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Abstract Experimental evidence demonstrates that therapeu-
tic temperature modulation with the use of mild induced
hypothermia (MIH, defined as the maintenance of body tem-
perature at 32–35 °C) exerts significant neuroprotection and
attenuates secondary cerebral insults after traumatic brain
injury (TBI). In adult TBI patients, MIH has been used during
the acute “early” phase as prophylactic neuroprotectant and in
the sub-acute “late” phase to control brain edema. When used
to control brain edema, MIH is effective in reducing elevated
intracranial pressure (ICP), and is a valid therapy of refractory
intracranial hypertension in TBI patients. Based on the avail-
able evidence, we recommend: applying standardized algo-
rithms for the management of induced cooling; paying
attention to limit potential side effects (shivering, infections,
electrolyte disorders, arrhythmias, reduced cardiac output);
and using controlled, slow (0.1–0.2 °C/h) rewarming, to avoid
rebound ICP. The optimal temperature target should be titrated
to maintain ICP <20 mmHg and to avoid temperatures <35 °
C. The duration of cooling should be individualized until the
resolution of brain edema, and may be longer than 48 h.
Patients with refractory elevated ICP following focal TBI
(e.g. hemorrhagic contusions) may respond better toMIH than
those with diffuse injury. Randomized controlled trials are
underway to evaluate the impact of MIH on neurological
outcome in adult TBI patients with elevated ICP. The use of
MIH as prophylactic neuroprotectant in the early phase of

adult TBI is not supported by clinical evidence and is not
recommended.
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Introduction

Management of traumatic brain injury (TBI) is aimed to
attenuate the amount of so-called secondary brain injury
(SBI), i.e. early pathological events (including intracranial
hypertension, cerebral hypoxia/ischemia, energy dysfunc-
tion, non-convulsive seizures, and systemic insults) that
might occur immediately after primary cerebral insult and
may add further burden to patient outcome. In the absence
of an effective strategy for early neuroprotection, emergent
resuscitation and evacuation of surgical lesions, together
with the implementation of standardized algorithms for the
management of SBI, has considerably reduced mortality and
has contributed to improve overall outcome and quality of
care [1–4]. Secondary elevations of intracranial pressure
(ICP) are frequent in patients with severe TBI and constitute
a major determinant of SBI and outcome. Recent studies and
meta-analysis have shown increased utilization of ICP mon-
itoring and effective control of elevated ICP burden to be
associated with an improvement of outcome after TBI [5, 6].

Mild induced hypothermia (MIH, i.e. the induction of
therapeutic cooling to a body temperature of 32–35 °C) has
long been used as a non-pharmacological measure to control
secondary elevations of ICP after TBI [3], and may be a
valid therapeutic option for refractory elevated ICP [7••],
provided adequate management of potential side effects that
may occur during both the hypothermic and rewarming
phases.
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While MIH may have a place for the management of
elevated ICP, its role as an early neuroprotectant is more
controversial. A number of animal models have repeatedly
demonstrated the benefit [8]. However, the translation of
these positive data into clinical human studies has proven
difficult, and the benefit of MIH as early neuroprotective
strategy after TBI has not been clearly demonstrated, with
conflicting data and several negative randomized controlled
trials [9–26••].

In this review, we will first discuss main neuroprotective
properties of MIH and the potential beneficial effects of
MIH in attenuating SBI after TBI. We will then review the
role of MIH in the management of SBI in adult TBI patients,
with a particular attention to the clinical utility of MIH to
treat elevated refractory ICP. We will also review main
clinical studies that tested MIH as early neuroprotectant
after adult TBI, and conclude with a discussion of the
potential optimal utilization of MIH and management of
hypothermia-related side effects. Therapeutic temperature
modulation for fever control (induced normothermia) will
not be addressed.

Mechanisms by Which MIH Attenuates SBI

MIH attenuates secondary pathological insults following
TBI. These pathological processes start minutes to hours
after neurotrauma and may continue for up to 72 h or longer
[27]. Therefore, it is important to realize that the therapeutic
window of MIH is wide and very much depends on the
specific therapeutic aim, and on the time interval between
TBI and both the initiation and the duration of therapeutic
cooling.

Hypothermic neuroprotection acts at several sites and
might exert benefits at different time-points from TBI start
(Fig. 1).

Acute “Early” Phase (Minutes to Hours)

Ischemia, Excitotoxicity, Energy Failure, and Cell Death
Cascades

Cerebral ischemia/hypoxia may occur early after TBI, due to
direct parenchymal and vascular disruption, acute vasospasm,
and post-traumatic vascular stretching and shearing. Non-
ischemic energy dysfunction, increased glucose utilization
and cerebral hyperglycolysis are also frequent and may cause
substrate depletion and energy crisis [28, 29]. Excitotoxicity
describes the process by which glutamate and others excitato-
ry amino acids cause neuronal damage [30]. Glutamate expo-
sure produces activation of receptors that leads to calcium
influx [30]. Increased intracellular calcium concentration acti-
vates several proteases, lipases, and endonucleases and

increases nitric oxide and oxygen free radicals. This exacer-
bates mitochondrial damage and DNA alteration, and culmi-
nates in necrotic and apoptotic cell death [31] through
caspase-independent and caspase-dependent pathways [32].

Effect of MIH:

a. Reduction of Cerebral Metabolic Rate of Oxygen: MIH
is known to diminish cerebral metabolic rate of oxygen
(CMRO2) by approximately 6.5 %/°C. MIH decreases
cerebral blood flow (CBF) and therefore oxygen deliv-
ery; however, energy crisis does not occur because of a
matched reduction in oxygen demand, thereby leading
to a favorable reduction of oxygen extraction ratio [33].

b. Reduction of Cerebral Glucose Demand: By reducing
brain demand for oxygen and glucose, MIH may atten-
uate post-traumatic cerebral hypoxia/ischemia and ener-
gy dysfunction [34, 35]. MIH also preserves ATP
energy stores and maintains tissue pH.

c. Inhibition of Excitotoxicity: A well-known mechanism
by which MIH exerts neuroprotection is by reducing
calcium influx into the cells and the accumulation and
release of excitotoxic amino acids [36, 37••].

d. Reduction in Cerebral Thermopooling: MIH might re-
duce the gradient of temperature existing between the
core of injury and the surrounding tissue, e.g. brain
contusions [27].

e. Inhibition of Early Gene Expression and Stress Response:
MIH inhibits early molecular cascades involved in the
exacerbation of secondary cerebral damage after TBI, par-
ticularly by altering the expression of immediate early genes
and by suppressing early cellular stress responses [38].

f. Prevention of Apoptotic Death: MIH inhibits apoptosis by
modulating gene expression and transcription of factors
involved in neuronal apoptosis (e.g. reduction of pro-
apoptotic BAX expression and increase of anti-apoptotic
BCL-2 expression), and by inhibiting caspase-dependent
and caspase-independent apoptotic pathways [8].

Sub-Acute “Late” Phase (24 Hours to 7 Days)

Brain Edema and Swelling, Blood Brain Barrier Disruption

After TBI, brain swelling results from both vasogenic and
cytotoxic edema [39, 40]. Vasogenic edema results from
blood–brain barrier (BBB) disruption leading to an increase
in extracellular volume. Furthermore, because of potential
impairment of cerebrovascular reactivity, any elevation of
mean arterial pressure might translate into increased cerebral
blood volume and edema [41]. Cytototoxic or cellular ede-
ma may also play a major role [42]. Cellular edema may
occur because of a) homeostatic uptake of excitatory amino
acids, b) water movement through aquaporins, and c) ionic
pump failure [43–45].
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Inflammation

Cytokines (TNF-α, interleukin-1β, eicosanoids, neutro-
philes, and macrophages) all contribute to post-TBI inflam-
matory cascades and secondary cerebral damage and repair
[46, 47]. Contusion and local tissue necrosis trigger neutro-
phil influx, increases in inducible nitric oxide synthase and
macrophage infiltration [48]. Macrophage infiltration and
the differentiation of endogenous microglia into resident
macrophages may signal the link between inflammation
and regeneration with elaboration of trophic factors (i.e.,
nerve growth factor, nitrosothiols, vascular endothelial
growth factor) [49, 50]. Studies in animal models suggest
early detrimental effects of a number of inflammatory medi-
ators, but beneficial effects of inflammation on long-term
outcome [46].

Non-Convulsive Seizures

Severe TBI is associated with an increased risk of non-
convulsive, clinically subtle or silent seizures [51]. These

seizures are associated with increased secondary cerebral
damage and tissue loss [52, 53].

Effect of MIH:

a. Reduction of BBB Disruption and Limitation of Brain
Swelling: At a microcirculatory level, MIH has a major
role in reducing BBB disruption by preserving vascular
endothelial function and reducing extracellular protease
expression [37••, 54–56]. MIH inhibits micro-thrombus
formation induced by brain injury [57, 58], the cascade
of reactions induced by reperfusion [8, 57, 59], and the
permeability of cellular membranes, with consequent
improvement in neuronal function and homeostasis [8,
57]. At a macrocirculatory level, MIH reduces cerebral
blood flow and preserves cerebrovascular reactivity [7],
thereby minimizing cerebral blood volume and brain
swelling. This might explain the effectiveness of MIH
in reducing ICP after TBI [7, 60••] (see below).

b. Inhibition of Inflammation: MIH decreases inflammato-
ry cell infiltration, activation of immune transcription
factors and elaboration of damaging free radicals such

Fig. 1 Neuroprotective properties of therapeutic hypothermia as a function of time from traumatic brain injury (TBI)
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as superoxide, peroxinitrite, hydrogen peroxide, and
hydroxyl radicals [61–64].

c. Inhibition of Epileptic Activity and Seizures: MIH
attenuates seizure activity [65, 66].

Chronic Phase (Weeks to Months)

Post-Traumatic Axonal Injury

MIH might modulate the distribution and extension of axo-
nal injury by enhancing neurogenesis [67, 68], gliogenesis,
and angiogenesis [68, 69], and by promoting neural out-
growth, neuronal connectivity, and synapse formation [70].

Finally, abundant experimental evidence demonstrates
that hypothermic neuroprotection translates into better tissue
and neurological recovery (see ref. [37••, 71] for extensive
review).

Clinical Utility of MIH

MIH has long been suggested as a therapeutic strategy after
TBI [72]. Clinical trials evaluating MIH after TBI can be
divided into two categories, according to the therapeutic aims:

1. Trials in which MIH was applied in the “late phase” of
TBI, to control elevated ICP;

2. Studies in which MIH was applied in the “early phase”
of TBI, as prophylactic neuroprotectant.

“Late”MIH for the Management of Elevated ICP in Patients
with TBI

Intracranial hypertension—defined as the sustained elevation of
ICP above 20—25 mmHg—is frequent in patients with severe
TBI and an abnormal CT scan, and is associated with increased
mortality and worse functional outcome [5, 6]. A stepwise
approach for the treatment of intracranial hypertension is usually
applied. So called first-step therapies consist of treating situa-
tions associated with increased cerebral blood volume (seizures,
fever, agitation), sedation and neuromuscular blockade, inter-
mittent CSF drainage if available, osmotic fluids (mannitol,
hypertonic saline), and controlled moderate hyperventilation.
If intracranial hypertension is refractory to these measures and
the CT scan does not show surgical treatable lesions, additional
so-called second-step therapies are applied. These consist of
MIH, barbiturates or decompressive craniectomy.

Effect on ICP

MIH was tested in severe TBI patients with refractory intra-
cranial hypertension in 17 controlled trials with outcome data

[9–26•]. Compared to normothermia, MIH was associated
with significant reduction in elevated ICP in the majority of
these studies (Table 1). Furthermore, 12 of these 17 trials
reported significant improvements in outcome associated with
MIH-related reduction of ICP [9, 11, 13, 14, 17–19, 21–25].

The magnitude of the effect of MIH on ICP reduc-
tion was recently reported in a study by Schreckinger et
al. in a non-systematic review [7••]. First, the authors
analyzed 11 prospective randomized clinical trials that
included a total of 367 patients and compared MIH
versus normothermia to control elevated ICP after TBI.
In all the studies analyzed, MIH was invariably associ-
ated with lower ICP than normothermia. In six addi-
tional studies, the effect of MIH on ICP reduction was
examined: on average, the reduction in ICP obtained by
MIH was 10 mmHg and the decrease varied from 5–
23 mmHg. Across the studied analyzed, the effect of
MIH on ICP reduction was superior to that achieved
with moderate hyperventilation, barbiturates and mannitol
[7••].

In a recent systematic review by Sadaka et al., the effect
of MIH on ICP reduction was further corroborated: among
16 studies comparing MIH to normothermia in TBI patients,
all studies found significantly lower ICP in patients treated
with MIH (range 10–25 mmHg) than in those assigned to
normothermia (range 20–35 mmHg) [6].

These studies suggest that MIH is an effective therapy for
intracranial hypertension.

Optimal Target Temperature

The optimal target temperature of MIH when used for
ICP control is not precisely defined. Tokutomi et al.
suggest that decreasing body temperature to 35–35.5 °C ef-
fectively treats intracranial hypertension, while maintain-
ing sufficient cerebral perfusion pressure without cardiac
dysfunction or oxygen debt [73]. Resting energy expen-
diture and cardiac output decreased progressively with
hypothermia. Oxygen delivery and oxygen consumption
decreased to abnormally low levels at rectal temper-
atures <35 °C, and the correlation between them be-
came less significant at <35 °C than when temperatures
were ≥35 °C [73]. Gupta et al. showed MIH below 35
°C decreases brain tissue oxygenation [74]. Thus, 35–
35.5 °C seems to be the optimal temperature at which
to treat patients with intracranial hypertension following
severe TBI. Instead of applying fixed temperature tar-
gets, we suggest that MIH is targeted on an individual
basis, titrating temperature to maintain ICP below
20 mmHg. Temperatures < 35 °C are associated with
increased side effects, including cardiac, hemodynamic
and infectious complications.
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Duration of induced hypothermia

The optimal duration of therapeutic MIH is not known.
A meta-analysis by MacIntyre et al. suggested that
duration of MIH >48 h was associated with better out-
comes [75]. Jiang et al. compared “short-term” MIH
(n0107 patients, treated for an average of 2 days) to
“long-term” MIH (n0108 patients, treated on average
for 5 days), and found long-term MIH significantly
improved outcome in a group of severe TBI patients
with cerebral contusions and intracranial hypertension,
without significant complications [76]. Importantly, ad-
verse effects of cooling have been observed principally
in the initial phase of MIH, and duration of MIH has
not been demonstrated to significantly increase the rate
of pneumonia and other complications [15, 19].

Rewarming

In experimental studies, posttraumatic MIH followed by
slow rewarming provides maximal neurprotective effect,
while rapid rewarming not only reverses the protective
effects of MIH, but also aggravates post-traumatic induced
cerebral damage [77, 78]. The use of uncontrolled rewarm-
ing may potentially offset the benefits of MIH, particularly
because it may cause rebound intracranial hypertension [10,
11]. Using transcranial Doppler, Iida et al. studied TBI
patients treated with MIH who developed acute episodes
of elevated ICP and brain swelling during the rewarming
phase [79]. Iida et al. demonstrated that hyperemia,
evidenced by an increase in middle cerebral artery flow
velocities, predicted acute brain swelling associated with
rewarming. Lavinio et al. demonstrated that rewarming is
associated with a temperature-dependent impairment in ce-
rebrovascular reactivity [80]. A recent study documented
episodes of rebound intracranial hypertension during and
early after the rewarming phase [26•]. Rapid rewarming
was found to correlate with worse outcomes after TBI in a
recent study [81].

In conclusion, slow controlled (0.1–0.2 °C/h) rewarming
is recommended after MIH to reduce the risk of rebound
cerebral edema and intracranial hypertension [76].

Focal Versus Diffuse Injury

The type of TBI (contusion vs. diffuse injury) is also a
relevant issue: MIH is particularly effective in reducing
elevated ICP associated with post-TBI contusions, while
patients with elevated ICP secondary to diffuse injury ap-
pear to respond less well to hypothermia [26••, 76].

Based on the available data, the following can be recom-
mended when applying MIH for the management of refrac-
tory elevated ICP:T
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– The optimal target temperature should be titrated to
maintain ICP below 20–25 mmHg, and to around 35 °
C; temperatures <35 °C may reduce cerebral perfusion
pressure and oxygen delivery;

– The optimal duration of MIH depends on the severity of
intracranial hypertension; MIH should be individual-
ized and may need to be continued for more than
48 h, and up to 4–5 days until the peak period of
intracranial hypertension (3–5 days) subsides;

– Withdrawal from MIH should be slow, using controlled
rewarming (0.1–0.2 °C/h);

– Patients with refractory elevated ICP following focal
TBI (mainly, post-traumatic hemorrhagic contusions)
may respond better to MIH than those with diffuse
injury.

In summary, MIH is effective in reducing elevated ICP,
and is therefore a valid therapeutic option of intracranial
hypertension after TBI. Eurotherm3235Trial, an internation-
al, multicentre, randomized controlled trial, will examine the
effects of MIH at 32–35 °C as a treatment for raised intra-
cranial pressure after TBI. Subjects are allowed to be en-
rolled up to 72 h after TBI; the duration of cooling is titrated
upon the time to control ICP effectively (between 2 and
5 days), and rewarming is used at a rate of 1 °C per 4 h
[82•].

“Early” MIH as Prophylactic Neuroprotectant in Patients
with TBI

Thirteen controlled single-center studies conducted on
adult TBI patients demonstrated significantly better out-
come associated with MIH [9, 11, 13, 14, 16–19,
21–25]. In contrast, three multicenter randomized con-
trolled trials that tested early (within 10 h after TBI)
“short-term” (max. 48 h) MIH [15, 16, 26•], found no
benefit with regards to survival and neurological out-
come. The largest trial included 392 patients (199 in the
hypothermia group and 193 in the normothermia
group)[15]. Outcome at 6 months after TBI was not
significantly different in the two groups (relative risk
of poor outcome 1, 95 % CI 0.8–1.2, p00.99). Internal
validity of this trial was lowered by inter-center vari-
ability in the management of induced hypothermia, age
of subjects, severity of illness scoring, and the manage-
ment of cerebral perfusion pressures and hemodynamics
[83]. Lesser expertise with the management of MIH was
associated with more complications.

Given the discrepancy between single center and
multicenter trials, many meta-analyses have attempted
to further examine the impact of prophylactic MIH on
outcome after TBI [76, 84–92]. Four of these meta-
analyses have been published as Cochrane systematic

reviews [88–91•]. Sydenham et al. included 21 trials
with outcome data involving 1,587 subjects [91•]: mor-
tality was not significantly different in patients treated
with MIH vs. normothermia (OR 0.85, 95 % CI 0.68–
1.06), but MIH was associated with a lower rate of
unfavorable outcome (OR 0.77, 95 % CI 0.62–0.94).
When limiting the analysis to high quality RCT, i.e. to
the nine studies with good allocation concealment, mor-
tality and unfavorable outcome did not differ between
the two groups. The efficacy of early MIH in reducing
death and unfavorable outcome was only found in low
quality trials, which overestimate the treatment effect
[91•]. Data from recent meta-analyses on the effect of
MIH used as early neuroprotectant are summarized in
Fig. 2.

Finally, Clifton et al. recently published the National
Acute Brain Injury Study: Hypothermia II (NABIS: H
II), a multicentre RCT including patients who were 16–
45 years old after severe, non-penetrating TBI, treated
with MIH [26•]. The trial was stopped after inclusion of
108 patients, and no effect on outcome was seen (rela-
tive risk of poor outcome of MIH vs. normothermia
1.08, 95 % CI 0.76–1.53; p00.67). Subgroup analysis
found that patients with surgically evacuated hematomas
treated with MIH had better outcome than those
assigned to normothermia (p00.02), while those with
diffuse brain injury treated with hypothermia had a
trend to poorer outcome (p00.09). Although not con-
clusive, these data suggest different effects of MIH
depending on the type of TBI. Moreover, one-third of
surgically treated patients in the hypothermia group had
decompressive craniectomies, which itself may have
suppressed rebound intracranial hypertension [26•]. This
again raises the difficulty of including heterogeneous
patients with TBI in clinical trials [93].

Management of Side Effects of MIH

Temperature-Related

Shivering MIH may cause shivering, which in turn
might increase oxygen consumption and energy expen-
diture [94], and reduce brain tissue oxygenation [95].
Recognition of shivering is mandatory and can be
achieved by using ad hoc scales [96]. Therapies of
shivering include increased sedation (propofol) and an-
algesia (fentanyl), meperidine, dexmedetomidine, buspir-
one [97].

Infections MIH is associated with increased infections
[60••, 98]. Careful surveillance of infections is mandatory,
and includes regular microbiological sampling and follow-
up of infection biomarkers such as procalcitonin. Infection
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prevention, like the use of selective digestive decontamina-
tion, may reduce the infection risk related to MIH [99].

Cardiovascular MIH is associated with reduced heart rate
and cardiac output, which are usually well tolerated. Arrhyth-
mias are associated with hypokalemia, generally during the
rewarming phase [60••], and must be prevented by close
monitoring of potassium levels.

Hemorrhage Despite prolonged partial thromboplastin time
(PTT) and thrombocytopenia having been reported during
MIH [60••], no study has documented an increased risk of
bleeding.

Technique-Related

Skin Injury Surface cooling devices have been associated
with skin lesions.

Thrombosis Using intravascular devices for MIH may be
associated with vascular (venous) thrombosis, particularly
when MIH is maintained for more than 48–72 h [100].
When using prolonged surface cooling, we also recom-
mend carefully monitoring patients for potential skin
injuries.

Development of local standardized algorithms for the
management of MIH is recommended, and may help reduce

Fig. 2 Summary of recent meta-analyses that evaluated the effect of mild induced hypothermia versus normothermia on the outcome (mortality, in
red and proportion with poor outcome, in blue) in adult severe TBI patients
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side effects of MIH and increase the potential benefit of the
therapy [84].

Conclusion

Therapeutic hypothermia has many neuroprotective effects
that may all contribute to reduce secondary cerebral damage
after traumatic brain injury. In clinical practice, therapeutic
hypothermia has been used in the early phase of traumatic
brain injury, as prophylactic neurprotectant, and in the late
phase, to control brain edema and elevated intracranial
pressure.

Mild induced hypothermia to 32–35 °C is effective in
reducing elevated intracranial pressure and is a valid therapeu-
tic. Based on the available clinical evidence, we recommend
the development and application of local standardized algo-
rithms for the management of induced cooling. These should
pay particular attention to limiting side effects (shivering,
infections, electrolyte disorders, arrhythmias, reduced cardiac
output) and to the use of controlled, slow (0.1–0.2 °C/h)
rewarming. The optimal temperature target should be titrated
to maintain ICP below 20–25 mmHg and as much as possible
to avoid body temperature <35 °C. The duration of cooling
should be individualized and may need to be maintained for
longer than 48 h, until the resolution of brain edema and
intracranial hypertension. Patients with refractory elevated
ICP following focal TBI (hemorrhagic contusions) may re-
spond better to mild induced hypothermia than those with
diffuse injury. Randomized controlled trials that evaluate the
impact on outcome of mild induced hypothermia in adult
traumatic brain injury patients with elevated intracranial pres-
sure are underway.

In contrast, based on the available evidence, we do not
recommend the use of mild induced hypothermia as prophy-
lactic neuroprotectant in the early phase of traumatic brain
injury.
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