 
mutations such as scrib, dlg, and Lgl (Hariharan and Bilder 2006; Humbert et al. 
2006; Vasioukhin 2006; Wirtz-Peitz and Knoblich 2006; Chia et al. 2008). 
Intriguingly, one of these tumor-suppressor genes involved in establishment of cell 
polarity, Lgl, also emerged during the transition to multicellularity in animals by 
duplication of the regulatory SNARE tomosyn. Like tomosyn, Lgl has been shown to 
interact with the secretory SNARE apparatus, suggesting that both factors still 
function via homologous molecular pathways (Brennwald and Rossi 2007). 

The road map of the endosomal compartments is rather elaborate as they serve 
as a sorting hub for cargo arriving from the exocytic and the endocytic pathway. It is 
conceivable that the increased collection of SNAREs resulted in a more complex 
network of endosomal trafficking routes in animals compared to their unicellular 
progenitors. However, it should be kept in mind that the exact role of several of the 
novel metazoan SNAREs is not entirely clear yet. In addition, the endosomal R-
SNAREs seem not to be confined to one transport step only. For instance, Vamp7 (Ti-
Vamp) not only mediates trafficking towards the lysosomal compartment, but it is 
also involved in secretion of lysosome-related organelles (Luzio et al. 2007). 
Comparably, endobrevin mediates trafficking towards late endosomes, but is also 
involved in granule secretion in exocrine tissues (Wang et al. 2004; Ren et al. 2007; 
Wang et al. 2007). It needs to be clarified in the future whether the participation of 
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R.III-type SNAREs in lysosomal secretion represents a new adaptation of this 
proteins in animals. However, considering that several other eukaryotic lineages do 
not possess a specific secretory R-SNARE (R.IV-type) but use R.III-SNAREs for 
secretion, it is likely that this ability of R.III-type of SNAREs rather reflects an 
ancient function of this group of proteins. Furthermore, the novel Qbc-SNAREs 
SNAP-29, and SNAP-47, are “exocytotic” by origin. However, their localization on 
intracellular membranes might also be consistent with functions in intracellular 
trafficking. Altogether, systematic cell biological investigations are necessary to test 
our predictions. 

The second major expansion of the metazoan SNARE repertoire is restricted 
to the lineage of vertebrates, leading to their multifaceted set of secretory SNARE 
proteins. This expansion in vertebrates is accompanied by few domain 
rearrangements, but no losses of the original metazoan set were observed. Hence, our 
finding is in line with an earlier notion that the gene content of lower metazoans and 
vertebrates is highly conserved (Kortschak et al. 2003; Kusserow et al. 2005; Raible 
et al. 2005; Technau et al. 2005; Putnam et al. 2007; Miller and Ball 2008). This 
expansion of the SNARE repertoire in vertebrates can probably be attributed to two 
rounds of whole genome duplications (Ohno 1970; Holland 2003; Panopoulou and 
Poustka 2005). In line with observations on other factors, our data suggest that many 
other duplicated SNARE genes in vertebrates were not retained after whole genome 
duplications. This phenomenon is usually explained by extensive gene loss of 
duplicates (Holland 2003; Panopoulou and Poustka 2005). The fact that mostly 
duplicates of the secretory SNARE were retained, suggests that these factors 
presented a selective advantage during the rise of vertebrates. Often the novel 
secretory SNAREs are largely confined to different subcellular locations like the 
apical or basolateral membrane, or their expression is restricted to particular tissues or 
different developmental stages (for a review, see (Hong 2005; Jahn and Scheller 
2006; Stow et al. 2006)). Hence, the extended set of secretory SNAREs appears to 
have facilitated the development of new secretory cell types in vertebrates. 

It is very likely that not only the major expansions but also the losses of 
individual SNARE factors in various animal lineages affected the itinerary of 
transport vesicles as the changes probably reflect lineage-specific adaptations of the 
endomembrane system. Hence, one should be cautious when comparing the vesicular 
trafficking pathways of different animal species. Losses occurred for example in the 
invertebrates D. melanogaster and C. elegans, which are well-studied model 
organisms. Particularly in the repertoire of nematodes and platyhelminthes, we 
noticed the absence of some novel metazoan SNARE types involved in endosomal 
trafficking. As both phyla possess a somewhat differently reduced set of novel 
SNAREs, these losses seem to reflect secondary gene losses, rather than a more basal 
status of these phyla. Hence, it seems possible that comparable losses of several 
endosomal SNARE genes in nematodes and platyhelminthes are a sign of convergent 
adaptations of their endosomal sorting pathways caused by comparable life-style and 
feeding requirements. In addition, and in line with observations on other genes, the 
SNARE sequences from both phyla often form long but well-separated branches, 
supporting their more derived status. In fact, the relative position of these phyla in the 
phylogeny of animals is still debated (for discussion see e.g. (Philippe and Telford 
2006)). 

It is worth mentioning that we also observed a few differences in the SNARE 
repertoire of different vertebrate lineages. For example, the Qc.III genes Syx6 and 
Syx10, which are the products of a gene-duplication in vertebrates, participate in 
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different SNARE units that mediate trafficking of different types of vesicles from 
endosomes towards the TGN. Remarkably, Syx10 is secondarily absent from mouse 
and rat genomes, suggesting that a subtle difference in the endosomal trafficking 
pathways between murine rodents and other vertebrates exists (Ganley et al. 2008). 
The existence of differences in their endosomal pathways is corroborated by the fact 
that Syx20 (Qa.III.b), an endosomal syntaxin with unknown function, appears to have 
been lost in mice and rats as well. 

Overall, the animal genomes examined in this work comprise a remarkably 
consistent and homologous set of SNARE proteins. As outlined above, the two major 
expansions can probably be attributed to two distinct periods of larger genome 
remodeling, during which several individual SNARE factors were duplicated. Yet, 
duplications of SNAREs, in particular of the ones involved in secretion, followed by 
functional diversification, occurred recurrently in different lineages. For example, we 
came across duplicated sets of secretory SNAREs in several invertebrates but also in 
another choanoflagellate, Monosiga ovata. The identification of lineage-specific 
duplications was possible because we have integrated sequence data from a large 
quantity of species that represent a very broad spectrum of the animal kingdom. In 
addition, we rigorously removed duplicates from our dataset. Furthermore, we have 
used a highly accurate classification and a detailed phylogenetic analysis. We noted 
that these methodological key elements were paid less attention to in earlier studies, 
explaining why these studies were unable to distinguish the two major expansions of 
the metazoan SNARE repertoire found by us (Dacks and Doolittle 2004; Yoshizawa 
et al. 2006; Dacks and Field 2007). 

Although it was not the primary goal of this study, we noticed that the trees 
built from orthologous SNAREs generally recapitulate their presumed evolutionary 
relationships. In fact, the sequences of species that belong to the same phylum usually 
congregated. This is seen best in the trees of SNAREs involved in trafficking within 
the ER and the Golgi, since these factors are present usually as singletons in all 
animal genomes. These factors apparently underwent slow lineage-specific 
adaptations (Fig. 3). More drastic changes occurred in SNARE proteins involved in 
endosomal and secretory trafficking steps, probably, as discussed above, evoked by 
episodes of larger genome re-arrangements. For example, expansion of the set of 
secretory syntaxins (Qa.IV) in vertebrates led to a highly diversified set that obscures 
the underlying information of the phylogenetic relationships (Fig. 2d). Generally, the 
trees based on single sequences are not ideally suited to reflect the relationships 
between the larger phylogenetic groups of animals. In fact, the paralogous expansions 
render it challenging to assemble and align concatenated sequences to increase the 
resolution of the phylogenetic tree. Also, several animal lineages are still under-
represented in the genome sequences that are currently available. Nevertheless, as 
new genome data can be quickly integrated, our detailed analysis of the evolutionary 
history of SNARE genes in animals is a promising supplementary tool for future 
phylogenetic studies. 
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Supplementary Material 
The supplementary data of this study can be downloaded from the SNARE projects 
homepage (http://bioinformatics.mpibpc.mpg.de/snare/). The SNARE projects 
homepage allows access to the SNARE database (Kloepper et al. 2007), into which all 
newly classified sequences of this study have been integrated. 
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Figure Legends 

 
Fig. 1. Schematic depiction of the major changes in the SNARE repertoire 
during animal evolution. 
a) Phylogenetic relationships between the major animal groups represented in this 
study. The tree is based on the current view of the phylogeny of metazoans, but 
several diversifications are still heavily debated (Philippe and Telford 2006). For 
example, the phylogenetic placement of placozoan Trichoplax adhaerens among the 
lower metazoans is not clear (Miller and Ball 2005; Schierwater 2005), although 
recent data strongly suggest that their position should be as the most basal extant 
lower metazoan (Dellaporta et al. 2006; Signorovitch et al. 2007). The numbers 
indicate the major changes in the SNARE repertoire uncovered in this study. The 
details of the changes indicated by the numbers 1 and 2 are illustrated in b); the other 
lineage-specific changes (3 through 7) are displayed in Suppl. Table. 2. 
b) Schematic depiction of the major changes in the SNARE repertoire during the rise 
of multicellular animals and of vertebrates. 
To illustrate the changes of the SNARE sets representative species with well-
maintained genomes were used: Monosiga brevicollis for choanoflagellates, the 
cnidarian Nematostella vectensis for basal metazoans, and Mus musculus for 
vertebrates/tetrapods. The domain architecture of the SNARE proteins is drawn to 
scale. The highly conserved SNARE motif is depicted by a gray box; the adjacent 
transmembrane region by a black box. The degenerated SNARE motif of Lgl is 
depicted as a white box. The two β-propeller domains of tomosyn and Lgl are 
indicated as white ovals. Note that the C-terminal region of Syx6 from M. brevicollis 
lacks a transmembrane region and is shown as a dashed line to indicate that this 
region of the sequence most likely is not correctly annotated. The expansion of the 
SNARE set in vertebrates is probably caused by two rounds of whole genome 
duplications. Consequently, tetrapods can have up to four orthologous copies – 
although two or three copies are more often seen. Note that an enlarged set of 
regulatory R-SNAREs in vertebrates is not shown for space limitations. Notably, one 
has to assume that at least two Qa.IV-genes existed in the initial repertoire of the 
vertebrate ancestor to be able to account for the numerous novel Qa.IV genes in 
vertebrates, e.g. Syx1-4, Syx11 (Tang et al. 1998a; Prekeris et al. 2000), Syx19 
(Wang et al. 2006), and Syx21. To account for this, the putative second Qa.IV-
SNARE of the vertebrate ancestor is shown in gray. Interestingly, in few animal 
species (e.g. Nematostella vectensis), we found only a single set of secretory Qa- and 
R-SNAREs. This is comparable to many unicellular eukaryotes, for which it is 
thought that the single secretory set generally is capable of mediating constitutive and 
regulated secretion. Possibly, discrimination between both types of secretion can be 
imposed on this SNARE unit by additional factors. It is thus conceivable that even in 
multicellular organisms on the level of the SNARE factors, no strict separation 
between constitutive and regulated secretion exists. 
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Fig. 2. Outlines of unrooted phylogenetic trees of individual SNARE subgroups 
that have undergone major expansions in the evolution of animals.  
Each tree is shown as a schematic outline. For each tree, a detailed figure is given at 
the SNARE projects homepage (http://bioinformatics.mpibpc.mpg.de/snare/). In 
addition, all individual phylogenetic trees, and the corresponding sequence alignments 
are available there. In each tree, the diverged metazoan SNARE types are shown by 
different colors. In addition, the major groups of animals are indicated. The labels at 
the major branches represent the likelihood mapping (left) and AU support values 
(right). 
a) The endosomal R-SNAREs (R.III-type) of animals split into three major branches 
Vamp7, Vamp4 and endobrevin. The gene, Vamp7-like, which is only present in a 
few basal metazoans, is not especially indicated in the schematic tree, but can be seen 
in the enlarged version. 
b) The endosomal Qa-SNAREs (Qa.III.b-type) of animals split into the three 
elementary branches, Syx7, Syx20, and Syx17. In the lineage of vertebrates, another 
type, Syx13, arose. 
c) The Qbc-SNAREs (Qbc.IV-type) of animals basically split into three branches, 
SNAP-25, SNAP-29 and SNAP-47. Note that SNAP-47 contains an extended linker 
region compared to the other metazoan Qbc-SNAREs. In the lineage of vertebrates, 
another type, SNAP-23, emerged, but independent duplications of the SNAP-25-type 
occurred in other lineages as well. 
d) The phylogenetic tree of secretory syntaxins (Qa.IV-type) is dominated by the 
major expansion in the vertebrate lineage that gave rise to various new types. For 
example, both Syx11 and Syx19 belong to a more deviated vertebrate specific group 
of secretory syntaxins that, instead of a transmembrane region (TMR), possess a C-
terminal cysteine rich sequence, which is probably palmitoylated. 
Originally, metazoans appear to have contained only one or two isoforms of secretory 
syntaxins. For example, besides  the highly preserved Syx1, several lineages possess a 
much more diverged secretory syntaxin (e.g. Syx4 of insects). 
 
 
Fig. 3. The phylogenetic trees of individual SNAREs reflect the relationship of 
animal groups. 
In metazoans, a new factor, Sec22-like, arose by gene duplication of the R-SNARE 
Sec22 (R.I-type) followed by domain rearrangements. Sec22-like has lost its R-
SNARE motif, but possess, three consequtive TMRs. (a) The schematic overview of 
the unrooted phylogenetic tree of metazoan Sec22 subfamily shows that the two 
factors are well separated. Sec22-like appears to have been lost again in different 
animal lineages, whereas Sec22, besides a duplication in teleost fishes, has been 
retained as a singleton. The phylogenetic tree of Sec22 reflects the evolutionary 
relationships among the larger animal groups well. For example, Sec22 from fishes 
lies on the vertebrate branch, but is separated from tetrapod sequences. Comparably, 
Sec22 sequences from insects are well confined, despite the enormous morphological 
diversity of this animal group. (b). A close-up view of this branch shows that various 
insect groups are also well separated.  
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SNAREing the basis of multicellularity: Consequences of 
protein family expansion during evolution 

 
Tobias H. Klöpper, C. Nickias Kienle, and Dirk Fasshauer 

 
 
 
The supplementary data of this study can be downloaded from the SNARE projects 
homepage (http://bioinformatics.mpibpc.mpg.de/snare/). The SNARE projects 
homepage allows access to the SNARE database (Kloepper et al., 2007), into which 
all newly classified sequences of this study have been integrated. 
 
The supplementary data contain detailed version of the trees depicted in Figures 2a-d 
and 3a (i), the supplementary tables 1 and 2 (ii), and the generated Nexus files and 
Alignments of all SNARE types (iii). 
 
i) The following detailed schematic trees of Figures 2a-d and 3a can be downloaded: 
 
Suppl. Fig. 1. Detailed schematic depiction of the unrooted phylogenetic trees of 
the endosomal R-SNAREs (R.III-type) shown in Fig 2a. 
 
Suppl. Fig. 2. Detailed schematic depiction of the unrooted phylogenetic trees of 
the endosomal Qa-SNAREs (Qa.III.b-type) shown in Fig 2b. 
 
Suppl. Fig. 3. Detailed schematic depiction of the unrooted phylogenetic trees of 
the Qbc-SNAREs (Qbc.IV-type) shown in Fig 2c. 
 
Suppl. Fig. 4. Detailed schematic depiction of the unrooted phylogenetic trees of 
the secretory syntaxins (Qa.IV-type) shown in Fig 2d. 
 
Suppl. Fig. 5. Detailed schematic depiction of the unrooted phylogenetic trees of 
the secretory syntaxins (R.I-type) shown in Fig 3a. 
 
 
ii) The following supplementary tables can be downloaded: 
 
 
Suppl. Table 1. List of all SNARE sequences used. 
 
Suppl. Table 2. List of the SNARE sets of 55 different species, highlighting 
important changes during the evolution of distinct animal lineages. 
The two major expansion, of the SNARE repertoire (i.e. during the transition to 
multicellularity in animals and during the rise of vertebrates) are indicated in an 
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additional row, in which the new SNAREs are highlighted in light green. In addition, 
putative losses of distinct SNARE genes are highlighted in light orange. The 
additional round of duplication of distinct SNARE genes in bony fishes is highlighted 
in light yellow. 
 
iii) The following 17 phylogenetic trees in Nexus file format and their corresponding 
alignments can be downloaded: 
 

SNARE subgroups Common names of the basic metazoan 
SNARE types included in analysis 

Qa.I Syx18 
Qa.II Syx5 
Qa.III.a Syx16 
Qa.III.b Syx7, Syx17, Syx20 
Qa.IV Syx1 
Qb.I Sec20 
Qb.II Bos1, Gos1 
Qb.III Vti1a, Vti1a 
Qc.I Use1 
Qc.II Bet1, Gs15 
Qc.III Syx6, Syx8 
SNAP (Qbc.IV) SNAP-25, SNAP-29, SNAP-47 
R.I Sec22, Sec22-like 
R.II Ykt6 
R.III Vamp7, Vamp7-like, Vamp4 
R.IV Syb 
R.Reg Tomosyn, Lgl 
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Qa.I Qb.I Qc.I Qa.II R.II Qa.III.a Qb.III Qa.IV

Syx18 Sec20 Use1 Sec22
Sec22-

like
Syx5 Memb Gos28 Bet1 Gs15 Ykt6 Syx16 Syx7 Syx13 Syx17 Syx20 Vti1 Syx6 Syx8 Vamp7

Vamp7-
like/ 
Endo

Vamp4 Syx1 SN25 SN29 SN47 Syb Myob Tom Ami Lgl

Amoebidium parasiticum *
Capsaspora owczarzaki * *
Monosiga ovata * * * * ** * * ** **
Monosiga brevicollis * * * * * * * * * ** * * ** * * * *

Placozoa Trichoplax adhaerens * * * * * * * * * * * * * ** * * ** * **** ** * ** * *
Porifera Oscarella carmela * * *

Nematostella vectensis * * * * * * * * * * * * * * * ** * * * * * * * * * * * *
Acropora aspera *
Acropora millepora * * * * * * * *
Acropora palmata * *
Montastraea faveolata *
Hydra magnipapillata * * * * * * * * * ** * * * * * * *
Hydractinia echinata * *
Hydra vulgaris *
Platynereis dumerilii * * * * * * * * * * * * *
Hirudo medicinalis * * *
Lumbricus rubellus * *
Capitella sp. I * * * * * * * * * * * * * * * ** * * * * * * * * * * *
Helobdella robusta * * * * * * * * * ** * * * * * ** *** ** * *** ** *
Aplysia californica * * * * * * *
Euprymna scolopes * * * * * * * * * *
Mytilus californianus * * * *
Lymnaea stagnalis * * *
Biomphalaria glabrata * * *
Lottia gigantea * * * * * * * * * * * * * * ** * * * * ** * * * * * * *
Loligo pealei * * *
Strongylocentrotus purpuratus * * * * * * * * * * * * * * * * * * * * * * * * ** *
Lytechinus variegatus *
Paracentrotus lividus * * * * * ** * * *
Asterina pectinifera * * *
Halocynthia roretzi * * * *
Oikopleura dioica *
Ciona intestinalis * * * * * * * * * * * ** * * * * * *** * * * * *
Molgula tectiformis * * * * * * * * * * * * * *
Ciona savignyi * * * * * * * * * * * * * * *
Diplosoma listerianum *
Saccoglossus kowalevskii *

Cephaloch. Branchiostoma floridae * * * * * * * * * * * * * * * ** * * ** * * ** * * * ** *
Craniata Eptatretus burgeri *

Petromyzon marinus * * * * * * * * ** ** * *
Xenopus laevis * * * * ** * * * * * * * * * * * * * * ***** *** * ** * **
Xenopus tropicalis * * * * * * * * * * * * * ** ** * * * * ******** **** * ** * ** * **
Cynops pyrrhogaster *
Ambystoma tigrinum * * * * *** * *
Ambystoma mexicanum *
Homo sapiens * * * * ** * * * * * * * * * * * ** ** * * * * ******* *** * * *** * ** * **
Mus musculus * * * * ** * * * * * * * * * * ** * * * * * ******** *** * * *** * ** * **
Canis familiaris * * * * * * * * * * * * * ** * * * ***** * * * ** * * * **
Rattus norvegicus * * * * ** * * * * * * * * * * * * * * * * ******* *** * * *** * ** * **
Pan troglodytes * ** * * * * * * * * * * ** * * * * ****** ** * * * * ** * **
Pongo pygmaeus * * * * * * * * * * ** *** * *
Macaca mulatta * * * * ** * * * * * * * * * * * * ** * * * * ***** ** * * *** * *
Oryctolagus cuniculus * * * * * * * * ** *
Macaca fascicularis * * * ** *
Bos taurus * * * * ** * * * * * * * * * * * * ** * * * * ******* *** * * *** * ** * **
Ovis aries *
Cricetulus griseus * *
Sus scrofa * *
Ornithorhynchus anatinus * * *
Monodelphis domestica * * * * ** * * * * * * * ** * * * * * ****** *** * * *** ** *
Equus caballus * * * * * * * * * * * ** * * * **** *** * *** * * *
Felis catus *
Cavia porcellus * * * * * *** *
Tetraodon nigroviridis * * * ** ** * * ** * * * * * * * ** * * ******** ** * * ** ** * **
Danio rerio * * * ** ** ** * * * * * * * * * ** ** * * * ******** ******* * * **** * ** ** *
Takifugu rubripes * *
Lateolabrax japonicus * * *
Oncorhynchus mykiss ** * ** *
Carassius auratus **
Scophthalmus maximus * *
Torpedo marmorata *
Fugu Rubripes * ** * ** * * ** * * * * * * * ** * * ** * ********* **** * * **** * ** * *
Gasterosteus aculeatus * * * * * * *
Oryzias latipes * * ** * * ** * * * * * ** ** * ** * ***** ***** * *** * ***
Leucoraja erinacea * * * * * * * * * * *
Ictalurus punctatus * * * * * * ** * ** *** * ** *
Pimephales promelas ** * * * *
Rutilus rutilus * * * * * * * * * ** * * *
Cyprinus carpio * *** * ****
Misgurnus anguillicaudatus * * *
Salmo salar * ** **
Poecilia reticulata * * * * * * * * * * ** * *
Osmerus mordax * * * * * * * ** ** * * * *** ** * * * *
Fundulus heteroclitus * *
Platichthys flesus * * *
Hippoglossus hippoglossus * * * * ** * * * ** * ** * **
Gadus morhua *
Squalus acanthias * * ** * * * * * * *
Gobiocypris rarus *
Gallus gallus * * * * ** * * * * * * * * * * ** * * * * ****** ** * * *** ** * *
Taeniopygia guttata * * * * * * * * * * **** ** ** **
Coturnix coturnix *
Meleagris gallopavo * *

Tardigrada Hypsibius dujardini *
Acanthoscurria gomesiana *
Boophilus microplus * * * * * * * * * * * * * *
Argas monolakensis *
Blomia tropicalis *
Ixodes scapularis * * * * *
Rhipicephalus appendiculatus * * * *
Aleuroglyphus ovatus *
Mesobuthus gibbosus *
Procambarus clarkii **
Carcinus maenas * *
Homarus americanus * * *
Marsupenaeus japonicus *
Daphnia magna * * *
Daphnia pulex * * * * * * * * * ** * * * ** * * ** * *** * * ** *
Limulus polyphemus *
Anopheles gambiae * * * * * * * * * * * * * ** * * * ** * * ** * *
Drosophila melanogaster * * * * * * * * * * * * * ** * * * ** ** * ** * *
Drosophila pseudoobscura * * * * * * * * * * * * * * * * ** * * * *
Apis mellifera * * * * * * * * * * * * * * * * * ** * * ** * *
Leucophaea maderae *
Bombyx mori * * * * * * * * * *
Culex pipiens *
Drosophila yakuba * *
Tribolium castaneum * * * * * * * * * * * * * ** * * ** * * ** * *
Aedes aegypti * * * * ** * * * * * * * * **** * * * * *
Pediculus humanus *
Lutzomyia longipalpis * * * * * * * * * *
Chironomus tentans * * *
Acyrthosiphon pisum * * * * * * * * *
Glossina morsitans * * * * * * * * * *
Locusta migratoria * * *
Oncometopia nigricans *
Diaprepes abbreviatus * *
Platystomus albinus *
Heliconius erato * *
Aphis gossypii * *
Papilio dardanus *
Rhynchosciara americana * *
Myzus persicae * * * * *
Toxoptera citricida *
Spodoptera frugiperda *
Drosophila ananassae *
Solenopsis invicta * * * * * * *
Gryllus bimaculatus * *
Drosophila willistoni *
Laupala kohalensis * *
Nasonia vitripennis * * * * * * * * * * ** * * ** *
Diabrotica virgifera virgifera *
Schistosoma japonicum * * * * * * * * * * * * * * * * ** * *** *
Schistosoma mansoni * * * * * * * * * * * * * * *** ** * *** *
Schmidtea mediterranea * * * * ** *** * ** ** * * ****** *
Dugesia japonica *
Dugesia ryukyuensis * * * *
Echinococcus granulosus * * *
Clonorchis sinensis *
Paragonimus westermani * *
Taenia solium *
Caenorhabditis briggsae * * * * * ** * * * * * * * * ** **** * * *** * *
Caenorhabditis elegans * * * * * ** * * * * * * * * ** **** * * **** * *
Caenorhabditis remanei * ** * * * ** * **
Heterodera glycines * * * * * * *
Strongyloides stercoralis * * * *
Trichinella spiralis * * * * * * * * * * **
Haemonchus contortus * * * * * *
Bursaphelenchus mucronatus *
Meloidogyne arenaria *
Meloidogyne hapla * * *
Parastrongyloides trichosuri **
Trichuris muris *
Strongyloides ratti * *
Ancylostoma ceylanicum * * * *
Globodera pallida * * * *
Pristionchus pacificus * * * * * *
Meloidogyne chitwoodi * * * * * *
Meloidogyne javanica * *
Bursaphelenchus xylophilus * *
Necator americanus *
Xiphinema index * * * * *
Meloidogyne paranaensis * *
Pratylenchus penetrans *
Globodera rostochiensis * * *
Meloidogyne incognita *
Trichuris vulpis *
Teladorsagia circumcincta *
Ascaris suum *
Ostertagia ostertagi *
Brugia malayi * * * * * * * * * * * * * *** * * ** *
Heterorhabditis bacteriophora *
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TGN

Qa.I Qb.I Qc.I Qa.II R.II Qa.III.a

Syx18 Sec20 Use1 Syx5 Memb Gos28 Bet1 Gs15 Ykt6 Syx16 Syx8

Monosiga ovata * * **
Monosiga brevicollis * * * * * * * *

Sec22 Syx17 Syx20 Vti1a Vti1b Vamp7
Vamp7-

like
Vamp4 SN29 SN47

Placozoa Trichoplax adhaerens * * * * * * * * * * * * ** * ** * *
Nematostella vectensis * * * * * * * * * * * * * ** * * * * * *
Hydra magnipapillata * * * * * * * * ** * * * * *
Platynereis dumerilii * * * * * * * * * * *
Capitella sp. I * * * * * * * * * * * * * * * * * * * *
Helobdella robusta * * * * * * * * * ** * * * ** *
Euprymna scolopes * * * * * * * * *
Lottia gigantea * * * * * * * * * * * * * * * * * * ** * *
Strongylocentrotus purpuratus * * * * * * * * * * * * * * * * * *
Paracentrotus lividus * * * * * * * *
Ciona intestinalis * * * * * * * * * * * * * * * *
Molgula tectiformis * * * * * * * * * *
Ciona savignyi * * * * * * * * * * * *

Cephaloch. Branchiostoma floridae * * * * * * * * * * * * * * * * * * * * *

Chelicerata Boophilus microplus * * * * * * * * * * * *

Crustacea Daphnia pulex * * * * * * * * * ** * * * * * ** * *
Anopheles gambiae * * * * * * * * * * * * * * * * *
Drosophila melanogaster * * * * * * * * * * * * * * * * *
Drosophila pseudoobscura * * * * * * * * * * * * * * * *
Apis mellifera * * * * * * * * * * * * * * * *
Bombyx mori * * * * * * * *
Tribolium castaneum * * * * * * * * * * * * * * * *
Aedes aegypti * * * * ** * * * * * * *
Lutzomyia longipalpis * * * * * * *
Glossina morsitans * * * * * * * * *
Nasonia vitripennis * * * * * * * * * *
Schistosoma japonicum * * * * * * * * * * * * * *
Schistosoma mansoni * * * * * * * * * * * * * *
Schmidtea mediterranea * * * * ** * ** *
Caenorhabditis briggsae * * * * * ** * * * * * * ** *
Caenorhabditis elegans * * * * * ** * * * * * * ** *
Trichinella spiralis * * * * * * *
Brugia malayi * * * * * * * * * * * * *

Sec22-
like

Sec22-
like2

Syx7 Syx13 Syx6 Syx10
Endo-
brevin

Syx1-4, 
21

Syx11 SN25a/b SN23 Syb1-3
Myo-
brevin

Tom1 Tom2 Ami Lgl1 Lgl2

Petromyzon marinus * * * * * * * * * * * * * *
Xenopus laevis * * * * * * * * * * * * * * * * * * * * *** ** * * * ** * * *
Xenopus tropicalis * * * * * * * * * * * * * * * * * * * * * ****** ** ** * * ** * * * * * *
Canis familiaris * * * * * * * * * * * * * * * * * * **** * * * * ** * * * * *
Homo sapiens * * * * * * * * * * * * * * * * * * * * * * * * * ***** ** * * * * *** * * * * * *
Mus musculus * * * * * * * * * * * * * * * * * * * * * * * ****** ** * * * * *** * * * * * *
Rattus norvegicus * * * * * * * * * * * * * * * * * * * * * * ****** * * * * * *** * * * * * *
Pan troglodytes * * * * * * * * * * * * * * * * * * * **** ** * * * * * * * * * * *
Macaca mulatta * * * * * * * * * * * * * * * * * * * * * * * * **** * * * * * *** * *
Bos taurus * * * * * * * * * * * * * * * * * * * * * * * * ***** ** * * * * *** * * * * * *
Monodelphis domestica * * * * * * * * * * * * * * * * * * * * ***** * * * * * *** * * *
Equus caballus * * * * * * * * * * * * * * * * ** ** * * * *** * * *
Gallus gallus * * * * * * * * * * * * * * * * * * * * * * **** ** * * * * *** * * *
Taeniopygia guttata * * * * * * * * * * **** * ** * *
Tetraodon nigroviridis * * * ** * * * * ** * * * * * * * * * * * *** ***** * * * * ** * * * * *
Danio rerio * * * ** * * ** * * * * * * * * * ** * * * * * **** **** ****** * * * **** * * * ** *
Fugu Rubripes * ** * ** * * ** * * * * * * * ** * * ** * ***** **** *** * * * **** * * * * *
Oryzias latipes * * ** * * ** * * * * * ** * * * ** * *** ** ***** * *** * ** *
Ictalurus punctatus * * * * * * ** * ** ** * * ** *
Osmerus mordax * * * * * * * ** ** * * * * ** ** * * * *
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