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Transcriptomics-driven lipidomics (TDL) identifies the
microbiome-regulated targets of ileal lipid metabolism
Anirikh Chakrabarti1, Mathieu Membrez1, Delphine Morin-Rivron1, Jay Siddharth1, Chieh Jason Chou1, Hugues Henry2, Stephen Bruce2,
Sylviane Metairon 1, Frederic Raymond 1, Bertrand Betrisey1, Carole Loyer1, Scott J. Parkinson1 and Mojgan Masoodi1

The gut microbiome and lipid metabolism are both recognized as essential components in the maintenance of metabolic health.
The mechanisms involved are multifactorial and (especially for microbiome) poorly defined. A strategic approach to investigate the
complexity of the microbial influence on lipid metabolism would facilitate determination of relevant molecular mechanisms for
microbiome-targeted therapeutics. E. coli is associated with obesity and metabolic syndrome and we used this association in
conjunction with gnotobiotic models to investigate the impact of E. coli on lipid metabolism. To address the complexities of the
integration of the microbiome and lipid metabolism, we developed transcriptomics-driven lipidomics (TDL) to predict the impact of
E. coli colonization on lipid metabolism and established mediators of inflammation and insulin resistance including arachidonic acid
metabolism, alterations in bile acids and dietary lipid absorption. A microbiome-related therapeutic approach targeting these
mechanisms may therefore provide a therapeutic avenue supporting maintenance of metabolic health.
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INTRODUCTION
The gut microbiome is now recognized as an important factor in
pathogenesis of metabolic diseases and a target for therapeutic
intervention to maintain and improve health.1–3 Several studies
indicate that alteration of gut microbiota may play a key role in
development of diseases associated with altered lipid metabo-
lism.4–7 Technical developments in lipid characterization8–11 and
database curation12–14 have facilitated the study of lipid
metabolism. However, our knowledge of the molecular mechan-
isms underlying microbiome regulation of host lipid metabolism
is limited and hampered by the complex nature and
prevailing technical limitations within the microbiome and
lipidomics fields.
The microbiome has been promoted as a potential target to

regulate lipid metabolism and metabolic function. One approach
to bring this to fruition is the use of predictive models as a method
to reduce the “search space” to focus on pathways with the best
chance of success in conjunction with legacy knowledge. In
addition, recent advances in the annotation of databases
(organism level databases like Reactome15,16 and lipid-related
databases like LIPID MAPS13) and data integration from technical
advances in other fields like transcriptomics, proteomics, meta-
bolomics (and others) could provide an integrated view to identify
specific intervention points and develop testable hypotheses.
Another valuable tool available for investigating complex, highly
interconnected biochemical transformations is genome-scale
metabolic model (GEM)17,18 which can elucidate metabolic
genotype–phenotype relationships within lipid metabolism. These
have been used to make systems biology models of sphingolipid
metabolism19 to analyze differences in adipose tissue physiolo-
gies,20 to study aberrant lipid metabolism in prostate cancer21 and
for blood analysis in type 2 diabetes mellitus.22 All of these

approaches have individual strengths and weaknesses; however,
an integrated approach combining previous knowledge, curated
databases and metabolic modeling have not been considered,
especially in the context of lipid metabolism.
In order to identify key pathways involved in microbiome

regulation of lipid metabolism we took advantage of gnotobiotic
preclinical models and an Escherichia. coli (E. coli) strain isolated
from an obesity mouse model (Ob/Ob). Analysis of mRNA levels in
the ileum were put into context of lipid metabolism using an
integrated approach considering legacy knowledge, lipid data-
bases (e.g., LIPID MAPS13), pathway databases (Reactome15,16) and
tissue-specific GEMs23–26 (further referred to as TDL (transcrip-
tomics-driven lipidomics)) to predict likely changes in lipid
metabolism in response to E. coli colonization (Fig. 1). Using TDL
we predicted and demonstrated how E. coli colonization drives an
increase in arachidonic acid metabolites and a decrease in
components of glycerophospholipid metabolism via bacterial
invasion leading to host inflammation, altered bile acid metabo-
lism, and altered dietary lipid absorption.

RESULTS
Preclinical model strategy to integrate microbiome and lipid
metabolism
The microbiome and lipid metabolism are two complex and
integrated components that require simplification to identify
strategies for potential intervention. We therefore took advantage
of gnotobiotic animal models to control for environmental factors
including the microbiome composition (Fig. 2a, materials and
methods). We decided to focus on the impact of E. coli
colonization. While E. coli's are generally recognized to impact
lipid metabolism, there are many strains with diverse
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characteristics relative to pathogenesis and metabolism. Relevant
to our goal of identifying the impact on lipid metabolism, we
isolated an E. coli strain (M8) from a mouse model of obesity and
metabolic disease (Ob/Ob) (previously used in Chakrabarti et al.27).
Our in vivo studies thus included analysis of germ-free (GF) mice
and GF mice inoculated with the M8 strain (referred to as M8
mice) (Fig. 2b, materials and methods). Analysis of the M8
chromosome and plasmid genomes (supplementary S1Data.xlsx)
demonstrated the presence of 25 genes relevant for lipoprotein
metabolism, including genes for synthesis (lipA), trafficking (lolA,
lolC, lolD, lolE and lolB) and lipoprotein export.
In addition to genes directly targeting lipid metabolism, the M8

isolate also contained several genes associated with an adherent
and/or invasive phenotype.28,29 These included tibA and yadA
adhesion genes previously characterized in Yersinia and ten genes
in the colanic acid pathway previously implicated in uropatho-
genic E. coli for adhesion.30 Fluorescence in situ hybridization
(FISH) analysis demonstrated adherence and invasion of the
M8 strain into the mouse ileum consistent with the genomic
content of the strain. Tissue-associated M8 were detected in the
lumen as well as the lamina propria, submucosal spaces and
intestinal crypts (Fig. 2c,d) indicating invasion of the host by the
M8 strain. While the observed colonization could be due to
opportunistic pathogenesis of an immature GF ileum, the
phenotypic characterization of the mouse model was conducive

to identify potential pathways by which E. coli can regulate lipid
metabolism and contribute to the regulation of metabolic health.
Another general property of E. coli strains is their bile-acid

resistance.6,31 In vitro assays demonstrated that this was also the
case with the M8 strain (not shown). Since bile plays an important
role in absorption of dietary fat, we also examined the bile acid
composition of the mice with or without M8 colonization. We
observed an overall trend towards increased total bile acids (no
statistical difference) upon M8 colonization (Fig. 2e). Six primary
bile acids were specifically identified, including TCA (taurocholic
acid), TCDCA (statistically higher in M8), TUDCA, bMCA (statistically
higher in M8), TaMCA (higher trends in M8) and TbMCA (higher
trends in M8) (nomenclatures of bile acids tabulated in Table 1,
supplementary S2Data.xlsx). TCDCA, a cytotoxic bile acid, levels
increased upon M8 colonization while TUDCA levels did not
change significantly. The M8 isolate lacks an annotated bsh gene
consistent with the lack of secondary bile acids observed in the
cecal contents.
Overall, the rationale presented for the preclinical model

reproduced many aspects (e.g., pathogenesis, bile acid, and lipid
metabolism) by which the microbiome (and in particular E. coli)
could regulate lipid homeostasis in the host. These properties
likely impact host lipid metabolism via a complex integration of
signals and host/commensal interactions. We next sought to
develop a method to strategically focus our attention to pathways

Fig. 1 Transcription-driven lipidomics (TDL) strategy and its implications. TDL is an integrated strategy for hypothesis driven lipidomics survey
coupling transcriptomics and combination of legacy knowledge, lipid databases, pathway databases and tissue specific genome-scale
metabolic models to hypothesize predictions of potentially altered lipid metabolism (both at the level of specific lipid species and pathways)
in health and disease
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Fig. 2 In vivo study plan and findings. a In vivo study plan of the monoinoculation experiment. b E. coli counts in the feces between M8 mice
and GF mice feces at the end of the experiment. Bars indicate mean and error bars indicate standard deviation around the mean. c FISH
analysis of GF ileum slices. No bacteria were observed in the GF cross section. Bar= 50 µm. d FISH analysis of M8 mice ileum slices. Bar= 50
µm. E. coli was observed in deeper tissue layers including the lamina propria of the mucosa, submucosal spaces and intestinal crypts. e Cecal
bile acids comparison between GF and M8 mice. Bars indicate mean and error bars indicate standard deviation around the mean. GF germ-
free, M8 GF mice monoinoculated with M8 strain of E. coli, DAPI 4′,6-diamidino-2-phenylindole, CY3 cyanine 3, bMCA β-muricholic acid, TaMCA
tauro-α-muricholic acid, TbMCA tauro-β-muricholic acid, TCA taurocholic acid, TCDCA taurochenodeoxycholic acid, TUDCA tauroursodeoxy-
cholic acid
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that potentially underlie the regulation of lipid metabolism by the
microbiome.

Transcriptomics-driven lipidomics (TDL)
Current lipidomics analysis focused on legacy knowledge (top
branch of Fig. 1) has limitations including the space explored of
lipid metabolism and/or technical restraints and results could be
confounded by the stability of the lipids, sample processing, and
detection limits. For example, currently ~100,000 lipid species
have been identified and it would be impossible to capture all
these species experimentally. Taking account of the recognized
role of the ileum in lipid absorption and the observed association
of the M8 strain with the tissue, we extracted mRNA from GF and
M8 mice for transcriptomics analysis by microarray. We focused on
mRNA because of its recognition as an efficient method for
characterizing the metabolic state of target tissue/cells allowing us
to take a systems level view of the complexities of lipid
metabolism and host/microbe interactions. In order to improve
the confidence on the biological interpretation of lipidomics data,
we developed TDL (materials and methods), wherein using
transcriptomics of the target area under investigation, and using
lipid, organism and biochemical databases and GEMs to generate
a hypothesis allowing us to predict a condition-specific list of
potentially altered lipids for further measurement and analysis.

Ileum transcriptomics
After corrections for multiple comparisons by FDR, microarray
analysis identified 696 differentially expressed mRNA’s (supple-
mentary S3Data.xlsx) between the two groups of mice. 400
transcripts had higher expression levels in GF as compared to 296
higher in M8 mice (Fig. 3a). Strongest upregulated transcripts in
M8 mice included Saa1 (serum amyloid A1), Retnlb (resistin like
beta), Mptx1 (mucosal pentraxin 1) and Defb1 (defensin beta 1)
while strongest downregulated transcripts in M8 mice included
Defa15 (defensin alpha 15), Ces1g (carboxylesterase 1G) and Krt12
(keratin 12). In general the microarray data indicated alterations in
lipid metabolism, G protein-coupled receptor signaling, immune
system signaling, cytokine signaling, Wnt signaling and trans-
membrane transport upon M8 colonization. In particular Ces1g
deficiency has been associated with weight gain, insulin
resistance, fatty liver and hyperlipidemia through upregulation
of de novo lipogenesis and oversecretion of triacylglycerol-rich
lipoprotein.32 With respect to altered bile acid levels identified
earlier, four key genes were differentially expressed between GF
and M8 mice in the ileum. These included SLC2A9, Acox2, SLC13A2
(all statistically reduced in M8 mice) and SLC2A10 (statistically
increased in M8 mice). These could potentially impact the
resorption/circulation of bile acid in the ileum (supplementary
S4Data.xlsx). Additionally, further qPCR analysis of CYP7A1
(statistically higher levels in M8 mice with P-values 0.0003 using
Mann Whitney test), CYP27A1, CYP7B1 and CYP8B1 genes in the
liver indicated M8 mediated impact in bile acid production in the
liver (data not shown).

These data demonstrate that M8 colonization of mice targeted
pathways known to regulate lipid metabolism. We next sought to
determine how these changes in mRNA reflected the new state of
lipid metabolism in M8 mice.

TDL–transcriptomics and LIPID MAPS
In TDL, we first mapped the differentially expressed genes to the
LIPID MAPS Proteome Database (LMPD)13 (materials and meth-
ods). LMPD with its comprehensive tabulation of major lipid
species, regulatory genes and biochemical pathway mappings
allowed identification of potential impact of the differentially
expressed components specific to lipid metabolism. For Mus
musculus, of the 1082 unique genes implicated in altering lipid
metabolism in LMPD, overlaying differentially expressed genes
(696 genes identified above), we identified 51 unique genes
potentially affecting lipid metabolism (Fig. 3c and supplementary
S5Data.xlsx). Potential effect space of these 51 lipid related genes
were analyzed using KEGG33,34 and Reactome.15,16 Overall, these
genes were predicted to impact acyl chain remodeling as well as
biosynthesis of glycerophospholipids including PE, PI, PS, PG, PC
(abbreviations in Table 2), arachidonic acid and alpha-linolenic
acid metabolism, digestion of dietary lipids, glycosphingolipid
metabolism, lipoprotein metabolism, very long-chain fatty acyl-
CoAs biosynthesis, cholesterol biosynthesis and sphingolipid
metabolism.

TDL–transcriptomics and reactome
Subsequently, as opposed to constraining ourselves with only pre-
curated lipid metabolism-related genes (as discussed above), we
explored the potential effect of all the 696 differentially observed
genes using Reactome.15,16 Specifically for Mus musculus, these
696 genes were potentially impacting 789 predicted classes/
groups (supplementary S6Data.xlsx). We further shortlisted the
predicted list to those affecting lipid metabolism, thus leaving us
with 58 unique differentially expressed genes (Fig. 3c) impacting
lipid metabolism across 43 different classes/groups. Overall, acyl
chain remodeling as well as biosynthesis of glycerophospholipids
(PE, PI, PS, PG, PC), phospholipid, glycosphingolipid and sphingo-
lipid de novo biosynthesis, arachidonic acid and alpha-linolenic
acid metabolism, cholesterol biosynthesis, triglyceride biosynth-
esis and lipoprotein metabolism were predicted to be impacted.
Although there were overlaps between LMPD and Reactome in

terms of predicted alterations in lipids, exact tissue/cellular specific
information about what might be affected and which exact lipid
species was still missing. To address this, we next used GEMs of
ileum.

TDL–transcriptomics and GEMs
We used the reconstructed GEM for mouse ileum metabolism23

for our current study. Ileum GEM covers about 1353 genes and
4525 reactions involving 3874 metabolites. Essentially, this
captures a subset of metabolic enzymes, at the tissue level, giving
higher resolution and tissue-specific information about which
subset of metabolic enzymes and pathways are relevant in
altering lipids. A key point to note is that the GEM used has
limitations in terms of depth of granularity for different lipids. Of
the 696 differentially regulated transcripts, 54 were relevant/
implicated to the ileum GEM (supplementary S7Data.xlsx) (Fig. 3d).
These genes could impact reactions in different forms. Some
reactions could be directly impacted by differential expression of
one gene/reaction (different reactions different genes, one gene
per reaction), while others by combinations of two or more genes.
For example, in the case of reaction H+

[c] + NADPH[c] + O2[c] +
retinoate[c] = >18-hydroxy-all-trans-retinoate[c] + H2O[c] + NADP+[c],
there are two genes, which could impact it (CYP2C55 and CYP4B1,
both differentially expressed). Thus, by translating the statistically

Table 1. Nomenclature used for bile acids

Short form Full name

TCA Taurocholic acid

TCDCA Taurochenodeoxycholic acid

TUDCA Tauroursodeoxycholic acid

bMCA β-muricholic acid

TaMCA tauro-α-muricholic acid

TbMCA tauro-β-muricholic acid
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different and metabolically relevant genes to the reactions, we
predicted that the 54 genes could impact 400 metabolic reactions
(supplementary S7Data.xlsx). Of these reactions, 330 were
primarily affected by differential expression of one gene. For
example, ACSL6 gene was predicted to impact 114 reactions
singularly. For the other reactions (70), there were two or more
genes that affected them. These 400 reactions could correspond-
ingly impact directly the levels of 743 metabolites. These
metabolites were spread across multiple compartments (e.g.,
cytosol, mitochondria) and ranged from H+ to complex lipids. We
filtered this list of metabolites by using the composition filter of

C4H8O2 (except for CHO, as a cutoff for lipid and lipid related
species) to further narrow down the predicted space of
metabolites.

TDL–formulating consensus predicted lipidome
Legacy knowledge and our preclinical results presented above
suggested that E. coli colonization could alter bioavailability and
digestion of dietary lipids, induce inflammatory and immune
response and directly contribute to measured lipids and lipid
metabolism status in the ileum. Using different branches of TDL

Fig. 3 TDL inputs and predictions. a Volcano plot of the P-values and the fold changes of the ileum transcriptomics data. mRNA species
highlighted in green are those with P-values <0.05 after FDR correction and with fold change >1.5, i.e., higher in GF. mRNA species highlighted
in red are those with P-values <0.05 after FDR correction and with fold change <−1.5, i.e., higher in M8 mice. b Legacy knowledge about impact
of E. coli on alterations in lipid metabolism included impacts mediated by inflammation and alterations in dietary lipids. c Coupling differential
gene expression data from ileum transcriptomics and organism level databases (lipid specific e.g. LIPID MAPS and non-lipid specific, e.g.,
Reactome) allowed us to predict using different genes potential alterations in lipid metabolism. d Coupling differentially expressed genes in the
ileum to genome-scale metabolic models (GEMs), we could predict potential alterations in terms of biochemical transformations (reactions) and
participating metabolites (including lipids). Compiling the predictions from different branches of TDL, we formulate the predicted search space
of altered lipids for further measurement and analysis. e Comparison of differentially expressed genes implicated by different aspects of TDL. GF
germ-free, M8M8 GF mice monoinoculated with M8 strain of E. coli, GEMs genome-scale metabolic models
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we predicted impacts in the level of both lipid species and classes.
Owing to inherent differences in the databases, the information
contained depths and scope of curation, different sets of genes
provided different prediction. For example, 32/58 genes impli-
cated by Reactome to impact lipid metabolism were common to
the LMPD database (Fig. 3e), of which 15 were common to GEMs.
Similarly, 21 genes were commonly implicated between GEMs and
LMPD branches and 22 between GEMs and Reactome branches.
Interestingly, 26 genes can be uniquely accounted to impact lipid
metabolism by GEMs, 13 uniquely by LMPD and 19 uniquely by
Reactome. Fold changes of all the genes (impacting lipid
metabolism via Reactome, LMPD and GEMs, 103 genes in total)
are shown in Fig. 4a. Genes are sorted based on which branch and
how many branches of TDL are accounted to predict changes in
lipid metabolism. The top 15 genes (i.e., ACAA1A to PRKCE) are
commonly accounted by all branches of TDL and predictive of
impacting lipid metabolism. The next 30 genes (i.e., AKR1A1 to
VAPB) are accounted by only two branches of TDL (i.e., either
Reactome and LMPD, or LMPD and GEMs or Reactome and GEMs).
The next 58 genes (i.e., ADSL to AKR1B10) are accounted by only
one branch of TDL in predicting changes in lipid metabolism. Thus
each of the branches has unique findings to add to the cumulative
predicted altered lipidome. Subsequently, we formulated a
consensus predicted lipidome as an unbiased compilation of the
predictions (Fig. 3b–d) from all branches of TDL. This predicted
altered list comprised of exact lipid species, e.g., LTB4, 1-HETE and
lipid classes (e.g., PI, PC pools). Additionally, we also included
several lipid classes (predicted to be unaffected) for measurement

to serve as negative controls. Relationship between the individual
genes and the lipids or lipid pathways for each of the branches of
TDL is provided in supplementary S12Data.xlsx.

Ileum lipidomics
We next evaluated the utility of the TDL strategy to help direct our
investigation of the impact of E. coli on lipid metabolism in a
hypothesis-driven manner. In total, we measured and annotated
383 lipid species (materials and methods). Selection of annotated
species was based on the cumulative predicted altered lipid
species by the TDL strategy (described above). Of the 383
annotated species, 55 lipids were significantly different between
GF and M8 mice ileum samples (Fig. 4b, supplementary S8Data.
xlsx).
TDL predictions comprised of ~700 components, including 462

unique species (removing duplicate species across different
cellular compartments), 138 CoA’s (which we did not measure
due to tissue limitations), 13 pools (1-acylglycerol-3P-LD-TG1 pool,
1-acyl-PE pool, 2-lysolecithin pool, ceramide pool, fatty acid-LD-PC
pool, fatty acid-LD-PE pool, fatty acid-LD-TG2 pool, fatty acid-
retinol pool, glucosylceramide pool, LacCer pool, PC-LD pool, PE-
LD pool, PI pool), 23 species which included non-lipid related
cofactors and molecules such as ATP, ADP and NADP amongst
others. Of the 288 unique lipid species remaining, 30 belonged to
the arachidonic acid metabolism (AAM), specifically identified
using the GEM branch of TDL (supplementary S9Data.xlsx). The
other branches of TDL also predicted alterations in the pathway
level for AAM. This demonstrates one key advantage of using TDL,
wherein we obtain exact name of the lipid species to measure
based on the study-specific transcriptomics profiles. Genes
impacting this prediction included ACSL6, CYP2C55, GPX1, ACAA1A
and HPGD (connections between the genes in Fig. 4a and
predicted lipids in Fig. 4b shown using gray number-filled circles).
For example, alterations in GPX1 mRNA levels in M8 mice
translated to predicted alterations in 15-HETE and 5-HETE lipids.
Correspondingly, we measured over 100 bioactive lipid species
within arachidonic cascade11,35 out of which, ten lipids were
statistically different between GF and M8 mice. All the ten lipids
(11-HETE, 13-HDoHE, 13-oxoOD, 14-HDoHE, 15-HEPE, 15-HETE, 17-
HDoHE, 5-HETE, LTB4 and PGJ2) had higher levels in the M8 mice
(Fig. 4b, abbreviations in Table 2). ACSL6, GPX1, ACAA1A and HPGD
were commonly accounted for by all branches of TDL to impact
AAM. However, CYP2C55 gene was uniquely accounted for by GEM
branch of TDL to impact LTB4 and 11-HETE levels involved in AAM.
This demonstrates the utility of using a combination of multiple
branches in reaching the comprehensive predicted lipidome for
measurement and analysis. E. coli’s in earlier studies was
implicated in altering levels of AAM components,36 which was
also reported to mediate inflammatory status in the host.37

From TDL, we also get information about lipid classes (or pools)
to measure. This is due to a combination of lack of detailed
mechanistic knowledge available or compiled in GEMs. We
measured and analyzed lipids across different classes: (a) classes
predicted from all the branches of TDL, (b) predicted by only one
branch of TDL, and (c) predicted by none of the branches of TDL.
All branches of TDL predicted impacts on PI, PC, ceramide,

glucosylceramide, DAG, TAG and PE pools. PI’s were predicted to
be impacted both by the database branches of TDL (via acyl chain
remodeling by genes PLA2G2F, PLA2G16, PLA2G12A, PLA2G2D,
MBOAT7, PLA2G2A, PLA2G4A, synthesis by genes CDIPT, PI
metabolism by genes PIP5K1A, INPP5K, PIP5K1B, PIK3CG and
MTMR7) and by the GEM branch of TDL (via gene MTMR7, coding
for myotubularin related protein 7) (Fig. 4b). Of the 18 PI species
measured, 5 (PI 34:2, 36:2, 36:3, 36:4 and 38:4 (all reduced in M8
mice)) were significantly different (Fig. 4b). Similarly, impact on
PC’s were predicted by all branches of TDL (via acyl chain
remodeling by genes PLA2G2F, PLA2G16, PLA2G12A, PLA2G2D,

Table 2. Nomenclature used for lipids

Short form Full name

PE Phosphatidylethanolamine

PI Phosphatidylinositol

PS Phosphatidylserine

PG Phosphatidylglycerol

PC Phosphatidylcholine

PA Phosphatidic Acids

Cer Ceramide

DAG Diacylglycerol

TAG Triacylglyceride

PS Phosphatidylserine

LPI Lysophosphatidylinositol

LPC Lysophosphatidylcholine

LPG Lysophosphatidylglycerol

LPS Lysophosphatidylserine

SM Sphingomyelin

LPA Lysophosphatidic acids

11-HETE (±)11-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid

13-HDoHE 13-hydroxy-4Z,7Z,10Z,14E,16Z,19Z-docosahexaenoic acid

13-oxoOD 13-oxo-octadecanoic acid

14-HDoHE (±)−14-hydroxy-4Z,7Z,10Z,12E,16Z,19Z-docosahexaenoic
acid

15-HEPE (±)−15-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid

15-HETE 15-Hydroxyeicosatetraenoic acid

17-HDoHE (4Z,7Z,10Z,13Z,15E,19Z)-17-hydroxydocosa-
4,7,10,13,15,19-hexaenoic acid

5-HETE 5-Hydroxyicosatetraenoic acid

LTB4 Leukotriene B4

PGJ2 Prostaglandin J2
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PLA2G2A, PLA2G4A and synthesis by gene CHKB) and by the GEM
branch of TDL (via gene PLA2G4A (higher in M8 mice)) (Fig. 4b). 2/
17 PC species (PC 35:2 and 37:2 (both reduced in M8 mice)) were
significantly different (Fig. 4b). Alterations in Sphingolipid
metabolism was predicted by all the branches of TDL. Specifically,
the GEM branch of TDL predicted changes in ceramide and

glucosylceramide pools. 3/6 ceramide species (Cer 40:1, 42:1 and
42:2, all reduced in M8 mice) were significantly different (Fig. 4b).
Key genes mediating this prediction were GBA (fold change 1.26,
higher in GF), VAPB (fold change 1.20, higher in GF) and OGT (fold
change 1.52, higher in GF). 2/45 DAGs (DAG 35:0 (increased in M8
mice) and DAG 40:4 (reduced in M8 mice)) were significantly
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different (Fig. 4b). 18/94 TAGs (TAG 50:2, 51:3, 52:2, 52:3, 52:4, 53:0,
53:2, 53:3, 53:4, 53:5, 54:3, 54:4, 54:5, 54:6, 58:3, 58:4, 58:5 and 60:4
(all except TAG 53:0 were lower in M8 mice)) were significantly
different. We observed that 0/23 PEO species, 5/9 LPE-O species
(LPE-O 16:1, 18:0, 18:1, 20:0, 20:1 (all increased in M8 mice)) and 0/
12 LPE species were significantly different. Similar to the PC pool,
the genes PLA2G2F, PLA2G16, PLA2G12A, PLA2G2D, PLA2G2A,
PLA2G4A and CHKB were the key genes predicting the changes

for PE’s. For PE’s, the prediction was at a higher level and did not
have a deeper resolution into the specific sub-groups.
Impacts on certain lipid classes were predicted by only selective

branches of TDL, e.g., PS and PG pools. Both PS and PG pools were
predicted to be impacted by the database branches and not the
GEM branch of TDL. 8/23 PS species (PS 36:1, 36:2, 38:3, 38:4, 40:1,
40:2, 40:3 and 40:4 (all reduced in M8 mice)) were significantly
different (Fig. 4b). 1/12 PG species (PG 18:1/16:0 (reduced in M8
mice)), was significantly different. This illustrates differences in

Fig. 4 TDL predictions and lipidomics measurements. a Fold changes of statistically different genes between GF and M8 mice ileums which
are implicated in affecting lipid metabolism in the ileum. Genes are sorted based on their implications in different aspects of TDL. First column
indicates whether a corresponding gene is implicated in impacting lipid metabolism via GEMs (G – if yes, else -), via LMPD (L – if yes, else -) and
via Reactome (R – if yes, else -). Second column indicates the corrected p values after FDR correction. Third column indicates the gene name.
Green filled bars indicate higher expression in GF, while red filled bars indicate higher expression levels in M8 mice ileum. b Logarithm of the
ratios of the average levels of statistically different lipids between GF and M8 mice ileums are shown. Green filled bars indicate higher lipid
levels in GF, while red filled bars indicate higher levels in M8 mice ileum. Blue filled bars indicate lipids observed only in GF samples and yellow
filled bars indicate lipids observed only in M8 mice samples. Lipids are sorted based on type. Gray circles with numbers across panel a and
panel b illustrate which gene tabulated in panel a is predictive of which lipid species or lipid classes shown in panel b. For example, gene
ACAA1 marked with gray circle with the number 1 is predictive of alterations in the levels of the lipid LTB4. GEMs genome-scale metabolic
models, LMPD LIPID MAPS, remaining lipids are tabulated in Table 2

Fig. 5 Altered ileum lipid metabolism upon E. coli (M8 strain) colonization. Genes indicated in red or green text indicate statistically different
fold changes with correspondingly higher or lower amounts in M8 mice as compared to GF mice ileums. Red or green filled circles indicate
statistically higher or lower amounts of lipids in M8 mice as compared to GF ileums as demarcated in legend (a). Solid line arrows indicate
direct connection between two species, dotted line with arrow between two species indicate multiple step connection and dotted line
without a species on one end indicate connections not shown as demarcated in legend part (b)
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terms of predictive capabilities and scope of different branches
of TDL.
Lysophposphatidylinositol (LPI), lysophosphatidylcholine (LPC),

lysophasphatidylglycerol (LPG), sphingomyelin (SM), lysophosphatic

(LPA), were predicted to be unaffected by TDL. As a negative
control, we analyzed these species. Consistent with the predic-
tions, levels of 6/6 LPI’s, 4/4 LPC’s, 17/17 LPG’s, 4/4 SM’s, 15/15
LPA’s were not statistically different.
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Fig. 6 TDL performance and multifactorial impacts on lipid metabolism. a TDL performance in predicting changes in different lipid classes. b
In vitro experiments to identify potential contributions of bacteria to produce the statistically different lipids observed between GF and M8
mice ileum samples. c Hypothetical avenues of E. coli mediated impacts on ileum lipid metabolism. Abbreviations: lipid abbreviations
tabulated in Table 2, GEM genome-scale metabolic model, Ctrl control, TCA taurocholic acid, HG high glucose, LG low glucose
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Several lyso phospholipids were also measured including; LPI
(0/6 statistically different between GF and M8), LPC (0/4 statistically
different), LPE (0/12 statistically different), LPS (1/17 statistically
different), LPA (0/15 statistically different), LPCO (0/4 statistically
different), LPG (0/17 statistically different).
In some cases the predictions of TDL were wrong. For example,

PA’s were predicted to be impacted by the database branches of
TDL but not by the GEM branch. However, 12/12 PA’s measured
showed no significant differences. Lysophosphatidylserines (LPS)
were predicted not to change by any of the branches. However
out of 17 LPS species measured, LPS 22:6 was present only in M8
mice (Fig. 4b). In addition, several lipids, including DAG 40:4, PC
37:2, TAGs 51:3, 53:2, 53:3, 53:4, 53:5, 58:3, 58:4, 58:5 and 60:4 were
only observed in GF. These molecules could be reduced directly or
indirectly by the presence of M8 to below detection limits (blue
filled bars in Fig. 4b).
Overall, the changes in lipid metabolism between GF and M8

mice were focused around a decrease in glycerophospholipids
and increase in AAM (Fig. 5). Except for the wrong predictions in
case of PA, the presence of LPS 22:6 and lack of resolution in case
of PE, TDL predictions were favorably recapitulated in the
measured lipids (Fig. 6a, supplementary note). Compiling the
predictions of TDL and lipid measurements, we can categorize the
different lipid classes into different categories; (a) Category 1: all
TDL branches predicted change correctly (e.g., PI, PC, Ceramide
pools), (b) Category 2: only one TDL branch predicted change and
it was correct (e.g., phosphatidylserine (PS), phosphatidylglycerol
(PG) pools), (c) Category 3: all TDL branches predicted no change
and it was correct (e.g., LPI, LPC pools), (d) Category 4: only one
TDL branch predicted change and it was wrong (e.g., PA pools), (e)
Category 5: all TDL branches predicted no change and it was
wrong (e.g., PE pool), and (f) where none of the TDL branches
predicted change and it was wrong (e.g., LPS pool). Overall, TDL
methodology is not perfect and does not give a 100 percent
correct prediction. However, as compared to using one branch
(i.e., either legacy knowledge, databases or GEMs alone), a
comprehensive and integrated strategy, as presented in TDL
makes it better poised to provide reliably a predictive altered lipid
space for measurement and analysis. Some of the current
limitations and improved accuracy can and will eventually be
solved as annotations and compilations in databases and GEMs
become more encompassing.
Besides the ileum, 127 lipids were measured/annotated/

analyzed in the duodenum, 179 in jejunum and 164 in the colon.
Data is provided in the supplementary data S11Data.xlsx. There
were no statistical differences in the lipids between GF and M8
mice in the jejunum and colon. However, 3/127 lipids, including
PGF2a, PG 20:4/18:2 and PI 39:4 (reduced levels in M8 mice) were
statistically different between GF and M8 mice in the duodenum.
We found a lot of variability in the lipid levels in the duodenum,
jejunum and colon as compared to a distinct altered response in
the ileum, thus emphasizing our choice to focus on the ileum.

In vitro assessment of bacterial lipids
One limitation of the metabolic models and databases used is that
they can only account for lipid metabolism changes dependent on
the state of the host. Interestingly, TAG 53:0, DAG 35:0, LPE-O 20:1
and LPS 22:6 were detected only in M8 samples (yellow filled bars
in Fig. 4b). One explanation for the unique presence of these
molecules in M8 mice could be that they are potentially of E. coli
origin. Lipids with odd-chain fatty acids, such as the M8-specific
lipids TAG 53:0 and DAG 35:0 are of non-mammalian origin. To
investigate the metabolic flexibility and potential direct contribu-
tion of M8-derived lipids to the GF and M8 mice profiles, we
conducted in vitro studies with the M8 isolate under different
growth conditions (low/high glucose, ±Palmitic Acid, ±Palm Oil,
±TCA: materials and methods) (Fig. 6b). A total of 235 lipid species

were measured, annotated and analyzed (supplementary S10Data.
xlsx). Ninety seven lipids were commonly observed between
in vitro and in vivo samples. Maximum diversity of lipids were
observed in control and TCA + Palm Oil growth conditions. 16/97
common lipids were observed at statistically different levels
between GF and M8 ileums. LPE-O 16:1 and LPE-O 18:1 (both
higher in M8) could be selectively produced by M8 in vitro (high
glucose + TCA). PG 18:1/16:0 (lower in M8) was produced by M8
irrespective of the in vitro growing conditions. Several TAG’s were
detected under specific in vitro growth conditions (Fig. 6b). This
included TAG 53:0 that was previously detected only in M8 mice
ileums.
Overall, our approach determined five main mechanisms by

which host/commensal interactions regulate the lipid composition
of the host. These include alterations in bile acid metabolism, the
bioavailablility of dietary lipids, inflammatory status, infiltration of
commensal bacteria, and bacterial lipids. These mechanisms
integrate in a matrix-driven manner and regulate lipid home-
ostasis in the host. Arachidonic acid and glycerophospholipid
metabolism may be potential pathways that can be exploited by
microbiome-targeted therapeutics for obesity and metabolic
disease.

DISCUSSION
Metabolic disorders are characterized by altered lipid metabolism,
gut microbiota and low-grade inflammation.38 Microbiome, by
itself is implicated in altering lipid metabolism39 and impacting
the pathophysiology of several diseases. E. coli specifically impacts
host lipid metabolism6 and is regarded as resistant to the
antibacterial functionality of bile acids.31 The ileum plays a key
role in absorption of luminal bile acids and emulsified dietary
lipids.40 Thus, modulating the metabolic status of the ileum might
be an opportunity for the gut microbes (e.g., E. coli) to create an
adaptive and facultative local microenvironment. Knowing this,
we used a gnotobiotic in vivo system with/without E. coli
(M8 strain) colonization to investigate lipid metabolism alterations
in the ileum to identify molecular mechanisms by which E. coli
plays a role in obesity and metabolic disorders. In the current
study, we focused on the effect of colonization of live E. coli. Given
the experimental set-up, we cannot predict if the observed lipid
changes can occur if GF mice were treated with E. coli extracts.
Rapid development in lipidomics8–14,41–45 have facilitated explora-
tions of lipid metabolism in diverse healthy and diseased states,4–
7,46–53 primarily driven by legacy knowledge. In this study, we
introduce TDL strategy, to address the need of a predictive
hypothesis-driven approach to characterize crosstalk between gut
microbiota and lipid metabolism. We applied TDL and identified
alterations in arachidonic acid cascade and glycerophospholipids
as hallmarks of M8 colonization impact on ileum lipid metabolism.
In TDL, we coupled condition-specific systems level measure-

ment of transcriptomics with legacy knowledge, lipid databases
(e.g., LIPID MAPS13), pathway databases (Reactome15,16) and
tissue/cellular specific GEMs23–26 to hypothesize impacted lipids
and pathways following E. coli colonization. Thus we leveraged
knowledge at different levels of granularity and specificity coupled
with mechanistic biochemical transformations and
genotype–phenotype information contained in GEMs. Several
alternative strategies exist for integration of transcriptomics and
GEMs.25,54–60 However, they are not tailored to enable hypothesis-
driven lipidomics surveys.
Overall, we observed a decrease in glycerophospholipids (e.g.,

PI, PC, PG, PS, TAGs) and increase in arachidonic acid components
(e.g. PGJ2, LTB4, 5-HETE) (Fig. 5). Consistent with our observations,
E. coli in earlier studies was implicated in altering levels of AAM,36

which additionally was reported to impact/mediate inflammatory
status in the host.37 At the transcriptional level, in the ileum we
did not observe any statistical differences between the expression
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levels of key markers of inflammation like IL6, IL-1b, and TNFa. We
observed increase in PGJ2 levels in M8 mice, which previously
have been implicated in intestinal inflammation61 and IBD.62 The
gene PLA2G4A, encodes a member of the cytosolic phospholipase
A2 group IV and catalyzes the hydrolysis of membrane
phospholipids to release arachidonic acid, which is subsequently
metabolized into eicosanoids.63,64 Accordingly, we observed
higher PLA2G4A expression; lower PC’s and higher AAM compo-
nents in M8 mice. PCs contribute to the barrier integrity of the
gastrointestinal tract. Like PCs, we observed lower levels of several
TAGs in M8 mice. It was earlier reported that mono- and
diacylglycerol acyltransferases require phosphatidylcholines
(PC’s) for optimal activity.65 Additionally, we observed higher
bMCA and TCDCA cecal bile acids in M8 mice, altered bile acid
absorption/circulation related ileum mRNAs and altered bile acid
production related mRNAs in the liver, thus demonstrating the
recalibration of bile acid metabolism by E. coli. This can impact (or
be impacted by) PCs,66 ceramides67 and restructure global ileum
lipid metabolism by altering availabilities of dietary lipids in the
gut lumen, impacting bacterial lipid metabolism (as seen in the
in vitro studies), and/or directly/indirectly altering lipid absorption
in the ileum. We also observed lower sphingolipid levels in M8
mice, which are essential structural components of intestinal
membranes, providing protection and integrity to the intestinal
mucosa and regulating intestinal absorption processes68 and plays
a key role in immunity and inflammatory disorders, e.g., IBD.69

These observations are consistent with altered/reduced ileum
integrity in M8 mice, characterized by FISH images of E. coli
penetrating the ileal villi (Fig. 2d). Linoleic acid and arachidonic
acid are also essential for the synthesis of eicosanoids, which are
important immune signaling molecules.70 The GF state is a sterile
condition and inoculation of E. coli is expected to trigger an innate
and adaptive immune response to the colonization. We observed
increase in expression of Defb1, which encodes for an antimicro-
bial peptide. Increase in Defb1 expression has been reported in
IBD.71 We also observed increased expression of immune-related
mRNAs in the ileum (Pigr, Igj, Cfi and Ighm) as well as significantly
increased levels of immunoglobulin proteins (IgA, IgG2a, IgG3 and
IgM, data not shown) in the plasma of M8 mice. Overall, we
hypothesize that alterations in lipid metabolism by E. coli
colonization are impacted by/impacting the inflammatory and
immune status and are therefore potential avenues by which they
contribute and reflect E. coli’s role in metabolic disease.
Our results demonstrated that hypotheses generated from TDL

using transcriptomics data were highly predictable for eicosanoids
and several lipid classes. The potential disconnect between
transcriptomics and corresponding impacts on enzyme activities
have not been investigated in the current study in context of
improving/altering predictability of the method. This is definitely
an area of improvement and for future studies. Current TDL
implementation was limited in its scope to identify lipid
metabolism alterations specific to the host. Thus the prediction
space could be confirmed experimentally and allowed us to assess
the source of other differentially observed lipids not predicted by
TDL. These could be derived directly or indirectly by the colonizing
microbes. Some of these M8-specific lipids were indeed observed
in in vitro studies with E. coli under different growth conditions
(Fig. 6b). Despite the limited conditions tested, we observed E. coli
production of TAG 53:0, DAG’s 35:1 and 35:2 in the in vitro studies,
suggesting E. coli as the potential source of some of the lipids
observed specifically in the M8 and suggesting E. coli-derived
lipids as a potential influence on lipid metabolism in the context
of metabolic health. While TAG 53:0 (with odd chain fatty acids,
seen in vitro to be produced by M8) is higher in M8 mice; other
TAGs (e.g., TAG 51:3, 53:2, 53:3, 53:4) are higher in GF. While these
TAGs can be produced by M8 in vitro, they can also originate from
other sources such as food. Our observations are a result of
metabolism by the host and/or M8 as well as being introduced by

food. While we can speculate about the origin of the lipids, we
have limited information to confirm the exact route of each lipid
species. Further detailed studies would be required to investigate
and confirm any hypothesis.
Overall, we coupled a computational strategy to unique

analytical methods and their respective data sets to delineate
the role of E. coli in lipid metabolism in the context of obesity and
metabolic health. Specifically, using TDL, we demonstrate the
multifactorial nature by which E. coli influences lipid metabolism
via alterations in bile acids, availability of dietary lipids, inflamma-
tion and invasion (Fig. 6c). This systems approach should be
relevant to investigate the molecular mechanisms underlying
host/microbe interactions as well as other biological areas for
investigations.

MATERIALS AND METHODS
In vivo experiments
Procedures were approved by “Office Vétérinaire Cantonal du canton de
Vaud” Lausanne, Switzerland (Authorization number 2872). All germfree
male C57BL/6J mice were purchased at 8 weeks of age from Charles River
Laboratories (L’Arbresle, France). Upon arrival, mice were housed
individually under a 12-h light/dark cycle for 1 week. All mice were given
autoclaved Vittel water (Nestlé Waters, Henniez, Switzerland) and γ-
irradiated (40 kGy) chow diet (R03-40, Safe diets, Augy, France). A cohort of
seven mice were randomly selected and treated with 108 CFU/mL E. coli
M8 strain (isolated from the feces of an ob/ob mouse) in drinking water for
14 days (Fig. 2a). Fecal E. coli quantification was performed by qPCR using
specific primers for E. coli (Fig. 2b). At the end of the treatment, mice were
subjected to an oral lipid tolerance test (with 6 mL/kg of corn oil) after
overnight fasting (14 h). The mice were anesthetized by isoflurane 6 h after
the lipid tolerance test and tissue samples and cecum content were
weighted, flash frozen in liquid nitrogen and stored in a −80 °C freezer for
further analysis. Sample size of 4 was estimated using the parameters
alpha = 0.05, power = 0.8, effect size = 57% (based on preliminary data in
conventional mice study) and two tails. To compensate for the lack of
literature information on response of germfree mice to lipid challenge, we
used 8 mice as GF control and seven mice for M8 inoculation.

In vitro experiments
A single E. coli M8 strain colony was used to inoculate 5 mL LB broth
medium. The pre-culture was allowed to grow for 2–4 h at 37 °C. Then,
bacterial solutions were centrifuged for 5 min at 5000 g and the bacterial
pellet was re-suspended in a final volume of 10mL Dulbecco's modified
Eagle's medium (DMEM) low glucose (DMEM 1 g/L glucose). Thereafter,
200 µL of the bacterial suspension (~2 × 107 CFU) was added into tubes
containing 10mL of the different growing conditions (TCA, 8 mM;
taurodeoxycholic acid, 4 mM; palmitic acid, 250 uM; palm oil, 250 uM) in
either high (4.5 g/L) or low (1 g/L) glucose containing DMEM solution. After
overnight growth, the solutions were centrifuged for 5 min at 5000 g and
washed twice with PBS. The pellets were resuspended in PBS and used for
lipidomics analysis.

Ileum transcriptomics
RNA extraction, sample preparation and chip processing. Ileum total RNA
was extracted from tissue using RNeasy Mini QIAcube kit (Qiagen, AG,
Switzerland), following the manufacturer’s instructions. The quality of RNA
samples was checked by using the Fragment Analyzer (Advanced Analytical
Technologies, Inc., Ankeny, USA). All cRNA targets were synthesized,
labeled, and purified according to the TotalPrep RNA Amplification Kit
(Thermo Fisher Scientific, Waltham, MA, USA). This method is based on the
Eberwine T7 procedure. Briefly, 300 ng of ileum total RNA were used to
produce double-stranded cDNA, followed by in vitro transcription, cRNA
labeling with biotin, and fragmentation before hybridizing to the Affymetrix
GeneChip mouse genome 430A 2.0 chips (CA, USA), and the results were
scanned by an Affymetrix GeneChip scanner 3000 7G.

Microarray data processing and statistical analysis. Data were normalized
using the robust multichip average (RMA) method. Based on the normal
distribution of the data sets, the parametric Pearson’s product moment
correlation was applied for quality control. The data matrix was further
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clustered in order to identify potential outliers. To validate the quality of
data sets, a principle component analysis was also applied. One-way
analysis of variance (ANOVA) followed by a Benjamini and Hochberg
multiple testing correction was applied to discriminate the difference of
gene expressions between group A and group B. The corrected P-value
cutoff was set to 0.05 for further analysis.

TDL strategy
Often the only metric determining the lipid species to be measured in a
biological scenario is legacy knowledge. This approach (top branch of Fig.
1) has its limitations as the space explored for altered lipid state is limited,
which in turn maybe relevant or not and is biased with pre-existing
knowledge, which might be limited in different disease states. The output
however is quantitative and definitive. More often, for the target tissue/
cells under investigation, we conduct transcriptomics to obtain a systems
level exploration of mRNAs for widespread understanding of the state. This
understanding extends to the space of lipids as well. We developed an
integrated strategy for hypothesis-driven lipidomics survey coupling
transcriptomics and combination of legacy knowledge, lipid databases
(e.g., LIPID MAPS13), pathway databases (Reactome15,16) and tissue specific
GEMs23–26 to hypothesize predictions of potentially altered lipid metabo-
lism (both at the level of specific lipid species and pathways) in health and
disease (Fig. 1). Desired output of TDL is a predicted list, which is a
compilation of lipid species and lipid classes, for further measurement and
analysis. Formulation of the list consists of different aspects:

Legacy knowledge. Often the only metric determining the lipid species to
be measured and analyzed in a biological scenario is legacy knowledge.
This approach (top branch of Fig. 1) has its limitations as the space
explored for altered lipid state is limited, which in turn maybe relevant or
not and is biased with pre-existing knowledge, which might be limited in
different disease states. Legacy knowledge provides names of exact lipid
species to measure along with lipid pathways and depends on the
biological state under investigation.

Using LIPID MAPS in TDL. LMPD13 (downloaded on Aug 5, 2016) provides
a comprehensive tabulation of major lipid species with annotations from
EntrezGene and UniProt along with relevant information like protein
isoforms, orthologs and biochemical pathway mapping for different
species. In this database, specifically for Mus Musculus, there are 1504
proteins and 1082 genes that are implicated in different ways to alter Lipid
Metabolism. For the purposes of TDL, we:

● Map the differentially expressed genes to the genes implicated in
LMPD.

● Identify the aspects of lipid metabolism (species and pathways)
impacted by the relevant genes.

Output of this branch (obtained by text mining operations, which can be
done in excel or with scripts) is a mixture of names of pathways or specific
lipids that could be impacted by the differentially observed genes relevant
in the scope of lipid metabolism.

Using reactome in TDL. Reactome provides a free, open-source, curated
and peer reviewed pathway database.15,16 For the purposes of TDL, we
used Reactome online (www.reactome.org), specifically the analyze data
aspect to:

● Upload the differentially expressed genes list for analysis.
● Download and filter the result of the analysis for Mus musculus.
● Filter outputs relevant to lipid metabolism.

Output of this branch (obtained by text mining operations, which can be
done in excel or with scripts) is a mixture of names of pathways, reaction
modules or specific interactions that could be impacted by the
differentially observed genes, including those relevant to lipid metabolism.

Using GEMs in TDL. GEMs are systems level elucidations of metabolic
genotype–phenotype relationships (including that of lipid metabolism)
and are valuable tools for investigation of complex, highly interconnected
biochemical transformations.17,18 With the increase in the number of high
quality draft cellular/tissue level GEMs23–26 (both for mice and human), it is
imperative to take advantage of the metabolic genotype–phenotype
relationships in the form of curated cellular/tissue level specific
biochemical transformations (including lipid transformations). For the
current study, we used the ileum model (mouse specific) published by

Mardinoglu et al.23 For the purposes of TDL, we followed the following
steps:

● Read the ileum GEMs using COBRA72 toolbox.
● Identify the overlap of the differentially expressed genes and the

metabolically relevant genes (information in model.genes) documen-
ted in the GEM.

● Identify the reactions (information in model.rxnGeneMat variable)
impacted by the GEM relevant (and differentially expressed) genes.

● Identify the metabolites impacted by the above identified reactions,
using model.S.

Output of this branch (obtained in the study using MATLAB scripts) is a
mixture of specific lipid species and lipid pools along with non-lipid related
metabolites.

Lipidomics analysis
Lipidomics analysis was performed on ileum samples as well as bacterial
cell cultures. In summary, approximately 50mg of ileum tissue was
homogenized in 1mL of ammonium bicarbonate buffer (concentration:
150mM of ammonium bicarbonate in water) using Tissue Lyser (Qiagen
AG, Switzerland) at a speed of 25 Hertz for 2.5 min. A volume of 150 µL of
the homogenate was collected for intact lipid analysis, leaving 850mL for
bioactive mediator analysis.
Of 150 µL homogenate, 40 µL was further diluted with 140 µL of

ammonium bicarbonate buffer using Hamilton Robot and 810 µL of MTBE
/Methanol (7/2 v/v) containing internal standard was added to this
mixture. The internal standard mixture contained: lysophasphatidylglycerol
(LPG) 17:1, lysophosphatic acid (LPA) 17:0, phosphatidylcholine (PC) 17:0/
17:0, PS 17:0/17:0, phosphatidylglycerol (PG) 17:0/17:0, phosphatic acid
(PA) 17:0/17:0, LPI 13:0, LPS 13:0, LPC 12:0, lysophosphatidylethanolamine
(LPE) cholesterol D6, diacylglycerol (DAG) 17:0/17:0, triacylglycerol (TAG)
17:0/17:0/17:0, ceramide (Cer) 18:1;2/17:0, SM 18:1;2/ 12:0, phosphatidy-
lethanolamine (PE) 17:0/17:0, cholesterol ester 20:0, phosphatidylinositol
(PI) 16:0/16:0. The solution was mixed at 700 rpm, 15min at 4 °C using a
ThermoMixer C (Eppendorf AG, Hamburg, Germany) and then centrifu-
gated at 3000 g for 5 min. A volume of 100 µL of the organic phase was
transferred to a 96-well plate, dried in a speed vacuum concentrator. Lipid
extract was reconstituted in 40 µL of 7.5 mM ammonium acetate in
chloroform/methanol/propanol (1:2:4, V/V/V). All liquid handling steps
were performed using Hamilton STAR robotic platform with the Anti
Droplet Control feature for organic solvents pipetting as described
previously.73

The remaining 850 µL homogenate was used for bioactive mediator
analysis. A volume of 150 µL of 100% methanol was added to the
remaining homogenate to bring the volume to 1mL and spun at
approximately 25000 g (5430 R centrifuge, FA-45-24-11-HS rotor) (Eppen-
dorf AG, Hamburg, Germany) for 5 min at 4 °C. Supernatant was removed
into new glass tube on ice. One milliliter of 15% methanol was added to
pellet and homogenized in Tissue Lyser (25 Hz, 2.5 min). Homogenate was
spun (25000 g, 5 min, 4 °C.) and supernatant was added to the glass tube.
One milliliter of 15% methanol was used to make a final volume of 3mL.
Extraction of lipid mediators from the gut tissue was performed

according to our published protocol11 with slight modifications outlined as
follows: Internal standard PGB2-d4 (40 ng), 12-HETE-d8 and AEA-d8
(Cayman Chemicals, Ann Arbor, MI, USA) were added to the homogenized
tissue in 15% (v/v) methanol in water. The cartridges (Strata-X 33 u
Polymeric Reversed phase 60mg/3mL) were washed with methanol (3 mL)
followed by water (3 mL) prior to loading the homogenate (3mL); the
cartridges were then washed with 15% methanol in water (3 mL) and lipid
mediators were eluted in methanol (3 mL) and collected in glass tubes. The
organic solvent was evaporated using a fine stream of nitrogen and the
remaining residue was re-dissolved in ethanol (100 µL) and stored at –20 °C
awaiting analysis. Lipidomics analysis of intact lipids was performed using
QExactive mass spectrometer (Thermo Fisher Scientific) equipped with a
TriVersa NanoMate ion source (Advion Biosciences) as described pre-
viously.73 The data was acquired in both positive and negative mode using
resolving power of 140,000 in full scan and 17500 in MS/MS mode. Scanm/
z range from 200 to 1000. Lipidomics analysis of bioactive lipid mediators
was performed as previously described.35 Absence of a lipid in any sample
was substituted by a value of 0.0001 for calculation of ratios for plotting
purposes.

Microbiome regulation of lipid metabolism
A Chakrabarti et al.

12

npj Systems Biology and Applications (2017)  33 Published in partnership with the Systems Biology Institute

http://www.reactome.org


Bile acid analysis
Chemical materials and standard solutions. LC−MS grade organic solvents
such as acetonitrile, methanol, water, and formic acid as well as
ammonium formate were obtained from Biosolve Chimie (Dieuze, France)
or Merck (Darmstadt, Germany). Bile acid standards including 13 deuterium
(d4 or d5)-labeled (internal) standards were purchased from either
Steraloids (Newport, RI), Toronto Research Chemicals (Toronto, Ontario,
Canada) or Medical Isotopes (Pelham, NH 03076, USA). Standards were
prepared in stock at 1 mg/mL in methanol and were mixed at 2.5 to 200
μg/mL for bile acids or at 0.25 to 10 μg/mL for 13 D4- or D5-labeled bile
acids when being used as internal standards.

Sample preparation. A volume of 1500 µL of MeOH:H2O (2:1) with 0.1%
(v/v) FA was added to 100mg lyophilized feces and the samples were
homogenized with ceramic beads, in the Cryolys Precellys 24 sample
Homogenizer (2 × 20 sec at 10000 rpm, Bertin Technologies, Rockville, MD,
USA). Homogenates were centrifuged for 15min at 4000 g at 4 °C and the
supernatant was removed and stored at −80 °C. Prior to solid phase
extraction 50 μL of faece extracts were mixed with 100 μL of the ice-cold
internal standard solution (in 100% MeOH), and 600 μL of H2O with 0.2%
(v/v) formic acid in a 2mL 96-deepwell plates (Waters, Milford,
Massachusetts). All plates were heat sealed and mixed by vortexing for
5 min using an Orbit P2 at 1400 rpm (Labnet, Edison, NJ, USA), and
centrifuged for 15min at 4000 g at 4 °C. The mixtures (650 μL of
supernatants) were loaded onto an Oasis HLB uElution plate (Waters,
Milford, Massachusetts, USA) and the samples was activated with 200 μL of
methanol and conditioned with 200 μL of water using the Positive Pressure
96 manifold (Waters, Milford, Massachusetts, USA). Then, the plate was
washed with 200 μL of 5% MeOH (v/w) in water under a 3-psi positive
pressure, and the analytes were eluted with 100 μL of methanol after 1 min
of incubation. The eluates were collected in a Sample recovery collecting
plate (350 µL, Waters) and dried under a gentle nitrogen stream at room
temperature using a TurboVap 97 (Biotage, Uppsala, Sweden). The dry
extracts were reconstituted in 100 μL of 30% acetonitrile in water (v/v). A
volume of 20 μL was injected for UPLC−HRMS analyses.

UPLC−MS profiling. Bile acids were separated with the reversed-phase
chromatographic method with the Acquity UPLC® HSS T3 1.8 µm 2.1 × 100
mm column and following mobile phase system: (a) 5 mM ammonium
acetate + 0.1% (v/v) formic acid in water and (b) 0.1% (v/v) formic acid in
acetonitrile with a Thermo Accela 1250 UPLC pump and CTC PAL Analytics
autosampler (Zwingen, Switzerland) for ultra-performance liquid chroma-
tography (UPLC) at an operating temperature of 40 °C. Quantification of
bile acids was performed with a QExactive Hybrid Quadrupole-Orbitrap
mass spectrometer (ThermoFisher Scientific, Massachusetts, USA). The MS
system was equipped with an electrospray ionization source operating in
negative ion mode (ESI−). Mass spectrometry parameters were as follows:
full MS 370–522 (centroid acquisition), resolution = 70,000, negative
polarity and AGC target = 5e5

MS data preprocessing. The LC−MS HR system (QExactive Orbitrap mass
spectrometer) is run using XCalibur 2.2 (Thermo Fisher Scientific). The data
files were processed into result files using TraceFinder 3.0 (Thermo Fisher
Scientific).

Genome annotation and analysis
The sequencing of the E. coli was carried out using the hybrid strategy. First
an optical mapping of the genome was performed,74 which was followed
by a hybrid assembly using a miseq platform with use of shotgun and
jump library preparation, the contigs were assembled using spades. The
final assembly was performed using the optical mapping data and primer
walking for the missing regions. The final finished genome consisted of a
single circular genome, a megaplasmid and three smaller plasmids. The
annotation of the genome was carried out using BAYsys annotation
server75 accessed on Dec 2016. The genome consisting of 5.1 MB resulted
in 5185 genes being identified and annotated, while the megaplasmid of
1.6 Mb resulted in 224 genes being identified and annotated, the smallest
plasmid of 6 kb resulted in a total of 4 genes being annotated. The
annotated genes are provided in Supp10Data.xlsx.

16S rRNA FISH
Formalin fixed paraffin-embedded sections were deparaffinised, rehy-
drated, and fixed in 4% paraformaldehyde for 5 min followed by PBS

washing. Tissue sections were incubated 10min/RT in TE buffer containing
10mg/mL of lysozyme prior to addition of hybridization solution (0.9 M
NaCl, 20 mM Tris HCl, pH 8, 0.01% SDS, 30% formamide). Fixed tissue
sections were then hybridized with 4.5 ng/µL of a 1⋮1⋮1 molar ratio of the
EUB338I, EUB338II, and EUB338III 5′-end-Cy3-labeled 16S rRNA targeted
oligonucleotides in hybridization buffer overnight at 35 °C, washed in 65
mM NaCl, 20 mM Tris HCl, pH 8.0, 5 mM EDTA, and 0.01% SDS prior to
mounting using dako.

Statistical tests and analysis
For transcriptomics, ANOVA followed by a Benjamini and Hochberg
multiple testing correction was applied to discriminate the difference of
gene expressions between GF and M8 mice samples. The corrected P-value
cutoff was set to 0.05 for further analysis. For lipidomics, statistical
difference was assessed using Kolmogorov–Smirnov 2 sample test with
FDR correction and accepted as statistically different if Q value was lower
than 0.05. For bile acids, statistical difference was assessed using two-
tailed, two-sample T-tests. Levels of bile acids considered statistically
different with P values <0.05.

Data availability
All data generated or analyzed during this study are included in this
published article (and its supplementary information files). Specifically, the
details are as follows:
Microarray Data: Submitted in GEO (accession number GSE99018), and

Supplementary excel sheet S3Data.
Bile acid data: Supplementary excel sheet S2Data.
E. coli M8 genome sequence: Presented earlier in Chakrabarti et al.27 and

data in GenBank CP019953-CP019956.
E. coli genome annotation: Supplementary excel sheet S1Data.
Lipidomics Data: Supplementary excel sheets S8Data, S9Data and

S10Data.
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