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Abstract. In the non-life insurance industry, pricing is often done relative
to individual criteria of policyholders. Various classification algorithms are
in use to categorize policyholders into risk classes defined by the insurer, but
classification errors may result from this process. In the light of recent auto-
matic classification practices, it becomes important to assess the risks caused
by such errors. In this paper we examine the impact of risk class misspecifica-
tions for a simple situation with two risk types. We provide a mean-variance
framework for quantitatively studying the insurer’s optimization problem of
specifying premiums and we analyze the tradeoff of costs and benefits when
classification error probabilities are known.

1 Introduction
Risk classification is a classical tool in actuarial practice. Indeed, the distribution
of individual risks will often differ substantially, depending on personal character-
istics, different exposure, environmental conditions etc. If an insurer applies the
same premium across all such categories, this may lead to adverse selection, in the
sense that individuals who face a lower premium than appropriate for their true
risk will massively enter the contract, raising the price and squeezing out rational
individuals with lower risk (see e.g. [4] for a general discussion). Classification is
commonly used in insurance during the underwriting process and the tarification,
cf. [32, 42] for health and life insurance and [43] for property lines. Different types
of variables, such as quantitative or categorical can be used in various algorithms for
actuarial classification purposes [38]. For an overview of classification methods we
refer to [21]. In the literature, numerous authors discuss risk classification in view
of adverse selection and efficiency in the Pareto sense, see [13] for a survey on this
topic. In [11, 12, 22] authors study the efficiency of imperfect categorization in a
utility setup. In [14, 34], authors consider the effect of bans on classification on the
market efficiency. [39] deals with the customers’ perspective on adverse selection
and efficiency of risk classification. The contributions [11, 34] consider also costs
of categorization. Indeed, risk classification may be costly both computationally
(in terms of resource-consuming algorithms in the presence of huge datasets) and
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in monetary terms (e.g. involving data acquisition from official statistics or from
competitors).

The insurer hence needs to select appropriate criteria for rating variables, which
may take different forms and are not always motivated by actuarial drivers. For
instance, [17] distinguishes actuarial, operational, social and legal criteria. In some
cases, classification may be inaccurate when the main criterion is unobservable or
there are legal constraints to use it, e.g. for social or political reasons. For instance,
gender-based discrimination is nowadays forbidden in the European Union (see e.g.
[36]), even if it is widely considered a relevant characteristic from the statistical point
of view. In [37], authors discuss the perceptions of gender as pricing criteria by the
customer and explain the complex interplay between anti-discrimination laws and
actuarial principles within the insurance industry, see [27] for suggestions to deal
with this issue. We refer to the recent book [9] for a rich source of information and
ideas on this topic.

Although criteria to distinguish risk profiles will exist, they may often be un-
known to the insurer due to the asymmetry of information, see e.g. [1, 3]. At the
same time, recent years have seen a dramatic increase in both the amount of risk
information available and the ability to analyse it statistically. In many situations,
risks can be analysed on an almost individual basis, but in any case as elements
of much smaller rating pools, i.e. pools of risks that share characteristics such that
they can be assumed to have the same loss distribution. Offered insurance cover
may also take into account the current risk situation, i.e. environmental variables
(e.g. time, place) or even behavioural variables. The small size of rating pools leads
to larger estimation errors in estimating the expected cost of insurance cover. In the
presence of competing insurance providers and given the transparency of the prices
of their insurance offers, customers may tend to choose the cheapest offer, i.e. an
offer that is too low compared to the true but unknown production costs. From the
perspective of the insurance company, this phenomenon is known as the "winner’s
curse". In order to avoid the negative economic consequences of the winner’s curse,
insurance companies like to apply tailor-made surcharges to the offered premium.
It is likely that these surcharges, in addition to the higher cost of more granular
risk assessment, will lead to higher overall costs for the entire insured portfolio of
risks. Hence, the total welfare of the community is reduced. In addition, the overall
coverage ratio may be reduced as some risk owners may find the increased cost of
insurance too high. An overly granular approach may therefore be counterproduc-
tive and there may be an optimal level of rating granularity, together with legal
boundaries, see for instance [17], [2] and [40].
Even when the resulting loss distributions are assumed to be known, each clas-
sification method will inherently contain classification errors, which may lead to
unprofitable decision making. Note that error rates tend to be higher when one
class is less represented in the population, cf. [24, 44]. For a classical reference to
empirical evidence on concrete values for error probabilities arising from frequently
used statistical methods, see e.g. [6]. One can also apply empirical methods for the
estimation of the misclassification probabilities. For instance, an empirical estimate
arises from historical records, when after the loss occurrences, one obtains more
information on the risk type of the policyholders. The insured individual can be re-
classified using, for example, maximum likelihood techniques, and thus proportions
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of misclassified individuals can be identified.

In this paper, we would like to quantitatively study the effects of such classifica-
tion errors in the context of a simple model with only two possible risk classes. In
that case one faces two types of errors: assigning a risk of the first class as one of the
second and vice versa (a false positive and false negative in statistical terms, or also
sensitivity vs. specificity, see e.g. [24, 42]). We compare three scenarios, one where
the insurer does not classify the heterogeneous risks and two others where the risks
are differentiated, but once with perfect knowledge and once with some probability
of misspecification of policyholder types. While the introduction of the classification
mechanism allows to price the insurance risks more efficiently, it entails certain fixed
costs, and the potential misspecification can impact the insurer’s profit further. In
[8], the authors study a similar framework with incomplete information from the
insurer’s side, whereas the customer knows their true risk type. During the under-
writing process, the customer may be required to take a test and the result will reveal
for what type of coverage they are eligible. In contrast to our present work, the au-
thors consider a plurality of insurers and customers choosing their coverages, while
the present paper deals with a one-insurer setting and customers being provided
with one single offer. In a similar spirit to [18], we develop a simple framework to
assess the respective trade-off between costs of classification and profits. We consider
linear and sigmoid-type demand functions of the premium for the probability that
a customer accepts an offered policy (rather than deterministic demand functions
as in [18]). Our main optimization target is the expected profit for the insurer (see
e.g. [25]), and we consider several risk measures to assess the risk part in the analysis.

The remainder of the paper is structured as follows: In Section 2, we start with
an insurer’s expected profit approach and a piece-wise linear demand setting. We
then consider different scenarios for this setup in Section 3. In Section 4, we then
include the variance in our considerations, and establish mean-variance frontiers for
the profit. We illustrate the results and its main drivers in Section 5. In order to
assess the sensitivity of the results, Section 6 then develops a number of extensions,
namely a sigmoid-type rather than piece-wise linear demand function, a lower semi-
variance and a value-at-risk concept for replacing the variance in the risk assessment
of the strategies, as well as a utility function approach to unite the consideration
of profitability and variability in one function, together with numerical illustrations
for each of these cases. Finally, Section 7 concludes.

2 Model Setting

Assume that there is only one insurer present in the market, so there is no compe-
tition. Let us further assume a population of n individuals, who are all willing to
contract insurance, and independently from each other choose whether they enter
the insurance contract for a given premium or not. The individuals fall into two
types: low risk type with loss random variable L and high risk type with loss ran-
dom variable H, with underlying cumulative loss distribution functions FL(x) and
FH(x), x ≥ 0 respectively (both L and H will typically have atoms at 0, signifying
the case of no claim in the considered time period). Define the respective means
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and variances by

E (L) = µL, Var (L) = σ2
L, (1)

E (H) = µH , Var (H) = σ2
H , µH > µL, (2)

which are all assumed to be finite. All risks are assumed to be independent and
identically distributed within each type. Let {pL, pH ≥ 0} be the actual proportion
of the low- and high-risk type among the policyholders (pL + pH = 1).

Define an acceptance function fi which for any proposed premium P gives the
probability for an individual to enter the contract; the form of this function differs
for each risk type i. Each individual is assumed to take the decision about entering
independent of all the others. If m individuals are offered a premium P and all use
the same acceptance function fi, we then expect m · fi(P ) individuals to enter the
contract. Let us first assume that fi is piece-wise linear

fi(P ) =

1− P

Pmax
i

, 0 ≤ P ≤ Pmax
i , i ∈ {L,H}

0, Pmax
i < P,

(3)

where Pmax
i is the so-called reservation price, cf. Figure 1. Clearly, fi is non-

increasing in P . We set the condition µi < Pmax
i to ensure the possibility of positive

expected profits for the company.
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Figure 1: Acceptance probability fi(P ) as a function of offered premium P .

Our approach represents a stochastic setup for the acceptance of an offered con-
tract, in contrast to [18] who work with (3) as a deterministic demand function for a
given price. While for expected profits as dealt with in Section 3 this difference does
not matter, it will be important for the risk considerations in the subsequent sec-
tions. Despite the non-differentiability of the piece-wise linear fi at Pmax

i , this form
will lead to simple local solutions. An extension of the results to a more complex,
but analytically better tractable sigmoid form will be considered in the Appendix.

Remark 2.1. In the classical work of Rothschild and Stiglitz [35] as well as further
models based on it, in a comparable setting of identifying contracts to sell, the
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authors find optimal solutions in terms of premiums and levels of coverage. For
the present purpose and simplicity we, however, prefer to use the concept of the
acceptance function, with individuals facing a binary choice of entering the contract
or not. That is, we do not allow a partial coverage or deductibles here.

In the following sections, we introduce three different scenarios that the insurer
may face. We start with the case where the insurer can observe the risk type of
each individual, which we refer to as the full information case. We then consider the
situation where the insurer can not distinguish between the two types ex-ante at all.
In that case the only possible method of pricing is to not differentiate individuals, and
the profitability of the insurance business will then depend on the empirical fraction
of each risk type in the population. Finally, the possibility to observe and measure
a certain characteristic, which can be discrete or continuous, allows us to classify
an observation, but with a certain error probability. This probability depends on
the true class of the observation. The introduction of the classification mechanism
has certain costs, but allows to better price according to the true risk class. We
are interested to quantitatively assess the respective trade-off in this simple model
setup.

3 Expected profit in three scenarios
In this section, we focus on the expected profit only. Let us introduce three different
scenarios that the insurer may face, starting with the case where the insurer can
actually observe the risk type of each individual.

3.1 Full information

The benchmark for our analysis is the situation with no asymmetry of information.
Here the insurer can observe the risk type of each individual and therefore price
according to the true type. Recall that we know the actual proportion {pL, pH} of
the population in each class. Therefore, we can maximize profit by differentiating
between groups. If, for a given individual, the price is higher than its true risk
premium, his/her willingness to accept the contract decreases. Let us denote by
X

(L)
j the jth loss random variable of the low risk type (independent copies of L)

and by X
(H)
j the jth high-risk loss variable (independent copies of H). Then, the

(random) profit is given by

Π =

n·pL∑
j=1

ILj (PL −X
(L)
j ) +

n·pH∑
j=1

IHj (PH −X
(H)
j ), (4)

where ILj and IHj are independent Bernoulli random variables with probabilities
fL(PL) and fH(PH), respectively. In this case, an adaptation of [18] establishes that
the optimal premiums are independent of n, pL and pH , and they are simply the
average of the mean claim size and the maximum premium that the policyholders
are willing to pay.

Theorem 3.1. In the full information case, the expected profit of the insurer is
maximized by the premium choice

PL =
1

2
(µL + Pmax

L ) (5)
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and
PH =

1

2
(µH + Pmax

H ) (6)

for the two risk classes.

Proof. The optimal premium choice is the solution of the following optimization
problem:

{PL, PH} = argmax
x,y

E (Π) = argmax
x,y

npLfL(x)(x− µL) + npHfH(y)(y − µH). (7)

We notice that E (Π) is a continuous function of {x, y} and that for {x < µL, y <
µH}, E (Π) < 0; {x = µL, y = µH}, E (Π) = 0; {x > µL, y > µH}, E (Π) > 0.
Also, limx→+∞,y→+∞ E (Π) = 0, which means that E (Π) admits a strictly positive
maximum for some {x > µL, y > µH} (and the optimization in x and y can in fact
be separated). We can characterize this point by the following equations:

∂E (Π)

∂x
= npL (f

′
L(x)x+ fL(x))− npLf

′
L(x)µL

!
= 0 (8)

∂E (Π)

∂y
= npH (f ′

H(y)y + fH(y))− npHf
′
H(y)µH

!
= 0, (9)

where the !
= operator denotes a necessary condition. From (8) we have

∂E (Π)

∂x
=npL (f

′
L(x)x+ fL(x))− npLf

′
L(x)µL = 0

⇐⇒ npL

(
− 1

Pmax
L

)
(x− µL) + npL

(
1− x

Pmax
L

)
= 0

⇐⇒ x =
1

2
(µL + Pmax

L ).

Since the optimal solution PL respects the condition PL ≤ Pmax
L , as µL < Pmax

L ,
it is not necessary to distinguish cases of the piece-wise function. To prove it is
indeed a local and global maximum, we can easily prove that the second derivative
is negative for a linear f :

∂2E (Π)

∂x2
=npLf

′′
L(x)(x− µL) + 2npLf

′
L(x)

=2npL

(
− 1

Pmax
L

)
< 0.

The same reasoning holds for the first and second derivative w.r.t. y.

Remark 3.2. It is easy to check that if

µL + Pmax
L < 2µH , (10)

then PL < µH , in which case charging a low-risk type premium to a high-risk type
customer results in an expected loss on the individual level. □

In terms of sensitivities, we simply see from (5) and (6) that

∂Pi

∂µi

=
∂Pi

∂Pmax
i

=
1

2
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for both risk types i ∈ {L,H}. That is, the reactivity of the optimal premium is
constant for variation in the mean loss. Consequently, in case of increasing losses,
the increase in premium will only cover half of the increase in losses, thus decreasing
profits by the double effect of smaller margins and smaller acceptance rate. Similarly,
shifting the endpoint Pmax

i of the acceptance function (for invariant µi) also increases
the optimal chargeable premium linearly with slope 1/2.

3.2 No differentiation

Next, let us consider the situation where the insurer has no possibility to distinguish
between risk types on the individual level, but still has an estimate for the fractions
{pL, pH} of the population in each class (e.g. through some historical figures). So
we assume these numbers to be known (pL + pH = 1). In this scenario, the insurer
proposes an identical premium P to every individual. This has the advantage that
one saves the cost of identification of risk types, and provides another benchmark
for the sequel. The profit in this case is

Π =

npL∑
j=1

ILj (P −X
(L)
j ) +

npH∑
j=1

IHj (P −X
(H)
j ),

where ILj and IHj are Bernoulli random variables with probabilities fL(P ) and fH(P )
respectively, and the optimal premium then amounts to

P = argmax
z

E (Π) = argmax
z

n(pLfL(z) + pHfH(z))z − npLfL(z)µL − npHfH(z)µH .

(11)
Comparing the resulting optimization problem

max
z

npLfL(z)(z − µL) + npHfH(z)(z − µH) (12)

with (7), we see from PL ̸= PH (which itself is due to µH > µL) there that the
optimal solution P to (12) will now yield a smaller profit (this is intuitive, since we
have less information available than in the setup of Section 3.1).

Theorem 3.3. In the no differentiation case, the expected profit of the insurer is
maximized by the premium choice

P = a∗PL + (1− a∗)PH , (13)

where PL and PH are the optimal premiums of the full information case given in (5)
and (6) and a∗ =

pL/P
max
L

pL/P
max
L +pH/Pmax

H
.

Proof. Problem (12) can be solved using the first order condition

∂E (Π)

∂z
=npL (f

′
L(z)z + fL(z)) + npH (f ′

H(z)z + fH(z))

− npLf
′
L(z)µL − npHf

′
H(z)µH

!
= 0.

Using z < min{Pmax
L , Pmax

H }, plugging in the function f yields

npL

(
− 1

Pmax
L

)
(z − µL) + npL

(
1− z

Pmax
L

)
+ npH

(
− 1

Pmax
H

)
(z − µH) + npH

(
1− z

Pmax
H

)
= 0,

7



which leads to

z =

pL
Pmax
L

µL+Pmax
L

2
+ pH

Pmax
H

µH+Pmax
H

2

pL
Pmax
L

+ pH
Pmax
H

and finally (13).
The second order condition yields a strictly negative result, thus confirming the

global maximum.

Expression (13) shows that P is the average of the optimal premiums under
full information, weighted by the proportions in the population and the maximum
affordable premiums. Under the assumption (10), this also establishes

PL ≤ P ≤ PH .

Remark 3.4. One should be careful to check whether P > Pmax
L : in that case, L

type customers do not enter the contract. This happens if a∗ <
PH−Pmax

L

PH−PL
. Conse-

quently, the optimal premium is that for higher risk types only, meaning P = PH .
If the expected profit for P = PH is greater than the one found above, then the
optimal premium will be PH and only H types will enter the contract. □

The change of the expected profit when compared to the case of full information
can now also be expressed as

npL (fL(P )− fL(PL)) (PL − µL)︸ ︷︷ ︸
loss on L not entering the contract

+

gain on extra margin on L︷ ︸︸ ︷
npLfL(P )(P − PL)

+ npH (fH(P )− fH(PH)) (PH − µH)︸ ︷︷ ︸
gain on more H entering the contract

+

loss on reduced margin on H︷ ︸︸ ︷
npHfH(P )(P − PH) < 0. (14)

In particular, for low risk types the proposed premium P is higher than their appro-
priate optimal premium PL under full information. Thus, with the decreasing shape
of the acceptance function, on average the insurer loses low-risk type customers and
the associated expected profit (negative first term in (14)). At the same time, those
who remain bring higher profits (the second term in (14)). Correspondingly, due
to the cheaper than appropriate premium PH , more high-risk type customers join
(positive third term in (14)), but they pay less premium now (negative fourth term).

3.3 Differentiation in two classes

Assume now that the insurer does not know the individuals’ risk type, but has
access to a mechanism that can assign (classify) the risk types correctly with a
certain probability. Assume that the probability of misclassification is the same for
each policyholder of the same type and given by

pH|L := P (i is classified as H | i ∈ L) ,

pL|H := P (i is classified as L | i ∈ H) .
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Remark 3.5. If pH|L = pL|H = 0, we get back to the full information setting, as
there is no classification error. If pH|L = pL|H = 1, all the true H end up in the
L group and all the true L are classified in the H group (which would also result
in knowing the true type of each one, but having to switch the categories). In the
cases when pH|L = 1 and pL|H = 0 or pH|L = 0 and pL|H = 1, all individuals are
classified in the same group. Typically, there is a tradeoff between the two error
types: in an attempt to classify one risk more accurately, the precision on the other
one will go down. For instance, in order to minimize pL|H , we could simply attribute
all observations to group H, which indeed gives pL|H = 0, but pH|L would increase
drastically as all L observations are then erroneously identified as H.

The cost c(n) of applying the classification algorithm will increase with popula-
tion size n (the computational cost of different algorithms is increasing in the sample
size (take for instance the simplest Bayesian classifier [45] with linear complexity),
the human time invested in analysing data and making decisions increases, and
more powerful machines may be needed to run the algorithms, just to name a few
reasons). At the same time, the marginal cost is likely to decrease in n (fixed costs
in the process can be divided onto more policyholders, the insurer gains experience
and recognizes patterns etc.). Hence, we define

c : R+ 7→ R+, c′(n) ≥ 0, c′′(n) ≤ 0.

A mathematically simple candidate for such a function is

c(n) = c0 log(γn),

where γ offsets for the minimal cost amount and c0 scales for the intensity of the
effect of the population size.

The insurer will propose premiums, P ∗
L and P ∗

H , different from the ones in Section
3.1 under full information, and some customers receive ’wrong’ offers, leading to
a different customer behaviour with respect to accepting the contract. Figure 2
visualizes the pricing process. An initial population of n customers is subdivided
into groups by their true risk type, rather than their identified risk type, and finally
the insurer loses some customers because of the entailed acceptance patterns of
policies.

In this situation, the profit is given by

Π =

n·pL·(1−pH|L)∑
j=1

I
L|L
j

(
P ∗
L −X

(L)
j

)
+

n·pL·pH|L∑
j=1

I
H|L
j

(
P ∗
H −X

(L)
j

)

+

n·pH ·(1−pL|H)∑
j=1

I
H|H
j

(
P ∗
H −X

(H)
j

)
+

n·pH ·pL|H∑
j=1

I
L|H
j

(
P ∗
L −X

(H)
j

)
,

where I
L|L
j , I

H|L
j , I

H|H
j and I

L|H
j are Bernoulli random variables with parameters

fL(P
∗
L), fL(P ∗

H), fH(P ∗
H) and fH(P

∗
L) respectively. The optimization procedure now

amounts to
{P ∗

L, P
∗
H} =argmax

v,w
E (Π) = argmax

v,w
npL(1− pH|L)fL(v)(v − µL)

+npLpH|LfL(w)(w − µL) + npH(1− pL|H)fH(w)(w − µH)

+npHpL|HfH(v)(v − µH)− c(n).

(15)

9



Contacted
population

L

H

L

H

H

L

P ∗
L

P ∗
H

×pL

×pH

×(1 − pH|L)

×pH|L

×(1 − pL|H )

×pL|H

×fL(P∗
L)

×fL(P∗
H )

×fH (P∗
H )

×fH (P∗
L)

n

Figure 2: Visualisation of the pricing process.

Theorem 3.6. In the differentiation case, the expected profit of the insurer is max-
imized by the premium choice

P ∗
L = b∗PL + (1− b∗)PH (16)

and
P ∗
H = c∗PL + (1− c∗)PH (17)

for the two classified risk classes, where PL and PH are the optimal premiums (5)
and (6) of the full information case, b∗ =

pL(1−pH|L)/P
max
L

pL(1−pH|L)/P
max
L +pHpL|H/Pmax

H
and c∗ =

pLpH|L/P
max
L

pH(1−pL|H)/Pmax
H +pLpH|L/P

max
L

.

Proof. We make use of the following first order conditions from (15) to determine
the optimal solution:

∂E (Π)

∂v
=npL(1− pH|L) (f

′
L(v)v + fL(v)) + npHpL|H (f ′

H(v)x+ fH(v))

− npL(1− pH|L)f
′
L(v)µL − npHpL|Hf

′
H(v)µH

!
= 0

(18)

∂E (Π)

∂w
=npLpH|L (f

′
L(w)w + fL(w)) + npH(1− pL|H) (f

′
H(w)w + fH(w))

− npLpH|Lf
′
L(w)µL − npH(1− pL|H)f

′
H(w)µH

!
= 0

(19)

Equation (18) yields

npL(1− pH|L)

(
− 1

Pmax
L

)
(v − µL) + npL(1− pH|L)

(
1− v

Pmax
L

)
+ npHpL|H

(
− 1

Pmax
H

)
(v − µH) + npHpL|H

(
1− v

Pmax
H

)
= 0, (20)

leading to (16). Formula (17) is obtained in a completely analogous way from (19).
The second order conditions are strictly negative and thus confirm the maximum.
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Like in the no differentiation case, the optimal premiums can again be expressed
simply as a weighted average of the optimal premiums from the full information
case, and the weights now involve the error probabilities.

Remark 3.7. One needs to verify the limiting case of P ∗
H = Pmax

L and P ∗
L = Pmax

L

to obtain the true maximum, since misclassified L individuals may not enter the
contract after the limiting premium. This is the case when c∗ <

PH−Pmax
L

PH−PL
and

b∗ <
PH−Pmax

L

PH−PL
. One can distinguish three cases. Firstly, if both P ∗

H < Pmax
L and P ∗

L <
Pmax
L , then the optimal solutions are given by Equations (16) and (17). Secondly,

if only P ∗
H > Pmax

L , then the correct premium for the proposed H contract should
be P ∗

H = PH , since we correctly price for only H types entering the group. H types
will always enter the contract since their premium is a weighted average of PL and
PH , and both are smaller than Pmax

H from Section 3.1. Thirdly, if both P ∗
H > Pmax

L

and P ∗
L > Pmax

L , which could happen with a high proportion of misclassified H
individuals, then the optimal solution would be to offer the contract only to H
types by setting P ∗

L = PH and P ∗
H = PH . It is worthwhile to notice that the second-

order mixed partial derivatives ∂2E(Π)
∂v∂w

= ∂2E(Π)
∂w∂v

= 0, and therefore the optimal price
for the low risk types does not depend on the optimal price for the high risk types
and vice versa. □

What is of particular interest is the situation where H individuals are wrongly
classified as L. Indeed, since Pi > µi, this is the only situation where the insurer
makes losses, so it is important to maintain control over this group. The loss (pre-
sented here as a negative gain) compared to the benchmark of the situation of full
information can be decomposed into

npL(1− pH|L) [(fL(P
∗
L)− fL(PL)) (PL − µL) + fL(P

∗
L)(P

∗
L − PL)]︸ ︷︷ ︸

True L: Loss on L not entering the contract and gain on those who remain

+npLpH|L [(fL(P
∗
H)− fL(PL)) (PL − µL) + fL(P

∗
H)(P

∗
H − PL)]︸ ︷︷ ︸

False H: Loss on L not entering the contract and gain on those who remain

+npH(1− pL|H) [(fH(P
∗
H)− fH(PH)) (PH − µH) + fH(P

∗
H)(P

∗
H − PH)]︸ ︷︷ ︸

True H: Gain on extra H entering the contract and loss on them underpriced

+npHpL|H [(fH(P
∗
L)− fH(PH)) (PH − µH) + fH(P

∗
L)(P

∗
L − PH)]︸ ︷︷ ︸

False L: Gain on extra H entering the contract and loss on them underpriced

− c(n)︸︷︷︸
Invested cost

.

Recall that P was the optimal uniform premium for the case without differ-
entiation. Differentiation of risk types only makes sense, if the resulting premiums
P ∗
L, P

∗
H satisfy P ∗

L ≤ P ≤ P ∗
H (cf. Figure 3). From Equations (13), (16) and (17), this

PL P PH

P ∗
L P ∗

H

?

Figure 3: Illustration of premiums in different scenarios.
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amounts to the condition c∗ ≤ a∗ ≤ b∗ which can easily translated to the following
condition on the error probabilities:

pH|L + pL|H ≤ 1.

This will always be fulfilled in practically relevant situations.

4 A mean-variance analysis
Proposing a unique premium P to both categories of risks attracts a higher rela-
tive proportion of H than the differentiating strategies. This heterogeneity in the
portfolio composition generates a higher level of risk, which one should consider
in the underwriting process. As the expected profit considered in Section 3 does
not capture this aspect of the problem, we introduce the variance of the profit as
a simple indicator that can be easily implemented in practical settings, as one only
needs estimates for the first two moments of the underlying claim distributions for
the analysis.

Define by NL, NH the (random) number of insured persons of risk type L and
H, respectively, entering the contract. Their first two moments are summarized in
Table 1.

Table 1: Expected value and variance of the number of insured for each scenario.

Full information No differentiation Differentiation

E (NL) npLfL(PL) npLfL(P ) npL(1− pH|L)fL(P
∗
L)

+npLpH|LfL(P
∗
H)

Var (NL) npLfL(PL)(1− fL(PL)) npLfL(P )(1− fL(P )) npL(1− pH|L)fL(P
∗
L)(1− fL(P

∗
L))

+npLpH|LfL(P
∗
H)(1− fL(P

∗
H))

E (NH) npHfH(PH) npHfH(P ) npH(1− pL|H)fH(P ∗
H)

+npHpL|HfH(P ∗
L)

Var (NH) npHfH(PH)(1− fH(PH)) npHfH(P )(1− fH(P )) npH(1−pL|H)fH(P ∗
H)(1−fH(P ∗

H))
+npHpL|HfH(P ∗

L)(1− fH(P ∗
L))

For each risk type i, Ni =
∑n

j=1 I
i
j, where I ij are independent Bernoulli ran-

dom variables with probability fi(Pi), so E (Ni) = nfi(Pi) and variance Var (Ni) =

nfi(Pi)(1 − fi(Pi)). The claim sizes are X
(i)
j and the premium is Pi. From (4), we

then get

Var (Πi) = Var

(
Ni∑
j=1

(
Pi −X

(i)
j

))

= E

(
Var

(
Ni∑
j=1

(
Pi −X

(i)
j

)
| Ni

))
+ Var

(
E

(
Ni∑
j=1

(
Pi −X

(i)
j

)
| Ni

))
= E (Ni) · σ2

i + (Pi − µi)
2 · Var (Ni) .

(21)

With this ingredient, we can now derive the variance of the profit in our three
scenarios introduced in the previous section.
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• Full information:

Var (Π) = E (NL)σ
2
L + (PL − µL)

2Var (NL) + E (NH)σ
2
H + (PH − µH)

2Var (NH) .

• No differentiation:

Var (Π) = E (NL)σ
2
L + (P − µL)

2Var (NL) + E (NH)σ
2
H + (P − µH)

2Var (NH) .

• Differentiation:

Var (Π) =npL(1− pH|L)fL(P
∗
L)σ

2
L + (P ∗

L − µL)
2npL(1− pH|L)fL(P

∗
L)(1− fL(P

∗
L))

+npLpH|LfL(P
∗
H)σ

2
L + (P ∗

H − µL)
2npLpH|LfL(P

∗
H)(1− fL(P

∗
H))

+npH(1− pL|H)fH(P
∗
H)σ

2
H + (P ∗

H − µH)
2npH(1− pL|H)fH(P

∗
H)(1− fH(P

∗
H))

+npHpL|HfH(P
∗
L)σ

2
H + (P ∗

H − µL)
2npHpL|HfH(P

∗
L)(1− fH(P

∗
L)).

Remark 4.1. Note that in all of the above expressions a term containing the vari-
ance due to the randomness of claim sizes is followed by one with the variance due
to the randomness of underwriting, i.e. the customer’s probability to enter the con-
tract or not. In Section 5, we will illustrate this decomposition with the help of a
numerical example.

For both the insurance company itself and the regulator it will be natural to also
include a risk constraint into the problem of optimizing profits. Consequently, we
introduce a variance constraint in the optimization problem, modifying the problem
from Section 3 to

maxE (Π)

s.t.Var (Π) ≤ σ̄2.

Varying the value of σ̄ will lead to a mean-variance efficient frontier in the spirit of
Markowitz [29]. Introduce the Lagrange multipliers

L(Pi, λ) = E (Π(Pi)) + λ
(
σ̄2 − Var (Π(Pi))

)
(22)

for the premium Pi in any of the optimization programs (7), (11) and (15). The
optimal premiums are then obtained by the first order conditions

∂L
∂Pi

=
∂E (Π)

∂Pi

− λ
∂Var (Π)

∂Pi

!
= 0,

∂L
∂λ

= σ̄2 − Var (Π) !
= 0.

In order to construct the efficient frontier, we maximize the expected profit subject
to the constraint of the variance being smaller than a certain level (σ̄2). We use
the Lagrange multiplier method in order to perform the optimization under this
constraint. Thus, we obtain one point of the frontier defined by the coordinated
µ and σ̄2. To obtain more points and draw the frontier, we augment the σ̄2 and
redo the analysis each time. We give here the corresponding equations for the
full information case, the other cases follow in an analogous way. Equation (22)

13



translates into

L(PL, PH) =n

(
pL

(
1− 1

Pmax
L

PL

)
(PL − µL) + pH

(
1− 1

Pmax
H

PH

)
(PH − µH)

)
+λ

{
σ̄2 −

[(
npL

(
1− 1

Pmax
L

PL

))2

+ npL

(
1− 1

Pmax
L

PL

)]
σ2
L

−(PL − µL)
2npL

(
1− 1

Pmax
L

PL

)
PL

Pmax
L

−

[(
npH

(
1− 1

Pmax
H

PH

))2

+ npH

(
1− 1

Pmax
H

PH

)]
σ2
H

−(PH − µH)
2npH

(
1− 1

Pmax
H

PH

)
PH

Pmax
H

}
.

The first order conditions are given by

∂L
∂PL

= npL

(
− 1

Pmax
L

)
(PL − µL) + npL

(
1− 1

Pmax
L

PL

)
− λ

(
npL

(
− 1

Pmax
L

)
σ2
L + 2(PL − µL)npL

(
1− 1

Pmax
L

PL

)
PL

Pmax
L

+(PL − µL)
2npL

1

Pmax
L

(
1− 2

PL

Pmax
L

))
!
= 0,

∂L
∂PH

=npH

(
− 1

Pmax
H

)
(PH − µH) + npH

(
1− 1

Pmax
H

PH

)
− λ

(
npH

(
− 1

Pmax
H

)
σ2
H + 2(PH − µH)npH

(
1− 1

Pmax
H

PH

)
PH

Pmax
H

+(PH − µH)
2npH

1

Pmax
H

(
1− 2

PH

Pmax
H

))
!
= 0,

∂L
∂λ

= σ̄2 −
(
npL

(
1− 1

Pmax
L

PL

)
σ2
L + (PL − µL)

2npL

(
1− 1

Pmax
L

PL

)
PL

Pmax
L

+npH

(
1− 1

Pmax
H

PH

)
σ2
H + (PH − µH)

2npH

(
1− 1

Pmax
H

PH

)
PH

Pmax
H

)
!
= 0.

This results in a system of three equations for the three unknowns PL, PH and λ
which can be solved numerically for every choice of involved parameters.

5 Numerical illustrations
Let us now consider concrete numerical illustrations of the results of the previous
sections. The following parametrization will be used throughout this section unless
otherwise stated:

µL = 1, µH = 5, σ2
L = 1, σ2

H = 10, pL = 0.9, pH|L = pL|H = 0.1. (23)

For the shape of the cost function we assume c(n) = 20 log n in the plots, but note
that any other choice would be feasible as well.
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5.1 Expected profit

Let fi(P ) have the form (3) with Pmax
L = 4µL = 4 and Pmax

H = 4µH = 20. Then we
get from the respective formulas of Section 3:

• Full information:

PL = 2.5, PH = 12.5, E (Π) = 0.788n.

• No differentiation:
P ≈ 2.717, E (Π) ≈ 0.298n.

Note that µL < P < µH . In this case, the insurer targets the low-risk L type cus-
tomers because their proportion in the population is large enough to compensate
for the losses on the H types.

• Differentiation in two classes:

P ∗
L ≈ 2.525, P ∗

H = 12.5, E (Π) ≈ 0.687n− c(n).

Note that P ∗
H > Pmax

L .

Applying the classification is hence only an advantage if

0.687n− c(n) ≥ 0.298n.

Conversely, the maximum cost which the insurer will be willing to pay for the
classification, given a population of size n, is

c(n) < 0.388n.

It is instructive to look into the sensitivity of the results. Let us first explore the
variability of the profit under different error probabilities, which can be a helpful
decision tool in case of limited investment resources. For each level of error prob-
abilities, we recompute the optimal premiums. Figure 4 features the sensitivity of
the expected profit with respect to both error probabilities. The classification cost
still needs to be deducted here from the expected profit. If the insurer is given a
choice of different classification algorithms or investment possibilities for improve-
ment of precision with known resulting error probabilities, one can verify whether
that investment is worthwhile. This figure may help the decision makers to judge
whether with given error probabilities, a refinement in the classification may be of
added value to the company.

5.2 Variance

Numerically, with the parameters defined in (23), we obtain the following results for
the three cases of the linear acceptance function:

• Full information:
Var (Π) = 2.505469n.

• No differentiation:
Var (Π) = 1.79213n.
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Figure 4: Expected profit as function of error probabilities.

• Differentiation:
Var (Π) = 2.355267n.

As the total variance is an increasing function of the number of policyholders,
it will naturally be higher under a differentiation strategy, as the insurer gets more
market share. But the structure of the variance will be different. Without differ-
entiation, the variance inside the group is much higher than the average of internal
group variances from the differentiation case, that difference being larger when the
two distributions are further apart.

In Figure 5, we plot the variances in the three scenarios to illustrate their forms as
a function of chosen premium. We split the variances according to the part stemming
from the variability of claims (in red) and from the one of acceptance of contracts
(in green). The humps indicate the region where the increase of variance due to the
increasing deviation from the mean is compensated by the decrease in the number of
underwritten policies. In Figures 5b and 5c, we can observe two humps, appearing
because of the mixture of two risk types. With the help of this decomposition, we
can clearly see that the humps in the plots come from the acceptance behaviour.
In Figure 5a, we observe that if the premium becomes too high, the total variance
decreases as the population does not enter the contract any more.

In Figures 6-8, we show the variances when varying one parameter at a time. In
Figure 6, one can observe the variance shapes for a small range acceptance func-
tion. In this case, the variance is mostly defined by the claims behaviour, since
the acceptance rate remains low and the humps are less pronounced. For an accep-
tance function ranging up to high premiums as shown in Figure 7, the acceptance
variance dominates. The humps are more pronounced as policyholders exist in a
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(a) Perfect information case. Left-hand side: Var (Π) as a function of PL. Right-hand side:
Var (Π) as a function of PH .

(b) No differentiation case.
Var (Π) as a function of P .

(c) Differentiation case. Left-hand side: Var (Π) as a func-
tion of P ∗

L. Right-hand side: Var (Π) as a function of P ∗
H .

Figure 5: Decomposition of the variance.

broader range. Finally, with a bigger expected claim size difference between risk
types, the relationship between the humps and the risk types becomes clearer as
they are further apart, see Figure 8.

(a) No differentiation case. (b) Differentiation case.

Figure 6: Decomposition of the variance, parameter Pmax
i = 2µi.

5.3 Mean-variance efficient frontier

To complete the numerical part, we now address the illustration of the mean-variance
frontier as defined in Section 4 for a population size of n = 10, 000. We see in Fig-
ure 9 that up to a certain variance level, the non-differentiation strategy dominates
differentiation in terms of expected profit. This breaking point depends on the cost
function c(n) and the error probabilities. One may also want to consider limiting
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(a) No differentiation case. (b) Differentiation case.

Figure 7: Decomposition of the variance, parameter Pmax
i = 10µi.

(a) No differentiation case. (b) Differentiation case.

Figure 8: Decomposition of the variance, parameter µH = 10.

constraints in practice such as regulatory constraints or the demands of stakeholders.
The kinks in the frontier arise from the fact that for different variance limitations, a
different portfolio composition becomes optimal. In other words, the optimal strat-
egy switches in the points of the kinks by letting more of a lower or higher risk type
entering the contract.

Figure 9: Mean-variance frontier with linear demand function.

The mean-variance approach assumes variations to both sides as equally weighted
since the variance is a symmetric risk measure. This framework can be extended
to other risk measures, such as the lower semi-variance to take in account only
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one-sided deviations from the mean or the value-at-risk to consider minimal profit
requirements. These adaptations are developed in Section 6, where we also present
an alternative approach for the risk assessment based on utility functions.

6 Extensions

6.1 A sigmoid-type acceptance function

While the piece-wise linear acceptance functions used in this paper allow for intuitive
and transparent results, one may want to challenge this simplistic assumption. In
this section we would like to extend the previous analysis to a possibly more realistic
shape that still allows for an explicit treatment. Concretely, assume that f belongs
to the class of sigmoid functions, namely the logistic functions, which are smooth
and monotone, thus suitable for our situation [26]. This form of function appears
when applying a logit lapsing model with different risk factors, see e.g. [15, 19].
An example of a model using premiums as risk factors can be found in [7, 20] and
particularly in [16]. Consider the following concrete shape of the acceptance function
fi of an individual of risk type i:

fi(P ) =
1

1 + eai(P−bi)
, ai ∈ R+, bi ∈ R, i ∈ {L,H}, (24)

where the parameters ai and bi need to be calibrated. We can suppose bi > µi, so that
the function reaches value 1/2 for premiums that are higher than the actuarially fair
premium, cf. Figure 10. As a grows, the curve becomes steeper around the pivotal
position determined by the parameter b (note that the choice of b also determines
the value of f for P = 0 which will typically be smaller than 1). From an analytical
point of view, the form (24) is more attractive than the piece-wise linear shape
considered in the previous sections, as it is differentiable everywhere. Clearly, fi is

Figure 10: Acceptance function f for small (left) and large (right) parameter a.

strictly decreasing in P :

∂fi(P )

∂P
=

−aie
ai(P−bi)

(1 + eai(P−bi))
2 < 0.
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Define further the price elasticity of a risk type as the change of the number of
customers entering the contract with respect to the price variation:

EP =
∂fi(P )

∂P

P

fi
=

−aie
ai(P−bi)P

1 + eai(P−bi)
= −aie

ai(P−bi)Pfi(P ).

This measure illustrates the reactivity of the portfolio size to the variation of pre-
mium, cf. for instance [41, Ch.15].

6.1.1 Theoretical results

We first derive the analogous results to the ones in Sections 3, 4, under the sigmoid
acceptance function. The full information case still leads to an explicit formula:

Theorem 6.1. In the full information case, the expected profit of the insurer is
maximized for the premium choice

PL = µL +
1

aL
+

1

aL
W (eaLbL−aLµL−1) (25)

and
PH = µH +

1

aH
+

1

aH
W (eaHbH−aHµH−1), (26)

where W (z) denotes the (principal branch of the) Lambert W function, which is the
inverse function of g(x) = xex (cf. [10]).

Proof. The optimal premium choice is the solution of the optimization problem

{PL, PH} = argmax
x,y

E (Π) = argmax
x,y

n (pLfL(x)(x− µL) + pHfH(y)(y − µH)) .

We can characterize the maxima by the equations

∂E (Π)

∂x
= npL (f

′
L(x)x+ fL(x))− npLf

′
L(x)µL

!
= 0, (27)

∂E (Π)

∂y
= npH (f ′

H(y)y + fH(y))− npHf
′
H(y)µH

!
= 0. (28)

From (27) we have

npL

∂
(
1− 1

1+e−aL(x−bL)

)
∂x

(x− µL) + 1− 1

1 + e−aL(x−bL)

 = 0

⇐⇒ aL(x− µL) = 1 + e−aL(x−bL)

leading to (25). Equation (26) for the high-risk individuals is then obtained in a
completely analogous way.
To see that the extremal point is indeed a local maximum, one needs to verify

∂2E (Π)

∂x2
= npLf

′′
L(x)(x− µL) + 2npLf

′
L(x) < 0.
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Using {PL > µL, PH > µH} and

∂2f(P )

∂P 2
=

a2i e
−ai(P−bi)

(
1− e−ai(P−bi)

)
(1 + e−ai(P−bi))

3 ,

we can rearrange the previous condition as

f ′′
L(x)(x− µL) < −2f ′

L(x).

Since −2f ′
L(x) is always positive, f ′′

L(x) < 0 for all x < bL and x = PL > µL. The
same conclusion holds for the second derivative w.r.t. y.

Remark 6.2. Note that we can provide a necessary condition for PL to be smaller
than µH :

eaL(bL−µH) < aL(µH − µL)− 1. (29)

This condition is of interest for analysing the case when the low-risk type premium
yields losses in absolute terms if sold to a high-risk type. Also, one can easily ob-
tain sensitivities of the premium with respect to the parameters by means of first
derivatives.

∂Pi

∂µi

= 1 +
1

ai

∂W

∂µi

= 1− W (eaibi−aiµi−1)

1 +W (eaibi−aiµi−1)
, ∈ [0, 1] > 0,

∂Pi

∂bi
=

1

ai

∂W

∂bi
=

W (eaibi−aiµi−1)

1 +W (eaibi−aiµi−1)
, ∈ [0, 1] > 0,

∂Pi

∂ai
= − 1

a2i
− 1

a2i
W +

1

ai

∂W

∂µi

=
bi − µi

ai

W (eaibi−aiµi−1)

1 +W (eaibi−aiµi−1)
− 1

a2i

(
1 +W (eaibi−aiµi−1)

)
.

Concerning the sign of the last term, under bi > µi the first term is positive and
the second is negative. The overall difference is negative for small values of ai, but
positive for larger ai, that effect manifesting itself sooner if the difference bi − µi is
larger.

In case of no differentiation, we proceed as before by taking first order conditions
of the expected profit defined above in Equation (11):

∂E (Π)

∂z
=npL (f

′
L(z)z + fL(z)) + npH (f ′

H(z)z + fH(z))

− npLf
′
L(z)µL − npHf

′
H(z)µH

!
= 0.

Plugging in the sigmoid function f yields

pL

(
−aLe

−aL(z−bL)

(1 + e−aL(z−bL))
2 (z − µL) + 1− 1

1 + e−aL(z−bL)

)

+pH

(
−aHe

−aH(z−bH)

(1 + e−aH(z−bH))
2 (z − µH) + 1− 1

1 + e−aH(z−bH)

)
= 0,

which can be solved numerically. We establish that PL ≤ P ≤ PH , following the
assumption in (29).
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For the differentiation case, we have the problem defined in Equation (15) to
solve. Once again, as the first order conditions are symmetric, we will detail only
one of them.

∂E (Π)

∂v
=npL(1− pH|L) (f

′
L(v)v + fL(v)) + npHpL|H (f ′

H(v)v + fH(v))

− npL(1− pH|L)f
′
L(v)µL − npHpL|Hf

′
H(v)µH = 0

⇐⇒ pL(1− pH|L)

(
−aLe

−aL(v−bL)

(1 + e−aL(v−bL))
2 (v − µL) + 1− 1

1 + e−aL(v−bL)

)

+pHpL|H

(
−aHe

−aH(v−bH)

(1 + e−aH(v−bH))
2 (v − µH) + 1− 1

1 + e−aH(v−bH)

)
= 0.

(30)

Similarly, we also get

∂E (Π)

∂w
= 0 ⇐⇒ pL(pH|L

(
−aLe

−aL(w−bL)

(1 + e−aL(w−bL))
2 (w − µL) + 1− 1

1 + e−aL(w−bL)

)

+pH(1− pL|H)

(
−aHe

−aH(w−bH)

(1 + e−aH(w−bH))
2 (w − µH) + 1− 1

1 + e−aH(w−bH)

)
= 0.

(31)

These conditions characterize the optimum, which is then solved numerically.

6.1.2 Numerical illustrations

Let us look into the case of a sigmoid acceptance function (24) with parameters

aL = aH = 1, bi = 2µi, i ∈ {L,H}.

All other parameters remaining identical to those from Section 5, we obtain the
following results:

• Full information:

PL ≈ 2.567203,

PH ≈ 8.926367,

E (Π) ≈ 0.8030561n.

• No differentiation:

P ≈ 8.836827,

E (Π) ≈ 0.2998947n.

Note that P > µH > µL. In this case, the insurer targets the high risk type
audience because even if its size is smaller, with this acceptance function form he
can make higher margins on them, thus compensating their smaller size.
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• Differentiation:

P ∗
L ≈ 2.601853,

P ∗
H ≈ 8.91731,

E (Π) ≈ 0.6993114n− c(n).

Note that µL < P ∗
L < µH < P ∗

H .

Consequently, differentiation is only preferable here if the population size satisfies

0.6993114n− c(n) ≥ 0.2998947n, that is n/ln(γn) ≥ 2.503651c0,

in our case n ≥ 282.617. Conversely, the maximum cost the insurer is willing to pay
given a population size is given by:

c(n) < 0.3994167n.

For the variances, the results are as follows:

• Full information:
Var (Π) = 1.874096n.

• No differentiation:
Var (Π) = 1.089133n.

• Differentiation:
Var (Π) = 1.800876n.

Figure 11 depicts the form of the variance as function of the proposed premiums in
the different scenarios and its decomposition into the two parts (the variance arising
from the acceptance function and the one from the claim size variability), showing
again a hump pattern. Figures 12-14 illustrate the sensitivity of the variances of
the profit with and without differentiation, when varying one of the parameters.
In Figure 12, we observe that under small price elasticity, with more customers
entering the contract, the hump behaviour disappears, since at the limit there is no
gap in different risk types behaviour. The total variance is now mostly due to the
underwriting process via the acceptance function, and claim size variance has little
effect on the total variance. In contrast, a high price elasticity pushes different risk
types to stabilize around their pivotal point of their respective acceptance function,
accepting contracts only below this point, see Figure 13. All the variance of the
profit can then be explained by the claim size variance. Finally, Figure 15 gives the
mean-variance frontier in case of this sigmoid acceptance function.

We observe that the no-differentiation strategy changes depending on the form
of the acceptance function used in the analysis. This can be particularly relevant in
the case when a company conducts a study using a simplified linear form instead of
a more realistic logistic approximation.
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(a) Perfect information case. Left-hand side: Var (Π) as function of PL. Right-hand side:
Var (Π) as function of PH .

(b) No differentiation case.
Var (Π) as function of P .

(c) Differentiation case. Left-hand side: Var (Π) as function
of P ∗

L. Right-hand side: Var (Π) as function of P ∗
H .

Figure 11: Decomposition of the variance.

(a) No differentiation case. (b) Differentiation case.

Figure 12: Parameter a = 0.1. Under small price-elasticity of demand, we observe
higher levels of underwriting for both risk types, hence higher and smoother variance.

6.1.3 Sensitivities

Let us now investigate the sensitivity of the expected profit w.r.t. to each parameter.
The change in expected profits will allow to compute the variation in the maximal
cost for which the differentiation policy is still advantageous.

Parameter a: In the sigmoid curve of the acceptance function f , a represents the
steepness, giving the speed at which the function changes around its central point
(see Figure 10). We choose aL = aH = a, so we will vary it as a unique parame-
ter. We observe in Figure 16 that for higher levels of a, the steepness of the twist
increases, meaning that the values of the acceptance function grow closer to the
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(a) No differentiation case. (b) Differentiation case.

Figure 13: Parameter a = 10. Under big price-elasticity of demand, demand con-
centrates around pivotal points, thus different risk types only enter contract until
their pivotal point price, therefore steps are noticeable.

(a) No differentiation case.

(b) Differentiation case.

Figure 14: Parameter µH = 10. With a bigger expected claim size difference between
risk types, the relationship between the humps and the risk types becomes clearer.

points bL and bH . Thus, the price can be set closer to the twisting point, allowing a
higher proportion of individuals to enter the contract. As in our initial parametriza-
tion bi > µi, we gain strictly positive profit when pricing around bi. In the case of
no differentiation, we cannot entirely benefit from this feature, as one of our types
twisting point will end up far from the unique price P . Therefore, the maximum
cost the insurer is willing to invest into the classification method is increasing in the
parameter a. We can determine the limit:
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Figure 15: Efficient frontiers in the mean-variance setup for the three scenarios.

lim
a→+∞

c(a) = lim
a→+∞

E (Π(P ∗
L(a), P

∗
H(a)))− lim

a→+∞
E (Π(P (a)))

= lim
{P ∗

L→b−L ,P ∗
H→b−H}

E (Π(P ∗
L(a), P

∗
H(a)))−max

(
lim

P→b−L

E (Π(P (a))) , lim
P→b−H

E (Π(P (a)))

)
=pL(1− pH|L)(bL − µL)n+ pH(1− pL|H)(bH − µH)n+ pHpL|H(bL − µH)n

−max (pL(bL − µL)n+ pH(bL − µH)n, pH(bH − µH)n) ,

which in our case gives 0.63n.

(a) Function of a and n. (b) n fixed at 10000.

Figure 16: Maximum affordable investment cost for implementation of a differenti-
ation mechanism as a function of a and n.

Parameters bL and bH : Now we simultaneously vary the parameters bH and bL (the
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central points of the acceptance functions), see Figure 17.Naturally, the higher bi,
the higher will be the overall profit, as customers accept premiums until higher
thresholds. Therefore, it becomes more and more attractive to differentiate cus-
tomers to actually get this profit. Conversely, if bH grows ceteris paribus, the profit
increase becomes smaller with differentiation as the proportion of high-risk types is
too low to strongly influence the non-differentiation premium.

Figure 17: Maximum affordable cost as a function of bH , bL and n = 10000

6.2 Other risk measures

We give a short comparative analysis for two other risk measures replacing the
variance criterion (see Pflug and Römisch [33, Ch.5] for a more extensive list of
possible alternatives in the context of efficient frontier studies in decision making).

Lower semi-variance

The main drawback of a variance risk constraint is that positive deviations from
the mean are also penalized. In [28], Markowitz suggests the concept of the lower
semi-variance (LSV)

Var− (Π) := E
(
(min(0,Π− E (Π))2

)
of the profit Π to account for asymmetry of positive and negative deviations from
the profit target. In this case, analytical formulas are not feasible any more, but
one can obtain similar results by Monte Carlo simulation, using 1000 simulation
runs. For that purpose, rather than only specifying two moments, we need to take
an assumption of the entire distribution of claim sizes. The left plot in Figure 18
depicts the resulting efficient frontiers for the three scenarios for an assumption
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of Gamma distributions for the individual claim sizes with an additional atom at
0 with probability 0.25 (parameters consistent with their first two moments from
(23)) and all other parameters chosen as in (23). The right plot in Figure 18 shows

Figure 18: Efficient frontiers in the mean-LSV setup for the three scenarios under
the assumption of Gamma-distributed H (left) and Log-Normal H (right).

the results for H being log-normally distributed risks (and again matching the first
two moments). For instance, the intersection between the no-differentiation and
differentiation scenario takes place at a much higher threshold.

Value-at-risk

Let us now instead consider the Value-at-risk

VaRα(Π) := inf
{
x ∈ R : FΠ(x) > α

}
for some level 0 < α < 1. This measure is particularly focusing on the tail of the loss
(negative profit), when using small values of α. As for the LSV, we depict Monte
Carlo results for the case of Gamma-distributed H and Log-normal H (Figure 19)
risk types, where α = 0.025. That is, the profit can be lower than the value of
the abscissa in Figure 19 only with probability α = 0.025, so that the more left
in the abscissa one gets, the more risk-averse the strategy is. One observes that
high values of VaR0.025(Π) can only be obtained by the no-differentiation case. In
regions where that VaR-value can be attained by all strategies, the differentiation
strategy always dominates the one without differentiation. Note that for this level
of α, one virtually does not observe any difference between the case of light-tailed
and heavy-tailed losses, which is also due to the size of the portfolio.

6.3 Utility functions

Utility theory is a classical tool to combine risk and profitability of an insurance
undertaking in one function (see e.g. [35, 33]), so in this subsection we would like
to briefly look at the problem posed in this paper from the utility point of view.
Note that in this case the knowledge of the full loss distribution is needed, and not
only the first two moments as in Section 4. Assume that the insurer bases decisions
on a risk-averse (i.e., increasing and concave) utility function u(x). The insurer’s
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Figure 19: Efficient frontiers in the mean-VaR setup for the three scenarios for
Gamma-distributed H (left) and Log-Normal H (right).

optimization problem is then modified as follows:

max
PL,PH

E (u(Π)) , (32)

where the profit Π is given by the (4), which we can also write as

Π =

NL∑
j=1

ΠL
j +

NH∑
j=1

ΠH
j . (33)

Firstly, the moment-generating function of each ΠL
j is

MΠL
j
(t) = E

(
etΠ

L
j

)
= E

(
et(PL−L)

)
= etPLML(−t).

Analogously, MΠH
j
(t) = etPHMH(−t). By independence and classical collective risk

theory calculations (cf. [23]), we can then determine the moment generating function
of Π:

MΠ(t) = MNL
(logMΠL

j
(t)) ·MNH

(logMΠH
j
(t)).

The same reasoning applies to the non-differentiation case with setting PL = PH =
P . Finally, for differentiating pricing, an analogous derivation gives

MΠ(t) =MNL|L(logMΠL|L(t)) ·MNH|L(logMΠH|L(t))

×MNH|H (logMΠH|H (t)) ·MNL|H (logMΠL|H (t))e−tc(n).

In each of the cases, MΠ(t) can be inverted to obtain the c.d.f. FΠ(x) of the profit,
and the expected utility is then given by E (u(Π)) =

∫
x
u(Π(x))dFΠ(x).

For a numerical illustration, assume now that L ∼ Exp(αL) and H ∼ Γ(αH , λH). To
be consistent with (23), we choose αL = µL = 1, αH = µ2

H/σ
2
H , λH = µH/σ

2
H . Since

an explicit calculation of E (u(Π)) is not feasible, we add here numerical results from
a Monte Carlo simulation, simulating its value for each choice of PL, PH (across a
discrete grid of mesh size 0.05) using 1000 runs. For the sake of comparison, we use
three popular utility functions:
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• linear utility u(x) = x (leading to simply the expected value of the profit);

• exponential utility u(x) = −e−Ax for some risk aversion coefficient A > 0;

• quadratic utility u(x) = x−Bx2, x ≤ 1
2B

.

The results in Figures 20, 21, 22 show the expected utility for each of the available
premium combinations and each strategy for these three utility functions. Figure 20
serves as a reference point since it represents the simple expected profit as before.
One observes that the optimal solution clearly depends on the chosen utility function.
With the chosen parametrization of the exponential utility function, the difference
in the expected utility between the differentiation and not differentiation case is
less prominent than in the quadratic utility as the marginal utility of the quadratic
function is greater in this region.
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Figure 20: Expected linear utility as a function of premiums
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(b) No differentiation.

Figure 21: Expected exponential utility as a function of premiums (A = 0.0005)

30



−20000

−15000

−10000

−5000

0

5000

1 2 3 4 5

5

10

15

20

PL

P
H

perfect diff

(a) Perfect information (green heatmap) and
differentiation (red level curves).

0 5 10 15 20

−
2

0
0

0
0

−
1

5
0

0
0

−
1

0
0

0
0

−
5

0
0

0
0

P

E
(U

)

nodiffnodiff

(b) No differentiation.

Figure 22: Expected quadratic utility as a function of premiums (B = 0.00005).

7 Conclusion

In this paper, we investigated the problem of risk categorization under the possibil-
ity of classification errors for an insurance company. We highlighted the impact of
misspecification of risk classes on the company’s profit, which is a relevant topic due
to the growing use of black box techniques in classification. Resulting pricing errors
may lead to adverse selection via a modified acceptance behaviour of individuals to
enter a contract, potentially leading to extra costs due to lost market shares and
loss of premium inflow. In a simple model with two risk types and piece-wise lin-
ear acceptance function, we distinguished three pricing scenarios: full information,
undifferentiated pricing and costly price differentiation under error assumptions. In
this framework, we studied the optimal solution for simply maximizing expected
profit and more generally within a mean-variance framework, establishing efficient
frontiers for the premium choices. The cost of the risk categorization as a function
of population size will then eventually determine the optimal choice of premiums,
and to what extent risk classification is profitable.

The simplicity of the introduced model allowed to quantify the effects and con-
sequences of misspecification on the insurer’s profit. Clearly, it will be of interest
in future research to generalize the model assumptions in various directions. Be-
yond the extensions to more general acceptance functions and risk measures that
we already address to a first extent in Section 6 of the paper, it will be of interest
to extend the study to more than two risk categories. Another important direction
will be to introduce market competition into this model (cf. [16, 31]), as well as
the lapse behavior of policyholders between the different market players (see e.g.
[5, 30]). Also, while our probabilistic acceptance model already covers a certain
degree of randomness in the choice of insurance policies, it could be interesting to
more explicitly include bounded rationality as well as other elements of inertia of
policyholders and the markets in the modelling framework.

Statement: On behalf of all authors, the corresponding author states that there
is no conflict of interest.
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