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SUMMARY 

 

Sphingomonas wittichii is a gram-negative Alpha-proteobacterium, capable of 

degrading xenobiotic compounds such as dibenzofuran (DBF), dibenzo-p-dioxin, carbazole, 

2-hydroxybiphenyl or nitro diphenyl ether herbicides. The metabolism of strain RW1 has 

been the subject of previous studies and a number of genes involved in DBF degradation 

have been characterized. It is known that RW1 posseses a unique initial DBF dioxygenase 

(encoded by the dxnA1 gene) that catalyzes the first step in the degradation pathway. None of 

the organisms known to be able to degrade DBF have a similar dioxygenase, the closest 

match being the DBF dioxygenase from Rhodococcus sp. with an overall amino acid 

similarity of 45%. Genes participating in the conversion of the metabolite salicylate via the 

ortho-cleavage pathway to TCA cycle intermediates were identified as well. Apart from this 

scarce information, however, there is a lack of global knowledge on the genes that are 

involved in DBF degradation by strain RW1 and the influence of environmental stresses on 

DBF-dependent global gene expression. A global analysis is necessary, because it may help 

to better understand the behaviour of the strain under field conditions and suggest 

improvements for the current bioaugmentation practice. 

 

Chapter 2 describes the results of whole-genome analysis to characterize the genes 

involved in DBF degradation by RW1. Micro-array analysis allowed us to detect differences 

in gene transcription when strain RW1 was exposed to DBF. This was complemented by 

ultra-high throughput sequencing of mutants no longer capable of growing on salicylate and 

DBF. Some of the genes of the ortho-cleavage pathway were induced 2 to 4 times in the 

presence of DBF, as well as the initial DBF dioxygenase. However two gene clusters, named 

4925 and 5102 were induced up to 19 times in response to DBF induction. The cluster 4925 
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is putatively participating in a meta-cleavage pathway while the cluster 5102 might be part of 

a gentisate pathway. The three pathways, ortho-cleavage, meta-cleavage and gentisate 

pathway seem to be active in parallel when strain RW1 is exposed to DBF, presenting 

evidence for a redundancy of genes for DBF degradation in the genome of RW1.  

 

Chapter 3 focuses on exploiting genetic tools to construct bioreporters representative 

for DBF degradation in RW1. A set of basic tools for genetic manipulation in Sphingomonas 

wittichii RW1 was tested and optimized. Both plasmids and mini-transposons were evaluated 

for their ability to be maintained in RW1 with or without antibiotic selection pressure, and for 

their ability to lead to fluorescent protein expression in strain RW1 from a constitutive 

promoter. Putative promoter regions of three of the previously found DBF-induced genes 

(Swit_4925, Swit_5102 and Swit_4897-dxnA1) were then used to construct egfp-bioreporters 

in RW1.  

 

Chapter 4 describes the use of the constructed RW1-based bioreporter strains for 

examining the expression of the DBF degradation pathway genes under microcosm 

conditions. The bioreporter strains were first exposed to different carbon sources in liquid 

culture to calibrate the egfp induction. Contrary to our expectations from micro-array analysis 

only the construct with the promoter from gene cluster 4925 responded to DBF, whereas the 

other two constructs did not show specific induction with DBF. The response from the 

bioreporters was subsequently tested for sensitivity to water stress, given that this could have 

an important impact in soils. Exposure to liquid cultures with decreasing water potential, 

achieved by NaCl or PEG addition to the growth media, showed that eGFP expression in 

RW1 from the promoter regions 4925 and 5102 was not directly influenced by water stress, 

but only through an overall reduction in growth rate. In contrast, expression of eGFP from the 
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dxnA1 or an uspA promoter was also directly dependent on the extent of water stress. The 

RW1 with the 4925 construct was subsequently used in soil microcosms to evaluate DBF 

bioavailability to the cells in presence or absence of native microbiota or other contaminated 

material. We found that RW1 could grow on DBF added to soil, but bioreporter expression 

suggested that competition with native microbiota for DBF intermediates may limit its ability 

to proliferate to a maximum. 

 

Chapter 5 describes the results from the experiments carried out to more specifically 

detect genes of RW1 that might be implicated in water stress resistance. Hereto we created 

transposon mutagenesis libraries in RW1, either with a classical mini-Tn5 or with a variant 

that would express egfp when the transposon would insert in a gene induced under water 

stress. Classical mutant libraries were screened by replica plating under high and low water 

stress conditions (achieved by adding NaCl to the agar medium). In addition, we screened for 

smaller microcolonies formed by mutants in agarose beads that could be analized with flow 

cytometry. A number of mutants impaired to grow on NaCl-supplemented media were 

recovered and the transposon insertion sites sequenced. In a second procedure we screened 

by flow cytometry for mutants with a higher eGFP production after exposure to growth 

medium with higher NaCl concentrations. Mutants from both libraries rarely overlapped. 

Discovered gene functions of the transposon insertions pointed to compatible solute synthesis 

(glutamate and proline), cell membrane synthesis and modification of cell membrane 

composition. 

 

The results obtained in the present study give us a more complete picture of the 

mechanisms of DBF degradation by S. wittichii RW1, how it reacts to different DBF 
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availability and how the DBF catabolic activity may be affected by the conditions found in 

contaminated environments.  
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RÉSUMÉ 

 

Sphingomonas wittichii est une alpha-protéobactérie gram-négative, capable de 

dégrader des composés xénobiotiques tels que le dibenzofurane (DBF), la dibenzo-p-dioxine, 

le carbazole, le 2-hydroxybiphényle ou les herbicides derivés du nitro-diphényléther. Le 

métabolisme de la souche RW1 a fait l'objet d'études antérieures et un certain nombre de 

gènes impliqués dans la dégradation du DBF ont été caractérisés. Il est connu que RW1 

possède une unique dioxygénase DBF initiale (codée par le gène dxnA1) qui catalyse la 

première étape de la voie de dégradation. Aucun des organismes connus pour être capables de 

dégrader le DBF n'a de dioxygénase similaire. L'enzyme la plus proche étant la DBF 

dioxygénase de Rhodococcus sp. avec 45% d'acides aminés conservés. Les gènes qui 

participent à la transformation du salicylate en métabolites intermédiaires du cycle de Krebs 

par la voie ortho-cleavage ont aussi été identifiés. Outre ces informations lacunaires, il y a un 

manque de connaissances sur l'ensemble des gènes impliqués dans la dégradation du DBF par 

la souche RW1 ainsi que l'effet des stress environnementaux sur l'expression génétique 

globale, en présence du DBF. Une analyse globale est nécessaire, car elle peut aider à mieux 

comprendre le comportement de la souche dans les conditions de terrain et de proposer des 

améliorations pour l’utilisation de la bio-augmentation comme technique de bio-remédiation. 

 

Le chapitre 2 décrit les résultats de l'analyse du génome pour caractériser les gènes 

impliqués dans la dégradation du DBF par RW1. Une analyse de micro-arrays nous a permis 

de détecter des différences dans la transcription des gènes lorsque la souche RW1 a été 

exposée au DBF. L’analyse a été complétée par le criblage à ultra-haut débit de mutants qui 

n'étaient plus capables de croître avec le salicylate ou le DBF comme seule source de 

carbone. Certains des gènes de la voie ortho-cleavage, dont la DBF dioxygénase initiale, ont 
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été induits 2 à 4 fois, en présence du DBF. Cependant, deux groupes de gènes, nommés 4925 

et 5102 ont été induits jusqu'à 19 fois en réponse au DBF. Le cluster 4925 participe 

probablement dans une voie de meta-cleavage tandis que le cluster 5102 pourrait faire partie 

d'une voie du gentisate. Les trois voies, ortho-cleavage, meta-cleavage et la voie du gentisate 

semblent être activées en parallèle lorsque la souche RW1 est exposée au DBF, ce qui 

représente une redondance de voies pour la dégradation du DBF dans le génome de RW1. 

 

Le chapitre 3 se concentre sur l'exploitation des outils génétiques pour la construction 

de biorapporteurs de la dégradation du DBF par RW1. Un ensemble d'outils de base pour la 

manipulation génétique dans Sphingomonas wittichii RW1 a été testé et optimisé. Deux 

plasmides et mini-transposons ont été évalués pour leur capacité à être maintenu dans RW1 

avec ou sans pression de sélection par des antibiotiques, et pour leur capacité à exprimer la 

protéine fluorescente verte (eGFP) dans la souche RW1. Les trois promoteurs des gènes 

Swit_4925, Swit_5102 et Swit_4897 (dxnA1), induits en réponse au DBF, ont ensuite été 

utilisés pour construire des biorapporteurs dans RW1. 

 

Le chapitre 4 décrit l'utilisation des souches biorapportrices construites pour l'analyse 

de l'expression des gènes de la voie de dégradation du DBF dans des microcosmes avec 

différents types de sols. Les souches biorapportrices ont d'abord été exposées à différentes 

sources de carbone en cultures liquides afin de calibrer l'induction de la eGFP. La 

construction avec le promoteur du gène 4925 a permis une réponse au DBF. Mais 

contrairement à nos attentes, basées sur les résultats de l’analyse des micro-arrays, les deux 

autres constructions n'ont pas montré d'induction spécifique au DBF. La réponse des 

biorapporteurs a ensuite été testée pour la sensibilité au stress hydrique, étant donné que cela 

pourrait avoir un impact important dans les microcosmes. La diminution du potentiel 
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hydrique en culture liquide est obtenue par addition de NaCl ou de PEG au milieu de 

croissance. Nous avons montré que l'expression de la eGFP contrôlée par les promoteurs 

4925 et 5102 n'était pas directement influencée par le stress hydrique, mais seulement par une 

réduction globale des taux de croissance. En revanche, l'expression de la eGFP dépendante 

des promoteurs dxnA1 et uspA était aussi directement dépendante de l'ampleur du stress 

hydrique. La souche avec la construction 4925 a été utilisée par la suite dans des 

microcosmes avec différents types de sols pour évaluer la biodisponibilité du DBF en 

présence ou absence des microbes indigènes et d’autres composés contaminants. Nous avons 

constaté que RW1 pouvait se développer si le DBF a été ajouté au sol, mais l'expression de la 

eGFP par le biorapporteur suggère que la compétition avec la microbiota indigène pour les 

métabolites intermédiaires du DBF peut limiter sa capacité à proliférer de manière optimale. 

 

Le chapitre 5 décrit les résultats des expériences réalisées afin de détecter 

spécifiquement les gènes de RW1 qui pourraient être impliquées dans la résistance au stress 

hydrique. Ici on a crée des bibliothèques de mutants de RW1 par transposon, soit avec un 

mini-Tn5 classique ou avec une variante qui exprime la eGFP lorsque le transposon s'insère 

dans un gène induit par le stress hydrique. Les bibliothèques de mutants ont été criblées par la 

méthode classique de repiquage sur boîtes, dans des conditions de stress hydrique élevé 

(obtenu par l'addition de NaCl dans les boîtes). En outre, nous avons criblé des micro-

colonies dans des billes d'agarose qui ont pu être analysées par cytométrie de flux. Un certain 

nombre de mutants déficients à croître sur des milieux supplémentés avec du NaCl ont été 

isolés et les sites d'insertion du transposon séquencés. Dans une deuxième procédure nous 

avons criblé par cytométrie de flux des mutants avec une production de eGFP supérieure, 

après exposition à un milieu de croissance avec une concentration élevée de NaCl. Les 

mutants obtenus dans les deux bibliothèques n’étaient pas similaires. Les fonctions des gènes 
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où se trouvent les insertions de transposons sont impliqués dans la synthèse de solutés 

compatibles (glutamate et de la proline), dans la synthèse de la membrane cellulaire et dans la 

modification de la composition de la membrane cellulaire. 

Les résultats obtenus dans la présente étude nous donnent une image plus complète 

des mécanismes de dégradation du DBF par S. wittichii RW1, comment cette souche réagit à 

la disponibilité du DBF et comment l'activité catabolique peut être affectée par les conditions 

rencontrées dans des environnements contaminés. 

 
. 
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GOALS 

 

The main objectives of the work presented here were to: 

 

1. Develop genetic systems for introducing and manipulating recombinant DNA in 

Sphingomonas wittichii RW1, and for creating gene knockouts. 

2. Determine the genes of strain RW1 involved in dibenzofuran degradation by genome-

wide microarray and mutant analysis. 

3. Produce reporter gene constructs based on RW1 responding to the presence of 

dibenzofuran and /or salicylate. 

4. Monitor the influence of water stress on the performance of bioreporter constructs in 

strain RW1. 

5. Screen for genes involved in resistance of RW1 to NaCl-induced stress. 
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OUTLINE 

 

 

Chapter 1. General Introduction 

This chapter describes the existing information on strain Sphingomonas wittichii RW1 

and degradation of dibenzofuran (DBF) as far as enzymes and genes concerned. It also covers 

the general concepts of bioremediation and bioaugmentation, and the problems encountered 

when trying to implement it in the field. The framework of our study is then to improve our 

knowledge of DBF catabolism by Sphingomonas wittichii RW1 and to understand how this 

degradation capability can be affected by the conditions found in the environment. 

 

Chapter 2. Genome-wide Analysis of Salicylate and Dibenzofuran Metabolism in 

Sphingomonas wittichii RW1 

A description of the genes being differentially regulated in the presence of 

dibenzofuran and salicylate compared to phenylalanine is presented here. A genome-wide 

transcriptome analysis was used to detect differences in gene transcription under different 

growth conditions. This was complemented by ultra-high throughput sequencing of mutants 

no longer capable of growing on salicylate and dibenzofuran.  

 

Chapter 3. Development of Genetic Tools for Manipulations in Sphingomonas wittichii 

RW1 

The basic tools developed to perform genetic manipulation in Sphingomonas wittichii 

RW1 are described in this chapter. We optimized conditions for electrotransformation, 

conjugation and selection. A set of plasmid and transposons constructed were evaluated for 

their ability to be maintained and to express fluorescent protein in strain RW1 in the absence 
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and presence of antibiotic selection. The difference in transformation efficiency depending of 

the host used for plasmid replication is also explored. The capacity for transformation with 

linear DNA was investigated and the problems in finding consistent homologous 

recombination are discussed. 

 

Chapter 4. Fluorescently Tagged Sphingomonas wittichii for the Detection of 

Dibenzofuran in Liquid Cultures and Soil 

Using the transcriptome generated results, three genes were targeted for the 

construction of bioreporters for the detection of DBF. The RW1-based bioreporter strains 

were exposed to different carbon sources either in liquid culture or soil microcosms and the 

egfp induction was measured. One of the bioreporters reacted well to the presence of 

dibenzofuran in soil. Interestingly, the reporter signal in cells was lower in soils amended 

with dibenzofuran and PAH-contaminated material than in soils with dibenzofuran only. This 

suggested that indigenous bacteria present in the PAH-contaminated material remove part of 

the dibenzofuran metabolites produced by RW1, to which the reporter is reacting. 

 

Chapter 5. Identification of Water Stress Promoters in Sphingomonas wittichii RW1 

This chapter includes a screening of genes involved in water stress resistance by 

Sphingomonas wittichii RW1 using a transposon mutant library creation and selection under 

high NaCl conditions. NaCl-supplemented media was used to mimic the solute stress that the 

bacteria experience in the environment. Some clones were detected that were impaired to 

grow in NaCl-supplemented media as well as clones with a higher eGFP production in the 

presence of higher amount of NaCl compared to the control. The gene functions give us an 

indication of the mechanisms used by strain RW1 to cope with NaCl-induced stress. 
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CHAPTER 1 

General Introduction 

 

 

 

The viability of microorganisms introduced to polluted sites is usually lower than 

results from laboratory experiments suggest. As causes for this occurrence, some authors 

propose a low availability of carbon substrate, lack of nutrients, water stress, unfavorable 

environmental conditions (e.g., pH, toxic metals), or predation. However, there is a general 

lack of knowledge on how environmental conditions influence activity of introduced bacteria. 

Sphingomonas wittichii RW1 has the ability to degrade different polycyclic aromatic 

hydrocarbons and therefore, represents an interesting case for exploitation of its catabolic 

activities for the purpose of bioremediation. Several enzymes involved in degradation of 

dibenzofuran (DBF) have previously been characterized, but the complexity of the DBF 

pathway and the interplay of regulation of DBF degradation with environmental factors are 

largely unknown. The main goals of the underlying thesis work were thus to characterize the 

global regulation of the DBF degradation pathway, to identify key promoters representative 

for DBF degradation that could be used to develop bioreporters, and finally, to use such 

bioreporter strains to uncover the effects of environmental conditions on catabolic activity of 

strain RW1.  
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Sphingomonas wittichii RW1 

 

Sphingomonas wittichii RW1 (Figure 1A) is a gram negative α-proteobacterium, 

isolated from the Elbe River near Hamburg (Germany) for its ability to degrade dibenzofuran 

(DBF), dibenzo-p-dioxin (DBD) and chlorine substituted derivatives (Wittich et al., 1992). 

DBF and DBD (Figure 1B and 1C) are poorly water soluble polycyclic aromatic 

hydrocarbons (PAH) that are formed as byproducts of coal tar industrial processes, during 

incineration, and in paper pulp bleaching. DBF, DBD and related compounds with chlorine 

substitutions are widely present at low concentrations in the environment and the food chain 

(Bowes et al., 1973; Buser et al., 1985; Beck et al., 1994; Johansen et al., 1996). Detrimental 

effects of exposure of fishes (Zitko et al., 1973), rats (Yoshihara et al., 1981), primates 

(McNulty, 1985), humans (Pluim et al., 1993; Beck et al., 1994; Soong and Ling, 1997) to 

DBF and DBD have been reported.  

 

 

Figure 1. Phase contrast microscope image of Sphingomonas wittichii RW1 using a 1000x magnification (A). 

Structure of Dibenzofuran (B) and Dibenzo-p-dioxin (C). 

 

A number of bacteria can use DBF and DBD as sole carbon and energy sources, 

including Sphingomonas wittichii RW1, Staphylococcus auriculans (Monna et al., 1993), 
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Nocardioides aromaticivorans (Kubota et al., 2005), Rhodococcus sp. HA01 (Aly et al., 

2008), Pseudomonas putida B6-2 (Li et al., 2009), Sphingomonas yanoikuyae B1 (Cerniglia 

et al., 1979), Sphingomonas sp. HH69 (Fortnagel et al., 1990), Sphingomonas sp. XLDN2-5 

(Gai et al., 2007) and Sphingomonas sp. RW16 (Wittich et al., 1999).  

 

 

DBF degradation by S. wittichii RW1 

 

Since the isolation of Sphingomonas wittichii RW1, several authors have explored the 

DBF and DBD degradation pathway and some of the enzymes involved have been purified 

and characterized. The genome of RW1 is fully sequenced (Miller et al., 2010) and consists 

of one chromosome (5382 kb) and two megaplasmids, pSWIT01 (310 kb) and pSWIT02 

(222 kb). The larger mega plasmid (pSWIT01) has been reported to be similar to pNL1 from 

Novosphingobium aromaticivorans, specifically in a 17 kb region coding for reverse 

transcriptase and a type4 pillus (Miller et al., 2010), whereas the smaller (pSWIT02) contains 

genes implicated in DBF/DBD degradation (Bunz and Cook, 1993; Bunz et al., 1993; 

Armengaud and Timmis, 1998; Armengaud et al., 1998; 1999; 2000; Basta et al., 2004; 

Miller et al., 2010; Coronado et al., 2012). Strain RW1 has an average GC content of 67% 

and several of its catabolic genes have been proposed to have been acquiered by horizontal 

gene transfer (http://genome.jgi-psf.org/sphwi/sphwi.home.html). 

 

It is known that the initial step of DBF degradation in strain RW1 is an angular 

dioxygenation to produce 2,2’,3-trihydroxybiphenyl. This reaction is catalyzed by a 

multicomponent DBF dioxygenase, which is composed of the terminal oxidase DxnA1A2 

(Swit_4897 and Swit_4896), a reductase RedA2 (Swit_4920), and ferredoxins Fdx1 and 

http://genome.jgi-psf.org/sphwi/sphwi.home.html
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Fdx3 (Swit_5088 and Swit_4893) (Bunz and Cook, 1993; Armengaud and Timmis, 1997; 

Armengaud and Timmis, 1998; Armengaud et al., 1998). The second step involves the 

catalytic activity of a 2,2’,3-trihydroxybiphenyl dioxygenase DbfB (Swit_4902) (Happe et 

al., 1993),  producing a meta cleavage compound, which is subsequently transformed to 

salicylate and 2-hydroxy-2,4-pentadienoate by the αβ hydrolase paralogues DxnB or DxnB2 

(Swit_4895 and Swit_3055) (Bunz et al., 1993; Seah et al., 2007) (Figure 2A and 2B).  

 

A number of genes encode possible lower pathway reactions, i.e., from salicylate to 

the TCA cycle intermediates acetyl-CoA and succinyl-CoA. Armengaud et al. (1999) 

characterized an ortho-cleavage pathway (beta-keto-adipate pathway). This operon was 

called the dxn cluster and includes the genes dxnCDEFGHI (Swit_4887 to Swit_4894). 

Similar as the dxnA1A2B, dbfB and fdx genes that form the upper pathway, the dxnCDEFGHI 

genes are encoded on pSWIT02. Two additional loci, Swit_0970 to Swit_0981 and 

Swit_3054 to Swit_3060, are putatively also participating in DBF degradation but are found 

on the chromosome (Armengaud et al., 1998) (Figure 2B). 

 

According to the KEGG (Kyoto Encyclopedia of Genes and Genomes) database, 

other alternative pathways for aromatic compound degradation besides the keto-adipate 

pathway are encoded on the RW1 chromosome, such as the gentisate pathway and a meta-

cleavage pathway, which could direct DBF intermediates to the TCA cycle (Figure 2A). 

However, this assignment is based on a gene function prediction and no enzyme involved in 

these alternative pathways has been studied or characterized for strain RW1.  
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Figure 2. Schematic outline of the DBF degradation pathway (A) based on KEGG database information, and the 

published loci involved in DBF degradation (B) in Sphingomonas wittichii RW1. 
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Bioremediation 

 

Bioremediation refers to the use of microorganisms to degrade pollutants, as an 

alternative to the traditional physico-chemical processes (Scullion, 2006). Two approaches of 

bioremediation technology are the introduction of microorganisms to a contaminated site, 

called bioagumentation, or the addition of nutrients to the site that will favour the activity of 

the native microorganisms, refered to as biostimulation (Vogel et al., 1996; Gentry et al., 

2004; Tyagi et al., 2011). Despite the numerous attempts to use bioaugmentation and 

bioremediation in contaminated sites, the results are usually disappointing when compared to 

the laboratory observations (Gentry et al., 2004; El Fantroussi and Agatos, 2005; Thompson 

et al., 2005; Scullion, 2006; Tyagi et al., 2011). Several factors have been suggested to limit 

implementation of bioaugmentation and biostimulation. Some of those relate to the quality of 

the environment in which the strains are introduced, such as harsh growth conditions 

(Megharaj et al., 1997; van Veen et al., 1997; Chen et al., 2008), oxidative stress (Givskov et 

al., 1994), depletion of nutrients (Rosenberg et al., 1992; Röling et al., 2002; Ahn et al., 

2008), sudden changes in temperature (Steinle et al., 2000), changes in pH (van der Gast and 

Thompson, 2004; Kim et al., 2005), unavailability of the compound (Harms and Zehnder, 

1995; Bosma et al., 1996; Halden et al., 1999; Johnsen and Karlson, 2004; Johnsen et al., 

2005; Wammer and Peters, 2005; Aso et al,, 2006; Das et al., 2008; Rehmann et al., 2008), 

or lack of water (Leahy and Colwell, 1990; Stark and Firestone, 1995). Other factors relate to 

the inherent qualities of the microorganisms themselves, such as general poor viability, low 

degrading activity when applied to contaminated sites (Gentry et al., 2004; Thompson et al., 

2005; Tyagi et al., 2011), sensitivity to toxic action of the compounds or subproducts 

(Coppotelli et al., 2008, 2010) or competition with native microorganisms (Shi et al., 2001; 

Kumar et al., 2009; Morrison and Alexander, 1997). Many frequently found organic 
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pollutants such as polycyclic aromatic hydrocarbons or oil constituents have a low water 

solubility and high hydrophobicity. This favors their sorption to the organic matrix in soil, 

gradually leading to the process of aging by which the contaminants become less and less 

available for biota (Harms and Bosma, 1997). 

 

On the basis of this, various propositions were made to possibly improve 

bioremediation efficiency of introduced strains. As examples, pretreatments may enhance the 

bioavailability of the pollutants to the degrading bacteria (Das et al., 2008; Johnsen and 

Karlson, 2004), the use of genetically modified microorganism with enhanced degrading 

capacities (Ramos et al., 1986, Pieper and Reineke, 2000) or enhanced compound uptake by 

altering the membrane pores (Aso et al., 2006). Microorganisms can be pre-adapted to 

environmental conditions before actually introducing them on site (Megharaj et al., 1997). 

Also immobilization has been used to increase cell viability and reduce toxic action 

(Obuekwe and Al-Murrawa, 2001; Moslemy et al., 2002; Tao et al., 2009; Wang et al., 

2010). Other techniques favor activation of cometabolic degradation by microorganisms that 

cannot fully mineralize a compound when they are used as pure cultures, because their 

genomes code for incomplete degradative pathways or the production of dead-end products 

(Wittich et al., 1999; Kumar et al., 2009; Li et al., 2009; Hasan et al., 2012; McGenity et al., 

2012). 

 

Sphingomonas wittichii RW1 has a potential to be used for bioremediation of 

contaminated sites, due to its ability to metabolize a variety of toxic compounds. Two studies 

describe the DBF degradation by strain RW1 in sandy soils and soils containing organic 

matter artificially contaminated with DBF, DBD and 2-chlorodibenzo-p-dioxin (Megharaj et 

al., 1997; Halden et al., 1999). Megharaj et al. (1997) reported a 90% degradation of DBF 
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within 12 days, while no growth of RW1 was detected, maintaining around 105 CFU/gr soil 

during the whole duration of the experiment. Halden et al. (1999) showed an almost complete 

removal of DBF, DBD and 2-chlorodibenzo-p-dioxin. Similarly to the previous study, an 

exponential decrease of the RW1 population was observed, with a half-life of 7 days.  

 

The pollutant degradation mechanisms by bacteria have been extensively studied 

(Leahy and Colwell, 1990; Fukuda et al., 2002; Johnsen and Karlson, 2007; Peng et al., 

2008). However, a major constraint in the successful application of microorganisms for 

bioremediation is the lack of basic information on the environmental traits influencing the 

catabolic activity of microorganisms in situ. As part of this study, we aimed to more 

completely identify genes involved in DBF degradation by means of genome-wide 

microarrays in order to select target promoters and construct bioreporters strains. Such RW1 

bioreporter strains would then perhaps better allow us to monitor the catabolic activity of 

RW1 as a function of environmental factors, prevailing at a polluted site. 

 

 

Water Stress 

 

It has been known for a long time that the water availability in the environment of 

cells has an impact on their metabolic activity, including compound biodegradation (Brown, 

1976; Holden et al., 1997). Water availability is therefore also an important factor in the 

control of bioremediation efficiency in the field (Leahy and Colwell, 1990; Stark and 

Firestone, 1995). A decrease in water availability for a microorganism that impairs its basic 

biochemical functions is considered as water stress (Brown, 1976). 
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A decrease in water activity is equivalent to a lowered water potential and this 

translates in an increase of the osmotic pressure (Potts, 1994). The osmotic potential, 

numerically equal to osmotic pressure but with a negative sign (Brown, 1976), has two 

components, the solute potential (SP) and matric potential (MP). SP increases linearly with 

increasing concentration of solutes and the MP describes the interaction of water with 

surfaces and interfaces (colloidal particles and solid particles from 0.002 to 1 µm diameter) 

(Potts, 1994). Under laboratory conditions the solute potential can be manipulated by adding 

to the culture media increasing amounts of permeable ionic solutes such as NaCl (Holden et 

al., 1997; Mutnuri et al., 2005; Chang et al., 2007), urea (Reva et al., 2006), Na2SO4 (Boch et 

al., 1994), or KCl (Boch et al., 1994; Axtell and Beattie, 2002). The matric potential can be 

modified by addition of non-permeating solutes that favor the flux of water molecules from 

the interior of the cell to the outside, such as PEG (Halverson and Firestone, 2000; Axtell and 

Beattie, 2002; Chang et al., 2007), or glycerol (Boch et al., 1994). Other ways to manipulate 

the matric potential include air dessication (Singh et al., 2005; Cytryn et al., 2007; LeBlanc et 

al., 2008) or the Porous Surface Model (Dechesne et al., 2008). 

 

Microorganisms have different strategies to adapt to changes in water potential. As a 

consequence of hyperosmotic shock, bacteria stimulate the uptake of potassium and the 

synthesis of glutamate (Sleator and Hill, 2002). The secondary response is the accumulation 

of neutral osmoprotectants (compatible solutes), which in contrast to the ionic osmolytes of 

the primary response, can be accumulated to high intracellular concentration to counteract the 

outflow of water, without adversely affecting cellular processes (Boch et al., 1994; Ogahara 

et al., 1995; Kempf and Bremer, 1998; LeBlanc et al., 2008; Poolman and Glaasker, 1998; 

Cytryn et al., 2007; Brill et al., 2011). Other strategies include the change in membrane fatty 

acid composition (Halverson and Firestone, 2000; Mutnuri et al., 2005; Johnson et al., 2011), 
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the up-regulation of proteins involved in stabilization of macromolecules and membrane 

structure (Hallsworth et al., 2003; Cytryn et al., 2007; LeBlanc et al., 2008), the production 

of exopolysaccharides (Chang et al., 2007; Gülez et al., 2012), overproduction of 

transmembrane transporters (Lucht and Bremer, 1994; Reva et al., 2006; Cytryn et al., 2007) 

or to enter physiological states of low growth or stationary phase (Holden et al., 1997; Wright 

and Beattie, 2004; Singh et al., 2005). 

 

Knowing that bacteria undergo different changes in order to adapt to a water stress 

condition, is thus important to understand the impact that a decreased water potential could 

have on its degrading capacity. One of the goals of this study is therefore to monitor the 

catabolic activity of S. wittichii RW1 when inoculated in liquid media with a decreased water 

potential as well as when inoculated in soil microcosms, by following bioreporters 

responding to DBF.  
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CHAPTER 2  

Genome-Wide Analysis of Salicylate and Dibenzofuran 

Metabolism in Sphingomonas wittichii RW1 

 

 

Abstract 

 

Sphingomonas wittichii RW1 is a bacterium isolated for its ability to degrade the 

xenobiotic compounds dibenzo-p-dioxin and dibenzofuran (DBF). A number of genes 

involved in DBF degradation have been previously characterized, such as the dxn cluster, 

dbfB, and the electron transfer components fdx1, fdx3 and redA2. Here we use a combination 

of whole genome transcriptome analysis and transposon library screening to characterize 

RW1 catabolic and other genes implicated in the reaction to or degradation of DBF. To detect 

differentially expressed genes upon exposure to DBF, we applied three different growth 

exposure experiments, using either short DBF exposures to actively growing cells or growing 

them with DBF as sole carbon and energy source. Genome-wide gene expression was 

examined using a custom-made microarray. In addition, proportional abundance 

determination of transposon insertions in RW1 libraries grown on salicylate or DBF by ultra-

high throughput sequencing was used to infer genes whose interruption caused a fitness loss 

for growth on DBF. Expression patterns showed that batch and chemostat growth conditions, 

and short or long exposure of cells to DBF produced very different responses. Numerous 

other uncharacterized catabolic gene clusters putatively involved in aromatic compound 

metabolism increased expression in response to DBF. In addition, only very few transposon 
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insertions completely abolished growth on DBF. Some of those (e.g., in dxnA1) were 

expected, whereas others (in a gene cluster for phenylacetate degradation) were not. Both 

transcriptomic data and transposon screening suggest operation of multiple redundant and 

parallel aromatic pathways, depending on DBF exposure. In addition, increased expression of 

other non-catabolic genes suggests that during initial exposure, S. wittichii RW1 perceives 

DBF as a stressor, whereas after longer exposure, the compound is recognized as a carbon 

source and metabolized using several pathways in parallel. 

 

 

 

 

 

 

 

 

 

 

 

This chapter was previously published in the journal Frontiers in Microbiology (2012) issue 3 

page 300 as part of research topic Biodegradation and Bioremediation of Polynuclear 

aromatic hydrocarbons (PAH) by Edith Coronado, Clémence Roggo, David R. Johnson and 

Jan Roelof van der Meer. 
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Introduction 

 

Dibenzofuran (DBF) and dibenzo-p-dioxin (DBD) are poorly water-soluble 

polycyclic aromatic hydrocarbons (PAH) that are formed as byproducts of coal tar industrial 

processes, during incineration, and in paper pulp bleaching. DBF, DBD and related 

compounds with chlorine substitutions are widely present at low concentrations in the 

environment and the food chain (Bowes et al., 1973; Buser et al., 1985; Beck et al., 1994; 

Johansen et al., 1996), and detrimental effects of exposure have been reported (Zitko et al., 

1973; Yoshihara et al., 1981; McNulty, 1985; Pluim et al., 1993; Soong and Ling, 1997). A 

number of bacteria can use DBF and DBD as sole carbon and energy sources, including 

Staphylococcus auriculans (Monna et al., 1993), Nocardioides aromaticivorans (Kubota et 

al., 2005), Rhodococcus sp. HA01 (Aly et al., 2008), Pseudomonas putida B6-2 (Li et al., 

2009), Sphingomonas yanoikuyae B1 (Cerniglia et al., 1979), Sphingomonas sp. HH69 

(Fortnagel et al., 1990), Sphingomonas sp. XLDN2-5 (Gai et al., 2007), Sphingomonas sp. 

RW16 (Wittich et al., 1999) or Sphingomonas wittichii RW1 (Wittich et al., 1992, Wilkes et 

al., 1996). Consequently, there has been an interest to apply such isolates for 

bioaugmentation of DBF/DBD-contaminated sites. Megharaj et al. (1997) and Halden et al. 

(1999) observed DBF and DBD degradation by S. wittichii RW1 applied to inoculated soil 

microcosms, while Aso et al. (2006) reported increased DBF degradation rates by inoculating 

a modified strain of S. wittichii RW1 in contaminated soil.  

 

Despite such anecdoctal reports, bioaugmentation with strains such as RW1 have not 

consistently resulted in accelerated pollutant degradation rates. Possible reasons that have 

been put forward to explain the limited success of bioaugmentation include the lack of 

essential nutrients in the soil, the creation of toxic dead-end products (Halden et al., 1999), 
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the low availability of the hydrocarbons (Aso et al., 2006), and the poor ability of the bacteria 

to adapt to the soil environment (Megharaj et al., 1997). However, the cellular responses of 

bacteria such as RW1 to different conditions have not been extensively studied, and perhaps 

DBF/DBD metabolism is regulated in a complex manner depending on the types of exposure.  

 

To address this knowledge gap, we systematically explored gene transcription of S. 

wittichii RW1 at a genome-wide level in batch and chemostat cultures, with and without 

exposure to DBF or salicylate (SAL) under different cellular growth and environmental 

conditions. S. wittichii RW1 (Wittich et al., 1992) is a gram-negative α-Proteobacterium, 

with a genome consisting of one chromosome and two mega plasmids, named pSWIT01 and 

pSWIT02 (Miller et al., 2010). The larger mega plasmid pSWIT01 has been reported to be 

similar to pNL1 from Novosphingobium aromaticivorans, whereas the smaller pSWIT02 

contains a number of genes previously implicated in DBF/DBD degradation (Bunz and Cook, 

1993; Bunz et al., 1993; Armengaud and Timmis, 1998; Armengaud et al., 1998; 1999; 2000; 

Basta et al., 2004; Miller et al., 2010). Several enzymes participating in DBF degradation 

have been purified and characterized, notably the initial multicomponent DBF dioxygenase, 

which is composed of the terminal oxidase DxnA1, a reductase (RedA2), and a ferredoxin 

(Fdx1) (Bunz and Cook, 1993). In addition, a 2,2’,3-trihydroxybiphenyl dioxygenase activity 

(DbfB) and its corresponding gene (Swit_4902) were characterized (Happe et al., 1993), and 

two hydrolases, DxnB and DxnB2, (Swit_4895 and Swit_3055) were described (Bunz et al., 

1993; Seah et al., 2007). Several of the genes for the above-mentioned enzymes were cloned 

and characterized, such as fdx1 (Swit_5088, Armengaud and Timmis, 1997), redA2 

(Swit_4920, Armengaud and Timmis, 1998), and dxnA1A2B (Swit_4897 and Swit_4896, 

Armengaud et al., 1998). The expression of dxnA1 in RW1 was reported to be higher in 

DBF-grown than in LB-grown cells (Armengaud et al., 1998), while Bunz and Cook (1993) 
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observed that DxnA1 was constitutively synthesized in RW1 cells growing on acetate, 

benzoate, or salicylate as sole carbon and energy source. Finally, a number of other genes, 

notably the gene fdx3 (Swit_4893) and a cluster of genes named dxnCDEFGHI (Swit_4887 

to Swit_4894) were cloned and overexpressed in Escherichia coli. Their enzyme activities 

were determined, suggesting that they are involved in DBF degradation by RW1 (Armengaud 

et al., 1999).  

 

The main objective of the study presented here was to study RW1 gene transcription 

at the genome-wide level during exposure to DBF. Our hypothesis was that we would clearly 

see the expression of the abovementioned genes in DBF degradation, but perhaps would also 

detect other genes for catabolic functions specifically induced or repressed during exposure to 

DBF. Secondly, we were interested to study how the expression of RW1 genes would change 

under different growth conditions and exposures to DBF, which might give us clues about 

how expression in the DBF degradation pathway changes under environmental conditions. 

Because DBF is poorly water soluble (~5 mg/L) we followed pathway induction by exposing 

RW1 cells in batch culture to carbon substrate exchange or by transiting stably chemostat-

growing cultures from medium without to medium with saturating DBF levels. Finally, we 

cultured cells in batch culture with DBF, SAL, or phenylalanine (PHE) as sole carbon and 

energy source. A custom-made RW1 microarray (Johnson et al., 2011) was used to analyze 

differences in genome-wide gene expression under different conditions. In addition, we used 

genome-wide transposon screening (Langridge et al., 2009) to further identify genes 

necessary for growth on DBF as sole carbon and energy source. 
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Materials and methods 

 

1. Bacterial cultivation 

A stock of S. wittichii RW1 was kept at -80°C and a small aliquot was plated on 

minimal medium agar (1.5% w/v) with 5 mM SAL, or by placing DBF crystals in the lid of a 

Petri dish. Liquid cultures were always prepared from an isolated colony of RW1 from a 

plate. Minimal media (MM) were based on DSM457 media (Johnson et al., 2011) amended 

with 5 mM SAL, 5 mM PHE, or with DBF crystals in a dosage of 5 µmol per ml as carbon 

source. All cultures were incubated at 30°C with rotary shaking at 180 rpm. Batch cultures of 

strain RW1 were prepared in 50 ml Erlenmeyer flasks containing 15 ml of MM. The cultures 

were started at an initial culture turbidity of 0.005 (at 600 nm, OD600) for all carbon sources 

evaluated. Carbon-limited continuous culturing of S. wittichii RW1 was carried out in 

triplicate 500-ml working volume reactors (Infors-HT), containing 400 ml MM and 5 mM 

PHE as carbon and energy source. Reactors were inoculated with 100 ml of a preculture of S. 

wittichii RW1, which was prepared by inoculating a single colony into a 1 L Erlenmeyer 

flask with 300 ml of MM plus 5 mM PHE and streptomycin (Sm), and grown until stationary 

phase (OD600 ~1). Streptomycin was added (at 50 µg/ml) to the growth media to avoid culture 

contamination, since strain RW1 is naturally resistant to Sm. The triplicate fermentors were 

then first operated in batch mode at 30°C and with a stirring speed of 200 rpm. The pH and 

partial oxygen pressure (pO2) were monitored online and were maintained at 7 and ~90%, 

respectively. When the culture turbidity reached a steady value of OD600 = 1 (the maximum 

OD obtained with 5 mM PHE), the inflow of fresh MM with 5 mM PHE was started. The 

flow rate was set to 23.8 ml/h, giving a dilution rate of 0.05 h-1, which corresponds to a 

doubling time of 14.6 h. The culture turbidity was measured at regular time intervals and 
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culture samples were plated on LB agar without Sm to verify culture purity. Silicon based 

antifoam suspension (Antifoam-B emulsion, Sigma-Aldrich) was added at a rate of 0.025 

ml/h to avoid excessive culture foaming. The continuous culture was considered in 

equilibrium after five reactor volume changes and when the measured parameters (culture 

turbidity and pO2) were stable.  

 

2. Genome-wide transposon screening  

A transposon insertion library was constructed by conjugating plasmid pRL27 from E. 

coli BW20767 to S. wittichii RW1 as described by Larsen et al. (2002). RW1 transconjugants 

were selected on MM+SAL plates in the presence of 50 µg/ml kanamycin. RW1 kanamycin-

resistant colonies were pooled and stored in aliquots at -80°C in the presence of 15% (v/v) 

glycerol. Individual aliquots of the library were then grown for five passages in batch culture 

on MM with 5 mM SAL or with DBF crystals (approximately 50 generations). After five 

subsequent transfers the total genomic DNA was extracted from the cultures and from the 

initial library. Aliquots of 5 µg DNA were fragmented and used for Illumina library 

preparation, during which specifically DNA fragments containing the transposon DNA were 

amplified, as described in Langridge et al. (2009). Samples were then sequenced on an 

Illumina HiSeq2000 machine at the Lausanne Genomic Technologies Facility (University of 

Lausanne). Transposon containing sequences were filtered, trimmed and mapped on the S. 

wittichii genome using the Xpression pipeline, which was developed by the Harwood lab at 

the University of Washington (for download: 

https://depts.washington.edu/cshlab/html/rnaseq.html). Genes without any transposon 

insertions were scored and compared between the two conditions and the starting library.  

 

https://depts.washington.edu/cshlab/html/rnaseq.html
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3. Short exposure of S. wittichii RW1 to DBF in batch cultures 

S. wittichii RW1 was grown in MM+PHE to stationary phase and this culture was 

used to inoculate 8 identical 100 ml Erlenmeyer flasks with 20 ml of MM+PHE. These 

cultures were then grown to exponential phase (OD600~0.2), upon which the cells were 

transferred to 50 ml glass centrifuge tubes and centrifuged at 6,000 rpm for 2 min. The 

supernatant was discarded and 20 ml of preheated (30°C) MM+PHE was added to four of the 

tubes, whereas 20 ml of preheated (30°C) MM+DBF (presaturated) was added to the other 

four tubes. Cells were resuspended immediately and the tubes were incubated in a rotary 

shaker at 150 rpm for 30 min at 30°C. After this period, the cells were collected by filtering 

the cultures over a 0.2 µm Millipore filter, which were then transferred into 2 ml tubes and 

immediately frozen in liquid N2. The cells on filters were stored at -80°C until further 

processing for RNA isolation. 

 

4. Long exposure of S. wittichii RW1 to DBF in batch cultures 

Secondly, we tested continuous exposure of S. wittichii RW1 in batch culture to DBF 

compared to PHE. A single stationary phase preculture grown in MM+PHE was used as 

inoculum for two sets of four replicate cultures in 100 ml Erlenmeyer flasks with 20 ml of 

either MM plus 5 mM PHE or MM plus saturating DBF (dosage of 5 µmol per ml). Cultures 

were grown until an OD600 of 0.2, after which the cells were collected on 0.2 µm filters 

(Millipore), immediately transferred into 2 ml tubes and frozen in liquid N2. The filters were 

kept at -80°C until further processing for RNA isolation. 
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5. Transient exposure of S. wittichii RW1 to DBF in continuous culture 

In order to achieve an immediate pulse addition of DBF to S. wittichii RW1 cells 

which otherwise experienced carbon-limited conditions, we used cells growing continuously 

on MM+PHE. Triplicate fermentors with stably growing RW1 cultures on MM+PHE were 

induced with DBF by injecting a volume of 1 ml DBF dissolved in 2,2',4,4',6,8,8'-

heptamethylnonane (HMN, at 2.5 mg/ml) into each fermentor (500 ml culture volume) and 

subsequently changing immediately the inflow medium to MM plus 5 mM PHE plus 

saturated amounts of DBF (crystals visible in the stirred medium). Addition of HMN to 

exponentially growing cultures on PHE did not cause any growth rate retardation (not 

shown). Culture samples (4 x 2 ml) were taken, transferred to 2 ml centrifuge tubes with 

screw cap and centrifuged at 13,000 rpm for one min at room temperature. The supernatant 

was quickly removed by decanting and the cell pellets were frozen with liquid N2. Control 

samples (T0) were taken immediately before the transition. Further samples were taken 30 

min, 1 h, 2 h, and 6 h after the transition to medium with DBF. The cell pellets were stored at 

-80°C until further processing for RNA isolation. 

 

6. RNA processing, microarray hybridization and analysis 

RNA was extracted and purified from the frozen cells on the filters or cell pellets by 

hot-phenol extraction as described elsewhere (Johnson et al., 2008). cDNA was labeled from 

the total RNA pool using reverse transcription in the presence of cyanine-3-dCTP. A total of 

60 ng of cDNA were used to hybridize to an Agilent 8 X 15K custom S. wittichii RW1 

microarray (Johnson et al., 2011). The microarray contains a total of 12,873 50-mer probes 

that cover >99% of the predicted protein coding genes (5323 out of 5345) within the genome 

of strain RW1. The cDNA samples were loaded randomly onto the microarray slide to 

eliminate slide-to-slide variations. Slides were hybridized and scanned following the One-
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color Microarray-Based Gene Expression Analysis Manual (Agilent Technologies, Santa 

Clara, CA) protocols. Signals were extracted using Agilent Feature Extraction software 

10.5.1.1 (Agilent). Microarray data were normalized and globally scaled using 

GENESPRING GX software (version 11). The difference between the signals in treatment 

and control samples was tested as described elsewhere (Johnson et al., 2008; 2011). All 

microarray datasets have been deposited as a single file in the NCBI Gene Expression 

Omnibus under accession number GSE37328 according to MIAME standards 

(http://www.ncbi.nlm.nih.gov/pubmed/11726920). 

 

  

http://www.ncbi.nlm.nih.gov/pubmed/11726920
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Results 

 

Genes implicated in DBF degradation 

In order to discover specific genes of RW1 that could be implicated in the response to 

exposure to DBF, we used a combination of genome-wide expression and transposon 

insertion screening approaches. An estimated 42,000 independent transposon mutants of 

RW1 were tested as a library for growth in batch on SAL or DBF medium. After five 

medium passages, corresponding to 50 generations, the distribution and abundance of 

transposon insertions in the genome was analyzed by Illumina sequencing and compared to 

that in the starting library. One hundred and thirty nine genes were specifically absent in the 

library grown on DBF, but were present by at least 30 transposon reads in the starting library 

(Table S1). Less stringently, 589 genes were covered by transposon insertions at one-tenth or 

less in the DBF compared to initial library (Table S1). Among a global annotation of putative 

catabolic genes in aromatic compound metabolism there were 17 genes missing in the DBF 

library, 5 of which were not simultaneously absent in the SAL library (Table 1, Table S2), 

suggesting their unique implication in DBF degradation. One of those was previously 

recognized (Swit_4896 or dxnA2), whereas others have not so far been identified as such (i.e., 

Swit_1643 for FMN-dependent alpha-hydroxy acid dehydrogenase, Swit_1684 for FAD-

binding monooxygenase, Swit_1757 for a putative Rieske-motif containing protein, and 

Swit_1861 for a putative dioxygenase). Transposon insertions in the previously identified 

genes Swit_4895 (dxnB) and Swit_4897 (dxnA1) were 10-fold or more underrepresented in 

the DBF-grown library but not completely absent (Table S2). None of the other genes 

previously implicated in DBF degradation were absent from the DBF transposon library, 

suggesting they code for redundant functions. In contrast, transposon insertions were absent 
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in several genes in a cluster for phenylacetate degradation (paa, Swit_750 to Swit_758) in 

both DBF and SAL-libraries, although these genes are actually expressed to a lower level 

under such growth conditions (see below). Apart from this cluster, no transposon insertions 

were detected in a number of other putative catabolic genes after both DBF and SAL growth, 

e.g., Swit_311 carboxymuconolactone decarboxylase, Swit_893 ferredoxin, Swit_1639-1642 

part of enzymes for a meta-cleavage pathway, Swit_1759 ferredoxin, Swit_2113 

acetaldehyde dehydrogenase, Swit_2251 ferredoxin, or Swit_2292 putative extradiol 

cleavage enzyme (table S2). Two of those (Swit_1640, Swit_1641) are 100 and 96% 

identical, respectively, to Swit_2112 and Swit_2113, and may therefore have been missed 

because the transposon insertion sites cannot be uniquely mapped to one region on the 

chromosome. 

 

Interestingly, some fifty transposon insertions were at least 10-fold or more abundant 

in the DBF library compared to time 0, where they were present with at least 30 reads (Table 

S3), suggesting a small fitness increase of such mutants under those growth conditions. 

Although this list is still quite long and cannot be interpreted succinctly, it is interesting to 

find a number of putative catabolic genes, regulatory factors and stress response factors 

(Table S3). 
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Table 1. RW1 gene cluster representatives for putative aromatic compound metabolism with significantly changed expression levels or proportional abundances in transposon 

libraries. For expanded version, see Table S2. 

Cluster1 Swit 
Locus 

Name or gene name Strand Tn library2  Expression, fold change3 
TN01 SAL DBF SAL/ 

PHE 
SAL/ 
DBF 

DBF/ 
PHE 

DBF 
shock 

Chemostat shift 
30 m 1 h 2 h 6 h 

310-312 311 carboxymuconolactone decarboxylase < -(+) -(±) -   1.21 1.93 2.81 2.51 2.03 1.25 
748-749 749 paaB? < -(-) -(-) + 0.04  0.72 0.12 0.31 0.35 0.35 0.31 
750-758 750 3-hydroxyacyl-CoA dehydrogenase > +(-) -(-) - 0.07  0.53 0.11 0.48 0.47 0.38 0.48 
  753 paaA > +(+) - (±) + 0.04  0.50 0.04 0.24 0.15 0.14 0.16 
  754 paaB > +(+) -(±) ± 0.02  0.24 0.05 0.14 0.07 0.05 0.05 
  755 paaI > - (-) - (-) - 0.02  0.19 0.05 0.17 0.10 0.05 0.06 
  756 paaJ > +(+) -(±) -   1.06 1.66 1.72 1.51 1.45 1.01 
975-978 975 muconate cycloisomerase > ±(+) +(+) ± 8.36  1.72 1.06 0.74 0.58 0.46 1.95 
  978 3-oxoadipate enol-lactonase > +(+) +(+) ± 2.26 2.20 1.02 1.56 1.33 1.05 0.60 1.04 
1639-1644 1639 4-oxalocrotonate decarboxylase > +(-) -(-) -   1.68 1.17 0.99 1.13 1.47 1.83 
  1643 FMN-dependent alpha-hydroxy acid 

dehydrogenase 
> ±(+) ±(±) -   1.27 0.92 1.13 1.08 1.10 1.05 

1754-1760 1757 Rieske-type protein; beta subunit > -(+) ±(±) -   0.95 0.74 0.96 0.86 0.81 0.80 
  1759 ferredoxin > +(±) -(-) -   1.04 2.03 1.09 1.01 1.62 1.99 
1825-1830 1827 alpha/beta hydrolase fold protein < ±(+) +(+) +   1.05 4.63 1.36 1.71 1.54 1.61 
 1828 acyl-CoA dehydrogenase type 2 < +(+) ±(±) +   1.04 14.83 4.63 4.56 2.87 1.71 
 1829 Rieske-type protein < +(+) -(±) ±   1.13 6.11 2.04 1.95 2.27 2.08 
1847-1852 1848 putative extradiol dioxygenase > -(+) ±(±) ± 3.39  3.23 28.64 2.75 3.05 3.14 2.79 
1860-1861 1861 dioxygenase motif > -(±) ±(±) -   1.54 6.29 2.50 3.54 0.77 1.69 
2634-2636 2634 benzoate 1,2-dioxygenase; alpha > + + + 28.8  5.06 2.36 1.42 1.87 2.07 3.05 
3055-3066 3055 alpha/beta hydrolase fold protein 

(dxnB2) 
> +(±) -(-) +   2.60 1.65 0.68 0.64 0.85 0.90 

  3056 Rieske-type protein; alpha subunit 
(putative salicylate 5 hydroxylase) 

> +(+) +(+) + 2.44  2.31 2.19 0.78 0.59 0.73 0.82 

  3057 Rieske; beta subunit > +(-) -(±) +   2.35 1.07 0.64 0.51 0.57 0.57 
  3058 maleylacetoacetate isomerase" > +(+) +(+) + 2.42  2.48 0.74 0.55 0.41 0.38 0.45 
3083-3084 3084 5-oxopent-3-ene-1,2,5-tricarboxylate 

decarboxylase 
< +(+) +(+) + 3.88 2.74 1.35 1.46 1.06 1.26 1.39 1.19 

3085-3086 3086 gentisate 1,2-dioxygenase like protein > +(+) +(+) + 3.92  1.49 2.03 1.32 1.51 1.53 1.07 
3087-3096 3087 2,4-dihydroxyhept-2-ene-1,7-dioic 

acid aldolase 
< ±(+) ±(+) ± 16.9 17.71 0.98 1.01 0.93 2.06 1.03 1.53 

  3094 putative extradiol dioxygenase > +(+) +(+) + 5.33 2.79 1.85 1.72 1.28 0.96 0.93 1.10 
3416-3418 3418 putative extradiol dioxygenase  +(-) -(±) +   1.13 2.95 1.96 2.62 2.95 1.82 
3863-3865 3865 4-hydroxyphenylpyruvate 

dioxygenase 
< +(+) +(+) + 7.99  1.73 1.40 1.60 2.17 2.48 3.23 

4273 4273 vanillate monooxygenase > +(+) +(+) +   1.13 1.20 1.25 1.87 2.20 2.51 
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4278 4278 Rieske-type protein; alpha subunit < +(+) +(+) +   1.54 2.33 1.89 1.84 2.04 1.84 
4887-4897 4890 hydroxyquinol 1,2 dioxygenase 

(dxnF) 
< +(+) +(+) +   2.87 1.17 1.26 0.92 0.88 0.85 

  4895 alpha/beta hydrolase fold < +(-) +(±) ±   1.29 0.90 1.16 0.93 1.34 1.40 
  4896 aromatic-ring-hydroxylating 

dioxygenase (dxnA2) 
< +(±) +(±) -   1.85 0.69 1.46 1.61 1.24 2.10 

  4897 ring hydroxylating dioxygenase 
(dxnA1) 

< +(-) +(±) ±  0.48 2.93 1.52 1.32 1.72 1.39 2.53 

4902 4902 dbfB extradiol dioxygenase > +(+) +(+) +  0.37 4.41 2.35 0.79 0.46 0.46 0.67 
4922-4925 4923 4-hydroxy-2-ketovalerate aldolase < +(+) +(+) +  0.13 11.47 0.84 0.93 0.57 0.61 0.55 
5101-5102 5101 monooxygenase, FAD binding < +(+) +(+) + 56.05  17.27 0.80 0.94 0.68 0.52 1.10 
  5102 gentisate 1,2-dioxygenase < +(+) +(+) + 41.98  11.31 0.82 1.19 1.16 1.19 1.16 
1) Numbering according to Swit-annotation. Genbank Accession Nrs: NC_009511, NC_009507, NC_009508 

2) +(+), present in two replicate libraries; -(-), absent in two replicate libraries; ±, present at less then one-tenth of the abundance in the starting library. 

3) Bold-type setting: statistically significant change (P<0.05) compared to control condition.  
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Specific gene expression in presence of DBF 

In order to further discover genes for DBF metabolism, we used microarray analyses 

to examine RW1 genome-wide gene expression in the presence or absence of DBF and under 

a variety of cellular growth conditions. Comparison of all probe signals across all growth 

conditions showed two broad clusters of expression patterns, roughly representing the 

differences (almost opposite behavior) of growing in chemostat and in batch culture (Figure 

1A). In comparison to PHE-grown cells, 525 RW1 genes were differentially expressed during 

short exposure to DBF in batch (Figure 1B, SI file 1), 920 genes in at least one time point of 

the transient exposure in chemostat (SI file 1) and 474 genes in the long exposure in batch 

cultures (SI file 1). A higher number of genes were shared between the short and transient 

DBF exposures (205 genes) than among the other conditions. A total of 109 genes were 

commonly differentially expressed to all the conditions of DBF exposure, among which 18% 

with increased, and 78% with decreased expression in DBF compared to control (Table S4). 

Globally speaking, the COG distribution of differentially expressed genes between the three 

growth conditions with DBF was similar, with notable exceptions of COG-C (Energy 

production and conversion), COG-K (Transcription), and COG-N to COG-Q being more 

abundant in DBF-grown cells (Figure 2). 
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Figure 1. (A) Hierarchical clustering of RW1 gene expression over all conditions generated by GENESPRING 

GX. Short refers to the short DBF exposure in batch cultures, Long to cells grown in batch cultures on DBF, and 

Chemostat refers to the transient exposure to DBF in continuously grown cultures. (B) Venn diagram (Hulsen et 

al., 2008) grouping the genes differentially expressed in the DBF exposure experiments compared to PHE-

control conditions. Numbers represent genes exclusive for one condition, while the numbers in the intersections 

represent those occurring between two or more conditions.  
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Figure 2. Proportional abundances of differentially expressed genes in conditions of DBF exposure compared to 

PHE, categorized per COG. (A) Short exposure to DBF in PHE-grown batch cultures, (B), transient exposure to 

DBF in chemostats, and (C) growth on DBF in batch culture.  

 

 

Long exposure to DBF in batch cultures 

Maximum specific growth rates of RW1 in batch culture were different on PHE, SAL 

or DBF, with 0.24±0.09 h-1, 0.16±0.01 h-1 and 0.20±0.03 h-1, respectively (Figure 3). In 

comparison, 474 genes were differently expressed between growth on PHE and DBF (8.6% 

of the whole genome), with 52% having increased and 48% decreased expression (SI file 1). 

Exponentially growing cells on SAL showed 231 differentially expressed genes compared to 

PHE (168 increased and 83 decreased), and 167 between SAL and DBF (87 up and 80 down). 

Among genes putatively involved in aromatic compound metabolism, most strikingly, the 

paa gene cluster (Swit_748 to Swit_762) was much lower expressed both during SAL and 

DBF growth compared to PHE (Table 1, Table S2). Conversely, a set of four closely located 

gene clusters showed increased expression in SAL (Swit_3083 to Swit_3094), but not in PHE 

or DBF. The Swit_3083-Swit_3094 clusters may thus constitute the pathway genes 
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specifically expressed during growth on SAL, although none of them appeared to be essential 

in the transposon scanning (Table S2). By contrast, the plasmid located dxn catabolic genes 

(between Swit_4897 and Swit_4930) had a decreased expression in SAL compared to DBF, 

but were overall higher expressed in DBF- than PHE-grown cells. This confirms that they are 

specifically expressed during growth on DBF. Of these, only Swit_4896 (dxnA2) and to a 

lesser extent Swit_4895 (dxnB) and Swit_4897(dxnA1) were essential for growth on DBF 

(Table S2). Finally, the two plasmid-located genes Swit_5101 and Swit_5102 (coding for a 

monooxygenase and gentisate 1,2-dioxygenase) had a strongly increased expression during 

growth on SAL and DBF, compared to growth on PHE. However, again these two genes are 

not essential for growth on SAL or DBF (Table 1, Table S2).  

 

 

 

Figure 3. Growth of S. wittichii RW1 on minimal media (MM) with PHE (open circles), SAL (closed circles) or 

DBF (closed squares) as sole carbon and energy source. 

 

Other notable differentially expressed genes included those for putative transport 

functions, such as aquaporin Z (Swit_0028) and a number of TonB-dependent like receptors. 

For example, the TonB-dependent like receptor DxnC (Swit_4894) was up to 6 times higher 
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expressed in DBF-grown cells as compared to PHE-grown cells. A putative efflux system 

encoded by Swit_3219-_3222 was expressed up to 50 times higher in SAL- than DBF- or 

PHE-grown cells (SI file 1).  

 

Short exposure to DBF in batch cultures 

When RW1 cells were exponentially grown on PHE, after which they were exposed 

for 30 min to medium with DBF, 525 genes were differentially expressed compared to the 

control (9% of the whole genome). Sixty three percent of those had decreased and 37% 

displayed increased expression. A large proportion of differentially expressed genes (171 of 

525) consisted of genes grouped in COG-E (Amino acid metabolism), COG-C (Energy 

production and conversion) and COG-J (Translation, ribosomal structure and biogenesis, 

Figure 2A). The expression of most of those (91%) decreased in DBF- compared to PHE-

exposed cells, including genes for ribosomal proteins, tricarboxylic acid cycle (TCA), 

oxidative phosphorylation, tRNA-synthetases and elongation factors. This suggests 

temporary growth arrest and a major reconfiguration of the catabolic pathways. 

 

The expession of 17 genes participating in lipid metabolism, including genes from the 

fatty acid metabolism pathway, were 2- to 16-fold higher in DBF- than PHE-exposed cells. 

Also, between 13- to 31-fold higher expression was detected of two genes coding for OmpA-

domain containing proteins (Swit_1172 and Swit_2322) and of two genes for putative efflux 

pumps (Swit_3724 and Swit_3725). Four genes involved in cell motility (Swit_1264, 

Swit_1268, Swit_1270 and Swit_1458) were 2 to 5-fold lower expressed in the presence of 

DBF (Table 2). 
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Expression of genes involved in aromatic compound metabolism was clearly different 

during immediate exposure to DBF as compared to exponential growth on DBF (Table 1, 

Table S2). Several genes were not as highly expressed as during growth on DBF as sole 

carbon and energy source, such as Swit_2634-2636 (benzoate dioxygenase), the Swit_3055-

3066 cluster, the plasmid-located Swit_4887-4897 cluster (with dxnF, dxnC, dxnA1A2) or 

Swit_4902 (dbfB). More strikingly, expression of Swit_4923, Swit_5101 and Swit_5102 was 

not detectable at all, whereas these genes were up to 17-fold higher expressed during growth 

on DBF. In contrast, expression of other genes appeared more clearly after immediate 

exposure to DBF, such as that of Swit_4278 (uncharacterized aromatic ring dioxygenase), 

Swit_3418 (putative extradiol dioxygenase), Swit_3086 (putative gentisate 1,2-dioxygenase), 

Swit_1827-1829, Swit_1848 (putative extradiol dioxygenase) and Swit_1861 

(uncharacterized dioxygenase). Also expression of Swit_3793 (membrane transporter for 

aromatic hydrocarbons) was 21-fold higher in immediate response to DBF. Conversely, and 

in agreement with growth on DBF alone, expression of the paa pathway genes (Swit_748-

758) was again much lower than in cells exposed to PHE. 

 

Interestingly, several genes putatively involved in stress response displayed from 18- 

to 109-fold increased expression immediately after contact to DBF but not during growth on 

DBF, such as a catalase (Swit_3730) and two 1-cys-peroxiredoxin genes (Swit_3741 and 

Swit_3743). Also, and this more consistently throughout all growth conditions with DBF, an 

alternative ECF sigma 24 factor showed up to 10-fold higher expression (Swit_3924, Table 

2).  
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Transient exposure to DBF in continuous cultures 

To avoid the sudden starvation of cells upon transient exposure to DBF as in the batch 

shock exposure experiment, we grew RW1 in continuous culture with 5 mM PHE and under 

carbon-limited conditions. A sudden transition to DBF exposure was achieved by spiking the 

reactor medium instantaneously with saturating DBF amounts (5 mg/L) and simultaneously 

changing the medium inflow to one containing MM plus 5 mM PHE and saturating DBF. 

Under these conditions, a total of 920 genes was found to be differentially expressed in at 

least one time point evaluated (17% of the whole genome) with 154 genes appearing 30 min 

after exposure to DBF (53% with increased and 47% with decreased expression), 415 at 1 h 

(51% increased and 49% decreased), 663 at 2 h (38% up and 62% down) and then decreasing 

to 465 at 6 h (28% up and 72% down). A set of 48 genes expressed similarly across all time 

points, with 2 with increased and 46 with decreased expression (SI file 1).  

 

A large proportion of differentially expressed genes (204) grouped in COG-C (Energy 

production and conversion), COG-E (Amino acid transport and metabolism), and COG-J 

(Translation, ribosomal structure and biogenesis). 81% of these displayed decreased and 

19% increased expression (Figure 2B), suggesting again partial growth arrest but not as 

severe as in the batch shock exposure (SI file 1). Interestingly, a clear transition and an 

adaptive effect could be seen from the abundance of differentially expressed genes in the 

different COG categories over time after the start of exposure to DBF (Figure 2B). Among 

the COG-I (Lipid metabolism), 37 out of 54 genes increased expression, as well as three 

genes coding for OmpA-domain containing proteins (Swit_0853, Swit_2278 and Swit_2322). 

A cluster comprising three genes involved in trehalose synthesis (Swit_3608 to Swit_3610) 

temporarily increased expression in response to DBF. Again, several stress response genes, 

such as for a redoxin, catalases, 1-cys peroxiredoxins or DNA repair proteins transcribed up 
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to 13 times higher in response to DBF induction in chemostat (Table 2), as well as genes for 

three putative ECF sigma 24 factors (Swit_3924, Swit_3972 and Swit_4736). 

 

Compared to the transient batch DBF shock and growth on DBF, the shift exposure to 

DBF in chemostat caused again a somewhat different transcription pattern of genes involved 

in aromatic compound metabolism (Table 1, Table S2). As examples, increased transcription 

of the cluster Swit_1827-1830 was detectable but this leveled out from early (30 min) to late 

transition (6 h). Cluster Swit_1848-1852 and Swit_1861 expressed more like batch growth on 

DBF but less than after batch shock exposure. Expression of the benzoate dioxygenase 

(Swit_2634-2636) increased similarly as during batch growth on DBF or after DBF shock. In 

contrast, expression of the cluster Swit_3055-3066 and of the dxn gene cluster (Swit_ 4887-

4897) was no longer increased in chemostat (except dxnA1 after 6 h). In contrast, expression 

of Swit_3863-3865 was higher in chemostat but not in the two other DBF exposure 

conditions. Consistently with the other two growth conditions with DBF, expression of the 

paa cluster was lower in chemostat-grown cells exposed to DBF compared to PHE, which 

was already detectable after 30 min. 
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Table 2. RW1 gene cluster representatives with significantly changed expression levels or proportional abundances in transposon libraries. 

Swit Locus Name Tn library1  Expression, fold change2 
TN01 SAL DBF SAL/ 

PHE 
SAL/ 
DBF 

DBF 
shock 

DBF 
/PHE 

Chemostat shift 
30 m 1 h 2 h 6 h 

 Stress response 
0016 Redoxin domain-containing protein + + +   0.99 1.75 2.51 5.13 3.76 2.69 
0847 Glutathione S-transferase domain-containing protein ± + +    2.50 1.82 1.89 2.57 2.23 1.34 
2245 Glutathione S-transferase domain-containing protein + + +    3.10 1.56 3.16 4.72 4.11 2.28 
3730 Catalase + + +    206.50 1.87 1.16 2.73 10.6 4.89 
3741 1-Cys peroxiredoxin - - -    28.84 1.60 2.33 5.46 8.06 1.67 
3743 1-Cys peroxiredoxin + + +    102.54 1.83 1.44 2.89 12.7 3.12 
3979 ATP-dependent DNA ligase + + +   2.46 1.35 2.39 3.61 2.45 1.53 
3982 DNA ligase D + + +    3.25 1.05 3.56 7.31 5.43 2.68 
4092 DNA repair protein RadA ± - ±     1.22 0.89 1.39 1.72 2.20 2.31 
4209 Glutathione-dependent formaldehyde-activating, GFA + - +   3.56 1.82 3.05 5.54 4.32 2.41 
5282 DNA ligase D + + +   2.20 1.12 2.89 4.17 3.48 1.93 
5311 Catalase + ± ±   2.91 1.27 4.56 6.41 4.53 2.23 
 DNA metabolic process  
0001 Chromosomal replication initiator protein DnaA - - -   0.25 0.68 0.40 0.30 0.23 0.31 
2767=3050=4
905=5124 

IS4 family transposase ND ND ND   
4.24 4.44 1.21 0.90 1.04 1.26 

4903 Transposase IS3/IS911 family protein ND ND ND   0.17 1.26 10.50 0.83 0.51 0.36 0.52 
4930 Transposase Tn3 family protein + + +  0.46 1.96 1.89 0.95 0.93 1.16 0.96 
5075 Transposase Tn3 family protein + + +    2.50 2.00 1.47 1.33 1.19 1.23 
5078 Transposase IS66 ND ND ND 2.14  2.48 2.33 0.97 1.05 1.34 1.46 
5109 IS4 family transposase + + +    2.64 1.99 1.16 1.24 1.16 1.30 
 Transcription and translation  
0431 RNA polymerase sigma factor RpoD - - -   0.29 0.54 0.62 0.65 0.63 0.85 
1325 Ribosomal protein L17 + - +    0.09 0.53 0.35 0.25 0.19 0.13 
1358 Ribosomal protein S12 - - -   0.02 0.27 0.47 0.34 0.23 0.20 
3924 ECF subfamily RNA polymerase sigma 24 factor + + +   10.36 2.26 4.27 4.28 2.58 1.16 
3972 ECF subfamily RNA polymerase sigma 24 factor - - -    1.54 1.17 0.92 1.09 1.47 2.57 
4736 ECF subfamily RNA polymerase sigma 24 factor ± - +     1.27 0.94 1.27 1.42 1.49 2.25 
1) +, present in the library; -, absent in the library; ±, present at less than one-tenth compared to the starting library; ND, no reads assignable (duplicated genes). 

2) Bold-type setting: statistically significant change (P<0.05) compared to control condition.  
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Discussion 

 

The major objective of this work was to study the global response of S. wittichii to 

exposure to DBF. Although DBF functions as a carbon and energy source for S. wittichii its 

behavior is complex, most of all because of the properties of DBF itself and secondly, 

because of numerous redundancies in aromatic compound catabolic pathways. In order to 

study this question, we used two different techniques: microarray analysis of genome-wide 

gene expression (Johnson et al., 2008; 2011) and genome-wide transposon screening 

(Langridge et al., 2009). At the low aqueous solubility of DBF we expected that the 

magnitude of direct gene expression difference would be quite small, as normally the 

compound's concentration or more precisely, the compound flux, determines the promoter 

response (Leveau et al., 1999, Tecon and van der Meer, 2006). Moreover, gene induction 

magnitudes of catabolic pathways have been shown to be maximal during transition phases 

but level out when cells reach a new equilibrium (Leveau et al., 1999). Finally, the inductive 

response of a carbon source is dependent on the simultaneous presence of other (possibly 

more preferred) carbon sources (Duetz et al., 1994). We thus designed three different types of 

exposure of cells to DBF, all of which necessarily compromised one or other aspect of 

cellular physiology. In the first (named short exposure in batch) RW1 was grown on PHE as 

sole carbon and energy source into exponential phase in order to have actively growing cells. 

At the time of exposure, the cells were rapidly harvested and resuspended in the same 

medium with PHE or with DBF in order to maximize their potential response to the new 

carbon source. Although numerous genes including catabolic pathway genes increased 

expression during exposure to DBF compared to PHE, the cells clearly completely changed 

their physiology and went through a period of growth delay. Gene expression for central 

metabolic pathways, such as the TCA cycle, amino acid metabolism, but also for ribosomal 
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proteins, elongation factors, tRNA-synthetases and cell division was immediately declining. 

This suggests that the cells exposed to DBF during a short period cannot immediately gain 

sufficient energy from the available DBF in solution and go through a period of starvation 

and stress response. However, this experimental condition is still important, because it 

mimicks what might happen when cells are inoculated from laboratory-grown culture into a 

bioremediation site. 

 

In the second type of experiment (transient exposure in chemostat) RW1 cells were 

growing continuously under carbon limiting conditions with PHE, in order to make sure they 

would not suffer energy losses during transition. As a consequence of maintaining carbon 

limiting conditions, the actual PHE concentration in the medium is very low and the cells 

were expected to react instantaneously to a newly added carbon source (DBF). Indeed, we 

observed a clear transient response (Figure 2B) implicating a large number of genes, 

surprising given the controlled conditions of chemostat operation. Even during these 

controlled growth conditions, the cells experienced DBF not just as a new carbon substrate 

but rather as a stress factor, necessitating the immediate differential regulation of specific 

stress-response genes. We detected increased expression of genes for catalases, 

peroxiredoxins and glutathione-s-transferases, which form a known strategy for the 

detoxification of xenobiotics and reactive oxygen species (Domínguez-Cuevas et al., 2006, 

Dayer et al., 2008). Genes implicated in DNA repair, chaperones and OmpA-domain 

containing proteins, a putative sensor of membrane integrity (Wang, 2002), also increased 

expression. These responses are similar to what has been observed when exposing 

Pseudomonas putida KT2440, or P. putida DOT-T1E to the aromatic hydrocarbons toluene 

and pentachlorophenol (Segura et al., 2005, Domínguez-Cuevas et al., 2006, Muller et al., 

2007). Both the short exposure to DBF in batch cultures and in chemostat also led to specific 
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differential expression of the RpoD sigma factor and of alternative ECF factors (Table 2). 

ECF sigma 24 factors have been implicated in the response of cells to perturbations such as 

extracytoplasmic protein miss folding, heat shock, oxidative or solvent stress (Mecsas et al., 

1993; de las Peñas et al., 1997; Testerman et al., 2002; Domínguez-Cuevas et al., 2006), and 

could play an important role in the adaptability of S. wittichii, the genome of which codes for 

14 different putative ECF sigma 24 factors. Previously, Johnson et al. (2011) reported an 

increase in expression of two ECF sigma 24 genes (Swit_3836 and Swit_3924) in RW1 upon 

exposure to water potential decrease by NaCl, the expression of one of which (Swit_3924) 

also increased during shock exposures of cells to DBF (Table 2). In a similar way, B. 

xenovorans LB400 and P. putida KT2440 have been found to induce ECF sigma 24 in 

response to hydrocarbons such as benzoate and toluene (Denef et al., 2006; Domínguez-

Cuevas et al., 2006).  

 

In the third experiment (long exposure in batch) RW1 cells are grown in batch either 

on PHE, SAL or on DBF as sole carbon source, and in all cases harvested at the same culture 

turbidity in exponential phase. Stress response gene transcription under those conditions was 

not different between DBF or PHE-grown cells, indicating that the cells adapt after a while to 

metabolize DBF without stress. 

 

Perhaps surprisingly, in the light of typical linear pathway thinking from work on 

catabolic pathways in pseudomonads, expression of pathways for aromatic compound 

metabolism even with a single compound (DBF) involved a myriad of possibilities. This 

suggests, first of all, that S. wittichii has an extreme redundancy in its use of aromatic 

compound metabolism (Figure 4). This was evident from the finding that actually very few 

transposon insertions completely abolished growth on DBF (Table 1, Table S2). Secondly, 
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the pathways seem to operate under distinct growth conditions and, not unlikely, in 

temporarily different stages (Table 1, Table S2). Among the few exceptions to this were two 

clusters (Swit_1847-1852, Swit_1860-1861), to a lesser extent Swit_2634-2636 (benzoate 

dioxygenase), and Swit_3864-3866 (homogentisate dioxygenase) that were always expressed 

higher in presence of DBF, irrespective of the growth conditions. In contrast, increased 

expression of the typical dxn genes discovered so far was only detectable during growth on 

DBF, but not in the two other conditions. This situation of pathway parallelism is analogous 

to the existence of three different pathways for benzoate metabolism in Burkholderia 

xenovorans, that can operate under different conditions in degradation of (polychlorinated) 

biphenyls and chlorobenzoates (Denef et al., 2006).  

Which genes can we finally conclude are 'implicated' in DBF degradation? Although 

salicylate has been postulated as an intermediate for DBF degradation, the pathway that is 

most highly and specifically expressed during SAL growth (Swit_3086-3095) is not 

particularly induced during DBF growth (Table 1, Table S2, Figure 4). More likely are two 

pathway branches that would lead to gentisate from salicylate (Swit_5101/5102) or to 

catechol (Swit_3056/3057, Figure 4). Both these gene groups are induced on DBF, although 

their precise function cannot be sufficiently predicted from sequence comparisons only. The 

other major metabolite formed from DBF is 2-hydroxy-2,4-pentadienoate, which could be 

further processed to acetyl-CoA through activity of the enzymes encoded by the Swit_4923-

4925 cluster (Figure 4). Although Swit_4923-4925 were higher transcribed on DBF but not 

on SAL, they do not seem to be essential for growth on DBF, since transposon insertions 

were detected in all of them. At least three alternative pathways seem to be encoded on the 

RW1 genome (Figure 4), and, interestingly, transposon insertions in one of those genes 

(Swit_1639) were never recovered. This suggests that the Swit_1639-1641 pathway is 

somehow important, although the genes are not specifically transcribed to higher levels 
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during growth on DBF compared to SAL or PHE. It is also possible that bioinformatic 

functionality predictions here are incorrect because of confusion and close sequence 

homology between the paralogous enzymes 4-oxalocrotonate-decarboxylase and 2-hydroxy-

2,4-pentadienoate hydratase (Figure 4). Growth on SAL alone leads to increased expression 

of a different set of metabolic pathway genes than on DBF, suggesting different intermediate 

processing via homoprotocatechuate and/or 4-hydroxyphenylpyruvate (Figure 4). Such 

pathways, however, are currently incomplete with no known links between salicylate and 

homoprotocatechuate.  

 

In conclusion, we find that the DBF 'metabolome' in S. wittichii is surprisingly 

complex with numerous parallel and redundant branches. The strategy of parallelism and 

redundancy may have specific ecological advantages in certain niches with perhaps multiple 

structurally similar substrates, but may be too costly to maintain competitively in 

environments with abundance of singular substrates that may favor bacteria with single 

pathway induction. Possibly, the parallelism and redundancy suggested by our 'population' 

data suggest are in reality split across individual cells with a high degree of metabolic 

heterogeneity. 
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Figure 4. Compilation of possible encoded aromatic compound degradation pathways in S. wittichii RW1 with 

relevance to either DBF or SAL metabolism. Numbers below arrows correspond to gene names (e.g., 

Swit_5101). Thick arrows indicate gene induction during growth on SAL or DBF compared to PHE. Grey 

arrows point to induction on SAL only. Crosses indicate genes in which no transposon insertions were found 

after 50 generations growth on DBF. Pathway predictions were done using KEGG and NCBI. 
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Supplementary information 

Table S1. Genes without any detectable, or with one-tenth or less transposon insertions in the DBF-library compared to time 0 (TN0), but with at least 30 reads in TN0. 

locus1  product 
COG 
category 

Log2 Expression ratio compared to PHE-grown cells2  

 DBF 
shock 

DBF 
batch 

Chemostat  Tn RATIO 
DBF /TN0 30 m 1 h 2 h 6 h 

Swit_0033 Phosphoribosylglycinamide formyltransferase F 0.398      0.000 
Swit_0037 Polyphosphate kinase P  2.187     0.000 
Swit_0039 Ppx/gppa phosphatase FP 2.065      0.000 
Swit_0166 Hypothetical protein S       0.000 
Swit_0169 P-type conjugative transfer protein trbg U       0.000 
Swit_0179 Hypothetical protein S       0.000 
Swit_0203 Endonuclease III / DNA-(apurinic or apyrimidinic site) lyase L 0.445     2.090 0.000 
Swit_0207 NAD-dependent deacetylase K       0.000 
Swit_0222 Phage integrase family protein L       0.000 
Swit_0276 Hypothetical protein X23       0.000 
Swit_0284 Xylose isomerase domain-containing protein G       0.000 
Swit_0291 NADH:flavin oxidoreductase C     2.267  0.000 
Swit_0371 Hypothetical protein I       0.000 
Swit_0444 Hypothetical protein X34 2.491  2.465 3.090   0.000 
Swit_0449 Polysaccharide biosynthesis protein R       0.000 
Swit_0614 NUDIX hydrolase F       0.000 
Swit_0641 XRE family transcriptional regulator K       0.000 
Swit_0651 Excinuclease ABC subunit C L       0.000 
Swit_0658 Hypothetical protein X48      4.006 0.000 
Swit_0671 Hypothetical protein X49       0.000 
Swit_0739 Hypothetical protein S       0.000 
Swit_0750 3-hydroxyacyl-coa dehydrogenase I 0.112  0.475 0.465 0.378 0.476 0.000 
Swit_0756 Phenylacetate-coa oxygenase subunit paaj R       0.000 
Swit_0760 Tetr family transcriptional regulator K 0.114 0.222 0.202 0.129 0.103 0.134 0.000 
Swit_0814 Hypothetical protein S       0.000 
Swit_0842 FAD-binding molybdopterin dehydrogenase C       0.000 
Swit_0855 XRE family transcriptional regulator K       0.000 
Swit_0880 hypothetical protein S      3.606 0.000 
Swit_0923 ECF subfamily RNA polymerase sigma-24 factor K       0.000 
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Swit_0949 Sulfite dehydrogenase (cytochrome) subunit sora apoprotein R       0.000 
Swit_1020 Hypothetical protein X67       0.000 
Swit_1110 DGPFAETKE family protein S      2.299 0.000 
Swit_1154 RND efflux system outer membrane lipoprotein MU       0.000 
Swit_1165 Asnc family transcriptional regulator K 2.300      0.000 
Swit_1213 Hypothetical protein S       0.000 
Swit_1309 Nucleotidyl transferase M 0.497 0.443     0.000 
Swit_1389 GTP-dependent nucleic acid-binding protein engd J 0.171 0.331  0.406 0.389 0.244 0.000 
Swit_1508 17 kda surface antigen X112 3.230 2.008     0.000 
Swit_1519 Diguanylate cyclase/phosphodiesterase T       0.000 
Swit_1579 Hypothetical protein X118       0.000 
Swit_1594 Hypothetical protein X121       0.000 
Swit_1614 Hypothetical protein S       0.000 
Swit_1639 4-oxalocrotonate decarboxylase Q       0.000 
Swit_1684 FAD-binding monooxygenase HC       0.000 
Swit_1704 Nitrate/sulfonate/bicarbonate ABC transporter periplasmic 

component-like protein P       0.000 

Swit_1716 Peptidyl-prolyl cis-trans isomerase O       0.000 
Swit_1720 Cupin S   2.033    0.000 
Swit_1732 Tetr family transcriptional regulator K 3.147      0.000 
Swit_1759 Ferredoxin C 2.029      0.000 
Swit_1760 L-carnitine dehydratase/bile acid-inducible protein F C       0.000 
Swit_1766 Isochorismatase hydrolase Q     2.133 2.065 0.000 
Swit_1786 Hypothetical protein X128  2.009     0.000 
Swit_1795 Cbb3-type cytochrome oxidase maturation protein P       0.000 
Swit_1915 Hypothetical protein S    2.252   0.000 
Swit_1953 RND family efflux transporter MFP subunit M       0.000 
Swit_1967 Phzf family phenazine biosynthesis protein R       0.000 
Swit_1975 Arac family transcriptional regulator K       0.000 
Swit_2017 Protein tyrosine/serine phosphatase T       0.000 
Swit_2134 Hypothetical protein S       0.000 
Swit_2200 Hypothetical protein X166       0.000 
Swit_2213 Hypothetical protein X177       0.000 
Swit_2214 Hypothetical protein X178      2.025 0.000 
Swit_2457 Cytidylate kinase F 0.193 0.415     0.000 
Swit_2649 IS4 family transposase L     0.476  0.000 
Swit_2680 Double-strand break repair protein addb L       0.000 
Swit_2681 Double-strand break repair helicase adda L       0.000 
Swit_2709 Camphor resistance protein crcb D       0.000 
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Swit_2710 Ribosomal large subunit pseudouridine synthase C J       0.000 
Swit_2722 NADPH-glutathione reductase C 0.406      0.000 
Swit_2723 Glucose-6-phosphate isomerase G       0.000 
Swit_2785 Glycerophosphoryl diester phosphodiesterase C      0.423 0.000 
Swit_2813 Hypothetical protein S 0.164    0.400 0.420 0.000 
Swit_2835 Transcription termination factor Rho K 0.187   0.461 0.376 0.275 0.000 
Swit_2878 Hypothetical protein S 0.386      0.000 
Swit_2913 Iron-sulfur cluster assembly accessory protein S       0.000 
Swit_2929 Miab-like trna modifying enzyme J 0.478      0.000 
Swit_2982 NADH-ubiquinone/plastoquinone oxidoreductase subunit 3 C 0.097 0.444 0.441 0.360 0.287 0.255 0.000 
Swit_2984 NADH (or F420H2) dehydrogenase subunit C C 0.143 0.471  0.453 0.407 0.360 0.000 
Swit_3011 Hypothetical protein S       0.000 
Swit_3174 Hypothetical protein P     2.120 2.022 0.000 
Swit_3342 Bifunctional sulfate adenylyltransferase subunit 1/adenylylsulfate 

kinase P 4.717      0.000 

Swit_3461 Hypothetical protein S       0.000 
Swit_3588 Lysr family transcriptional regulator K       0.000 
Swit_3679 Hypothetical protein K       0.000 
Swit_3684 Hypothetical protein S      2.843 0.000 
Swit_3744 Beta-lactamase domain-containing protein R 6.056    4.384  0.000 
Swit_3797 Acyl-coa dehydrogenase domain-containing protein I 11.591  2.845 2.900 3.022 3.705 0.000 
Swit_3819  Transcription elongation factor nusa K 0.319      0.000 
Swit_3848 Rnase E J    0.495 0.417 0.409 0.000 
Swit_3879 Cytochrome C oxidase assembly protein O 0.172    0.349 0.217 0.000 
Swit_3913 Peptidase M23B M 0.368  0.234 0.108 0.153 0.143 0.000 
Swit_3954 Hypothetical protein S       0.000 
Swit_3962 Hypothetical protein X304 0.260      0.000 
Swit_3988 Heme exporter protein ccmc O       0.000 
Swit_3991 Periplasmic protein thiol--disulfide oxidoreductase dsbe CO      0.444 0.000 
Swit_4030 Orn/DAP/Arg decarboxylase 2 E       0.000 
Swit_4041  Trna pseudouridine synthase A J     2.443  0.000 
Swit_4050 Deoxycytidine triphosphate deaminase F 0.422   0.417 0.382 0.444 0.000 
Swit_4117 Metal-dependent amidase/aminoacylase/carboxypeptidase-like 

protein R       0.000 

Swit_4152 Hypothetical protein S       0.000 
Swit_4163 Glutathione S-transferase domain-containing protein O       0.000 
Swit_4164 3-oxoacid coa-transferase subunit A I 2.247      0.000 
Swit_4177 Helix-turn-helix domain-containing protein K       0.000 
Swit_4182 Glyoxalase/bleomycin resistance protein/dioxygenase R       0.000 
Swit_4218 Tetr family transcriptional regulator K     0.397 0.412 0.000 
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Swit_4250 Glutathione S-transferase domain-containing protein O       0.000 
Swit_4270 Dioic acid aldolase G  0.362     0.000 
Swit_4385 Hypothetical protein X330 8.277  2.705 3.083 2.799 2.426 0.000 
Swit_4391 Transglutaminase domain-containing protein E   2.608 4.961 4.017 2.237 0.000 
Swit_4449 Hypothetical protein 350       0.000 
Swit_4463 Hypothetical protein X357       0.000 
Swit_4481 Hypothetical protein S       0.000 
Swit_4518 Glucose-methanol-choline oxidoreductase E       0.000 
Swit_4529 Hypothetical protein S 3.798      0.000 
Swit_4533 Glycoside hydrolase family protein G 3.122      0.000 
Swit_4547 Hypothetical protein S      2.448 0.000 
Swit_4596 Cytochrome oxidase assembly O       0.000 
Swit_4622 Hypothetical protein R 3.265      0.000 
Swit_4653 Hypothetical protein X379     2.119  0.000 
Swit_4666 UDP-N-acetylglucosamine 2-epimerase M     0.445 0.460 0.000 
Swit_4685 D-3-phosphoglycerate dehydrogenase HE 0.076 0.301  0.408 0.296 0.255 0.000 
Swit_4687 Class I cytochrome c C 0.182  0.484 0.412 0.323 0.324 0.000 
Swit_4704 Antibiotic biosynthesis monooxygenase S 4.903   2.048   0.000 
Swit_4799 Integral membrane sensor signal transduction histidine kinase T       0.000 
Swit_4808 Limonene-1 R       0.000 
Swit_4827 Surface antigen (D15) M       0.000 
Swit_4844 Grea/greb family elongation factor K   2.824 3.605 2.954  0.000 
Swit_4872 Hypothetical protein X399 3.010      0.000 
Swit_4896 Aromatic-ring-hydroxylating dioxygenase Q      2.096 0.000 
Swit_5016 Hypothetical protein L      2.126 0.000 
Swit_5148 Hypothetical protein S    0.432   0.000 
Swit_5164 Hypothetical protein X424       0.000 
Swit_5165 Hypothetical protein X425       0.000 
Swit_5178 Hypothetical protein S 2.161      0.000 
Swit_5230 Hypothetical protein Z       0.000 
Swit_5296 Response regulator receiver protein T       0.000 
Swit_5312 Short-chain dehydrogenase/reductase SDR R       0.000 
Swit_5316 Hypothetical protein X462 0.285  0.418 0.358 0.343 0.302 0.000 
Swit_5395 Hypothetical protein X482       0.000 
Less then tenfold present in the transposon library DBF versus time 0 
Swit_0303 Hypothetical protein X25       0.001 
Swit_0011 Phage integrase family protein L       0.001 
Swit_0016 Redoxin domain-containing protein O   2.506 5.136 3.767 2.687 0.095 
Swit_0019 Group 1 glycosyl transferase M       0.047 
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Swit_0044 Hypothetical protein S   2.302 3.387 2.248  0.007 
Swit_0070 N-acetylmuramoyl-L-alanine amidase V       0.020 
Swit_0143 Polysaccharide biosynthesis protein R       0.001 
Swit_0144 Hypothetical protein S       0.054 
Swit_0159 Hypothetical protein X10     0.467  0.003 
Swit_0161 P-type conjugative transfer atpase trbb U       0.086 
Swit_0175 Luxr family transcriptional regulator TK       0.022 
Swit_0176 ECF subfamily RNA polymerase sigma-24 factor K       0.002 
Swit_0178 Conjugal transfer relaxase traa L       0.011 
Swit_0182 Type IV secretory pathway protease traf-like protein OU       0.007 
Swit_0190 Hypothetical protein S       0.074 
Swit_0199 AAA atpase R       0.005 
Swit_0242 Cyclase/dehydrase I     0.491  0.007 
Swit_0245 Nifr3 family TIM-barrel protein J 0.299      0.063 
Swit_0247 Fis family nitrogen metabolism transcriptional regulator ntrc T    0.405 0.289 0.407 0.005 
Swit_0270 Binding-protein-dependent transport system inner membrane 

protein P       0.013 

Swit_0307 Hypothetical protein S       0.004 
Swit_0316 Alcohol dehydrogenase CR       0.006 
Swit_0325 3-ketosteroid-delta-1-dehydrogenase C       0.012 
Swit_0344 Enoyl-coa hydratase I       0.051 
Swit_0349 Hypothetical protein S       0.002 
Swit_0353 Hypothetical protein S       0.012 
Swit_0354 Transcriptional regulator K       0.027 
Swit_0359 Cytochrome P450 Q       0.010 
Swit_0372 Hypothetical protein S       0.029 
Swit_0374 Marr family transcriptional regulator K       0.023 
Swit_0375 Acyl-coa dehydrogenase domain-containing protein I       0.003 
Swit_0397 Phosphotransferase system G       0.018 
Swit_0433 Hypothetical protein S 0.276 0.481     0.033 
Swit_0488 Beta-lactamase domain-containing protein R 0.388     0.367 0.002 
Swit_0571 Uroporphyrin-III C/tetrapyrrole methyltransferase R       0.084 
Swit_0650 Acyl-coa dehydrogenase domain-containing protein I       0.009 
Swit_0669 AMP-dependent synthetase and ligase I       0.013 
Swit_0673 TonB-dependent receptor P       0.058 
Swit_0676 Hypothetical protein S 2.225 2.019     0.079 
Swit_0695 Hypothetical protein S 3.852   2.379   0.017 
Swit_0700 Hypothetical protein S       0.069 
Swit_0704 Luciferase family protein C       0.006 



 60 

Swit_0708 Hypothetical protein S       0.076 
Swit_0724 Methylenetetrahydromethanopterin reductase C       0.023 
Swit_0725 Tonb-dependent receptor P       0.081 
Swit_0730 Tonb-dependent receptor P       0.005 
Swit_0731 Amidase J       0.035 
Swit_0745 Hypothetical protein S       0.002 
Swit_0752 Beta-ketoadipyl coa thiolase I  0.352     0.070 
Swit_0754  Phenylacetate-coa oxygenase subunit paab Q 0.048 0.236 0.143 0.072 0.050 0.047 0.003 
Swit_0763 Aromatic amino acid aminotransferase E 0.042 0.440 0.139 0.120 0.114 0.148 0.007 
Swit_0790 Thiolase I       0.039 
Swit_0800 Hypothetical protein S 4.387  2.904 2.974 2.064 2.241 0.004 
Swit_0802 TPR repeat-containing protein NU       0.053 
Swit_0819 Gentisate 1 Q       0.095 
Swit_0820 5-carboxymethyl-2-hydroxymuconate delta-isomerase Q       0.065 
Swit_0826 Short-chain dehydrogenase/reductase SDR IQR       0.090 
Swit_0831 Asp/Glu racemase Q       0.002 
Swit_0838 Tonb-dependent receptor P       0.084 
Swit_0843 Acyl-coa synthetase IQ       0.030 
Swit_0857 Marr family transcriptional regulator K       0.087 
Swit_0865 Hypothetical protein S       0.073 
Swit_0922 Anti-feci sigma factor fecr PT      0.456 0.001 
Swit_0924 Tonb-dependent receptor P       0.003 
Swit_0930 Peptidase S15 R       0.013 
Swit_0931 Tonb-dependent receptor P       0.005 
Swit_0932 Rieske (2Fe-2S) domain-containing protein PR      2.022 0.070 
Swit_0936 Peptidase S15 R       0.067 
Swit_0942 Sarcosine oxidase subunit gamma E   2.551 2.964 2.877 2.208 0.002 
Swit_0950 Hypothetical protein S       0.014 
Swit_0953 CRP/FNR family transcriptional regulator T 2.495  4.305 5.176 3.648  0.008 
Swit_0955 CRP/FNR family transcriptional regulator T    2.056   0.051 
Swit_0962 Rieske (2Fe-2S) domain-containing protein PR       0.009 
Swit_0966 Rieske (2Fe-2S) domain-containing protein PR       0.071 
Swit_0968 Hypothetical protein X65    2.354 2.782 2.157 0.003 
Swit_0971 Asp/Glu racemase E     2.030  0.003 
Swit_0978 3-oxoadipate enol-lactonase R       0.033 
Swit_1011 Enoyl-coa hydratase I       0.083 
Swit_1012 Enoyl-coa hydratase I       0.100 
Swit_1014 Enoyl-coa hydratase/isomerase I       0.008 
Swit_1018 Enoyl-coa hydratase/isomerase I       0.018 
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Swit_1039 Transketolase C       0.098 
Swit_1045 Short-chain dehydrogenase/reductase SDR R       0.064 
Swit_1057 Pyruvate dehydrogenase C       0.026 
Swit_1059 Hypothetical protein X70      2.495 0.006 
Swit_1073 Protocatechuate 3 Q       0.002 
Swit_1074 L-threonine aldolase E       0.019 
Swit_1077 Tonb-dependent receptor P       0.070 
Swit_1082 Peptidase S10 E       0.072 
Swit_1170 Type B carboxylesterase I       0.042 
Swit_1201 UDP-glucose/GDP-mannose dehydrogenase M     0.442 0.439 0.002 
Swit_1209 Major facilitator transporter EGPR      0.432 0.075 
Swit_1223 Addiction module antitoxin L       0.076 
Swit_1303 Thioesterase superfamily protein Q     0.457 0.457 0.002 
Swit_1325  50S ribosomal protein L17 J 0.087  0.352 0.248 0.188 0.132 0.061 
Swit_1382 Hypothetical protein S       0.003 
Swit_1394 Cytochrome c1 C 0.063  0.339 0.200 0.140 0.138 0.002 
Swit_1422 Cytochrome c-type biogenesis protein ccmb O       0.075 
Swit_1425 Amino acid aldolase-like protein E   2.710 0.419  0.454 0.017 
Swit_1427 Major facilitator transporter R   2.044    0.084 
Swit_1445 Alpha/beta hydrolase fold protein R       0.003 
Swit_1446 Response regulator receiver protein TK 3.019      0.023 
Swit_1523 Hypothetical protein S 2.018      0.010 
Swit_1526 Thiamine pyrophosphate binding domain-containing protein EH       0.004 
Swit_1529 Thiolase I       0.005 
Swit_1535 Lysr family transcriptional regulator K       0.018 
Swit_1537 Fumarylacetoacetate (FAA) hydrolase Q       0.012 
Swit_1542 Rieske (2Fe-2S) domain-containing protein PR       0.008 
Swit_1544 Ethyl tert-butyl ether degradation ethd -     0.395 0.475 0.017 
Swit_1554 Major facilitator transporter EGPR       0.081 
Swit_1561 Hypothetical protein HC 2.062      0.082 
Swit_1566 Ornithine cyclodeaminase E       0.024 
Swit_1572 Alpha/beta hydrolase fold protein R       0.023 
Swit_1573 Tonb-dependent receptor P       0.085 
Swit_1575 Hypothetical protein X116       0.005 
Swit_1578 DNA methylase N-4/N-6 domain-containing protein L      2.013 0.001 
Swit_1580 Hypothetical protein L 0.455      0.002 
Swit_1583 Tonb-dependent receptor P       0.009 
Swit_1585 Arac family transcriptional regulator K 2.241 2.084     0.076 
Swit_1587 Aldehyde dehydrogenase C       0.004 
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Swit_1590 Ornithine cyclodeaminase E       0.010 
Swit_1591 Endoribonuclease L-PSP J       0.001 
Swit_1598 Acyl-coa dehydrogenase domain-containing protein I       0.009 
Swit_1600 AMP-dependent synthetase and ligase IQ       0.001 
Swit_1602 Short-chain dehydrogenase/reductase SDR IQR       0.070 
Swit_1605 Aldehyde dehydrogenase C      2.148 0.064 
Swit_1606 L-carnitine dehydratase/bile acid-inducible protein F C       0.011 
Swit_1608 Dehydratase I       0.009 
Swit_1611 Lipid-transfer protein I       0.013 
Swit_1616 Glyoxalase/bleomycin resistance protein/dioxygenase E       0.003 
Swit_1632 Glucose-methanol-choline oxidoreductase E       0.047 
Swit_1635 Xylose isomerase domain-containing protein G       0.095 
Swit_1645 Type 11 methyltransferase H       0.001 
Swit_1646 Glutathione S-transferase domain-containing protein O       0.005 
Swit_1649 Amidase J       0.083 
Swit_1650 5-carboxymethyl-2-hydroxymuconate delta-isomerase Q       0.043 
Swit_1655 Major facilitator transporter EGPR       0.001 
Swit_1657 Alcohol dehydrogenase CR      2.300 0.039 
Swit_1658 Short-chain dehydrogenase/reductase SDR IQR       0.001 
Swit_1659 Hypothetical protein S       0.001 
Swit_1661 Short-chain dehydrogenase/reductase SDR IQR       0.001 
Swit_1663 Hydroxyacylglutathione hydrolase R       0.059 
Swit_1664 Glutathione S-transferase domain-containing protein O       0.054 
Swit_1667 Glutamine synthetase E       0.060 
Swit_1669 Short-chain dehydrogenase/reductase SDR IQR       0.006 
Swit_1670 Alpha/beta hydrolase domain-containing protein I       0.007 
Swit_1678 Tetr family transcriptional regulator K       0.004 
Swit_1687 Vanillate monooxygenase PR       0.072 
Swit_1697 Hypothetical protein S       0.005 
Swit_1730 AMP-dependent synthetase and ligase IQ       0.001 
Swit_1731 Acyl-coa dehydrogenase domain-containing protein I 3.002   2.354 2.844 2.792 0.003 
Swit_1738 Amidohydrolase 3 Q 2.053    2.082 3.307 0.015 
Swit_1739 Glucose-methanol-choline oxidoreductase E       0.003 
Swit_1741 Epocide hydrolase domain-containing protein R       0.046 
Swit_1743 Cytochrome P450 Q       0.092 
Swit_1745 Aldehyde dehydrogenase C       0.001 
Swit_1749 Amidohydrolase 2 R       0.005 
Swit_1752 Acyl-coa dehydrogenase domain-containing protein I 3.073      0.005 
Swit_1753 Amidohydrolase 2 R 0.395      0.017 



 63 

Swit_1754 Alpha/beta hydrolase fold protein R       0.028 
Swit_1755 Short-chain dehydrogenase/reductase SDR IQR   2.606 4.197 5.083 2.808 0.009 
Swit_1762 Oxidoreductase domain-containing protein R       0.004 
Swit_1763 Long-chain-fatty-acid--coa ligase IQ       0.045 
Swit_1771 Acetyl-coa acetyltransferase I       0.003 
Swit_1777 Lysr family transcriptional regulator K    2.134   0.093 
Swit_1782 Intradiol ring-cleavage dioxygenase Q       0.062 
Swit_1790 Multicopper oxidase Q       0.009 
Swit_1793 Multicopper oxidase Q       0.043 
Swit_1816 Hypothetical protein O 2.367   0.492 0.385 0.279 0.067 
Swit_1818 Beta-lactamase V       0.033 
Swit_1825 Tetr family transcriptional regulator K      0.316 0.024 
Swit_1829 Rieske (2Fe-2S) domain-containing protein PR 6.097  2.036  2.266 2.092 0.004 
Swit_1830 Fumarate reductase/succinate dehydrogenase flavoprotein 

domain-containing protein C 2.585      0.070 

Swit_1832 Dehydratase I   2.451 4.422 4.090 4.212 0.004 
Swit_1845 Tetr family transcriptional regulator K 9.020      0.006 
Swit_1854 Short-chain dehydrogenase/reductase SDR IQR 2.007  3.182 2.803  3.056 0.022 
Swit_1865 N-acetyltransferase GCN5 J       0.024 
Swit_1877 Short chain dehydrogenase IQR       0.042 
Swit_1878 FAD dependent oxidoreductase Q       0.086 
Swit_1897 Hypothetical protein X131     0.494  0.037 
Swit_1908 Extracellular ligand-binding receptor E      2.215 0.047 
Swit_1916 Endonuclease/exonuclease/phosphatase R 3.489  4.312 6.873 5.118  0.084 
Swit_1926 ABC transporter-like protein V 0.246  0.457 0.335 0.282 0.234 0.018 
Swit_1947 Hypothetical protein E       0.079 
Swit_1951 RND efflux system outer membrane lipoprotein MU 6.305      0.010 
Swit_1954 Two component transcriptional regulator TK 3.448     2.244 0.008 
Swit_1990 Lactoylglutathione lyase E       0.035 
Swit_1995 Cytochrome P450 Q       0.002 
Swit_1996 Hypothetical protein S       0.003 
Swit_2009 Ethyl tert-butyl ether degradation ethd X138       0.004 
Swit_2030 Hypothetical protein MG       0.071 
Swit_2039 Arac family transcriptional regulator K       0.055 
Swit_2044 Glucose-methanol-choline oxidoreductase E       0.036 
Swit_2050 Aminoglycoside phosphotransferase R       0.005 
Swit_2052 Hypothetical protein X143 3.245      0.007 
Swit_2058 Regulatory protein luxr K       0.096 
Swit_2079 Major facilitator transporter EGPR       0.045 
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Swit_2121 Tonb-dependent receptor P       0.056 
Swit_2128 Hypothetical protein V 0.375      0.071 
Swit_2133  Translocation protein tolb U       0.003 
Swit_2142 Hypothetical protein S 0.108 0.350   0.378 0.426 0.005 
Swit_2172 Hypothetical protein X152      2.007 0.014 
Swit_2175 Hypothetical protein S       0.048 
Swit_2327 Hypothetical protein S       0.090 
Swit_2331 Hydrogenobyrinic acid a R     0.434 0.360 0.088 
Swit_2376 Group 1 glycosyl transferase M       0.049 
Swit_2415 Ornithine cyclodeaminase E       0.068 
Swit_2453 Capsule polysaccharide biosynthesis protein M 0.427      0.001 
Swit_2454 Capsule polysaccharide biosynthesis protein M       0.003 
Swit_2468 Dimethylmenaquinone methyltransferase H       0.049 
Swit_2644 Degt/dnrj/eryc1/strs aminotransferase M      0.375 0.015 
Swit_2666 Alpha/beta hydrolase fold protein R      0.484 0.009 
Swit_2671 Group 1 glycosyl transferase M       0.088 
Swit_2695 Glycine cleavage system protein H E       0.007 
Swit_2731 Aconitase C 0.220   0.393 0.272 0.218 0.008 
Swit_2732 Bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase C 0.206   0.438 0.439  0.075 
Swit_2789 Atpase mipz D       0.004 
Swit_2826 PTS transporter subunit IIA-like nitrogen-regulatory protein ptsn GT       0.001 
Swit_2874 Hypothetical protein S     0.411 0.349 0.006 
Swit_2876 Glycosyl transferase family protein M 0.299   0.487 0.363 0.447 0.007 
Swit_2877 Type 12 methyltransferase O       0.041 
Swit_2958 Badm/Rrf2 family transcriptional regulator K     2.355  0.076 
Swit_2973 Signal transduction histidine kinase lyts T       0.002 
Swit_3013 Cell division ATP-binding protein ftse D       0.034 
Swit_3060 Fumarylacetoacetate (FAA) hydrolase Q    0.419 0.344 0.362 0.013 
Swit_3071 Glutathione S-transferase domain-containing protein O       0.077 
Swit_3081 Gntr family transcriptional regulator K       0.066 
Swit_3241 Tonb-dependent receptor P 17.642 0.304    5.409 0.012 
Swit_3244 Metal dependent phosphohydrolase R 5.073      0.046 
Swit_3279 Short-chain dehydrogenase/reductase SDR IQR 2.596  2.341 3.467 2.978  0.013 
Swit_3325 Ethyl tert-butyl ether degradation ethd X256       0.096 
Swit_3328 Hypothetical protein S       0.003 
Swit_3338 Alpha/beta hydrolase fold protein R       0.064 
Swit_3351 Hypothetical protein S 0.408 0.394    0.483 0.003 
Swit_3355 Short-chain dehydrogenase/reductase SDR IQR       0.009 
Swit_3364 Short-chain dehydrogenase/reductase SDR IQR       0.006 
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Swit_3367 Cytochrome P450-like protein Q       0.065 
Swit_3381 Hpr(Ser) kinase/phosphatase -       0.028 
Swit_3401 Acetyl-coa acetyltransferase-like protein I       0.076 
Swit_3403 Short-chain dehydrogenase/reductase SDR IQR       0.016 
Swit_3410 Rieske (2Fe-2S) domain-containing protein PR       0.008 
Swit_3415 Hypothetical protein S       0.077 
Swit_3433 Hypothetical protein S  2.266     0.049 
Swit_3450 ETC complex I subunit C 0.433      0.082 
Swit_3491 Group 1 glycosyl transferase M  0.499     0.005 
Swit_3492 Group 1 glycosyl transferase M       0.001 
Swit_3493 ABC transporter-like protein GM       0.005 
Swit_3494 Polysaccharide export protein M       0.016 
Swit_3587 Alkyl hydroperoxide reductase O  3.207     0.009 
Swit_3595 Major facilitator transporter EGPR 0.381      0.004 
Swit_3621 Regulatory protein iclr K       0.077 
Swit_3629 Acyl-coa dehydrogenase domain-containing protein I       0.054 
Swit_3645 Amidohydrolase 2 R       0.063 
Swit_3667 Thioredoxin domain-containing protein O             0.010 
Swit_3681 Hypothetical protein S       0.034 
Swit_3686 Hypothetical protein S       0.002 
Swit_3689 Conjugal transfer coupling protein trag U       0.048 
Swit_3691 P-type conjugative transfer atpase trbb U       0.060 
Swit_3698 Conjugal transfer protein trbf U      2.085 0.032 
Swit_3713 RND family efflux transporter MFP subunit C      2.883 0.004 
Swit_3716 Cytochrome B561 C     4.534 7.383 0.012 
Swit_3732 Dps family ferritin P 22.901    2.772  0.003 
Swit_3760 Cobalamin synthesis protein R       0.067 
Swit_3762 Endoribonuclease L-PSP J       0.061 
Swit_3788 Exodeoxyribonuclease III Xth L 0.371     0.470 0.006 
Swit_3880 Cytochrome c oxidase subunit III C 0.238    0.465 0.389 0.006 
Swit_3882 Hypothetical protein S 0.334      0.030 
Swit_3926 Signal transduction histidine kinase T 2.935      0.051 
Swit_3934 Sporulation domain-containing protein S       0.094 
Swit_3958 Cysteine synthase A E      0.437 0.079 
Swit_3964 3-deoxy-manno-octulosonate cytidylyltransferase M      0.458 0.001 
Swit_3965 Kpsf/gutq family protein M 0.305      0.100 
Swit_3966 Hypothetical protein S       0.008 
Swit_4006 Hlyd family type I secretion membrane fusion protein V 0.114  0.419 0.350 0.313 0.225 0.003 
Swit_4008 Tolc family type I secretion outer membrane protein MU 0.387  0.495 0.454 0.459 0.336 0.004 
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Swit_4015 ABC-2 type transporter M 0.463  0.490 0.410 0.371 0.310 0.001 
Swit_4016 Group 1 glycosyl transferase M       0.002 
Swit_4039 Asparagine synthase E       0.047 
Swit_4092 DNA repair protein rada O     2.198 2.311 0.039 
Swit_4119 Lipid-transfer protein I       0.100 
Swit_4128 Hypothetical protein X321       0.002 
Swit_4132 FAD dependent oxidoreductase P       0.080 
Swit_4141 Major facilitator transporter G       0.004 
Swit_4143 5-oxoprolinase Q       0.060 
Swit_4151 Tonb-dependent receptor P       0.002 
Swit_4155 Amine oxidase E       0.029 
Swit_4158 Succinate semialdehyde dehydrogenase C     2.049  0.008 
Swit_4166 Lysr family transcriptional regulator K       0.009 
Swit_4167 4-aminobutyrate aminotransferase E       0.068 
Swit_4169 Amidase J       0.024 
Swit_4172 Aminotransferase E       0.002 
Swit_4180 2-nitropropane dioxygenase R       0.072 
Swit_4184 Acyl-coa dehydrogenase type 2 I       0.003 
Swit_4187 Amidase J       0.040 
Swit_4195 Hypothetical protein S       0.053 
Swit_4207 Putative esterase R       0.062 
Swit_4209 Glutathione-dependent formaldehyde-activating protein S 3.549  3.055 5.530 4.310 2.410 0.022 
Swit_4215 Alpha/beta hydrolase fold protein R       0.004 
Swit_4219 Major intrinsic protein G 2.783      0.006 
Swit_4222 Hypothetical protein S       0.093 
Swit_4232 L-carnitine dehydratase/bile acid-inducible protein F C       0.008 
Swit_4235 Alpha/beta hydrolase fold protein R       0.010 
Swit_4236 Alpha/beta hydrolase fold protein R       0.007 
Swit_4244 Peptidase S15 E       0.004 
Swit_4252 2OG-Fe(II) oxygenase R       0.017 
Swit_4253 Tonb-dependent receptor P 2.196      0.078 
Swit_4257 Tonb-dependent receptor P       0.090 
Swit_4260 Luciferase family protein C  2.596     0.018 
Swit_4263 Gentisate 1 2-dioxygenase-like protein Q       0.003 
Swit_4266 Type B carboxylesterase I       0.006 
Swit_4274 Tonb-dependent receptor P       0.006 
Swit_4275 Isochorismatase hydrolase Q       0.007 
Swit_4277 Glucose-methanol-choline oxidoreductase E       0.070 
Swit_4278 Rieske (2Fe-2S) domain-containing protein PR 2.337    2.044  0.002 
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Swit_4279 2-hydroxy-3-oxopropionate reductase I       0.008 
Swit_4282 Tonb-dependent receptor P       0.015 
Swit_4290 Hypothetical protein - 3.480 0.344     0.014 
Swit_4295 Acyl-coa dehydrogenase type 2 I 2.590    2.193 2.118 0.010 
Swit_4301 Major facilitator transporter G       0.022 
Swit_4302 Tonb-dependent receptor P       0.059 
Swit_4306 Succinate semialdehyde dehydrogenase C     2.101  0.049 
Swit_4314 2-dehydro-3-deoxyglucarate aldolase G       0.002 
Swit_4316 Marr family transcriptional regulator KK       0.008 
Swit_4320 Lysr family transcriptional regulator K       0.041 
Swit_4326 3-isopropylmalate dehydratase small subunit E       0.001 
Swit_4329 Major facilitator transporter G       0.019 
Swit_4331 Tetr family transcriptional regulator K       0.041 
Swit_4332 Tonb-dependent receptor P       0.061 
Swit_4334 Luciferase family protein C       0.001 
Swit_4360 Hypothetical protein R      2.906 0.006 
Swit_4364 Methylamine dehydrogenase accessory protein maud C  2.103     0.047 
Swit_4373 Hypothetical protein X328     0.479 0.356 0.059 
Swit_4376 ATP-dependent protease peptidase subunit O 0.424    0.486  0.006 
Swit_4377  ATP-dependent protease ATP-binding subunit hslu O 0.371      0.072 
Swit_4420 Serine O-acetyltransferase E    2.402 2.522  0.002 
Swit_4428 Sel1 domain-containing protein R       0.016 
Swit_4434 Hypothetical protein X340       0.021 
Swit_4435 Hypothetical protein S       0.087 
Swit_4436 Bacteriophage terminase large (atpase) subunit-like protein R       0.013 
Swit_4441 Hypothetical protein X344       0.001 
Swit_4447 Hypothetical protein X348       0.001 
Swit_4451 Hypothetical protein X351       0.001 
Swit_4456 Hypothetical protein S       0.011 
Swit_4457 Hypothetical protein S       0.017 
Swit_4475 Hypothetical protein X361 7.030  4.322 6.132 4.748 2.788 0.004 
Swit_4491  Excinuclease ABC subunit C L       0.002 
Swit_4505 Phosphoenolpyruvate-protein phosphotransferase ptsp T 0.474      0.006 
Swit_4522 Acyltransferase 3 R       0.009 
Swit_4532 Sugar transferase M 9.898      0.016 
Swit_4534 UDP-glucose 6-dehydrogenase M      0.476 0.006 
Swit_4538 Hypothetical protein X366       0.002 
Swit_4542 Dtdp-4-dehydrorhamnose 3 M       0.003 
Swit_4560 Hypothetical protein S       0.001 
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Swit_4568 Histidine kinase T       0.005 
Swit_4581 ABC-2 type transporter V       0.098 
Swit_4587 Glyoxalase/bleomycin resistance protein/dioxygenase R       0.098 
Swit_4606 Hypothetical protein R       0.081 
Swit_4612 Beta-lactamase V       0.004 
Swit_4619 Hypothetical protein S       0.004 
Swit_4644 Cold-shock DNA-binding protein family protein K       0.015 
Swit_4695 GDSL family lipase E       0.003 
Swit_4706 Beta-lactamase V 0.461     0.453 0.032 
Swit_4729 DNA repair protein recn L       0.007 
Swit_4767 Heat shock protein dnaj domain-containing protein O       0.064 
Swit_4821 Group 1 glycosyl transferase M      0.427 0.008 
Swit_4859 Pyruvate phosphate dikinase G 0.148  0.461 0.316 0.314 0.296 0.005 
Swit_4885 Formamidopyrimidine-DNA glycosylase L       0.015 
Swit_4894 Tonb-dependent receptor P  2.091     0.002 
Swit_4895 Alpha/beta hydrolase fold R       0.001 
Swit_4897 Ring hydroxylating dioxygenase PR  2.923    2.530 0.000 
Swit_4902 Glyoxalase/bleomycin resistance protein/dioxygenase E 2.344 4.416  0.459 0.463  0.008 
Swit_4910 Dehydrogenase IQR       0.001 
Swit_4912 Hypothetical protein R 2.402      0.006 
Swit_4915 Transposase IS3/IS911 family protein L       0.022 
Swit_4916 IS66 Orf2 family protein L       0.003 
Swit_4944 Hypothetical protein S       0.070 
Swit_4955 Cobyrinic acid a D    0.455 0.498 0.458 0.001 
Swit_4959 Hypothetical protein S       0.089 
Swit_4976 Hypothetical protein X411       0.002 
Swit_5001 P-type DNA transfer atpase virb11 NU       0.036 
Swit_5003 P-type conjugative transfer protein virb9 U       0.002 
Swit_5006 Type IV secretion system family protein U       0.003 
Swit_5008 Type IV secretory pathway U       0.054 
Swit_5017 Methylmalonate-semialdehyde dehydrogenase [acylating] C       0.076 
Swit_5020 3-oxoadipate enol-lactonase R       0.056 
Swit_5021 Acyl coa:acetate/3-ketoacid coa transferase beta subunit-like 

protein I       0.025 

Swit_5023 3-oxoacid coa-transferase I       0.018 
Swit_5047 Benzoylformate decarboxylase EH       0.017 
Swit_5079 IS66 Orf2 family protein L       0.084 
Swit_5088 Ferredoxin C     0.453 0.381 0.031 
Swit_5096 Hypothetical protein L  2.761     0.004 
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Swit_5105 Hypothetical protein L       0.050 
Swit_5123 Transposase L       0.073 
Swit_5126 Hypothetical protein G       0.071 
Swit_5138 Istb ATP binding domain-containing protein L       0.093 
Swit_5163 Hypothetical protein X423 0.250  0.473  0.495  0.022 
Swit_5168 Hypothetical protein X427       0.002 
Swit_5185 Hypothetical protein S       0.024 
Swit_5189 Hypothetical protein X433       0.001 
Swit_5198 Hypothetical protein X436       0.013 
Swit_5201 Hypothetical protein S       0.006 
Swit_5203 Nitric oxide dioxygenase C      2.100 0.004 
Swit_5204 CRP/FNR family transcriptional regulator T       0.014 
Swit_5206 Hypothetical protein S       0.052 
Swit_5218 Hypothetical protein X439       0.002 
Swit_5220 Hypothetical protein S       0.020 
Swit_5221 Hypothetical protein S       0.021 
Swit_5228 Hypothetical protein X443       0.016 
Swit_5231 Limonene-1 Q       0.073 
Swit_5235 Citrate transporter P       0.001 
Swit_5239 Hypothetical protein X447       0.007 
Swit_5240 Hypothetical protein S 2.270      0.037 
Swit_5252 Hypothetical protein X450       0.036 
Swit_5257 Hypothetical protein J       0.096 
Swit_5259 Hypothetical protein S       0.049 
Swit_5263 Hypothetical protein X454       0.002 
Swit_5272 Spermidine synthase-like protein E   0.466  0.442 0.406 0.006 
Swit_5273 Hypothetical protein S   0.411 0.412 0.389 0.432 0.033 
Swit_5285 Putative DNA topoisomerase I L 4.492  4.208 4.487 2.233  0.001 
Swit_5290 Mscs mechanosensitive ion channel M  2.045 2.943 5.760 4.831  0.017 
Swit_5298 Hypothetical protein P       0.018 
Swit_5300 Periplasmic sensor diguanylate cyclase/phosphodiesterase T       0.050 
Swit_5302 Hypothetical protein S       0.020 
Swit_5303 Hypothetical protein S      2.123 0.020 
Swit_5308 Hypothetical protein X460       0.007 
Swit_5309 Acetyl-coa acetyltransferase I       0.069 
Swit_5310 Hypothetical protein X461 2.615  3.595 6.344 4.666 2.649 0.057 
Swit_5311 Catalase P 2.908  4.572 6.406 4.538 2.237 0.017 
Swit_5313 2Fe-2S iron-sulfur cluster binding domain-containing protein C 6.562  5.273 6.389 5.051 2.296 0.003 
Swit_5314 Molybdopterin dehydrogenase C 3.529  2.429 3.436 2.791  0.085 
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Swit_5315 Xanthine dehydrogenase C 9.224  4.166 6.823 5.400 2.991 0.017 
Swit_5319 Cell cycle transcriptional regulator ctra TK 0.406      0.010 
Swit_5330 Hypothetical protein X466       0.005 
Swit_5337 Grea/greb family elongation factor K     2.216 5.117 0.076 
Swit_5344 Cyclase/dehydrase S 22.537  5.836 10.006 6.161 2.955 0.007 
Swit_5348 Hypothetical protein S 26.025 3.226 2.865 3.052 2.248  0.056 
Swit_5350 Hypothetical protein X350  3.165     0.005 
Swit_5358 Hypothetical protein X474   2.053 2.103 2.287  0.008 
Swit_5360 Hypothetical protein S       0.070 
Swit_5361 Lytic transglycosylase M 2.166      0.003 
Swit_5365 Type IV conjugative transfer system protein tral -    2.176 2.212  0.002 
Swit_5366 Trae family protein U       0.005 
Swit_5367 Hypothetical protein S       0.033 
Swit_5369 Hypothetical protein O       0.002 
Swit_5377 Trau family protein -       0.002 
Swit_5378 Type-F conjugative transfer system pilin assembly protein trbc S       0.029 
Swit_5381 Traf-like protein CO       0.059 
Swit_5382 Trah family protein -       0.038 
Swit_5383 Trag domain-containing protein -       0.047 
Swit_5385 Hypothetical protein R  2.150    3.614 0.045 

1) Black characters, chromosome; blue characters, pSWIT02; red characters, pSWIT01. 

2) Only values that are significantly different (P<0.05) from the control are shown. 
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Table S2. Clustering, essentiality and fold-expression change of Sphingomonas wittichii RW1 genes coding for putative functions in aromatic compound metabolism. 

Expanded version from Table 1. For legend, see Table 1. 

Locus Name Strand Tn library  Expression, fold change 
TN01 SAL DBF SAL/PHE SAL/DBF DBF/PHE DBF 

shock 
Chemostat shift 

30 m 1 h 2 h 6 h 
310 AMP-dependent synthetase 

and ligase 
< +(+) +(+) +   0.98 0.96 0.73 0.77 0.85 0.92 

311 carboxymuconolactone 
decarboxylase 

< -(+) -(±) -   1.21 1.93 2.81 2.51 2.03 1.25 

312 amidohydrolase 3 < +(+) +(+) +   1.06 0.68 0.75 0.75 0.73 0.99 
              
742 2-keto-4-pentenoate hydratase < +(+) +(+) +   0.76 0.72 0.73 0.93 1.04 1.00 
743 ARD-beta < -(±) -(+) +   0.73 1.10 1.39 1.29 1.39 1.97 
744 ARD-alpha < +(+) +(+) +   0.78 1.06 1.23 1.21 1.14 1.68 
745 hypothetical protein < +(+) -(±) ±   0.84 1.28 1.02 0.93 1.46 1.78 
746 amidase < ±(±) ±(-) +   0.98 1.54 1.10 1.26 1.49 1.74 
747 MarR family transcriptional 

regulator 
> +(+) -(+) +   1.16 1.53 1.05 0.99 1.31 1.39 

748  < +(+) ±(+) + 0.11  0.28 0.15 0.36 0.40 0.34 0.38 
749 paaB? < -(-) -(-) + 0.04  0.72 0.12 0.31 0.35 0.35 0.31 
750 3-hydroxyacyl-CoA 

dehydrogenase 
> +(-) -(-) - 0.07  0.53 0.11 0.48 0.47 0.38 0.48 

751 paaD > +(+) +(+) + 0.05  0.37 0.15 0.27 0.44 0.27 0.13 
752 beta-ketoadipyl CoA thiolase > +(+) +(+) + 0.19  0.35 0.57 0.71 0.64 1.15 0.62 
753 paaA > +(+) - (±) + 0.04  0.50 0.04 0.24 0.15 0.14 0.16 
754 paaB > +(+) -(±) ± 0.02  0.24 0.05 0.14 0.07 0.05 0.05 
755 paaI > - (-) - (-) - 0.02  0.19 0.05 0.17 0.10 0.05 0.06 
756 paaJ > +(+) -(±) -   1.06 1.66 1.72 1.51 1.45 1.01 
757 paaK > +(+) +(+) + 0.02  0.09 0.08 0.34 0.34 0.40 0.37 
758 enoyl-CoA 

hydratase/isomerase 
> +(+) +(-) + 0.03  0.76 0.72 0.73 0.93 1.04 1.00 

              
819 gentisate 1,2-diox > +(+) ±(±) +   1.21 1.27 1.08 1.37 1.27 1.88 
820 5-carboxymethyl-2-

hydroxymuconate delta-
isomerase 

> +(+) ±(±) ±   0.84 1.91 1.09 1.13 1.22 1.19 

              
892  < +(+) +(+) +   1.15 0.49 0.92 0.70 0.67 0.78 
893 ferredoxin < -(-) -(-) -   1.16 0.59 0.64 0.46 0.68 1.37 
894 EDO < +(+) ±(+) +   1.11 0.79 0.98 1.01 1.10 1.09 
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895 ARD-beta < -(+) ±(±) +   1.46 0.77 0.85 0.64 0.84 1.41 
896 ARD-alpha < +(+) ±(±) +   1.19 1.37 0.66 0.71 0.92 1.02 
              
966 ARD-alpha > +(+) ±(±) +   0.79 1.54 1.16 0.97 1.31 1.00 
967 hypothetical > +(+) +(+) +   0.99 1.13 2.31 1.75 1.23 1.13 
968 hypothetical > +(+) ±(+) ±   0.82 1.23 1.82 2.35 2.79 2.16 
969 ferredoxin > +(+) -(-) +   0.81 0.46 0.97 0.46 0.38 0.33 
              
972 hypothetical protein > -(-) -(-) -   1.17 1.31 1.15 1.48 1.16 1.80 
973 ARD-alpha > +(+) +(+) +   0.96 0.48 1.36 1.09 0.90 1.40 
974 catR? < ±(+) +(±) +   1.14 1.00 0.92 0.94 0.71 0.98 
975 muconate cycloisomerase > ±(+) +(+) ± 8.36  1.72 1.06 0.74 0.58 0.46 1.95 
976 muconolactone delta-

isomerase 
> +(+) +(+) +   2.28 1.13 0.97 0.68 0.62 1.41 

977 catechol 1,2-dioxygenase > +(+) +(+) +   2.16 2.16 1.28 0.89 0.81 1.43 
978 3-oxoadipate enol-lactonase > +(+) +(+) ± 2.26 2.20 1.02 1.56 1.33 1.05 0.60 1.04 
              
1067 vanillate monooxygenase < +(+) -(+) +   1.19 1.96 1.21 1.35 1.34 1.41 
              
1070 4-carboxymuconolactone 

decarboxylase 
< +(+) +(+) +   0.83 1.13 1.52 1.88 1.46 1.23 

1071 3-carboxy-cis,cis-muconate 
cycloisomerase 

< +(+) +(+) +   0.99 1.04 0.73 0.93 0.82 0.91 

1072 protocatechuate 3,4-
dioxygenase, alpha subunit 

< +(-) -(±) +   0.87 0.96 1.21 1.27 1.30 1.11 

1073 protocatechuate 3,4-
dioxygenase subunit beta 

< +(+) +(±) ±   1.36 0.92 0.86 0.95 0.56 0.58 

              
1537 fumarylacetoacetate (FAA) 

hydrolase 
> +(+) ±(±) ±   1.11 0.87 1.40 1.37 1.45 1.25 

1538 EDO > ±(+) -(±) +   1.22 0.55 0.91 0.99 0.56 1.20 
1539 TonB-dependent receptor > +(+) +(+) +   1.52 1.80 1.08 1.13 1.58 2.23 
1540 AraC family transcriptional 

regulator 
> +(+) +(+) +   1.02 1.71 0.82 1.00 1.23 1.82 

1541 ARD-alpha (vanillate?) > +(+) +(±) +   0.88 0.93 0.86 0.99 1.53 1.39 
1542 ARD (vanillate?) > +(+) -(±) ±  0.47 1.62 1.01 0.94 0.77 1.07 1.45 
              
1543 ARD (vanillate?) < +(+) +(±) +   1.11 0.87 1.40 1.37 1.45 1.25 
1549 ARD (vanillate?) < +(+) -(±) +   0.88 1.16 0.97 1.23 1.34 1.52 
              
1550 ARD-alpha > +(+) +(+) +   1.92 2.25 0.85 0.74 0.82 1.01 
              
1552 ARD (vanillate?) > +(+) +(+) +   1.00 0.66 0.73 0.76 0.92 1.44 
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1553 TetR repressor > -(+) ±(+) -   0.84 0.33 0.70 0.65 0.66 0.95 
              
1557 homogentisate 1,2-

dioxygenase 
> +(+) +(±) +   0.80 1.68 1.13 1.14 1.68 1.55 

1558 fumarylacetoacetase > +(+) ±(±) +   1.40 0.83 1.48 2.07 2.11 1.38 
              
1559 ARD-alpha < +(+) ±(±) +   0.98 0.77 0.93 0.75 0.75 0.90 
              
1639 4-oxalocrotonate 

decarboxylase 
> +(-) -(-) -   1.68 1.17 0.99 1.13 1.47 1.83 

1640=2112 acetaldehyde dehydrogenase > -(-) -(-) -         
1641 4-hydroxy-2-ketovalerate 

aldolase 
> +(+) -(±) +   1.08 1.24 1.18 1.21 1.39 1.17 

1642 NAD-binding D-isomer 
specific 2-hydroxyacid 
dehydrogenase 

> -(+) -(-) -   1.13 0.97 0.75 0.66 0.99 0.69 

1643 FMN-dependent alpha-
hydroxy acid dehydrogenase 

> ±(+) ±(±) -   1.27 0.92 1.13 1.08 1.10 1.05 

1644 methionine aminopeptidase > +(+) ±(+) +   0.78 0.70 0.82 0.88 1.01 1.61 
              
1679 hypothetical protein > +(+) +(+) +   1.09 1.30 1.17 1.28 1.64 1.39 
1680 EDO > +(+) -(±) +  0.45 1.42 1.00 1.23 1.16 1.41 1.72 
1681 5-carboxymethyl-2-

hydroxymuconate delta-
isomerase 

> +(+) ±(±) +   0.98 2.16 1.45 1.60 1.39 1.53 

1682 hypothetical > -(+) +(±) +   1.20 1.30 1.06 1.62 1.69 1.29 
1683 amidohydrolase 2 > +(+) +(+) +   0.95 0.53 1.06 1.10 0.99 0.75 
1684 FAD-binding 

monooxygenase 
> +(+) ±(±) -   0.98 1.08 1.30 1.22 1.26 1.39 

1685 fumarylacetoacetase > +(+) +(±) +   1.00 0.55 1.43 1.88 1.27 0.94 
1686 ARD-alpha > +(+) +(+) +   1.24 1.25 1.13 1.11 1.43 1.74 
1687 vanillate monooxygenase > +(+) -(±) +   1.13 1.37 0.88 1.01 1.18 1.17 
              
1728 major facilitator protein < +(+) +(±) +   1.20 1.61 1.21 1.83 1.54 1.77 
1729 dioxygenase motif < -(±) -(±) ±   1.29 1.54 1.38 0.75 0.95 0.68 
              
1754 alpha/beta hydrolase fold 

protein 
> +(+) +(+) +   1.45 1.92 1.45 1.42 1.39 1.67 

1755 short-chain 
dehydrogenase/reductase 
SDR 

> +(+) +(+) ±   1.14 1.33 2.60 4.20 5.10 2.81 

1756 EDO > +(+) +(+) +   1.09 1.14 1.44 1.26 1.64 1.74 
1757 ARD-beta > -(+) ±(±) -   0.95 0.74 0.96 0.86 0.81 0.80 
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1758 ARD-alpha > +(+) +(±) +   1.66 1.62 1.11 1.13 1.72 2.16 
1759 ferredoxin > +(±) -(-) -   1.04 2.03 1.09 1.01 1.62 1.99 
1760 L-carnitine dehydratase > +(±) -(±) -   0.79 1.65 1.40 1.73 1.83 1.68 
              
1825 TetR family transcriptional 

regulator 
< +(+) -(+) ±   1.09 0.75 0.81 0.66 0.53 0.32 

1826 EDO < +(+) +(+) +   1.05 3.92 1.75 1.64 1.78 1.21 
1827 alpha/beta hydrolase fold 

protein 
< ±(+) +(+) +   1.05 4.63 1.36 1.71 1.54 1.61 

1828 acyl-CoA dehydrogenase 
type2 

< +(+) ±(±) +   1.04 14.83 4.63 4.56 2.87 1.71 

1829 ARD < +(+) -(±) ±   1.13 6.11 2.04 1.95 2.27 2.08 
1830 hypothetical < +(+) +(±) +   0.92 2.58 1.11 1.28 1.37 1.27 
              
1845 TetR regulator > +(+) ±(±) ±   1.09 0.75 0.81 0.66 0.53 0.32 
1846 Enoyl-CoA dehydratase < +(+) -(±) +   1.05 3.92 1.75 1.64 1.78 1.21 
1847 cytochrome P450-like protein > +(+) +(±) +   1.39 7.57 1.48 1.88 2.06 1.89 
1848 EDO > -(+) ±(±) ± 3.39  3.23 28.64 2.75 3.05 3.14 2.79 
1849 hypothetical > +(±) -(±) +   1.59 25.11 3.58 4.23 2.60 3.92 
1850 acyl CoA domain > +(+) +(+) +   1.34 11.88 2.83 2.53 1.75 1.66 
1851 acyl CoA domain > +(+) +(+) +   1.45 7.84 1.58 1.26 1.66 1.09 
1852 hypothetical > ±(+) -(±) -   0.95 1.99 1.16 1.39 1.48 1.32 
              
1860 3-ketosteroid delta4-

dehydrogenase 
> +(+) +(±) +   1.39 7.57 1.48 1.88 2.06 1.89 

1861 dioxygenase motif > -(±) ±(±) -   1.54 6.29 2.50 3.54 0.77 1.69 
              
2112=1640 4-oxalocrotonate 

decarboxylase 
> +(-) +(-) +         

2113 acetaldehyde dehydrogenase > -(-) -(-) -         
2114 4-hydroxy-2-ketovalerate 

aldolase 
> -(+) -(+) +   1.39 0.94 1.01 1.01 0.71 1.22 

              
2250 NAD(P)H dehydrogenase 

(quinone) 
< +(+) -(-) +   0.81 0.76 0.77 0.74 0.49 0.95 

2251 ferredoxin < -(-) -(-) -   1.09 0.80 0.70 0.78 0.74 0.61 
2252 acyl-CoA dehydrogenase 

domain-containing protein 
< +(+) +(+) +   1.00 1.01 0.88 1.20 1.06 0.96 

2253 ARD-alpha < +(+) +(+) +   1.11 0.77 1.06 1.11 1.06 1.38 
              
2283  < +(+) ±(±) +   1.77 1.35 1.16 1.14 1.29 1.68 
2284 EDO < -(-) -(-) +  0.45 1.42 1.75 0.86 0.90 1.21 1.39 
2285 ARD-alpha < +(+) +(+) +   1.89 1.82 0.90 0.82 1.22 1.65 
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2292 EDO > -(-) -(-) -   1.43 0.61 0.98 1.02 0.80 0.72 
2293 GntR transcriptional regulator > +(+) +(+) +   1.77 1.35 1.16 1.14 1.29 1.68 
              
2310 ARD-alpha (vanillate?) > +(+) +(+) +   0.98 1.06 1.13 1.05 1.31 1.17 
2311 EDO > +(±) +(±) +   1.10 2.51 1.71 2.06 2.68 2.07 
2312 acyl-CoA dehydrogenase type 

2 
> +(+) +(+) +   1.22 0.93 0.84 1.13 0.93 1.16 

              
2634 benzoate 1,2-diox alpha > + + + 28.8  5.06 2.36 1.42 1.87 2.07 3.05 
2635 benzoate 1,2-diox beta > + + + 5.37  2.91 1.34 1.22 1.30 1.30 1.62 
2636 benD > + + +   1.09 1.32 1.16 0.85 0.97 0.73 
              
3022 GntR regulator < -(±) -(±) -   0.75 1.20 0.87 1.25 1.39 1.42 
3023 ARD (vanillate?) < +(+) +(+) +   0.97 1.13 0.97 0.87 0.73 0.55 
3024 cytochrome P450 < +(+) +(+) +   1.01 1.24 1.26 1.04 1.12 1.22 
3025 cupin-like < ±(+) ±(+) +   1.08 1.34 1.58 1.41 1.71 2.25 
3026 TonB receptor < +(-) +(±) +   0.96 1.39 0.86 1.06 0.81 0.68 
              
3055 alpha/beta hydrolase fold 

protein 
> +(±) -(-) +   2.60 1.65 0.68 0.64 0.85 0.90 

3056 ARD-alpha (putative 
salicylate 5 hydroxylase) 

> +(+) +(+) + 2.44  2.31 2.19 0.78 0.59 0.73 0.82 

3057 ARD-beta > +(-) -(±) +   2.35 1.07 0.64 0.51 0.57 0.57 
3058 maleylacetoacetate 

isomerase" 
> +(+) +(+) + 2.42  2.48 0.74 0.55 0.41 0.38 0.45 

3059 gentisate 1,2-dioxygenase > +(+) +(+) +   1.68 1.91 0.90 0.72 0.66 0.72 
3060 fumarylacetoacetate (FAA) 

hydrolase 
> +(+) +(+) +   1.46 1.16 0.62 0.42 0.34 0.36 

3061 hypothetical protein" > +(+) +(±) +   1.00 0.69 0.57 0.41 0.38 0.38 
3062 phthalate 4,5-dioxygenase > +(+) + +   1.00 1.05 0.74 0.64 0.59 0.49 
3063 amidohydrolase 2 > +(+) -(+) +   1.16 0.94 0.75 0.53 0.50 0.45 
3064 protocatechuate 4,5-

dioxygenase 
> +(+) 

+(+) 
+   1.64 1.42 0.81 0.71 0.66 0.64 

3065 demethylmenaquinone 
methyltransferase-like protein 

> +(+) +(+) +   1.17 1.75 0.98 0.59 0.43 0.59 

3066 dimethylmenaquinone 
methyltransferase 

> +(-) +(±) +  0.44 1.00 1.01 0.75 0.65 0.64 0.59 

3067 succinate semialdehyde 
dehydrogenase 

> +(+) +(+) +  0.45 2.58 2.22 0.93 0.86 0.88 1.25 

3068 short-chain 
dehydrogenase/reductase 
SDR" 

> +(+) +(+) +  0.46 2.04 1.48 0.90 0.88 0.81 0.91 
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3083 ornithine cyclodeaminase < + + + 2.88 2.08 1.38 1.06 1.17 1.03 1.13 1.00 
3084 5-oxopent-3-ene-1,2,5-

tricarboxylate decarboxylase 
< + + + 3.88 2.74 1.35 1.46 1.06 1.26 1.39 1.19 

3085 LysR regulator > +(+) +(+) +   2.48 1.23 1.10 1.22 1.06 1.14 
3086 gentisate 1,2-dioxygenase 

like protein 
> +(+) +(+) + 3.92  1.49 2.03 1.32 1.51 1.53 1.07 

3087 2,4-dihydroxyhept-2-ene-1,7-
dioic acid aldolase 

< ± ± ± 16.9 17.71 0.98 1.01 0.93 2.06 1.03 1.53 

3088 2-oxo-hepta-3-ene-1,7-dioic 
acid hydratase 

< + + + 8.46 7.38 1.12 1.24 0.94 0.79 0.99 0.99 

3089 pseudogene >    14.69 9.01 1.44 0.74 0.71 2.10 1.18 0.99 
3090 acyl-CoA dehydrogenase type 

2 
> + + + 4.63 3.02 1.41 1.38 1.17 1.13 1.30 1.87 

3091 TonB-dependent receptor > + + + 5.29 4.56 1.13 0.86 0.82 0.60 0.69 0.87 
3092 hypothetical protein > + + + 8.78 4.67 1.67 1.35 1.09 0.91 0.80 0.93 
3093 hypothetical protein > ± + + 6.59 4.66 1.33 1.11 0.97 0.45 0.80 0.94 
3094 putative extradiol 

dioxygenase 
> + + + 5.33 2.79 1.85 1.72 1.28 0.96 0.93 1.10 

3095 hypothetical protein > + - + 7.96 4.01 1.82 1.29 1.06 0.89 0.84 0.85 
3096 ferredoxin:cytochrome 

p450:oxidoreductase 
> + + +   0.92 0.73 0.97 0.86 0.82 0.86 

              
3263 TonB receptor protein > +(+) +(+) +   1.00 1.16 1.14 1.65 1.58 1.91 
3264 ARD- iron sulfur > +(+) -(+) +   0.81 1.54 1.29 1.42 2.07 2.30 
3265 ferredoxin oxidoreductase > +(+) +(+) +   1.16 0.78 1.49 1.43 1.33 1.51 
3266 ARD-alpha > +(+) -(+) +   1.05 1.01 1.01 1.21 1.25 1.47 
3267 hydroxypyruvate isomerase > +(+) +(+) +   0.84 1.11 1.00 0.88 1.23 0.89 
              
3395 TonB-dependent receptor > +(+) +(±) +   1.49 0.78 1.01 0.88 0.99 1.16 
3396 ARD (vanillate?) > +(+) +(±) +   0.95 1.87 1.61 1.79 1.68 1.25 
              
3407 EDO > ±(+) -(±) ±   1.12 0.62 0.78 0.84 0.85 0.84 
3408 Hypothetical protein > +(+) +(+) +   0.98 1.05 1.13 1.39 0.90 0.81 
3409 ARD-alpha > +(+) +(±) +   1.11 1.20 1.09 0.82 0.93 1.09 
3410 ARD-alpha > +(+) +(±) ±   0.99 1.02 0.87 0.91 1.15 1.09 
3411 LuxR family protein > +(+) ±(±) +   1.54 1.92 0.96 0.95 1.04 1.12 
              
3416 vanillate monooxygenase  + + +   1.37 1.26 1.22 1.14 1.24 1.38 
3417 FAD-binding 

monooxygenase 
 + + +   0.91 0.62 0.88 1.12 1.13 1.22 

3418 putative extradiol 
dioxygenase 

 + - +   1.13 2.95 1.96 2.62 2.95 1.82 
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3519 aminomuconate-

semialdehyde dehydrogenase 
> +(+) +(+) +   0.93 0.76 1.00 0.92 1.26 1.13 

3520 4-oxalocrotonate 
decarboxylase 

> +(+) +(±) +   0.95 1.58 1.27 1.13 1.40 1.73 

3521 4-oxalocrotonate 
decarboxylase 

> -(+) -(±) +   0.78 1.85 1.13 1.23 1.69 1.41 

3522 2-aminomuconate deaminase > +(+) +(+) +   1.89 0.82 0.97 1.02 0.30 0.95 
3523 3-hydroxyanthranilate 3,4-

dioxygenase 
> +(+) +(+) +   0.84 1.04 1.23 1.28 1.15 1.19 

3524 aminocarboxymuconate-
semialdehyde decarboxylase 

> +(+) +(+) +   0.99 1.95 1.04 0.83 1.05 0.82 

3525 hypothetical > +(±) +(±) +   0.86 1.31 0.99 1.23 1.34 1.57 
              
3863 fumarylacetoacetate 

hydrolase 
< +(+) +(+) +   1.05 0.91 1.25 1.69 1.65 1.26 

3864 homogentisate 1,2-
dioxygenase 

< +(+) +(+) + 3.81  1.44 1.69 1.66 2.06 2.08 2.23 

3865 4-hydroxyphenylpyruvate 
dioxygenase 

< +(+) +(+) + 7.99  1.73 1.40 1.60 2.17 2.48 3.23 

              
4258 gentisate-1,2 dioxygenase 

like 
> +(+) +(+) +   1.01 0.71 0.91 1.00 0.83 0.95 

              
4261 5-carboxymethyl-2-

hydroxymuconate delta-
isomerase 

> +(+) +(±) +   0.86 0.90 1.74 1.09 1.71 1.37 

4262 ornithine cyclodeaminase > +(+) +(±) +   0.93 1.22 1.46 1.57 1.74 2.33 
4263 gentisate 1 2-dioxygenase-

like protein 
> +(+) +(+) ±   1.20 0.90 0.99 0.84 1.12 0.85 

4264 hypothetical protein > -(+) +(±) ±   0.86 1.33 0.85 0.91 0.81 0.71 
4265 LysR family transcriptional 

regulator 
> +(+) +(+) +   2.01 2.58 1.35 1.06 1.19 1.38 

              
4269 vanillate monooxygenase > +(+) +(±) +   0.80 1.01 1.20 1.13 1.27 1.75 
              
4273 vanillate monooxygenase > +(+) +(+) +   1.13 1.20 1.25 1.87 2.20 2.51 
              
4278 ARD-alpha < +(+) +(+) +   1.54 2.33 1.89 1.84 2.04 1.84 
              
4280 ARD-alpha > +(+) +(+) +   0.90 0.78 1.03 0.85 1.07 1.38 
4281 ARD-beta > +(+) +(-) +   0.78 0.71 0.68 0.73 0.86 1.03 
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4336 beta-ketoadipyl CoA thiolase < +(+) +(+) +   0.75 0.88 1.06 1.02 2.07 1.39 
4337 butyryl-CoA:acetate CoA 

transferase 
< +(+) +(+) + 0.42  0.70 0.60 1.09 1.09 1.18 1.89 

4338 3-oxoacid CoA-transferase 
subunit A 

< +(+) -(+) +   1.16 1.40 1.04 1.04 1.31 1.53 

4339 beta-ketoadipate pathway 
transcriptional regulator 

> +(+) -(+) +   0.91 1.13 1.18 1.33 1.24 1.96 

              
4887 beta-ketoadipyl CoA thiolase < +(+) +(+) +   1.54 0.92 0.79 0.92 0.78 0.98 
4888 butyryl-CoA:acetate CoA 

transferase 
< +(+) +(+) +   2.14 0.55 0.93 0.66 0.59 0.91 

4889 3-oxoacid CoA-transferase < +(+) +(+) +   2.79 1.10 1.27 1.31 0.92 1.24 
4890 hydroxyquinol 1,2 

dioxygenase 
< +(+) +(+) +   2.87 1.17 1.26 0.92 0.88 0.85 

4891 iron-containing alcohol 
dehydrogenase 

< +(+) +(+) +   2.35 0.99 0.95 1.27 1.44 1.79 

4892 hypothetical protein < +(+) +(+) +   2.50 1.01 0.82 0.61 0.81 0.95 
4893 ferredoxin < +(±) +(±) +   2.64 3.61 1.35 0.46 0.56 0.79 
4894 TonB-dependent receptor < +(+) +(+) +   2.08 0.93 1.52 1.61 0.99 1.15 
4895 alpha/beta hydrolase fold < +(-) +(±) ±   1.29 0.90 1.16 0.93 1.34 1.40 
4896 aromatic-ring-hydroxylating 

dioxygenase 
< +(±) +(±) -   1.85 0.69 1.46 1.61 1.24 2.10 

4897 ring hydroxylating 
dioxygenase 

< +(-) +(±) ±  0.48 2.93 1.52 1.32 1.72 1.39 2.53 

              
4902 DbfB EDO > +(+) +(+) +  0.37 4.41 2.35 0.79 0.46 0.46 0.67 
              
4922 pyruvate < +(+) +(+) +  0.13 10.13 0.55 0.81 0.55 0.51 0.46 
4923 4-hydroxy-2-ketovalerate 

aldolase 
< +(+) +(+) +  0.13 11.47 0.84 0.93 0.57 0.61 0.55 

4924 acetaldehyde dehydrogenase < +(+) +(+) +  0.11 12.55 0.47 0.93 0.72 0.62 0.69 
4925 4-oxalocrotonate 

decarboxylase 
< +(+) +(+) +   13.45 0.67 0.80 0.62 0.63 0.67 

              
5020 3-oxoadipate enol-lactonase  +(+) +(+) ±   0.24 -0.23 -0.15 -0.17 -0.04 0.44 
5021 Acyl CoA:acetate/3-ketoacid 

CoA transferase beta subunit-
like protein 

 +(+) ±(±) ±   

0.75 -0.21 0.01 0.07 0.23 0.53 
5023 3-oxoacid CoA-transferase  +(+) +(±) ±   0.67 0.55 0.98 0.87 0.80 0.12 
              
5040 2-oxo-hepta-3-ene-1,7-dioic 

acid hydratase 
< +(+) +(+) +   0.77 0.99 0.85 0.67 0.54 0.53 

5041 intradiol ring-cleavage < +(+) +(+) +   0.86 1.41 0.93 0.75 0.64 0.48 
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dioxygenase 
5042 Hypothetical < +(+) +(+) +   1.02 1.21 1.27 1.10 0.84 0.45 
5043 monooxygenase, FAD-

binding 
< +(+) +(+) +   1.08 1.58 1.77 1.59 1.10 0.91 

5044 major facilitator transporter < +(+) +(+) +   0.89 1.49 1.22 1.00 1.01 0.80 
5045 TonB-dependent receptor < +(+) +(+) +   1.16 2.13 1.53 1.04 0.97 0.65 
5046 Aldehyde dehydrogenase < +(+) +(+) +   1.52 1.61 1.41 1.57 1.34 1.34 
5047 Benzoylformate 

decarboxylase 
< +(+) +(+) +   1.14 1.14 0.75 1.01 1.12 1.26 

              
5084 hypothetical protein < -(+) -(±) +   1.01 0.77 0.72 0.42 0.27 0.18 
5085 hypothetical protein < +(+) +(+) +   0.97 0.54 0.52 0.27 0.18 0.12 
5086 maleylacetoacetate isomerase < +(+) +(+) +   1.30 0.83 0.60 0.29 0.23 0.18 
5087 fumarylacetoacetate (FAA) 

hydrolase 
< +(+) +(+) +   1.39 0.97 0.51 0.25 0.20 0.15 

5088 ferredoxin < +(+) +(+) +   1.60 0.94 0.75 0.58 0.45 0.38 
5089 fumarylacetoacetate (FAA) 

hydrolase 
< +(+) +(+) +   1.47 1.10 0.69 0.44 0.40 0.43 

              
5101 Monooxygenase, FAD 

binding 
< +(+) +(+) + 56.05  17.27 0.80 0.94 0.68 0.52 1.10 

5102 gentisate 1,2-dioxygenase < +(+) +(+) + 41.98  11.31 0.82 1.19 1.16 1.19 1.16 
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Table S3. Sphingomonas wittichii genes with tenfold or more transposon insertions after 50 generations DBF growth compared to the starting 

library. 

locus  product 
COG
_cat 

log Ratio 
DBF 
short/crtl 

log Ratio 
DBF long/ctrl 

chemostat 
log ratio 30m 

chemostat 
log ratio 1h 

chemostat 
log ratio 2h 

chemostat 
log ratio 6h 

RATIO Tn 
abundance 
DBF/TN0 

Swit_0155 hypothetical protein S 
     

1.004 18.104 
Swit_0265 glutamate synthase (NADH) large subunit E 

      
9.978 

Swit_0652 methylmalonate-semialdehyde 
dehydrogenase C 

      
11.617 

Swit_1290 FliI/YscN family ATPase NU 
      

21.653 
Swit_1532 aromatic-ring-hydroxylating dioxygenase 

subunit beta 
Q       11.737 

Swit_1533 helix-turn-helix domain-containing protein F 1.172 1.515 
    

28.894 
Swit_2055 FAD-dependent pyridine nucleotide-disulfide 

oxidoreductase C 
      

30.951 
Swit_2338 sodium:dicarboxylate symporter C 

      
12.476 

Swit_2339 hypothetical protein S 2.015 1.088 
   

1.114 12.550 
Swit_2362  4-hydroxybenzoate polyprenyltransferase H 

      
15.820 

Swit_2373 glycosyl transferase family protein M 
      

163.299 
Swit_2557 cold-shock DNA-binding protein family 

protein 
K -1.451  -1.079 -1.685 -1.757 

-1.921 48.619 
Swit_2574 hypothetical protein S 

      
13.203 

Swit_2724 methyl-accepting chemotaxis sensory 
transducer NT 

   
1.076 1.279 

 
12.728 

Swit_2819 hypothetical protein S -1.248 
     

10.882 
Swit_2840 hypothetical protein S 

      
16.503 

Swit_2858 CorA family protein Mg2+ transporter 
protein P 

      
10.970 

Swit_2894 carboxyl transferase I -1.206 
   

1.271 1.923 15.959 
Swit_2907 RNA polymerase factor sigma-54 K 

      
70.940 

Swit_2978 UDP-galactose 4-epimerase M 1.022 
     

74.466 
Swit_3024 vanillate monooxygenase PR 

      
11.423 

Swit_3033 major facilitator transporter G 
      

17.943 
Swit_3044 TonB-dependent receptor P 1.467 1.499 

 
-1.249 -1.495 -1.277 28.696 

Swit_3045 FAD-binding monooxygenase HC 
      

50.412 
Swit_3067 succinate semialdehyde dehydrogenase C 1.151 1.366 

    
10.870 

Swit_3113 peptidase M14 E 
      

16.894 
Swit_3200 lycopene cyclase S 

    
-1.432 -1.522 19.995 
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Swit_3258 AsnC family transcriptional regulator K 
      

10.006 
Swit_3455 large conductance mechanosensitive channel 

protein M 
  

1.091 1.116 
  

10.755 
Swit_3529 type 12 methyltransferase I 

   
1.160 

  
19.543 

Swit_3606 hypothetical protein P 
      

24.734 
Swit_3755 ketosteroid isomerase-like protein R 

      
12.567 

Swit_3853 4-phytase E 
      

12.239 
Swit_3976 molybdopterin binding aldehyde oxidase and 

xanthine dehydrogenase 
C  

    
1.100 14.851 

Swit_4355 aminoglycoside phosphotransferase R 
      

11.414 
Swit_4378 arsenate reductase-like protein P -1.201 

 
-1.097 -1.704 -1.956 -1.914 14.199 

Swit_4417 molybdate ABC transporter inner membrane 
subunit P -1.252 

     
13.930 

Swit_4602 extradiol cleavage dioxygenase R 
      

11.966 
Swit_4697 arsenate reductase P -2.194 

  
-1.129 -1.045 -1.326 9.972 

Swit_4728 hypothetical protein S 
 

1.147 
 

-1.113 -1.222 -1.493 13.386 
Swit_4822 hypothetical protein X396 

      
11.500 

Swit_4889 3-oxoacid CoA-transferase I 
 

1.484 
    

13.048 
Swit_5149 hypothetical protein X420 

      
12.033 

Swit_5305 camphor resistance protein CrcB D 
      

13.557 
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Table S4. Commonly expressed RW1 genes with at least 4-fold expression difference. 

Locus product 
COG
_cat 

Ratio 
DBF 
short/ctr 

Ratio 
DBF 
long/ctrl 

Ratio 
Chem 
30m/ctrl 

Ratio 
Chem 
1h/ctrl 

Ratio 
Chem 
2h/ctrl 

Ratio 
Chem 
6h/ctrl 

RATIO Tn 
abun-dance 
DBF/TN0 

Swit_0028 Aquaporin Z G 6.27 2.83 1.94 2.51 2.23 2.49 2.07 
Swit_0045 Histone family protein DNA-binding protein L 4.06 4.63 0.77 0.55 0.49 0.63 3.83 
Swit_0063 Hypothetical protein S 0.52 1.10 0.43 0.31 0.29 0.23 1.38 
Swit_0072 Hypothetical protein X6 4.99 1.13 7.92 11.14 7.64 2.88 1.04 
Swit_0083 50S ribosomal protein L9 J 0.02 0.30 0.34 0.30 0.14 0.18 49.79 
Swit_0085 Pseudo 

 
0.02 0.31 0.36 0.24 0.19 0.17 

 Swit_0090 Aminodeoxychorismate lyase R 0.36 0.74 0.68 0.48 0.29 0.23 0.13 
Swit_0097 Marr family transcriptional regulator K 24.31 4.91 2.48 2.94 2.86 1.98 24.73 
Swit_0101 K+ potassium transporter P 0.21 0.44 0.66 0.59 0.47 0.39 7.77 
Swit_0114 Short-chain dehydrogenase/reductase SDR IQR 0.29 0.68 0.53 0.35 0.31 0.22 0.22 
Swit_0117 Tonb family protein M 0.14 1.16 0.60 0.38 0.24 0.28 0.00 
Swit_0118 Mota/tolq/exbb proton channel U 0.20 0.92 0.53 0.26 0.19 0.19 0.24 
Swit_0133 Queuine trna-ribosyltransferase J 0.21 0.42 0.80 0.64 0.52 0.59 0.23 
Swit_0137 Sapc family protein S 0.09 0.33 0.53 0.43 0.42 0.34 2.54 
Swit_0140 DEAD/DEAH box helicase LKJ 0.15 0.35 0.52 0.43 0.35 0.44 5.39 
Swit_0145 Glutathione S-transferase domain-containing protein O 4.27 1.62 1.51 1.17 1.79 1.63 17.49 
Swit_0230 Hypothetical protein S 4.47 1.17 1.61 1.95 1.57 1.99 2.67 
Swit_0239 Hypothetical protein X21 18.21 2.00 4.14 7.16 6.90 3.54 1.15 
Swit_0262 GTP-binding protein typa T 0.06 0.32 0.37 0.32 0.22 0.25 0.00 
Swit_0387 Hypothetical protein X28 4.01 1.79 1.01 0.91 0.96 1.10 140.63 
Swit_0389 Hypothetical protein S 0.24 0.41 0.59 0.53 0.52 0.63 0.03 
Swit_0429 Periplasmic-like protein S 0.58 0.89 0.38 0.35 0.12 0.18 1.33 
Swit_0436 Hypothetical protein X31 0.19 0.32 0.50 0.49 0.39 0.39 0.17 
Swit_0461 Elongation factor Ts J 0.19 0.68 0.59 0.45 0.33 0.26 0.00 
Swit_0490 Hypothetical protein S 16.62 1.96 1.44 1.59 1.58 1.14 1.03 
Swit_0535 Tonb-dependent receptor P 10.17 2.66 2.31 1.54 1.37 1.35 1.47 
Swit_0545 Hypothetical protein X37 10.13 2.31 3.95 8.04 6.80 3.38 3.71 
Swit_0578 Amidophosphoribosyltransferase F 0.23 0.72 0.65 0.68 0.60 0.70 1.01 
Swit_0594 Trigger factor O 0.06 0.36 0.53 0.48 0.31 0.29 0.44 
Swit_0630 Polyhydroxyalkonate synthesis repressor phar S 0.13 0.78 0.31 0.15 0.15 0.14 4.68 
Swit_0632 Acetyl-coa acetyltransferase I 0.21 0.49 0.47 0.33 0.36 0.26 3.06 
Swit_0635 Trar/dksa family transcriptional regulator T 0.22 0.68 0.58 0.57 0.41 0.34 193.95 
Swit_0642  Ribosomal protein S12 methylthiotransferase J 0.08 0.28 0.59 0.51 0.43 0.40 2.86 
Swit_0654 CRP/FNR family transcriptional regulator T 50.82 3.39 4.27 6.53 4.49 2.49 0.15 
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Swit_0655 Hypothetical protein X46 11.05 3.61 3.28 4.65 3.97 2.08 1.47 
Swit_0658 Hypothetical protein X48 0.82 1.03 1.94 1.47 1.50 4.01 0.00 
Swit_0687 Tonb-dependent receptor P 3.64 4.80 0.72 0.42 0.59 1.11 0.92 
Swit_0689 Hypothetical protein S 2.52 9.99 0.38 0.12 0.19 0.40 1.07 
Swit_0690 YVTN beta-propeller repeat-containing protein S 4.25 5.58 0.46 0.34 0.61 0.90 15.79 
Swit_0691 Hypothetical protein C 3.98 4.60 0.27 0.30 0.39 0.64 0.28 
Swit_0692 Extracellular solute-binding protein ET 5.69 6.06 0.28 0.25 0.35 0.70 0.40 
Swit_0693 Pyrrolo-quinoline quinone G 8.64 6.69 0.39 0.35 0.45 0.90 1.74 
Swit_0694 Two component luxr family transcriptional regulator TK 3.37 4.06 0.61 0.36 0.45 0.83 14.65 
Swit_0703 Aldehyde dehydrogenase C 15.85 10.28 0.36 0.30 0.42 0.89 0.47 
Swit_0714 Tonb-dependent receptor P 0.33 0.10 0.45 0.24 0.18 0.33 0.32 
Swit_0748 Bifunctional aldehyde dehydrogenase/enoyl-coa 

hydratase C 0.15 0.28 0.36 0.40 0.34 0.38 2.09 
Swit_0750 3-hydroxyacyl-coa dehydrogenase I 0.11 0.53 0.48 0.47 0.38 0.48 0.00 
Swit_0751 Phenylacetic acid degradation protein paad Q 0.15 0.37 0.27 0.43 0.27 0.13 1.94 
Swit_0753  Phenylacetate-coa oxygenase subunit paaa S 0.04 0.50 0.24 0.16 0.14 0.16 1.87 
Swit_0754  Phenylacetate-coa oxygenase subunit paab Q 0.05 0.24 0.14 0.07 0.05 0.05 0.00 
Swit_0757 Phenylacetate-coa oxygenase/reductase subunit paak C 0.08 0.09 0.34 0.34 0.39 0.37 0.57 
Swit_0758 Enoyl-coa hydratase/isomerase I 0.04 0.09 0.33 0.30 0.26 0.25 0.14 
Swit_0760 Tetr family transcriptional regulator K 0.11 0.22 0.20 0.13 0.10 0.13 0.00 
Swit_0761 Dehydrogenase catalytic domain-containing protein C 0.08 0.12 0.17 0.12 0.13 0.11 0.00 
Swit_0762 Transketolase domain-containing protein C 0.04 0.17 0.10 0.08 0.07 0.07 0.18 
Swit_0763 Aromatic amino acid aminotransferase E 0.04 0.44 0.14 0.12 0.11 0.15 0.01 
Swit_0772 Hypothetical protein X50 0.18 0.37 0.56 0.53 0.46 0.32 38.35 
Swit_0784 Hypothetical protein S 10.23 1.35 3.06 3.66 2.51 1.26 0.26 
Swit_0785 Hypothetical protein S 18.53 1.63 4.68 6.35 3.64 1.78 0.45 
Swit_0800 Hypothetical protein S 4.39 0.92 2.90 2.97 2.06 2.24 0.00 
Swit_0812 Tonb-dependent receptor P 4.15 1.09 1.47 1.91 1.88 1.86 0.15 
Swit_0858 Hemerythrin HHE cation binding domain-containing 

protein S 33.06 2.23 4.53 7.38 5.50 3.09 0.59 
Swit_0862 Phasin family protein S 0.04 0.30 0.34 0.34 0.32 0.24 1.08 
Swit_0878 Hypothetical protein S 8.41 2.85 3.62 5.46 5.55 2.62 55.40 
Swit_0879 Group 1 glycosyl transferase M 0.15 0.43 0.55 0.47 0.48 0.38 22.44 
Swit_0916 Peptidase dimerisation domain-containing protein E 0.19 0.56 0.85 0.51 0.52 0.44 0.67 
Swit_0941  Formyltetrahydrofolate deformylase F 0.17 0.43 0.54 0.59 0.53 1.23 24.36 
Swit_0958 Butyryl-coa:acetate coa transferase I 7.11 2.36 6.63 2.42 1.24 0.54 5.07 
Swit_0959 3-oxoacid coa-transferase subunit A I 6.52 2.75 3.64 1.38 0.72 0.27 9.58 
Swit_0981 Tonb-dependent receptor P 8.00 2.64 1.42 1.07 1.24 1.15 0.31 
Swit_0995 PRC-barrel domain-containing protein S 37.74 2.05 3.05 5.25 5.24 3.29 96.39 
Swit_1052 Ornithine cyclodeaminase E 1.44 1.43 1.58 1.11 1.36 6.28 0.57 
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Swit_1090 Diacylglycerol kinase catalytic subunit IR 4.93 1.72 4.05 5.26 3.59 1.69 0.65 
Swit_1116 Tonb-dependent receptor P 0.11 0.27 0.84 0.62 0.47 0.66 2.05 
Swit_1146 ATP-dependent protease La O 4.79 2.10 2.79 4.00 3.12 2.10 5.27 
Swit_1147 Molecular chaperone (small heat shock protein)-like 

protein O 7.47 2.01 4.13 6.04 5.15 3.11 0.69 
Swit_1148 Type B carboxylesterase I 2.72 1.13 1.55 2.59 2.77 6.04 1.04 
Swit_1181 NAD(P)(+) transhydrogenase C 0.13 0.89 0.36 0.33 0.24 0.30 1.56 
Swit_1182 NAD/NADP transhydrogenase subunit alpha-like protein C 0.14 0.85 0.25 0.15 0.16 0.13 75.86 
Swit_1183 NAD(P) transhydrogenase subunit alpha C 0.23 0.61 0.49 0.34 0.26 0.26 6.06 
Swit_1219 Hypothetical protein S 0.17 1.44 0.79 0.70 0.40 0.58 5.21 
Swit_1247 Hypothetical protein X87 23.26 2.60 7.83 7.75 5.76 2.45 14.24 
Swit_1268 Flagellar basal body flae domain-containing protein N 0.17 1.25 1.23 1.19 1.15 1.15 1.07 
Swit_1270 Flagellar basal-body rod protein flgc N 0.10 1.35 0.86 1.05 0.88 0.92 36.42 
Swit_1286 Flagellar hook-basal body complex subunit flie NU 0.24 2.33 1.41 1.21 1.13 0.69 37.85 
Swit_1293 Flagellar basal body-associated protein flil N 0.14 1.43 1.11 1.06 0.94 0.78 2.97 
Swit_1295 Hypothetical protein S 4.70 1.10 3.20 7.53 6.80 4.79 4.12 
Swit_1320 DGPFAETKE family protein S 2.38 1.19 4.76 9.41 7.71 4.00 0.00 
Swit_1325  50S ribosomal protein L17 J 0.09 0.53 0.35 0.25 0.19 0.13 0.06 
Swit_1361 Hypothetical protein S 14.11 2.29 4.08 8.18 7.26 4.36 30.38 
Swit_1377 50S ribosomal protein L25/general stress protein Ctc J 0.06 0.40 0.33 0.26 0.16 0.13 2.08 
Swit_1388 Hypothetical protein X99 4.21 2.67 1.04 1.22 1.07 1.31 0.21 
Swit_1389 GTP-dependent nucleic acid-binding protein engd J 0.17 0.33 0.56 0.41 0.39 0.24 0.00 
Swit_1390 Dehydratase I 0.17 0.38 0.35 0.21 0.17 0.13 2.35 
Swit_1394 Cytochrome c1 C 0.06 0.77 0.34 0.20 0.14 0.14 0.00 
Swit_1449 Phenylacetate-coa ligase H 0.11 0.38 0.65 0.67 0.73 0.81 0.38 
Swit_1457 DNA uptake lipoprotein-like protein R 0.35 0.86 0.48 0.39 0.27 0.25 0.00 
Swit_1458 Flagellar motor switch protein flim N 0.21 0.97 0.72 0.76 0.79 1.44 1.91 
Swit_1507 17 kda surface antigen X111 83.33 4.67 6.05 7.99 6.97 3.75 0.76 
Swit_1509 17 kda surface antigen M 10.17 2.43 2.45 3.11 2.71 1.99 0.37 
Swit_1547 Fumarylacetoacetate (FAA) hydrolase Q 1.15 1.33 0.85 0.95 1.15 5.58 1.79 
Swit_1827 Alpha/beta hydrolase fold protein R 4.61 1.05 1.35 1.70 1.54 1.61 1.93 
Swit_1828 Acyl-coa dehydrogenase type 2 I 14.82 1.04 4.62 4.57 2.88 1.71 0.72 
Swit_1829 Rieske (2Fe-2S) domain-containing protein PR 6.10 1.13 2.04 1.95 2.27 2.09 0.00 
Swit_1831 Enoyl-coa hydratase/isomerase I 4.67 1.10 2.51 3.55 2.31 1.91 27.81 
Swit_1832 Dehydratase I 1.43 0.85 2.45 4.42 4.09 4.21 0.00 
Swit_1836 Acyl-coa dehydrogenase domain-containing protein I 8.32 1.10 3.12 3.39 2.43 1.91 0.50 
Swit_1840 Enoyl-coa hydratase/isomerase I 5.05 0.74 2.55 2.98 2.36 3.00 1.66 
Swit_1845 Tetr family transcriptional regulator K 9.02 1.82 1.54 1.52 1.53 1.65 0.01 
Swit_1846 Enoyl-coa hydratase I 14.00 1.14 2.71 2.88 2.76 2.75 1.92 
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Swit_1847 Cytochrome P450-like protein Q 7.57 1.40 1.48 1.88 2.06 1.89 0.27 
Swit_1849 Glyoxalase/bleomycin resistance protein/dioxygenase Q 25.18 1.60 3.57 4.21 2.61 3.91 0.31 
Swit_1850 Acyl-coa dehydrogenase domain-containing protein I 11.88 1.34 2.83 2.53 1.75 1.66 1.36 
Swit_1851 Acyl-coa dehydrogenase domain-containing protein I 7.83 1.46 1.58 1.26 1.66 1.09 0.61 
Swit_1858 Sulfatase P 6.58 1.37 2.59 2.33 2.74 3.39 0.35 
Swit_1859 Tonb-dependent receptor P 8.35 1.16 2.38 2.16 1.85 1.66 0.39 
Swit_1860 Hypothetical protein C 4.89 0.91 1.25 1.40 1.10 1.00 0.18 
Swit_1926 ABC transporter-like protein V 0.25 0.65 0.46 0.34 0.28 0.23 0.02 
Swit_1945 Crp/FNR family transcriptional regulator T 1.32 4.02 1.40 1.39 1.52 3.05 0.03 
Swit_1951 RND efflux system outer membrane lipoprotein MU 6.31 0.75 0.96 1.08 1.10 0.94 0.01 
Swit_1952 Hydrophobe/amphiphile efflux-1 (HAE1) family protein V 5.21 0.62 1.15 1.32 1.22 0.93 0.19 
Swit_1955 Integral membrane sensor signal transduction histidine 

kinase T 5.62 0.76 1.17 1.48 2.33 1.72 0.26 
Swit_2047 Arac family transcriptional regulator K 1.43 4.10 0.97 1.25 1.43 2.55 0.66 
Swit_2123 Hypothetical protein S 1.99 0.92 0.93 0.65 0.56 0.23 1.77 
Swit_2142 Hypothetical protein S 0.11 0.35 0.65 0.52 0.38 0.43 0.01 
Swit_2228 Hypothetical protein R 0.66 0.48 0.24 0.52 0.17 0.13 1.35 
Swit_2278 Ompa/motb domain-containing protein M 7.79 1.32 2.50 3.02 2.37 2.08 1.48 
Swit_2322 Ompa/motb domain-containing protein M 25.01 1.91 5.18 6.10 2.98 1.75 117.41 
Swit_2324 Hypothetical protein S 16.31 2.31 5.70 13.29 8.93 4.76 0.25 
Swit_2335 Hypothetical protein S 4.15 1.50 2.58 3.16 2.47 1.74 11.03 
Swit_2339 Hypothetical protein S 4.04 2.13 1.10 1.53 1.87 2.17 12.55 
Swit_2341 Cytochrome c peroxidase-like protein P 3.03 4.50 1.84 1.92 1.85 2.68 2.02 
Swit_2383 Ribosomal-protein-alanine acetyltransferase R 0.54 1.33 0.46 0.31 0.20 0.25 0.00 
Swit_2399 Methionine synthase E 0.14 0.70 0.25 0.17 0.16 0.19 2.58 
Swit_2400 Methionine synthase E 0.03 0.67 0.19 0.10 0.10 0.11 3.78 
Swit_2401 5,10-Methylene tetrahydrofolate reductase E 0.03 0.54 0.15 0.10 0.10 0.13 0.47 
Swit_2402 Arsr family transcriptional regulator H 0.07 0.40 0.26 0.17 0.13 0.24 0.30 
Swit_2403 Vacj family lipoprotein M 0.23 1.05 0.47 0.34 0.24 0.28 3.41 
Swit_2422 Transglycosylase-associated protein S 40.28 3.70 2.94 5.68 5.18 2.81 0.19 
Swit_2431  50S ribosomal protein L20 J 0.07 0.36 0.41 0.36 0.26 0.22 8.54 
Swit_2433 Asma family protein M 4.71 1.42 2.58 3.90 3.64 1.95 1.69 
Swit_2438 Ribose-phosphate pyrophosphokinase FE 0.12 0.46 1.34 1.52 1.24 1.10 0.25 
Swit_2448 Hypothetical protein GER 0.10 0.44 0.63 0.50 0.52 0.53 1.86 
Swit_2457 Cytidylate kinase F 0.19 0.41 0.71 0.82 0.61 0.70 0.00 
Swit_2526 Signal-transduction protein T 7.05 3.22 1.41 1.35 1.95 3.05 6.56 
Swit_2532 Inorganic diphosphatase C 0.03 0.36 0.58 0.55 0.66 1.11 1.33 
Swit_2559 Hypothetical protein X205 0.04 0.22 0.43 0.38 0.30 0.15 1.02 
Swit_2634 Benzoate 1,2.dioxygenase α PR 2.36 5.06 1.42 1.87 2.07 3.05 2.30 
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Swit_2640 Sugar transferase M 0.40 0.92 0.51 0.36 0.25 0.22 56.02 
Swit_2651 Hypothetical protein HJ 1.02 1.45 0.51 0.20 0.16 0.14 6.92 
Swit_2652 Polysaccharide biosynthesis protein R 0.45 1.50 0.42 0.19 0.17 0.16 2.91 
Swit_2653 Serine acetyltransferase-like protein E 0.34 1.54 0.40 0.20 0.18 0.21 1.77 
Swit_2654 Hypothetical protein R 0.76 1.49 0.46 0.20 0.18 0.15 62.98 
Swit_2659 Hypothetical protein X218 0.16 0.30 0.48 0.58 0.64 0.55 12.03 
Swit_2664 Aspartate-semialdehyde dehydrogenase E 0.21 0.34 0.56 0.49 0.44 0.42 4.68 
Swit_2679 Hypothetical protein S 5.36 4.98 0.86 0.59 0.57 0.65 11.44 
Swit_2687  Preprotein translocase subunit seca U 0.19 0.70 0.62 0.60 0.48 0.61 34.71 
Swit_2702 Class II aldolase/adducin family protein G 0.10 0.38 0.75 0.54 0.54 0.59 1.88 
Swit_2703 Tetr family transcriptional regulator K 0.15 0.61 0.90 0.54 0.32 0.34 86.01 
Swit_2731 Aconitase C 0.22 0.81 0.56 0.39 0.27 0.22 0.01 
Swit_2732 Bifunctional aconitate hydratase 2/2-methylisocitrate 

dehydratase C 0.21 0.69 0.61 0.44 0.44 0.57 0.07 
Swit_2738 CHAP domain-containing protein R 1.08 2.21 0.36 0.21 0.23 0.23 5.56 
Swit_2779 Dps family ferritin P 5.66 2.88 2.54 3.26 2.15 1.40 0.25 
Swit_2796 Glutaminase E 0.77 1.58 0.56 0.48 0.25 0.20 82.54 
Swit_2810 Trpr binding protein wrba R 6.75 1.59 1.19 1.12 0.93 0.93 5.76 
Swit_2813 Hypothetical protein S 0.16 0.58 0.56 0.52 0.40 0.42 0.00 
Swit_2815 Hypothetical protein S 1.58 0.76 1.24 2.10 2.85 4.14 2.44 
Swit_2820 Electron transport protein SCO1/senc R 0.20 0.71 0.71 0.55 0.44 0.75 0.28 
Swit_2827 30S ribosomal protein S30P J 6.32 3.88 1.43 0.87 0.99 1.09 1.45 
Swit_2835 Transcription termination factor Rho K 0.19 0.51 0.55 0.46 0.38 0.28 0.00 
Swit_2900 Methionine-R-sulfoxide reductase O 6.96 1.30 2.07 2.33 2.06 2.11 190.08 
Swit_2926 Isocitrate lyase C 0.05 0.16 0.50 0.33 0.26 0.18 1.83 
Swit_2960 Hypothetical protein X227 0.24 0.60 0.79 0.71 0.84 0.71 8.14 
Swit_2970 Hypothetical protein S 0.06 0.33 0.44 0.34 0.31 0.21 1.10 
Swit_2980 Elongation factor P J 0.10 0.36 0.45 0.35 0.23 0.19 6.98 
Swit_2982 NADH-ubiquinone/plastoquinone oxidoreductase subunit 

3 C 0.10 0.44 0.44 0.36 0.29 0.26 0.00 
Swit_2984 NADH (or F420H2) dehydrogenase subunit C C 0.14 0.47 0.50 0.45 0.41 0.36 0.00 
Swit_2990 Hypothetical protein X232 0.13 0.88 0.52 0.32 0.19 0.16 0.00 
Swit_3008 Hypothetical protein M 0.27 1.14 0.28 0.20 0.11 0.17 2.32 
Swit_3103 Tonb-dependent receptor P 6.93 1.54 1.26 1.11 1.28 1.97 0.83 
Swit_3111 HNH endonuclease V 5.17 3.34 1.42 1.04 0.87 0.92 0.49 
Swit_3114 Hypothetical protein S 4.11 3.47 1.99 2.78 2.15 1.43 1.23 
Swit_3116 HAD family hydrolase R 0.09 0.25 0.49 0.53 0.42 0.30 7.83 
Swit_3189 Tonb-dependent receptor H 0.16 0.80 1.15 0.64 0.72 1.01 0.57 
Swit_3212 Histidine kinase T 0.16 0.87 0.51 0.32 0.25 0.24 145.34 
Swit_3236 Pyruvate flavodoxin/ferredoxin oxidoreductase domain- C 4.67 2.19 1.27 1.14 1.08 1.05 3.20 
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containing protein 
Swit_3240 Aldehyde dehydrogenase C 6.10 0.43 1.09 1.24 1.43 3.50 2.25 
Swit_3241 Tonb-dependent receptor P 17.64 0.30 1.59 1.44 1.77 5.41 0.01 
Swit_3242 Amidohydrolase 3 R 8.49 0.49 1.61 1.78 1.69 3.39 0.68 
Swit_3243 Amidohydrolase 3 R 13.10 0.60 1.15 1.39 1.43 2.32 0.61 
Swit_3244 Metal dependent phosphohydrolase R 5.07 0.60 1.09 1.02 1.41 1.58 0.05 
Swit_3246 Amidohydrolase 3 R 10.68 0.83 0.96 0.76 0.53 1.94 0.32 
Swit_3250 Hypothetical protein C 6.12 0.52 1.31 1.41 1.52 2.08 1.27 
Swit_3251 Amine dehydrogenase Q 4.41 0.92 1.12 1.28 1.41 1.49 57.75 
Swit_3252 Methylamine dehydrogenase accessory protein maud C 4.38 0.78 1.20 1.17 1.40 1.67 1.26 
Swit_3254 Amine dehydrogenase C 11.83 0.78 1.75 1.61 2.23 3.29 0.26 
Swit_3256 Tonb-dependent receptor P 16.33 0.65 1.72 1.96 2.71 4.99 7.82 
Swit_3259 Hypothetical protein S 5.13 0.75 3.41 3.37 3.92 4.94 0.14 
Swit_3342 Bifunctional sulfate adenylyltransferase subunit 

1/adenylylsulfate kinase P 4.72 0.54 0.98 1.10 1.20 0.79 0.00 
Swit_3430 Hypothetical protein S 4.76 1.16 3.62 7.70 7.51 4.73 1.41 
Swit_3448 Polyprenyl synthetase H 0.23 0.39 0.91 0.83 0.83 0.76 2.60 
Swit_3463 Cell wall hydrolase sleb M 0.19 0.27 0.24 0.20 0.22 0.15 0.17 
Swit_3467 DNA-directed RNA polymerase subunit beta' K 0.16 0.83 0.63 0.42 0.29 0.39 0.00 
Swit_3480 ABC transporter-like protein R 0.17 0.37 0.67 0.64 0.47 0.77 2.02 
Swit_3503 Parb-like partition protein K 4.82 2.24 1.24 1.30 1.47 1.52 5.40 
Swit_3504 Response regulator receiver protein T 7.23 3.23 1.01 0.95 0.83 1.08 1.04 
Swit_3531 Cyclophilin type peptidyl-prolyl cis-trans isomerase O 0.23 0.66 0.61 0.51 0.35 0.34 4.37 
Swit_3596 Hypothetical protein X279 55.46 1.54 3.89 6.49 5.67 3.42 0.52 
Swit_3601 Short-chain dehydrogenase/reductase SDR IQR 3.15 1.44 1.04 1.33 2.63 4.89 1.73 
Swit_3602 Acetyl-coa acetyltransferase I 2.17 1.30 1.22 1.64 2.81 4.32 0.88 
Swit_3603 Acyl-coa dehydrogenase domain-containing protein I 2.65 1.09 1.28 2.02 5.80 10.05 2.00 
Swit_3604 Tetr family transcriptional regulator K 1.85 1.10 1.25 1.35 3.40 4.56 2.53 
Swit_3605 Phosphate transporter P 0.16 0.70 0.54 0.58 0.41 0.28 1.47 
Swit_3609 Glycoside hydrolase 15-like protein G 5.95 1.62 3.30 5.38 3.59 1.58 1.24 
Swit_3613 Hypothetical protein X281 7.61 1.46 2.60 3.48 2.82 1.60 196.81 
Swit_3617 Putative inner membrane protein translocase component 

yidc U 0.18 0.57 0.70 0.61 0.71 0.68 0.13 
Swit_3716 Cytochrome B561 C 1.33 1.11 1.31 1.80 4.53 7.38 0.01 
Swit_3717 Hypothetical protein S 1.57 1.28 1.17 1.60 2.98 4.14 0.37 
Swit_3719  

 
22.48 0.84 1.06 1.47 7.83 3.64 

 Swit_3720 Tolc family type I secretion outer membrane protein MU 18.13 1.23 1.23 2.09 6.93 4.03 0.30 
Swit_3721 Hypothetical protein S 124.82 1.63 1.45 2.87 12.21 7.38 0.67 
Swit_3722 FAD-dependent pyridine nucleotide-disulfide 

oxidoreductase C 156.95 3.55 1.22 2.05 7.97 5.01 4.04 
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Swit_3724 RND family efflux transporter MFP subunit - 40.04 1.81 1.38 2.27 8.09 4.72 0.69 
Swit_3725 Acriflavin resistance protein V 27.32 1.25 1.60 2.49 9.00 4.94 1.54 
Swit_3726 Arsr family transcriptional regulator K 4.30 1.00 0.89 1.07 2.77 1.92 1.05 
Swit_3727 Hypothetical protein S 7.18 0.76 0.98 1.68 4.85 2.71 40.03 
Swit_3728 Hypothetical protein S 9.42 0.87 0.79 1.09 4.78 2.65 0.57 
Swit_3730 Catalase P 205.98 1.87 1.17 2.73 10.61 4.90 0.81 
Swit_3732 Dps family ferritin P 22.90 0.97 0.82 1.10 2.77 1.27 0.00 
Swit_3733 Redoxin domain-containing protein CO 6.23 0.79 0.96 1.44 3.24 1.39 0.71 
Swit_3735 Cytochrome d ubiquinol oxidase subunit II C 19.63 1.34 1.02 2.83 8.52 3.40 0.25 
Swit_3736 Cytochrome bd ubiquinol oxidase subunit I C 7.68 1.19 1.20 2.66 5.68 2.45 0.39 
Swit_3737 Cysteine ABC transporter permease/ATP-binding protein CO 7.64 1.39 0.89 1.53 3.46 0.87 28.41 
Swit_3738 ABC transporter-like protein CO 8.84 1.06 1.00 1.19 1.99 1.47 0.16 
Swit_3739 Chloride channel core protein P 14.89 0.95 1.47 3.20 3.09 1.67 1.33 
Swit_3742 Thioredoxin O 6.01 1.11 1.05 1.76 3.30 1.56 30.61 
Swit_3743 1-Cys peroxiredoxin O 102.84 1.82 1.45 2.88 12.72 3.11 0.57 
Swit_3744 Beta-lactamase domain-containing protein R 6.06 0.75 0.96 1.49 4.38 1.68 0.00 
Swit_3745 Hypothetical protein R 7.08 1.39 1.65 3.16 7.22 2.23 2.42 
Swit_3746 Type 11 methyltransferase H 10.38 1.02 1.40 1.99 4.55 1.69 0.30 
Swit_3747 Hypothetical protein X291 6.73 1.11 1.12 1.11 2.28 0.78 112.37 
Swit_3774 7-cyano-7-deazaguanine reductase R 0.25 0.43 0.61 0.53 0.46 0.53 5.18 
Swit_3778 Hypothetical protein S 0.08 0.55 0.17 0.13 0.13 0.15 13.12 
Swit_3791 Merr family transcriptional regulator K 5.53 0.88 2.11 2.72 2.51 1.88 0.80 
Swit_3792 AMP-dependent synthetase and ligase IQ 4.81 1.95 2.48 3.28 3.22 3.08 1.85 
Swit_3793 Aromatic hydrocarbon degradation membrane protein I 26.50 1.95 4.44 5.76 5.06 5.26 1.74 
Swit_3794 Hypothetical protein S 16.31 3.74 2.87 3.16 3.65 3.77 1.48 
Swit_3795 Acetyl-coa acetyltransferase I 9.06 2.43 1.85 1.64 1.67 1.95 0.61 
Swit_3796 3-hydroxyacyl-coa dehydrogenase I 7.72 1.91 2.84 2.83 2.81 3.34 0.99 
Swit_3797 Acyl-coa dehydrogenase domain-containing protein I 11.59 1.31 2.84 2.90 3.02 3.71 0.00 
Swit_3798 DEAD/DEAH box helicase KJ 0.17 0.35 0.55 0.51 0.89 0.76 1.62 
Swit_3803 Erfk/ybis/ycfs/ynhg family protein S 11.61 1.32 4.77 5.95 4.19 2.05 0.17 
Swit_3808 Trna pseudouridine synthase B J 0.23 0.27 0.68 0.88 0.78 0.94 0.21 
Swit_3810 Polynucleotide phosphorylase/polyadenylase J 0.09 0.39 0.53 0.37 0.24 0.28 45.17 
Swit_3829 Protein translocase subunit secb U 0.19 0.53 0.52 0.47 0.37 0.32 1.26 
Swit_3838 Malate synthase G C 0.58 0.15 0.67 0.41 0.26 0.30 3.25 
Swit_3867 Hypothetical protein S 4.43 1.63 1.16 1.43 1.73 2.45 1.19 
Swit_3876 Cytochrome c oxidase subunit I C 0.16 0.86 0.53 0.33 0.25 0.24 25.23 
Swit_3879 Cytochrome C oxidase assembly protein O 0.17 0.51 0.65 0.51 0.35 0.22 0.00 
Swit_3880 Cytochrome c oxidase subunit III C 0.24 0.70 0.68 0.56 0.47 0.39 0.01 
Swit_3909 Lysine exporter protein lyse/ygga E 0.17 0.57 0.57 0.23 0.37 0.27 0.65 
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Swit_3913 Peptidase M23B M 0.37 0.92 0.23 0.11 0.15 0.14 0.00 
Swit_3924 ECF subfamily RNA polymerase sigma-24 factor K 10.36 2.26 4.27 4.28 2.58 1.16 0.23 
Swit_3927 Entericidin ecnab S 52.18 6.04 2.56 3.77 2.73 1.54 1.07 
Swit_3960 Hypothetical protein S 0.24 0.62 0.40 0.31 0.25 0.18 1.15 
Swit_3961 Ybak/prolyl-trna synthetase associated domain-

containing protein S 0.24 0.57 0.56 0.86 0.79 0.21 5.53 
Swit_3981 Ku family containing protein S 10.47 2.01 5.27 7.69 6.58 3.85 0.77 
Swit_4005 Sulfotransferase R 0.17 0.63 0.38 0.39 0.26 0.38 36.11 
Swit_4006 Hlyd family type I secretion membrane fusion protein V 0.11 0.59 0.42 0.35 0.31 0.23 0.00 
Swit_4044 Hypothetical protein X310 4.52 2.14 1.03 1.18 1.75 2.19 52.48 
Swit_4060 Uroporphyrinogen-III C-methyltransferase H 0.15 0.55 0.43 0.34 0.38 0.41 0.00 
Swit_4080 Transporter DMT superfamily protein R 0.21 0.53 0.90 0.71 0.54 0.51 1.44 
Swit_4096 Hemerythrin HHE cation binding domain-containing 

protein X320 6.22 2.06 3.43 5.62 5.78 3.69 80.24 
Swit_4103 Hypothetical protein S 0.02 0.26 0.39 0.27 0.25 0.22 1.01 
Swit_4110  Translation initiation factor IF-1 J 0.11 0.45 0.58 0.52 0.35 0.34 3.25 
Swit_4111 Maf protein D 0.25 0.56 0.60 0.61 0.59 0.58 35.32 
Swit_4113 Hypothetical protein S 0.25 0.97 0.65 0.44 0.46 0.61 0.17 
Swit_4363 Methylamine dehydrogenase heavy subunit Q 7.36 2.15 1.05 1.16 1.53 1.96 0.65 
Swit_4375 Hypothetical protein S 0.25 0.75 0.53 0.57 0.58 0.65 6.31 
Swit_4381 Endoribonuclease L-PSP J 0.22 0.57 0.59 0.89 0.63 0.83 2.83 
Swit_4385 Hypothetical protein X330 8.28 1.22 2.70 3.08 2.80 2.43 0.00 
Swit_4386 Hypothetical protein S 7.88 1.12 1.84 1.75 1.71 1.35 0.26 
Swit_4402 Hypothetical protein S 0.25 0.62 0.56 0.50 0.40 0.35 5.31 
Swit_4432 PAS/PAC sensor hybrid histidine kinase T 9.22 3.09 3.15 2.96 2.14 1.13 0.29 
Swit_4475 Hypothetical protein X361 7.03 1.64 4.32 6.13 4.75 2.79 0.00 
Swit_4483 F0F1 ATP synthase subunit A C 0.02 0.22 0.26 0.21 0.14 0.11 0.17 
Swit_4504 2-nitropropane dioxygenase R 0.20 0.48 0.42 0.44 0.45 0.28 0.00 
Swit_4532 Sugar transferase M 9.90 1.27 1.15 0.95 1.08 1.16 0.02 
Swit_4564 Hypothetical protein X368 5.76 1.06 3.22 6.33 5.61 3.20 1.28 
Swit_4582 Hypothetical protein X370 21.21 2.76 1.11 1.95 1.85 2.24 1.38 
Swit_4590 Hypothetical protein X371 4.67 1.42 2.39 2.49 2.09 1.28 0.14 
Swit_4591 Hypothetical protein X372 30.71 5.65 1.96 3.23 2.79 2.30 1.08 
Swit_4594  30S ribosomal protein S9 J 0.09 0.40 0.51 0.35 0.22 0.20 0.06 
Swit_4663 Deoxyhypusine synthase-like protein O 0.14 0.48 0.61 0.49 0.41 0.43 0.11 
Swit_4685 D-3-phosphoglycerate dehydrogenase HE 0.08 0.30 0.57 0.41 0.30 0.25 0.00 
Swit_4687 Class I cytochrome c C 0.18 0.55 0.48 0.41 0.32 0.32 0.00 
Swit_4696 Tonb-dependent receptor P 0.02 0.17 0.62 0.75 0.54 0.53 2.58 
Swit_4697 Arsenate reductase P 0.22 0.56 0.63 0.46 0.48 0.40 9.97 
Swit_4704 Antibiotic biosynthesis monooxygenase S 4.90 1.76 1.39 2.05 1.98 1.94 0.00 
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Swit_4730 Alpha/beta hydrolase domain-containing protein I 0.98 0.64 1.98 6.40 7.08 5.01 0.70 
Swit_4746 Hypothetical protein S 4.12 1.43 1.55 2.04 1.67 0.99 0.19 
Swit_4749 Transglycosylase-associated protein X385 23.11 1.62 4.19 6.60 6.18 5.00 0.72 
Swit_4773 Hypothetical protein S 5.11 1.75 1.28 1.83 1.68 1.52 0.11 
Swit_4779 Hypothetical protein X391 37.72 2.92 1.29 0.99 0.94 0.98 0.29 
Swit_4780 Glyoxalase/bleomycin resistance protein/dioxygenase Q 4.24 1.15 0.98 0.96 0.82 0.81 0.85 
Swit_4781 Tonb-dependent receptor P 5.49 1.32 0.96 0.85 0.97 1.14 2.75 
Swit_4790 Methylcitrate synthase C 1.31 1.95 1.58 1.42 2.15 4.00 0.33 
Swit_4801 Type IV secretory pathway virj component-like protein U 4.28 0.85 1.64 2.09 2.70 1.98 5.11 
Swit_4812 Metallophosphoesterase G 0.20 0.50 0.42 0.44 0.17 0.15 4.10 
Swit_4830 Bcr/cfla subfamily drug resistance transporter G 0.16 0.47 0.60 0.65 0.52 0.66 2.41 
Swit_4859 Pyruvate phosphate dikinase G 0.15 0.50 0.46 0.32 0.31 0.30 0.00 
Swit_4863 Hypothetical protein S 14.77 4.06 2.07 2.28 1.98 1.13 0.15 
Swit_4877 Hypothetical protein X401 0.78 1.13 0.50 0.27 0.34 0.23 0.44 
Swit_4902 Glyoxalase/bleomycin resistance protein/dioxygenase E 2.34 4.42 0.79 0.46 0.46 0.67 0.01 
Swit_4904/ 
5096 

Hypothetical protein 
L 6.23 7.73 0.71 0.36 0.37 0.33 2.33 

Swit_4919 Hypothetical protein L 0.67 1.03 0.84 0.62 0.59 0.24 44.56 
Swit_4922 Pyruvate G 0.56 10.12 0.80 0.55 0.52 0.46 4.97 
Swit_4923 4-hydroxy-2-ketovalerate aldolase E 0.84 11.48 0.93 0.58 0.61 0.55 2.46 
Swit_4924 Acetaldehyde dehydrogenase Q 0.47 12.56 0.92 0.72 0.62 0.69 2.96 
Swit_4925 4-oxalocrotonate decarboxylase Q 0.67 13.44 0.80 0.62 0.63 0.67 3.01 
Swit_5012 Regulatory protein TK 4.01 2.04 1.05 0.98 1.22 0.81 1.27 
Swit_5030 Hypothetical protein S 0.60 1.11 0.43 0.24 0.30 0.17 1.50 
Swit_5058 Cyclase family protein R 8.32 2.97 0.88 0.82 1.06 2.05 1.33 
Swit_5085 Hypothetical protein X415 0.54 0.97 0.52 0.27 0.18 0.12 3.99 
Swit_5086 Maleylacetoacetate isomerase O 0.83 1.30 0.60 0.29 0.23 0.18 5.60 
Swit_5087 Fumarylacetoacetate (FAA) hydrolase Q 0.97 1.39 0.51 0.25 0.20 0.15 4.81 
Swit_5101 Monooxygenase HC 0.80 17.33 0.94 0.68 0.52 1.10 2.73 
Swit_5102 Gentisate 1 Q 0.82 11.30 1.19 1.15 1.19 1.16 2.08 
Swit_5134 AMP-binding protein IQ 0.88 1.17 0.40 0.23 0.28 0.24 2.12 
Swit_5163 Hypothetical protein X423 0.25 0.64 0.47 0.57 0.49 0.57 0.02 
Swit_5269 Transcriptional regulator K 0.24 0.57 0.47 0.49 0.28 0.25 20.85 
Swit_5275 Hypothetical protein X455 8.63 2.56 1.04 1.03 1.18 1.53 1.48 
Swit_5285 Putative DNA topoisomerase I L 4.49 1.77 4.21 4.49 2.23 1.11 0.00 
Swit_5287 Hypothetical protein S 4.94 1.51 4.12 5.71 4.77 2.72 0.12 
Swit_5291 Short-chain dehydrogenase/reductase SDR IQR 8.75 1.95 7.64 9.38 5.94 2.32 0.92 
Swit_5313 2Fe-2S iron-sulfur cluster binding domain-containing 

protein C 6.56 1.42 5.27 6.39 5.05 2.30 0.00 
Swit_5315 Xanthine dehydrogenase C 9.22 1.32 4.17 6.82 5.40 2.99 0.02 
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Swit_5323 Histidine kinase T 0.66 1.06 0.70 0.29 0.21 0.19 1.85 
Swit_5324 Hypothetical protein X464 0.76 1.01 0.67 0.37 0.21 0.22 0.78 
Swit_5337 Grea/greb family elongation factor K 1.03 0.62 1.11 1.48 2.22 5.12 0.08 
Swit_5344 Cyclase/dehydrase S 22.54 1.80 5.84 10.01 6.16 2.95 0.01 
Swit_5345 Alcohol dehydrogenase ER 25.06 2.12 6.84 10.63 6.71 2.26 0.93 
Swit_5348 Hypothetical protein S 26.03 3.23 2.87 3.05 2.25 1.52 0.06 
Swit_5354 Chemotaxis protein cher NT 0.21 0.96 0.42 0.29 0.28 0.42 1.21 
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CHAPTER 3 

Development of Genetic Tools for Manipulations in  
Sphingomonas wittichii RW1 

 

Abstract 

 

Sphingomonas wittichii RW1 is a bacterium isolated for its ability to degrade 

dibenzofuran and dibenzo-p-dioxin, two toxic polyaromatic compounds. In order to better 

understand and characterize the genes involved in dibenzofuran degradation and 

environmental survival of RW1, we attempted to test and develop a set of genetic tools for 

manipulation of RW1, such as transformation, mini-transposon insertion and homologous 

recombination by marker replacement. The applied methods were analogous to tools more 

commonly used for organisms such as E. coli, P. putida and other sphingomonads. 

Electrotransformation and biparental conjugation allowed us to introduce plasmids, 

transposons and linear DNA into RW1 cells. A much higher transformation efficiency was 

obtained when the plasmids were extracted from RW1 than from E. coli. Unfortunately, 

genetic rearrangements of the transposon constructs introduced in RW1 occurred frequently, 

and transformed linear DNA inserted in unknown locations rather than by homologous 

recombination. Using a suicide plasmid we attempted to obtain deletion mutants to 

characterize gene functions, but we were unable to obtain single recombinants. On the other 

hand, transposon insertion mutants were obtained with frequencies sufficiently high to allow 

genetic screenings. 

  



 94 

Introduction 

 

Sphingomonas wittichii RW1 is a gram-negative α-proteobacterium, isolated from the 

Elbe River (Hamburg) for its ability to degrade dibenzofuran (DBF), dibenzo-p-dioxin 

(DBD), substituted DBFs and DBDs, and carbazole (Wittich et al., 1992 Wilkes et al., 1996; 

Halden et al., 1999; Nam et al., 2005). The genome of RW1 has been fully sequenced (Miller 

et al., 2010) and consists of one chromosome and two megaplasmids, pSWIT01 and 

pSWIT02. The larger mega plasmid (T01) has been reported to be similar to pNL1 from 

Novosphingobium (Sphingomonas) aromaticivorans (Miller et al., 2010), whereas the smaller 

(T02) contains the genes implicated in DBF/DBD degradation (Bunz and Cook, 1993; Bunz 

et al., 1993; Armengaud and Timmis, 1998; Armengaud et al., 1998; 1999; 2000; Basta et 

al., 2004; Miller et al., 2010; Coronado et al., 2012).  

 

In contrast to pseudomonads, where catabolic genes are often clustered in large 

operons, many species in the genus Sphingomonas show a scattered gene organization for the 

degradation of aromatic compounds and in some sphingomonads catabolic genes are encoded 

on plasmids. Some examples are the degradative genes for phenoxyalkanoic acid in 

Sphingomonas herbicidovorans (Muller et al., 2004), for naphthalene/biphenyl/toluene in S. 

aromaticivorans F199 and B0695, S. stygia, Sphingomonas subterranea, Sphingomonas 

xenophaga BN6 (Basta et al., 2005), for pentachlorophenol in Sphingomonas (Sphingobium) 

chlorophenolicum (Cai and Xun, 2002) or DBF and DBD in S. wittichii RW1 (Armengaud et 

al., 1998; Basta et al., 2004). Also, in many cases insertion sequences, transposons and/or 

transposase genes are widely distributed in their genomes, in some cases close to xenobiotic 

degrading operons as for Sphingomonas yanoikuyae XLDN2-5 (Gai et al., 2010), 

Sphingomonas paucimobilis (Dogra et al., 2004), S. herbicidovorans (Muller et al., 2004) 
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Sphingomonas sp. LB126 (Wattiau et al., 2001) and S.wittichii RW1 (Armengaud et al., 

1999). The chromosome of strain RW1 codes for at least 29 different transposase genes. The 

presence of such insertion elements has been suggested to be responsible for the genetic 

‘flexibility' of this genus (Gai et al., 2010). Indeed, plasmid and genomic rearrangements 

have been observed in Sphingomonas sp. HH69, Sphingomonas sp. SS3 (Basta et al., 2004), 

S. herbicidovorans (Muller et al., 2004) and S. wittichii RW1 (Basta et al., 2004).  

 

In contrast to many other genera, genetic tools for sphingomonads are not very well 

developed. Notable exceptions include the pWB-derived suicide plasmids developed for 

Sphingomonas sp. LB126 (Wattiau et al., 2001), which were succesfully used for directed 

mutagenesis. In the case of S. wittichii RW1 very few attempts were made for genetic 

manipulations, and the genetic tools so far were only partially successful due to the very low 

transformation efficiencies (Armengaud et al., 1998), as well as to genetic rearrangements in 

the introduced plasmids (Basta et al., 2004).  

 

Much of the planned research in this thesis relied heavily on the development of 

suitable genetic systems for RW1. For example, to test in situ expression of DBF pathway 

genes it was necessary to be able to produce stable and inducible reporter gene fusions in 

RW1, and to study specific gene functions picked up by microarray analysis, it would be nice 

to be able to knock them out by homologous recombination and marker replacement. The 

main goals of this chapter were therefore to test and where possible develop suitable genetic 

systems for manipulation of strain RW1. In particular, we determined the conditions and 

efficiency for DNA delivery into RW1 (transformation and conjugation), we tested stability 

of plasmid and transposon-based constructs in RW1 and we examined the efficiencies of 

transposon mutagenesis and the possibilities for homologous recombination and gene 
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knockout via marker replacement. For some experiments, we compared the efficiency in 

RW1 with that in another Sphingomonas sp. strain LH128, a phenanthrene degrader 

(Bastiaens et al., 2000) 

 

 

Materials and methods 

 

1. Bacteria cultivation 

A stock of S. wittichii RW1 (Wittich et al., 1992) was kept at -80°C and a small 

aliquot was plated on agar with 5 mM salicylate (SAL) and incubated at 30°C. Liquid 

cultures were always prepared from an isolated colony of RW1 from a plate that was not 

stored longer than 7 days at room temperature. If necessary, colonies were tested by PCR for 

the presence of the dxnA1 gene (4,4a-Dibenzofuran dioxygenase, Swit_4897), using primers 

PdxnA1-fw and PdxnA1-rev (Table 1). Minimal media (MM) were based on DSM457 

amended with 5 mM salicylate (MM+SAL), 5 mM phenylalanine (PHE) or DBF (dosage of 5 

µmol per ml). Agar plates were prepared with MM+SAL supplemented with 1.5% 

bacteriological agar No.1 (Oxoid). Antibiotic usage for RW1 included kanamycin (Km, at 50 

µg per ml), tetracycline (Tc, at 20 µg per ml) or gentamicin (Gm, at 8 µg per ml) to select for 

the presence of plasmids or transposon insertions. RW1 was grown in 50 ml Erlenmeyer 

flasks containing 15 ml of MM+SAL and incubated at 30°C in a rotary shaker (180 rpm). 

Sphingomonas sp. LH128 (Bastiaens et al., 2000) was grown on R2A media (Reasoner and 

Geldreich, 1985), and incubated at 30°C. Escherichia coli strains were grown at 37°C in 

Lysogeny Broth (LB) with antibiotics as appropriate. The strains used are listed in Table 1. 

 



 97 

Table 1. Strains, plasmids and primers used. 

c Description Reference 
Strains   
Sphingomonas 
wittichii RW1 

Dibenzofuran degrader Wittich et al., 1992 

Sphingomonas sp. 
LH128 

Phenanthrene degrader Bastiaens et al., 2000 

Escherichia coli 
DH5α 

Host for propagation of plasmids Hanahan et al., 1985 

E. coli DH5αλpir Host for propagation of plasmids with R6K origin of replication de Lorenzo and 
Timmis, 1994 

E.coli  S17-1 λpir For replication and mobilization of plasmids with oriR6K. de Lorenzo and 
Timmis, 1994 

E. coli CC118 λpir For replication of pir-dependent plasmids Herrero et al., 1990 
Plasmids   
pPROBE'-egfp Broad-host range coding for a egfp gene  Miller et al., 2000 
pPROBE'-PTac-egfp Constitutive egfp expression This study 
pPROBE-PdxnA1-
egfp 

Contains a egfp fused to the upstream region of Swit_4897 
(dxnA1-promoter) 

This study 

pME6012 Shuttle vector Heeb et al., 2000 
pME6012-PTac-egfp pME6012 with a constitutively expressed egfp gene  This study 
pUC18-miniTn7-
Gm 

Template for amplification of gentamicin resistance gene Choi et al., 2005 

pJP5603-ISceIv2 Suicide plasmid containing I-SceI sites, R6Kori Wong and Mekalanos, 
2000 

pJAMA23 Vector coding for a promoterless egfp gene Jaspers et al., 2001 
pBAM1 All synthetic plasmid bearing R6k oriV, oriT sequence, with a 

hyperactive transposase and a miniTn5 
Martinez-García et al., 
2011 

Primers  Sequence 
PdxnA1-rev Amplificaton of upstream region of gene dxnA1 (SmaI) gccttcagcacacccgggtcg

cgatca 
PdxnA1-fw Amplificaton of upstream region of gene dxnA1 (SalI) ggggtcgacatgcctgtctcc 
egfp-out Annealing in egfp 70 nucleotides towards its start tcaacaagaattgggacaactc

cag  
npt-fw Forward primer for the amplification of the Km resistance gene  atcgtggctggccacgacggg 
npt-rev Reverse primer for the amplification of the Km resistance gene  ctgatagcggtccgccacacc 
Gfp-fw Amplification of internal fragment of egfp, forward  ggtctgaagtcaagtttgaag 
Gfp-rev Amplification of internal fragment of egfp, reverse caagaaggaccatgtggt 
Ter Anneals to terminator sequence in pJAMA23 caggaatttcgaggcatgc 
4898-rev Anneals to Swit_4898  aaatccgtctggtatcgcttcg 
up-Swit_3836 fw Fw primer of the upstream region of Swit_3836 (SmaI) tgatagcccgggttggactggac 
up-Swit_3836 rev Rev primer of the upstream region of Swit_3836 (SpeI) gcacgttcgaactagttcacatc 
gm-fw Forward primer for amplification of Gm resistance gene  gcagtcgccctaaaacaaa 
gm-rev Reverse primer for amplification of Gm resistance gene  cacttcttcccgtatgcccaactt 
Gm-down For amplification of downstream of Gm resistance gene tcgacccaagtaccgccac 
RW4210751 Anneals to Swit_3835 towards Swit_3836 gacgaggatcgaggcgat 
RW4212785 Anneals to Swit_3837 towards Swit_3836 ccatatttcagcattgcaac 
PSwit4925-rev Amplification of the upstream region of gene Swit_4925 

(BamHI) 
caattgtggatccatggcgc 

Swit_3836 fw Anneals to the start of gene Swit_3836 gatctgctgccgcgattgcgac 
Swit_3836 rev Anneals to the end of gene Swit_3836 ccagccgcgaggtgatcg 
PSwit4925-fw Amplification of the upstream region of gene Swit_4925 (PstI) cggtgtgctgcagcaagcgg 
PSwit5102-rev Amplification of the upstream region of gene Swit_5102 

(BamHI) 
tacgcgcggatccgcctttt 

PSwit5102-fw Amplification of the upstream region of gene Swit_5102 (PstI) gagtgatctgcagagccggg 
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2. Plasmid and transposon construction 

Plasmid pPROBE’-PTac-egfp was constructed with the broad host plasmid pPROBE’-

tagless (Miller et al., 2000), and has the egfp gene under control of the hybrid Tac promoter 

(de Boer et al., 1983). The plasmid was produced by ligating the SmaI-EcoRI fragment of 

pPROBE’-tagless with the PTac (SmaI/EcoRI) fragment coming from the plasmid 

pME3280::miniTn7-PTac-mche (Rochat et al., 2010). A highly concentrated preparation of the 

plasmid (around 1 µg/µl) coming from E. coli DH5a was used to electrotransform S. wittichii 

RW1.  

 

To obtain the plasmid pME6012-PTac-egfp, the PTac-egfp fragment from pPROBE’-

PTac-egfp was ligated to the vector pME6012 (Heeb et al., 2000) by XhoI/HindIII digestion 

and ligation. E. coli DH5α was transformed with the ligation mixture and colonies carrying 

the correct plasmid were selected to prepare a highly pure and concentrated plasmid 

preparation (around 1 µg/µl). The plasmid was introduced into strain RW1 by 

electroporation. 

 

In order to potentially improve genetic stability in RW1, a ‘synthetic’ egfp gene was 

designed using optimal codon usage for RW1 (named egfpRW1). The egfp sequence from 

pPROBE’ and the modified egfpRW1 sequence are shown in Figure S1. The fragment PTac-

egfpRW1 was produced by the company DNA 2.0 and delivered in the plasmid pJ281. A mini-

transposon delivery plasmid was produced with egfpRW1 under control of PTac 

(pCK218::miniTn5-PTac-egfpRW1) by ligating a NotI-digested pCK218 (Kristensen et al., 

1995) with the NotI-digested PTac-egfpRW1 fragment from plasmid pJ281. Both conjugation 

and electrotransformation were attempted to introduce the miniTn5 into RW1. 
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The possibility of obtaining transconjugants of RW1 using the miniTn7 delivery 

system was tested as well. Conjugations involved E. coli DH5α (pME3280::miniTn7-PTac-

egfp) or (pME3280::miniTn7-PTac-mche) as donor, E. coli SM1 (pUX-BF13) as transposase 

donor, E. coli HB101 (pRK2013) as helper for transfer and RW1 as recipient. Conjugations 

were performed by mixing stationary phase cultures of the strains in round bottom centrifuge 

tubes, centrifuging the cell suspension at 8,000 rpm during 2 minutes, discarding the 

supernatant and resuspending the cell pellet in 50 µl of saline solution (NaCl 0.9%). The cell 

suspension droplet was placed on the surface of an LB agar plate and incubated at 30°C for 

16 h. The cell layer was then taken with a loop from the agar plate, resuspended in 1 ml of 

saline solution and 150 µl aliquots or dilutions thereof were spread on MM+SAL agar plates 

with the corresponding antibiotic. Petri dishes were incubated at 30°C until colonies were 

visible. 

 

3. Electrotransformation of S. wittichii RW1 and Sphingomonas sp. LH128 

E. coli strains were used to prepare a highly concentrated plasmid fraction (Jetstar 2.0, 

Genomed). Plasmids were introduced into strains RW1 or LH128 by electroporation using a 

slightly modified protocol from Masai et al. (1999). Briefly, a 20 ml exponential culture 

(OD600 0.4) of RW1 cells growing on MM+SAL was centrifuged at 8,000 rpm during 5 min 

at 4°C, after which the supernatant was discarded and the cell pellet washed with 5 ml of ice-

cold sucrose solution (300 mM). This procedure was repeated three times, after which the 

cell pellet was again resuspended in 1 ml sucrose solution, and 100 µl aliquots were 

transferred to ice-cold electroporation cuvettes and used immediately. Two to 5 µg of 

purified plasmid DNA (from E. coli) were added to 100 µl of competent cell suspension. The 

settings for electroporation were 25 µF, 800 Ω, and 2.5 kV (GenePulser, Biorad). 1 ml liquid 
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LB medium was added directly after electroporation to resuspend the cells. This cell 

suspension was incubated for 16 h at 30°C in the absence of any antibiotics, after which 150 

µl aliquots were plated on selective plates (MM+SAL plus Km or Tc). Transformants were 

allowed to form colonies for up to 4 days at 30°C, after which they were screened for the 

presence of the appropriate genetic construct by PCR. Colonies were purified, rescreened by 

PCR, and if positive, regrown in liquid culture to purify plasmid (from RW1 or LH128) using 

a Qiaprep kit (Qiagen). Purified plasmids from transformants were digested and verified for 

proper fragment patterns using agarose gel electrophoresis, and promoter inserts were 

sequenced to ensure that no modifications had taken place. 

 

4. Transformation of S. wittichii RW1 with plasmids purified from different hosts 

The transformation efficiency of S. wittichii RW1 or Sphingomonas sp. LH128 was 

tested with pME6012-PTac-egfp purified from either E. coli DH5α, RW1 or Sphingomonas sp. 

LH128. 100 ng of plasmid DNA were added to the RW1 or LH128 electrocompetent cell 

suspension, cells were electrotransformed and plated on selective agar media (MM+SAL+Tc 

or R2A+Tc, respectively). The total number of transformants was calculated per µg of 

plasmid DNA. 

 

5. MiniTn5-based bioreporter construction  

Based on the transcriptome data (chapter 2), two genes were targeted for the 

construction of bioreporters responding to DBF, Swit_4925 and Swit_5102. The upstream 

region Swit_4925 was amplified using the primers PSwit4925-fw and PSwit4925-rev, 

containing PstI and BamHI restriction sequences. The 249 bp product was digested and 

ligated to PstI/BamHI-digested pJAMA23 (Jaspers et al., 2001). E. coli DH5α was 
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transformed with the ligation mixture and one colony carrying pJAMA23-P4925-egfp was 

selected. The upstream region of gene Swit_5102 was amplified using the primers 

PSwit5102-fw and PSwit5102-rev. The 256 bp fragment was PstI/BamHI digested and 

inserted into pJAMA23 as for the Swit_4925 promoter (producing pJAMA23-P5102-egfp). 

The NotI fragments of pJAMA23-P4925-egfp and pJAMA23-P5102-egfp were recovered and 

ligated to NotI-digested pBAM1 (Martínez-García et al., 2011). Ligation mixtures were used 

to transform E. coli CC118 λpir. Concentrated plasmid preparation was purified from E.coli 

CC118λpir (pBAM-P4925-egfp) and (pBAM-P5102-egfp) and 2 µg of plasmid DNA was used 

to electrotransform RW1 cells. The optical density (O.D.) and the eGFP fluorescence 

intensity of cultures of RW1 (Tn5-P4925-egfp) and RW1 (Tn5-P5102-egfp) were measured with 

an Ultrospec spectrometer (GE) and a FLUOstar Omega fluorimeter (BMG Labtech). 

 

6. Transformation of S. wittichii RW1 with linear DNA fragments 

Linear DNA fragments comprising the upstream region of gene Swit_4897 (initial 

DBF dioxygenase, dxnA1) fused to an egfp gene plus a Km resistance gene, were obtained by 

digesting the plasmid pPROBE-PdxnA1-egfp with BglII and SalI, and purifying the resulting 

3.1 kb fragment from gel using a Qiaquick gel extraction kit (Qiagen). S. wittichii RW1 was 

electrotransformed with 500 ng of purified DNA fragment and 150 µl aliquots of the 

transformed cell mix were plated on selective plates (MM+SAL+Km). Some 170 

transformants/µg DNA were obtained with this procedure. 96 colonies were picked and 

resuspended in 20 µl of H2O in a microtiter plate. DNA was liberated by heating to 96°C, 

after which the clones were screened by PCR for the presence of the expected recombination 

event. PCR amplifications were carried out using the primers PdxnA1-fw and egfp-out (386 

bp amplicon), and npt-fw and npt-rev (457 bp amplicon).  
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To test the recombination of a double-homologous DNA fragment in RW1, linear 

DNA containing a Gm resistance gene flanked by two sequences of RW1 was prepared. 

Fragments of 531 and 541 bp, respectively, corresponding to the upstream and downstream 

regions of Swit_3836 linked to a GmR gene was obtained by SmaI/KpnI digestion of the 

plasmid pJP5603ISceIv2-up-Gm-down. The resulting fragment of 1.9 kb was purified from 

gel and an aliquot of 1.7 µg of DNA was used to electrotransform RW1 cells. Some 140 

GmR-resistant cells/µg DNA were obtained and 19 colonies were picked for PCR screening 

for the presence of the linear DNA fragment. To amplify the recombined introduced DNA, 

primers RW4210751 and RW4212785 were used, giving a product of 2 kb in case no 

integration occurred and of 2.4 kb if the DNA fragment recombined into the expected 

chromosome target. The absence of gene Swit_3836 was further verified by PCR 

amplification of gene Swit_3836 using the primers Swit_3836 fw and Swit_3836 rev, 

obtaining a product of 420 bp in case the gene is present, and no amplification if the gene was 

successfully replaced by the GmR gene.  

 

7. Gene deletion in S. wittichii RW1 using the I-SceI recombination system 

The genes Swit_3836 and Swit_3924, coding for a putative alternative ECF sigma24-

factor in RW1, were 2.6 and 7-fold, respectively, higher expressed in response to salt stress 

as compared to regular medium (Johnson et al., 2011). To evaluate their role in low water 

potential conditions, a strategy was designed to delete these genes via homologous 

recombination. Hereto, we followed a protocol developed by Pósfai et al. (1999) and adapted 

by Martínez-García and de Lorenzo (2011). The upstream region of gene Swit_3836 was 

amplified with primers up-Swit_3836fw and up-Swit_3836rev, using RW1 as template and 

obtaining a 640 bp fragment. The PCR product was ligated to pGEM-T-easy (Promega) to 

obtain pGEM-upSwit_3836. Due to numerous difficulties in amplifying the downstream 
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region of Swit_3836 (such as unspecific amplifications), the fragment was synthesized by the 

company Mr. Gene (Regensburg, Germany) and delivered in the plasmid pMK-RQ-

Swit_3837. The gene for resistance to gentamicin was amplified with primers gm-fw and gm-

rev, using as template pUC18-miniTn7-Gm (Choi et al., 2005), and the 822 bp product was 

ligated to pGEM-T-easy to obtain pGEM-gm. The SmaI/SpeI fragment of pGEM-

upSwit_3836 (upstream), the SpeI/KpnI fragment of pMK-RQ-Swit_3837 (downstream), the 

SpeI fragment of pGEM-gm (Gm resistance) and the SmaI/KpnI digested pJP5603ISceIv2 

(Wong and Mekalanos, 2000) were ligated and the ligation mixed was used to transform E. 

coli DH5α λpir. Gm resistant colonies were picked and grown on LB+Gm to extract the 

plasmid. After a restriction pattern screening, one colony carrying the correct plasmid 

pJP5603ISceIv2-up-Gm-down was selected. Once the construct was verified by sequencing, 

the plasmid was introduced in E. coli S17-1 λpir (de Lorenzo and Timmis, 1994), and one 

colony carrying the plasmid pJP5603ISceIv2-up-Gm-down was selected to perform a 

conjugation procedure with S. wittichii RW1 as recipient. Stationary phase cultures of the 

RW1 (recipient) and E. coli S17-1λpir (pJP5603ISceIv2-up-Gm-down) were mixed in a 2/1 

ratio (v/v). Strain S17-1 λpir has chromosomally integrated conjugal transfer functions (RP4 

transfer functions), and carries the pir gene for replication of R6K origin vectors. The 

mixture was centrifuged at 8,000 rpm during 2 minutes, the supernatant discarded and the 

cell pellet resuspended in 50 µl of saline solution (NaCl 0.9%). The droplet was placed on the 

surface of an LB agar plate and incubated at 30°C overnight. The cell layer was then taken 

with a loop from the agar plate, resuspended in 1 ml of saline solution and 150 µl aliquots 

were spread on MM+SAL+Km+Gm agar plates. Petri dishes were incubated at 30°C until 

colonies were visible, which took around 8 days. 
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8. Transposon mutagenesis 

Transposon mutagenesis in strain RW1 was performed using two plasmid systems 

containing miniTn5-derived transposable elements. The first one involved the plasmid pRL27 

(Larsen et al., 2002) and the second the plasmid pBAM. Both plasmids code for hyperactive 

transposases that increase the transposition efficiency.  

 

In the first case S. wittichii RW1 and E. coli BW20767 (pRL27) overnight cultures 

were mixed in different proportions and centrifuged for 2 min at 8,000 rpm. The supernatant 

was discarded and the cell pellet resuspended in 50 µl of saline solution (NaCl 0.9%). The 50 

µl droplet was placed on an LB plate and incubated at 30°C overnight. After incubation, the 

cell layer was taken with a sterile loop, resuspended in 1 ml saline solution and 150 µl 

aliquots were plated on selective media (MM+SAL+Km). The plates were incubated at 30°C 

during several days until colonies were visible. For the second system, strain RW1 and E.coli 

S17-1 λpir (pBAM) overnight cultures were mixed following an identical procedure as for 

pRL27.  
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Results 

 

Transformation and conjugation efficiencies of S. wittichii RW1 

Existing electrotransformation protocols developed for E. coli, sphingomonads or P. 

putida were slightly modified to improve the transformation efficiencies in RW1. The SOC 

medium was substituted for LB medium, since RW1 failed to grow when resuspended in 

SOC. The incubation period after electroporation of RW1 was extended from 1 h (for E. coli) 

to overnight, to increase the transformation efficiency. The amount of DNA used to 

electrotransform RW1 cells was at least 1 µg per reaction. Even with the adaptations made to 

the protocol, the number of electrotransformants obtained was very low. The efficiency of 

transformation with pPROBE-based constructs was around 60 CFU/µg DNA and around 30 

CFU/µg DNA in the case of the pME6012-based constructs (Table 2). In the case of the 

miniTn5-based constructs, the efficiency of electrotransformation was higher, resulting in 

more than 100 transformants/µg DNA (Table 2). MiniTn5-constructs carrying egfpRW1, 

which has a codon optimized egfp gene for RW1, showed a similar fluorescence intensity as 

RW1 carrying pME6012-PTac-egfp (non optimized).  

 

No KmR-RW1 transconjugants were obtained in triparental conjugation with RW1 as 

recipient, E. coli CC118 λpir (pCK218::miniTn5-PTac-egfpRW1) as donor and E. coli HB101 

(pRK2013) as helper strain. Similarly, no GmR-RW1 colonies were obtained by fourparental 

conjugation involving RW1 and E. coli DH5α (pME3280::miniTn7-PTac-egfp) or 

(pME3280::miniTn7-PTac-mche). Only with biparental conjugation using e.g., E. coli S17-1 

λpir, we were able to obtain RW1 transconjugants. In the general transposon mutagenesis 

procedure using RW1 as recipient and E. coli BW20767 (pRL27) as donor around 2×104 
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independent RW1 transconjugants were obtained, which was the highest number observed 

for any of the systems evaluated (Table 2). In contrast, in transposon mutagenesis with 

pBAM we did not obtain more than 1000 independent transconjugants following the same 

procedure. 

 

Table 2. Transformation and conjugation efficiencies of S. wittichii RW1 

 

 

Effect of host for plasmid extraction on transformation efficiency of S. wittichii RW1  

In order to better understand why such low transformation efficiencies occurred for 

RW1, the influence of the host employed to replicate the plasmids for transformation was 

evaluated. Hereto we used plasmid pME6012-PTac-egfp, which constitutively expresses eGFP 

fluorescence. RW1 and a second strain, Sphingomonas sp. LH128 were electrotransformed 

using identical protocols with the same amount of pME6012-PTac-egfp, extracted and purified 

either from E. coli DH5α, from LH128 or from RW1. The transformation efficiency as well 

as the percentage of colonies showing green fluorescence was measured. Interestingly, both 

RW1 and LH128 showed a much higher transformation efficiency when the plasmid was 

extracted from the same strain, than in the case of an E. coli DH5α-extracted plasmid (Table 

3). For RW1, 45 times more transformants were obtained with RW1-extracted plasmid than 

Construct    
Transformation Host  Avg No. transformants per µg DNA 
pPROBE-based E. coli DH5α  60 
pME6012-based E. coli DH5α  30 
pBAM1 E. coli S17-1 λpir  200 
pCK218::Tn5-gfpRW1 E. coli CC118 λpir  100 
Conjugation Donor Ratio 

Recipient/Donor 
Avg No. transconjugants per CFU 

recipient 
pRL27 E. coli BW20767 1/1 1×10-5 
  2/1 4×10-5 
  3/1 2×10-6 
pBAM1 E. coli S17-1 λpir 1/1 3×10-7 
  2/1 2×10-7 
  3/1 2×10-7 
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with DH5α-extracted. For LH128, this difference was around 12 fold higher for LH128- than 

for DH5α-extracted plasmid. Moreover, the percentage of fluorescent colonies obtained in 

each case was surprisingly different, with more than 80% green fluorescent colonies when 

the plasmid was extracted from the same strain, compared to only 2-10% green fluorescent 

colonies for transformants with DH5α-extracted plasmid. Electrotransformation in 

Sphingomonas sp. LH128 produced a much higher number of transformants than in RW1, 

and also the proportion of fluorescent colonies among transformants was higher. 

Interestingly, plasmid isolated from LH128 and transformed into RW1 resulted in better 

efficiencies than with E. coli-plasmid, but not as high as with host-homologous plasmid DNA 

(Table 3). Plasmid isolated from RW1 and delivered into LH128 was less efficient in 

producing transformants than E. coli-DNA, but showed a higher proportion of fluorescent 

colonies (Table 3). Collectively, these data suggest that both LH128 and RW1 have strong 

and strain-specific restriction-modification systems, and that both strains in addition 

frequently rearrange incoming DNA (concluded from the high proportion of non-fluorescent 

colonies). 

 

Table 3. Transformation efficiency of S. wittichii RW1 and Sphingomonas sp. LH128 with pME6012-PTac-egfp 

extracted from different hosts. 

Host for 
plasmid extract 

RW1 
Transf/µg DNA 

Fluorescent 
colonies (%) 

LH128 
Transf/µg DNA 

Fluorescent 
colonies (%) 

E. coli DH5α 120 1 2.9×104 11 
LH128 850 2 3.5×105 81 
RW1 5.5×103 100 9×103 98 
 

 

MiniTn5-based bioreporter construction  

S. wittichii RW1 electrotransformed with pBAM::Tn5-P4925-egfp or pBAM::Tn5-

P5102-egfp produced 60 and 80 KmR-resistant colonies/µg plasmid DNA, respectively. A total 
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of 46 colonies for Tn5-P4925-egfp and 20 colonies for Tn5-P5102-egfp were picked from 

MM+SAL+Km agar plates and screened by PCR amplification for the presence of egfp using 

primers gfp-fw and gfp-rev, producing a 400 bp amplicon. Only one colony gave a positive 

PCR amplification for miniTn5-P4925-egfp (Figure 1A), while 10 colonies for miniTn5-P5102-

egfp amplified the correctly sized product (not shown).  

 

 

Figure 1. Genetic rearrangements in RW1 KmR-transconjugants carrying miniTn5-derivatives. (A) PCR 

amplification of the egfp gene in DNA from RW1 KmR-colonies transformed with the miniTn5-P4925-egfp. + 

represents the positive control with plasmid pBAM::minTn5-P4925-egfp. (B) PCR amplification of the egfp gene 

in DNA from RW1 KmR-colonies transformed with miniTn5-P4925-egfp (P4925) and miniTn5-P5102-egfp 

(P5102). +4925 and +5102 represent the positive controls. 

 

 

RW1 KmR-colonies that amplified correctly the egfp gene, one for miniTn5-P4925-egfp 

(P4925-7) and four for miniTn5-P5102-egfp (P5102-1 to P5102-4) were selected to 

characterize the egfp induction in response to carbon source. RW1 (P4925-7) and (P5102-1 to 

P5102-4) were hereto grown on MM+PHE, MM+SAL or MM+DBF, and the optical density 

and fluorescence were determined during growth. RW1 (P4925-7) and (P5102-2, 3 and 4) 
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showed no egfp induction, with fluorescence values being very similar to the RW1-WT 

without miniTn5 (Figure 2). Only strain RW1 (P5102-1) had a higher eGFP fluorescence 

when it was growing on SAL compared to PHE, but this strain had unfortunately lost the 

ability to grow on DBF. All five clones, plus RW1 (pME6012-PdxnA1-egfp) and WT were 

analyzed by PCR for a 350 bp fragment of the dxnA1 gene, and for each of the promoter-egfp 

construct (around 400 bp). Strains RW1 (P5102-4) and RW1 (pME6012-PdxnA1-egfp) did not 

amplify the dxnA1 gene, and P5102-1 showed a dxnA1-PCR product pattern very different 

from the WT (Figure 3). None of the strains correctly amplified the promoter-egfp fragment, 

indicating that the construct was either modified or deleted (Figure 3). 

 

 

 

Figure 2. eGFP induction of RW1 strains in response to the carbon source. Relative fluorescence units 

normalized by optical density of S. wittichii RW1 strains carrying miniTn5-based insertions containing the 

promoter region of Swit_4925 or Swit_5102 plus egfp. WT is the RW1 strain with no transposon insertion. The 

carbon sources used were phenylalanine (Phe), Salicylate (Sal) and Dibenzofuran (DBF). 
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Figure 3. PCR verifications of miniTn5-carrying RW1 strains. The primers used amplified the dxnA1 gene, and 

a fragment containing the promoter region P4925 or P5102 and a fraction of the egfp gene. Lanes: 7, RW1 

miniTn5-P4925-egfp (7); 1-4, RW1 miniTn5-P5102-egfp (clones 1,2,3,and 4); D , RW1 pME6012-PdxnA1-egfp and 

W, RW1 with no transposon insertion (wild type). Positive controls: plasmids purified from E. coli. 

 

 

Homologous recombination in S.wittichii RW1  

As an alternative to the introduction of gene constructs in RW1 using plasmids or 

miniTn5-based systems, attempts were made to use homologous recombination as a mean to 

deliver gene fragments on the chromosome. We noticed that RW1 can take up linear DNA 

during transformation. A DNA fragment with a single-ended homology and antibiotic 

resistance marker, namely, PdxnA1-egfp-KmR (Figure 4) was prepared and introduced in RW1 

cells by electroporation. Interestingly, 170 KmR-resistant cells/µg DNA were obtained, 

whereas none were obtained in a mock control. 96 Colonies were picked for screening by 

PCR for the presence of the introduced DNA (relevant results in Figure 5). Whereas in 18 out 

of 22 colonies a correctly-sized fragment was amplified with primers for the Km-resistance 

gene (Figure 5A), in none of them an amplification of the dxnA1-egfp fragment of the correct 

size occurred. Promoter+egfp amplifications produced either a larger or a smaller band than 

expected (Figure 5B) which was 386 bp. Clones 4, 5 and 18 (Figure 5B) showed 
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amplification of a band with a similar size of the expected product, however, a second 

amplification trial showed that the band was in fact bigger in the positive control (not 

shown). A second PCR screening was performed using specific primers to check whether the 

dxnA1-fragment had inserted next to the gene Swit_4898. However, in this case no PCR 

amplification products at all were detected for any of the 22 clones evaluated, indicating that 

the DNA fragment had not inserted in this area.  

 

 

Figure 4. Linear fragment used to electrotransform S. wittichii RW1 cells. The primers used for PCR screening 

of clones are shown.  

 

 

Figure 5. PCR verification of 22 transformants of RW1 with linear DNA of Figure 4. (A) Amplifications of the 

kanamycin resistance gene. (B) Amplifications for the fragment including PdxnA plus a fraction of egfp. Lanes 1 

to 22 represent PCR results from different KmR-resistant colonies picked from agar plates. Lane: W, wild type 

RW1; +, pure plasmid pPROBE-PdxnA1-egfp used to retrieve the linear DNA fragment (positive control). 
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Introduction of a double-homologous fragment in RW1 was also attempted. Linear 

DNA containing a Gm resistance gene flanked by two sequences of RW1, corresponding to 

the up- and downstream regions of Swit_3836 (Figure 6A) was prepared. Some 140 GmR-

resistant cells/µg DNA were obtained by electrotransformation with the linear DNA. 

Nineteen colonies were picked for PCR screening for the cointegration of the insert using the 

primers RW4210751 and RW4212785. If the linear DNA recombined with the region in the 

vicinity of gene Swit_3836 (Figure 6B), an amplification product of 2.4 kb was expected, 

while it would be of 2 kb in the absence of cointegration (relevant results in Figure 7A). The 

19 clones screened produced the same PCR fragment of around 2.2 kb, but the same as in the 

WT. Next, the clones were screened for the presence/absence of gene Swit_3836. In case a 

true recombination had taken place, the gene would be absent. PCR with primers Swit_3836 

fw and Swit_3836 rev produced a fragment of 420 bp for all clones, similar as for the WT 

(Figure 7B). This indicated that the gene Swit_3836 is still present. Surprisingly, a second 

band, of around 1.2 kb was amplified in the transformants, which was absent in the WT 

strain. This suggested that the linear GmR-containing fragment was indeed inserted and 

perhaps within Swit_3836, but that somehow during recombination a duplication occurred 

preventing proper deletion of the gene Swit_3836.  

 

Therefore, despite the (fascinating) finding that RW1 is able to take up and integrate 

linear DNA fragments containing single or double homologous sequences via 

electroporation, it is not clear where in the chromosome the insertion will take place. PCR 

results also indicate that rearrangements in the integrated DNA fragment occur. Better 

interpretation of these results may only be possible by resequencing the genomes in the 

transformants. 
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Figure 6. Strategy for deletion of Swit_3836 by double-homologous recombination and marker exchange with a 

linear fragment transformed into RW1. The linear fragment prepared by SmaI/KpnI digestion of 

pJP5603ISceIv2-up-Gm-down, had a size of 1.9 kb and consisted of the upstream and downstream region of 

gene Swit_3836, both linked to a Gm resistance gene (A). Scheme of the expected site of integration of the 

linear DNA fragment, in the chromosome of RW1 (B). 

 

 

 

Figure 7. PCR verification of 10 mutants obtained by insertion of a double-flanked homologous fragment in 

RW1 cells. The primers RW4210751 and RW4212785 to detect the cointegration of the linear fragment (A) and 

primers Swit_3836 fw and Swit_3836 rev for the amplification of gene Swit_3836 (B), were used. W, wild type 

RW1; Lanes 1 to 10, different GmR mutants evaluated.  
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Gene replacement in S. wittichii RW1 

Finally, we tried to use the technique of gene replacement by homologous 

recombination and marker insertion introduced on a circular plasmid to inactivate two genes 

on the RW1 chromosome that were reported to be induced when cells are exposed to solute 

stress: Swit_3836 and Swit_3924, (Johnson et al., 2011). Both genes putatively code for ECF 

sigma24 factors (Johnson et al., 2011). The strategy was to recombine a homologous DNA 

with an antibiotic resistance marker gene, which could then be removed in a second step of 

recombination. The plasmid pJP5603ISceIv2-up-Gm-down, carrying the flanking regions of 

Swit_3836, was introduced in RW1 cells by conjugation. A total of 36 colonies were 

obtained on MM+SAL+Km+Gm agar plates, which might have inserted the plasmid via 

recombination. All of the clones were screened by PCR for the cointegration of the up-Gm-

down fragment within the gene Swit_3836. We first used primers annealing within the Gm-

resistance gene and within the gene Swit_3837, downstream of Swit_3836. Unfortunately, no 

amplification was obtained in any of the KmR-GmR-resistant colonies. This again indicated 

that an insertion seemed to have taken place, but at an improper location. Several more 

attempts were launched to recover clones that carried the up-Gm-down insertion, but no 

single recombinants could ever be detected by PCR.  
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Discussion 

 

Various genetic tools were tried here for introducing DNA in RW1 cells, including 

regularly used techniques such as plasmid delivery, mini-transposon delivery, homologous 

recombination and transposon mutagenesis. Of the techniques that resulted in stable 

maintenance of genetic constructs in RW1, only the plasmid pME6012 worked satisfactorily. 

Transposons and mini-transposons were delivering DNA onto the RW1 genome, but their 

stability seemed to depend on whether RW1-homologous DNA was present or not. We found 

that transformation in RW1 has a very low efficiency, around 102 transformants/µg DNA, 

compared to other gram-negative bacteria, where 104-1010 transformants/µg DNA can be 

easily obtained (Dower et al., 1988; Jacobs et al., 1990; Gilchrist and Smit, 1991; and Wang 

et al., 2010). To obtain sufficient transformant colonies, therefore, more than 1 µg of DNA 

had to be used. Interestingly, the poor transformation efficiency is partly the result of the 

source of DNA. By transforming RW1 with RW1-derived DNA instead of E. coli-isolated 

plasmid DNA we could obtain an increase in transformation efficiency of 45 times. Similar 

results were obtained with Sphingomonas sp. LH128 and LH128-derived plasmid DNA. We 

also noted that the transformation efficiency was higher for strain LH128. Unfortunately, it 

would not have helped much to use LH128 as an intermediate host for plasmid DNA 

production to transform into RW1, because also LH128-derived plasmid DNA transformed 

poorer into RW1 than RW1-derived DNA. In addition, we noticed that the proportion of 

fluorescent colonies among antibiotic-resistant colonies with E. coli-derived plasmid DNA 

transformed into RW1 or LH128 was extremely low. This suggests that incoming DNA is 

also rearranged when there is no specific selection pressure to maintain it. The proportion of 

fluorescent colonies among antibiotic resistant transformants also increased dramatically 

when the plasmid used to transform RW1 and LH128 originated from the same strain.  
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Basta et al. (2004) suggested that the sphingoglycolipids in Sphingomonas outer 

membrane could have a role in the low conjugation frequencies observed in strain RW1. Our 

results here strongly indicate that restriction-modification (R-M) systems must have a large 

influence on the transformation and (perhaps) conjugation efficiencies. R-M systems are 

typically comprised of an endodeoxyribonuclease (R) and a DNA-methylase (M) that 

recognize specific sequences of 4 to 8 nucleotides, with the methylase adding a methyl group 

in the restriction sequence, and the ribonuclease cleaving the non-methylated DNA, acting as 

a barrier against foreign DNA (Wilson, 1991). Several microorganisms possess multiple R-M 

systems, but in S. wittichii RW1 up to eight different R-M systems were proposed (REBASE-

Roberts, 2010). For a number of bacterial strains it was shown that low transformation 

efficiencies can be improved by several orders of magnitude by inactivating their restriction 

system (Veiga and Pinho, 2009; Ferri et al., 2010), by transformation with plasmids extracted 

of the same strain (Veiga and Pinho, 2009; Ferri et al., 2010) or by inducing the R-M genes 

of the target organism in E. coli, thereby obtaining plasmids with the methylation pattern of 

the target (Yasui et al., 2009). However, in those cases the bacteria only possessed one or two 

R-M systems, whereas S. wittichii RW1 genome seems to code for 8 different R-M clusters. 

Therefore, this seemed like a hopeless task to perform.  

 

As mentioned above, transposon delivery into the RW1 genome was possible and the 

resistance marker could reproducibly be found. In fact, also transposon mutagenesis was a 

workable technology and no particular important instability was detected with pRL27-based 

transposon mutants (delivering only a KmR-gene). However, RW1 transconjugants carrying 

miniTn5-P4925-egfp and miniTn5-P5102-egfp insertions were again instable, and after a few 

generations displayed rearrangements in the gene constructs. One of them even lost the 

ability to grow on DBF as sole carbon source. This instability may be due to a large number 
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of native transposable elements in the genome, or must be due to rearrangements by a 

particular efficient recombination system in the absence of direct selection on the marker.  

 

Interestingly, even linear DNA could be transformed into RW1 and, given the 

antibiotic resistance of the transformants, must have been introduced successfully by in the 

genome. Yet, by PCR we could not establish the exact insertion site(s). This only seems 

doable by marker recovery from genomic library, or by whole genome resequencing. It is 

also not known if such insertions are stably maintained. This type of recombination seems 

reminiscent of recombinations in plants or algae, where targeted homologous recombination 

is not (directly) possible. Essentially the same result occurred when using a gene inactivation 

approach with a double-homologous fragment carrying an antibiotic resistance marker gene. 

RW1 antibiotic resistant colonies were detected, which carried the expected double antibiotic 

marker resistances for 'single recombination' of the plasmid DNA. However, such colonies 

did not carry the construct at the expected location, as far as PCR screening could tell. We 

could not further invest the time here to analyze the outcome of such transformations at the 

genetic level, nor further optimize genetic delivery techniques.  

 

In conclusion, it shows that RW1 is actually a very fascinating bacterium in terms of 

its genetic capabilities, which may actually point to evolutionary advantages when it comes 

down to integrating DNA. On the other hand, much more time would need to be invested to 

bring other genetic techniques up to speed in RW1. For the time being, however, plasmid 

delivery using pME6012 seems the only possibility for introducing genetic constructs. 

Precise gene inactivation so far was not possible and gene knockouts can only be searched 

from transposon insertion libraries.  
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Supplementary information 

 

Figure S1.Change in codon sequence of egfp to obtain egfpRW1, which favors the codon usage of S. wittichii 

RW1.  

 
Original sequence of egfp in pPROBE’ 
 
atg agt aaa gga gaa gaa ctt ttc act gga gtt gtc cca att ctt gtt gaa tta gat ggt gat gtt aat ggg cac 
aaa ttt tct gtc agt gga gag ggt gaa ggt gat gca aca tac gga aaa ctt acc ctt aaa ttt att tgc act act 
gga aaa cta cct gtt cca tgg cca aca ctt gtc act act ttg act tat ggt gtt caa tgc ttt tca aga tac cca gat 
cat atg aaa cgg cat gac ttt ttc aag agt gcc atg ccc gaa ggt tat gta cag gaa aga act ata ttt ttc aaa 
gat gac ggg aac tac aag aca cgt gct gaa gtc aag ttt gaa ggt gat acc ctt gtt aat aga atc gag tta aaa 
ggt att gat ttt aaa gaa gat gga aac att ctt gga cac aaa ttg gaa tac aac tat aac tca cac aat gta tac 
atc atg gca gac aaa caa aag aat gga atc aaa gtt aac ttc aaa att aga cac aac att gaa gat gga agc 
gtt caa cta gca gac cat tat caa caa aat act cca att ggc gat ggc cct gtc ctt tta cca gac aac cat tac 
ctg tcc aca caa tct gcc ctt tcg aaa gat ccc aac gaa aag aga gac cac atg gtc ctt ctt gag ttt gta aca 
gct gct ggg att aca cat ggc atg gat gaa cta tac aaa taa 
 
 
Sequence of egfpRW1  
 
atg agc aag ggg gaa gag ctg ttc act ggc gtt gtc cca atc ctt gtt gag tta gac ggc gac gtt aat ggc cat 
aag ttc tcg gtc agt ggg gag ggc gaa ggc gac gcc acc tac ggc aag ctg acc ctg aag ttc atc tgc acc 
act ggc aag cta cct gtt ccg tgg ccg aca ctc gtc acc acc ttg acc tat ggc gtt caa tgc ttc tca cgc tat 
cca gat cac atg aag cgc cat gac ttc ttc aag agt gcg atg ccg gag ggg tat gta cag gag aga acc ata 
ttc ttc aag gac gac ggg aac tat aag acc cgt gcg gag gtc aag ttc gag ggc gac acc ctt gtt aat cgc 
atc gag tta aag ggc atc gac ttc aag gaa gac ggc aac atc ctt ggg cat aag ctg gag tat aac tat aac 
tca cat aat gtc tat atc atg gcg gac aag cag aag aac ggc atc aag gtt aac ttc aag atc aga cat aac atc 
gag gac ggc agc gtt caa ctg gcg gac cat tat cag cag aac acc cca atc ggc gac ggc cct gtc ctt tta 
cca gac aac cat tat ctg tcc aca cag tct gcc ctg tcg aag gac ccg aac gag aag aga gac cac atg gtc 
ctg ctg gag ttc gtc aca gcg gcg ggg atc aca cat ggc atg gac gag cta tac aag taa 
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CHAPTER 4 

Fluorescently tagged Sphingomonas wittichii RW1 for the 

detection of dibenzofuran in liquid cultures and soil 

 

Edith Coronado, Tekle Tafesa, Dirk Springael, and Jan Roelof van der Meer 

 

 

Abstract 

Bioreporters are organisms that can give an easily measurable signal in response to a 

compound or condition of interest. The expression of a gene involved in a catabolic pathway 

can be coupled to the expression of a reporter gene. This allows interrogation of the 

bioavailability of xenobiotic compounds in contaminated sites by the degrader bacteria 

themselves. In the present work we constructed S. wittichii RW1-based bioreporters. Three 

representative promoters for DBF degradation were targeted, fused to a promoterless egfp 

gene, and inserted in the broad host plasmid pME6012. The bioreporter constructs carried the 

sequence upstream of genes Swit_4925 (putative oxalocrotonate decarboxylase), Swit_5102 

(gentisate dioxygenase) or Swit_4897 (dxnA1, dibenzofuran-4,4a-dioxygenase). The 

inducibility of the three promoters (P4925, P5102 and PdxnA1) was tested first in liquid cultures 

under a variety of conditions. While P5102 showed no eGFP induction using PHE, SAL or 

DBF as carbon, PdxnA1 produced eGFP constitutively regardless of the carbon source used. 

The construct P4925 showed an increase of eGFP production when DBF was added to the 

growth media, compared to SAL or PHE. P4925 was thus selected to apply in microcosms 

containing PAH-contaminated and DBF-spiked soils. Strain RW1 (pME6012-P4925-egfp) 

could grow the DBF-amended microcosms, but not in the absence of supplemented DBF. An 
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increase in eGFP signal 2 days after inoculation in the microcosms with added DBF was 

observed, but no significant eGFP induction was detected in the other microcosm 

combinations. RW1 (P4925-egfp) was compared to two other PAH-bioreporter strains, 

Sphingomonas sp. LH128 and Burkholderia sartisoli RP037. We find evidence for both 

largely limiting PAH availability as well as strong competition of native bacteria that seem to 

scavenge PAH-intermediates from the primary introduced degrader population. 
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Introduction 

 

Bioremediation refers to the process of controlled biological transformation of 

organic pollutants into harmless metabolites or mineralization into CO2 and H2O (Seo et al., 

2009). Process control can be exerted by specific stimulation of catabolic activity of native 

bacteria at a contaminated site, e.g., by the addition of nutrients, electron acceptors, or by 

mixing (Bosma et al., 1996; Ahn et al., 2008; Chen et al., 2008). Alternatively, addition of 

specific biocatalysts has been considered, such as pre-enriched bacteria, which successfully 

degrade one or more of the target compounds present at a site (Ahn et al., 2008; Zhou et al., 

2008; Kumar et al., 2009). Unfortunately, the process of strain inoculation 

(bioaugmentation), does not very consistently result in increased compound degradation rates 

or yields, which has been related to either a poor catalytic performance or poor survival of the 

introduced strains. Several explanations have been proposed for this, such as the 

accumulation of metabolic dead-end products (Coppotelli et al., 2008, 2010) or adverse 

environmental conditions (Megharaj et al., 1997; Chen et al., 2008). In addition, introduced 

strains may not compete well with native microorganisms (Shi et al., 2001; Kumar et al., 

2009). Finally, the target contaminants may not be readily bioavailable, in which case the 

introduced bacteria cannot fully deploy their catalytic activity (Bosma et al., 1996; Halden et 

al., 1999; Johnsen and Karlson, 2004; Wammer and Peters, 2005; Aso et al., 2006; Das et al., 

2008; Rehmann et al., 2008). Many frequently found organic pollutants such as polycyclic 

aromatic hydrocarbons or oil constituents have a low water solubility and high 

hydrophobicity. This favors their sorption to the organic matrix in soil, gradually leading to 

the process of aging by which the contaminants become less and less available for biota 

(Harms and Bosma, 1997).  
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The processes outlined above are most often inferred from macro-level 

measurements, such as compound degradation rates or population growth, which may 

confound the actual cause of bioaugmentation failure. One possible alternative method 

deploys bacterial bioreporters, by which the bacteria themselves can be directly interrogated 

for their response to the contaminated material at a site. In order to do so, the bacterial 

catalyst in question has to be equipped with a gene reporter construct, consisting of a 

promoter whose expression is representative for the catabolic pathway or other, that drives 

expression of an easily detectable reporter protein (Leveau and Lindow, 2002; Tecon and van 

der Meer, 2008). Many reporter constructs have been developed (Sticher et al., 1997; Stiner 

and Halverson, 2002; Werlen et al., 2004; Tecon et al., 2009; 2010; Kumari et al., 2011; de 

las Heras and de Lorenzo, 2011), but these are mostly applied in bulk assays with aqueous 

samples and rarely applied to interrogate the specific environment the cells enter into once 

the cell encounters the target compound (Leveau and Lindow, 2001). Application of strains 

as bioreporters is also somewhat limited to the genetic accessibility of a wild-type strain to 

the genetic reporter construct. As a consequence, many bioreporters occur in strains that are 

useful in a simple assay (e.g., Escherichia coli), but which are not the bacteria of choice for 

bioremediation. 

 

Here we report the construction of three bioreporters in Sphingomonas wittichii RW1, 

a bacterium of interest for bioremediation because it degrades dibenzofurans (DBF) and 

dibenzodioxins, two common PAHs found in contaminated areas and after incineration 

processes (Safe, 1990). Representative promoters for DBF degradation were selected from a 

previously carried out transcriptome study (Coronado et al., 2012), and from previous work 

by others (Bunz and Cook, 1993; Bunz et al., 1993; Armengaud and Timmis, 1998; 

Armengaud et al., 1998; 1999; 2000; Basta et al., 2004). Selected promoter regions were 
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fused to promoterless egfp on broad-host range plasmids introduced into RW1. Primarily we 

focused on a promoter upstream of the gene Swit_4925 with 12-fold higher expression during 

growth of RW1 on DBF compared to phenylalanine, and another one upstream of Swit_5102, 

with 19-fold higher expression (Coronado et al., 2012). Swit_4925 is putatively involved in 

the transformation of 2-OH-2,4-pentadienoate, an intermediate from DBF metabolism, 

whereas Swit_5102 is predicted to code for a gentisate dioxygenase (Coronado et al., 2012). 

In addition, we selected the promoter upstream of the gene Swit_4897 (dxnA1), which codes 

for the dibenzofuran-4,4a-dioxygenase, catalyzing the initial step in DBF degradation 

(Armengaud et al., 1998). The genetic stability of the constructs and the activity of the three 

promoters (P4925, P5102 and PdxnA1) were tested first in liquid cultures under a variety of 

conditions. The best performing construct (P4925) was selected and tested in PAH-

contaminated and DBF-spiked soils for population growth and reporter induction. Behavior 

of RW1 (P4925-egfp) was then compared to two other PAH-bioreporter strains, Sphingomonas 

sp. LH128 and Burkholderia sartisoli RP037-mche (Tecon et al., 2009). Interestingly, we 

find evidence for both largely limiting PAH availability as well as strong competition of 

native bacteria that seem to scavenge PAH-intermediates from the primary introduced 

degrader. 
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Materials and methods 

 

1. Bacteria cultivation 

A stock of S. wittichii RW1 (Wittich et al., 1992) was kept at -80°C and a small 

aliquot was plated on agar with 5 mM salicylate (SAL). Liquid minimal medium (MM) was 

based on DSM457 amended with 5 mM salicylate (MM+SAL) as reported elsewhere 

(Johnson et al., 2011). Other carbon sources employed for RW1 culturing were phenylalanine 

(PHE) at 5 mM or dibenzofuran (DBF), which was dosed at 5 µmol per ml in form of crystals 

(DBF aqueous solubility is 5 mg per L). Sphingomonas sp. LH128 (pME6012-phnA1-egfp) is 

a phenanthrene (PHN) degrader with a plasmid reporter construct in which the promoter of 

the PHN dioxygenase is fused to egfp (Bastiaens et al., 2000; Tekle Tafese, in preparation). 

LH128 was grown on R2A media (Reasoner and Geldreich, 1985) agar plates, and in MM 

liquid cultures with PHN crystals dosed at 5 µmol per ml (PHN aqueous solubility is 1.6 mg 

per L). B. sartisoli RP037-mche (pPROBE-PphnS-egfp) is a PHN degrader carrying a reporter 

plasmid responding to naphthalene and phenanthrene (Tecon et al., 2009). It was cultured in 

Tryptone Yeast (TY) agar plates with 50 mM NaCl (Tecon et al., 2006). For liquid cultures 

we used the type 21C mineral medium (Gerhardt et al., 1981) to which PHN crystals were 

added in a dosage of 5 µmol per ml (21C+PHN). Strains RW1, LH128 and RP037 were all 

incubated at 30°C; when in liquid medium, they were cultured in a rotary shaker at 180 rpm. 

Cultures were inoculated at a turbidity (optical density, OD600) of 0.005 and grown until 

stationary phase (OD of around 1). E. coli strains were grown in Luria Broth (LB) at 37°C. 

Antibiotic usage included kanamycin (Km, at 50 µg per ml), gentamicin (Gm, at 8 µg per ml) 

and tetracycline (Tc, at 20 µg per ml) to select for the presence of plasmids, and 
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cycloheximide (Cyc, at 100 µg per ml) to select against fungal growth. All strains used are 

listed in Table 1. 

 

Table 1. Strains, plasmids and primers used in this study. P02- One of the native RW1 plasmids, Ch-

chromosome. Bold letters in the sequences represent the restriction sites introduced.  

   Description Ref. 
Strains     
Sphingomonas wittichii RW1 Dibenzofuran degrader Wittich et 

al., 1992 
Escherichia coli DH5α Host for propagation of plasmids Hanahan et 

al., 1985 
Sphingomonas sp. LH128 Phenanthrene degrader Bastiaens et 

al., 2000 
Burkholderia sartisoli RP037-mche Phenanthrene degrader Tecon et al., 

2009 
Plasmids     
pME6012  Shuttle vector Heeb et al., 

2000 
pME3280::miniTn7-PTac-gfp Plasmid containing a miniTn7 

coding for an egfp gene under 
the control of the constitutive 
promoter PTac 

Rochat et 
al., 2010 

pME6012-PdxnA1-egfp  DBF bioreporter, dxnA1 
promoter 

This study 

pJAMA23  Vector coding for a promoterless 
egfp gene 

Jaspers et 
al., 2001 

pJAMA23-P4925  Plasmid pJAMA23 with 
promotor region of gene 
Swit_4925 and egfp 

This study 

pJAMA23::P5102  Plasmid pJAMA23 with 
promotor region of gene 
Swit_5102 and egfp 

This study 

pME6012-P4925-egfp  DBF bioreporter, Swit_4925 
promoter and the egfp gene 

This study 

pME6012-P5102-egfp  DBF bioreporter, Swit_5102 
promoter and the egfp gene 

This study 

pPROBE'-gfp-tagless  Broad-host range promoter probe 
vector with egfp  

Miller et al., 
2000 

pCK218  Mini-Tn5 delivery vector Kristensen et 
al., 1995 

Primers Position in 
sequence 
(nt) 

Sequence   

PdxnA1-rev P02-
12447 

gccttcagcacacccgggtcgcg
atca 

Amplificaton of upstream region of gene dxnA1 
in RW1 (SmaI) 

PdxnA1-fw P02-
12742 

ggggtcgacatgcctgtctcc Amplificaton of upstream region of gene dxnA1 
in RW1 (SalI) 

PSwit4925-rev P02-
38303 

caattgtggatccatggcgc Amplification of the upstream region of gene 
Swit_4925 (BamHI) 

PSwit4925-fw P02-
38532 

cggtgtgctgcagcaagcgg Amplification of the upstream region of gene 
Swit_4925 (PstI) 

PSwit5102-rev P02-
213036 

tacgcgcggatccgcctttt Amplification of the upstream region of gene 
Swit_5102 (BamHI) 
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PSwit5102-fw P02-
213291 

gagtgatctgcagagccggg Amplification of the upstream region of gene 
Swit_5102 (PstI) 

PSwit1848-rev Ch-
2067652 

cgtgcgggtaccgcatcgcc Amplification of the upstream region of gene 
Swit_1848 (KpnI) 

PuspA3-fw Ch-
278862 

ggccatccggaattctgctcc Amplification of the upstream region of gene 
Swit_0266 (EcoRI) 

PuspA-rev Ch-
279129 

cagcaacagcatatgcttcaccgc
agg 

Amplification of the upstream region of gene 
Swit_0266 (NdeI)) 

PSwit1848-fw Ch-
2067856 

cctcgggcagatcttcggcaa Amplification of the upstream region of gene 
Swit_1848 (BglII) 

PSwit2634-rev Ch-
2917309 

ccacgcggtaccggatggac Amplification of the upstream region of gene 
Swit_2634 (KpnI) 

PSwit2634-fw Ch-
2917103 

ctggcgcagatctataaaata Amplification of the upstream region of gene 
Swit_2634 (BglII) 

 

 

2. Genetic stability 

To test genetic delivery and stability in strain RW1 we used either the broad host 

plasmid pPROBE'-gfp-tagless (Miller et al., 2000), and pME6012 (Heeb et al., 2000), or the 

mini-Tn5 (Kristensen et al., 1995) and mini-Tn7 delivery systems (Rochat et al., 2010). 

Plasmid pPROBE’-tagless was equipped with the constitutive promoter PTac, by placing a 

SmaI-EcoRI restriction fragment of pME3280::miniTn7-PTac-mche (Rochat et al., 2010) 

upstream of the promoterless egfp. The PTac-egfp fragment was recovered by XhoI-HindIII 

digestion and ligated into the alternative broad host range vector pME6012, producing 

pME6012-PTac-egfp. For mini-Tn5 delivery, a codon optimized egfp for RW1, named egfpRW1 

(Figure S1), was synthesized together with PTac (DNA 2.0, Inc., USA). This fragment was 

ligated into the NotI-digested mini-transposon delivery vector pCK218 (Kristensen et al., 

1995), producing the plasmid pCK218::miniTn5-PTac-egfpRW1.  

 

Plasmids were purified to high concentration (around 1 µg per µl) from E. coli hosts 

by using a Jetstar 2.0 kit, according to the manufacturer's instructions (Genomed). Plasmids 

were then introduced into strain RW1 by electroporation using a slightly modified protocol 

from Masai et al. (1999). Briefly, cells were recovered from a 20 ml RW1 culture 
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exponentially growing on MM+SAL (OD600 0.4) by centrifugation at 8,000 rpm during 2 min 

at 4°C, after which the supernatant was discarded and the cells were resuspended in 5 ml of 

ice-cold sucrose solution (300 mM). The procedure of centrifugation and resuspension was 

repeated three times, after which cells were used immediately for electroporation. Hereto, 

100 µl cell suspension in sucrose solution was transferred to an ice-cold electroporation 

cuvette, and mixed with 1 to 3 µg of purified plasmid DNA in a maximum of 10 µl volume. 

Cells were electroporated at 25 µF, 800 Ω, and 2.5 kV (GenePulser, Biorad), after which they 

were immediately mixed with 1 ml LB medium. This cell suspension was transferred to a 5 

ml glass vial and incubated for 16 h at 30°C in the absence of any antibiotics, after which 150 

µl were plated on selective plates (MM+SAL plus Km or Tc). RW1 transformants were 

allowed to form colonies for up to 7 days at 30°C, after which they were screened for the 

presence of the appropriate genetic construct by PCR. Colonies were purified on the same 

medium, rescreened by PCR, and if positive, regrown in liquid MM+SAL culture with the 

appropriate antibiotics. Plasmids were purified from such RW1 cultures using a standard 

Qiaprep kit according to manufacturer's instructions (Qiagen). Purified plasmids from RW1 

were digested and verified for proper restriction fragment patterns using standard agarose gel 

electrophoresis, and the regions containing promoter inserts were sequenced to ensure that no 

modifications had taken place. 

 

pCK218::miniTn5-PTac-egfpRW1 (KmR) was maintained in E. coli CC118 λpir, from 

where it was purified (QIAprep, Qiagen). An aliquot of 500 ng of purified plasmid was used 

to electrotransform S. wittichii RW1 cells and a colony carrying the correct construct was 

selected by PCR screening. The plasmid pME3280::miniTn7-PTac-egfp (GmR) was introduced 

into RW1 by conjugation using E. coli DH5α as plasmid donor, E. coli SM1(pUX-BF13) as 

Tn7 transposase donor and E. coli HB101 (pRK2013) as helper for transfer, as described by 
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Lambertsen et al. (2004). Potential RW1 transconjugants/transposon mutants were selected 

on MM+SAL in the presence of the appropriate antibiotic. Colonies were purified and 

verified by PCR for the presence of the appropriate construct. 

 

The genetic stability of plasmid and transposon-based constructs in RW1 was tested 

across five subsequent passages of liquid culturing (approximately 50 generations) and 

plating. Stationary phase cultures of RW1 (pPROBE-PTac-egfp), (pME6012-PTac-egfp) or 

RW1 (miniTn5-PTac-egfpRW1) were inoculated 200-fold diluted in MM+SAL medium, with or 

without the addition of the respective antibiotic (Km or Tc). After culturing for 24 h a sample 

was taken for serial dilutions, which were plated on MM+SAL solid media with or without 

antibiotics. The rest of the cell suspension was diluted to initiate a new series of cultures. 

This procedure was repeated four times. The number of antibiotic resistant colonies and of 

colonies that showed eGFP fluorescence after each cycle were counted, and compared to the 

number of colonies on plates without antibiotics. 

 

3. Construction of DBF bioreporter strains 

A 296-bp region upstream of the gene dxnA1 was amplified from the RW1 genome 

using the PCR with primers PdnxA1-fw and PdxnA1-rev (Table 1). The amplicon was 

digested at primer internal SalI and SmaI sites, purified, and ligated with the KpnI-XhoI 

pME6012 vector fragment and the KpnI-SmaI egfp fragment from plasmid 

pME3280::miniTn7-PTac-egfp. Tc-resistant E. coli DH5α transformants were verified by PCR 

and restriction digestion of purified plasmid for correctness of the cloning (pME6012-PdxnA1-

egfp). A 249-bp region upstream of Swit_4925 was amplified using the primers PSwit4925-

fw and PSwit4925-rev, containing PstI and BamHI restriction sites. The amplicon was 

digested and ligated to the PstI-BamHI-digested egfp-promoter probe vector pJAMA23 
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(Jaspers et al., 2001). After transformation into E. coli DH5α this resulted in plasmid 

pJAMA23-P4925-egfp. This plasmid was digested with KpnI and HindIII to recover the 1 kb 

P4925-egfp fragment, which was ligated to KpnI-HindIII-digested pME6012. After 

transformation into E. coli DH5α this resulted in plasmid pME6012-P4925-egfp. Similarly, a 

256 bp upstream region of gene Swit_5102 was amplified using the primers PSwit5102-fw 

and PSwit5102-rev, and cloned in pME6012 to produce plasmid pME6012-P5102-egfp. As a 

control for general response to stress growth conditions we used a 270 bp region upstream of 

the gene Swit_0266, which codes for an UspA-like general stress protein. This region was 

PCR amplified (primers PuspA3-fw and PuspA-rev) and equally cloned in pME6012 to 

produce plasmid pME6012-PuspA-egfp. 

 

4. Bioreporter tests 

eGFP induction in S. wittichii RW1 from the reporter plasmids (pME6012-P4925-egfp), 

(pME6012-P5102-egfp) and (pME6012-PdxnA1-egfp), was calibrated in liquid culture as 

function of carbon source and growth rate. RW1 reporter precultures were grown until 

stationary phase (OD~1.0) on MM+SAL+Tc. Cultures were subsequently 200-fold diluted in 

50 ml flasks containing 15 ml of MM with PHE, SAL or DBF as carbon sources, and 

regrown. Cultures were regularly sampled for turbidity (Ultrospec, GE) and eGFP 

fluorescence measurements (FLUOstar Omega, BMG Labtech, or Zeiss epifluorescence 

microscopy - see below). To test the effect of water potential decrease, cultures were 

amended with increasing amounts NaCl or polyethylene glycol 8000, as specified by Johnson 

et al. (2011).  

 

RW1, LH128 and RP037 bioreporters were then applied directly to a set of 

contaminated and non-sterile sandy soil microcosms, to assess PAH availability from the 
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contamination and competition from indigenous microorganisms. We used sand recovered 

from a beach near the shore of Lake Geneva close to St. Sulpice (Switzerland) as basis for the 

microcosms, in order to facilitate recovery of the reporter cells and subsequent 

epifluorescence microscopy analysis. Sand was used as such (S, see below), amended with 

DBF (S+DBF) or PHN (S+PHN), with additional loamy soil (Ter Munck [van Gestel et al., 

2012], S+TM), or with contaminated soil from a former gas manufacturing plant near 

Jonction, Geneva (S+J). The Jonction soil contains among others the PAHs anthracene (260 

mg per kg soil), naphthalene (150 mg per kg soil) and fluorene (150 mg per kg soil), and 

further benzene (40 mg per kg soil) and toluene (70 mg per kg soil). For amendment with 

DBF or PHN, 200 g of sand contained in a glass vial were supplemented with 34.5 mg DBF 

or 44.5 mg PHN dissolved in 5 ml of dichloromethane (final dosage 2.5 µmol per g soil). The 

sand was vigorously shaken for several minutes after which it was spread out on aluminum 

foil under a fume hood. The sand-DBF or sand-PHN mixture was dried overnight to allow 

the solvent to evaporate. For the ‘sand alone' treatment (S) 200 g material was supplemented 

with 5 ml dichloromethane and treated similarly as for S+DBF or S+PHN. For the 'S+TM' 

treatment air-dry TM loamy soil was added to the sand at 10% w/w and thoroughly mixed. 

For 'S+J', we mixed the Jonction PAH-contaminated material with the sand in 10% w/w. 

Individual microcosms were then prepared in triplicate for each sampling time point, which 

consisted of 1 g material in a 2 ml microcentrifuge tube, to which the reporter cells were 

added.  

 

Reporter strains S. wittichii (pME6012-P4925-egfp) and (pME6012-PdxnA1-egfp) were 

grown until stationary phase on MM+DBF. Sphingomonas LH128 (pME6012-phnA1-egfp) 

and B. sartisoli RP037-mche (pPROBE-PphnS-egfp) were grown on MM+PHN and 

21C+PHN, respectively. Precultures were diluted in saline solution (NaCl 0.9%) to reach an 
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approximate cell density of 1×105 CFU in a volume of 250 µl. 250 µl of cell suspension was 

inoculated per individual microcosm, which leads to approximately 50% water holding 

capacity, and the vials were vigorously shaken. For non-inoculated series 250 µl saline 

solution was added to each of the microcosms. To recover cells, 1 ml of saline solution was 

added to a microcentrifuge tube, which was vigorously mixed for 10 sec and then sedimented 

for a few seconds. Approximately 0.9 ml of supernatant was transferred to a clean 2 ml tube. 

The extraction was repeated once more with 1 ml sterile 0.9% NaCl-solution, and both 

supernatants were pooled. From the approximately 2 ml of soil extracted liquid, an aliquot 

was used to prepare serial dilutions, which were plated on MM+SAL+Tc+Cyc-agar to count 

for colony-forming units (CFU) of the RW1 bioreporters, on R2A+Tc+Cyc for LH128 and 

on TY+Gm+Km+Cyc for B. sartisoli. The rest of the soil extract was centrifuged for 1 min at 

2000 rpm to separate soil particles, and the supernatant (around 1.9 ml) was transferred to a 

new microcentrifuge tube. The transferred mixture was centrifuged during 30 min at 13,000 

rpm, and the supernatant was discarded, except for the last ~20 µl. This droplet was used to 

resuspend the cell pellet and was then used for microscope visualizations.  

 

An assay was performed to test the scavenging of DBF metabolites by native bacteria 

present in the soil, which would affect the growth of the inoculated RW1 strain. A non-

inoculated microcosm containing S+J+DBF and incubated at 30°C during 5 days was used to 

extract the native bacteria by saline solution washing, as described above. Aliquots of 200 µl 

of the soil-extracted bacterial suspension were plated on MM agar plates with meta-toluate as 

carbon source (5 mM). The plates were incubated at 30°C and colonies (after 2 days) were 

washed of the plates and kept as a mixture. An aliquot of 500 µl of this mixture was used to 

start a culture in 15 ml MM+meta-toluate. The culture was incubated overnight at 30°C on a 

rotary shaker until an OD600=0.2 was reached, then it was centrifuged to remove the growth 
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media (8000 rpm for 5 min) and resuspended in 1.5 ml of saline solution. In parallel 

overnight liquid cultures of strains RW1 (pME6012-P4925-egfp) and (pME6012-P5102-egfp) 

(MM+DBF) were used to inoculate six Erlenmeyer flasks for each strain, containing 15 ml of 

MM+DBF, at an initial OD600 of 0.005. The cultures were incubated in a rotary shaker (180 

rpm) at 30°C until they reached an OD600 of 0.2. At this point, half of the flasks were 

inoculated with 1.5 ml of the suspension of soil-extracted bacteria and the other half with 1.5 

ml of saline solution. The cell cultures were continued to grow to stationary phase while 

measuring regularly the number of cells per ml and the eGFP intensity of RW1 reporter cells 

using flow cytometry (LSRFortessa, BD Biosciences). The settings for the flow cytometer 

measurements were as follows: Sample flow 2 µl/sec, Sample volume 200 µl, Voltage FSC 

50, SSC 200 FITC 500/ Threshold FSC 500. 

 

5. Epifluorescence microscope 

A volume of 5 µl of cell suspension was transferred to a regular microscope slide, 

covered with a 20x40 mm cover slip. Cells were imaged at 1000 x magnification using a 

Zeiss Axioscop 2 epifluorescence microscope (EFM), first in phase contrast and then at eGFP 

illumination conditions (excitation filter: BP470/40; dichromatic mirror 500; emission flter: 

BP 525/50). Images were recorded as 16-bit TIFF files using a SPOT camera operated by the 

VisiScope cell explorer (Visitron Systems, Germany). Fluorescence intensity of individual 

cells was quantified on the TIFF-images using a previously described subroutine and 

masking in MetaMorph (7.0r3) (Tecon et al., 2006). The data are presented as average of 

fluorescence intensity for strain RW1 and B. sartisoli, and as boosted average corresponding 

to the 3% of the cell population with the highest signal intensity for LH128. To test the 

differences in fluorescence intensities in the soil inoculated cells, an ANOVA (p≤0.05) was 

performed followed by a Tukey’s post hoc test using the R software. 
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Results 

 

Genetic stability of reporter constructs in S. wittichii RW1 

The efficiency of transformation of S. wittichii RW1 for plasmid-based constructs 

(purified from E. coli) was around 10-70 transformants per µg plasmid DNA. Antibiotic-

resistant and fluorescent RW1 colonies with verified correctness of the reporter construct 

were successively cultured in liquid medium for four transfers (~28 generations) in presence 

or absence of the antibiotic selecting for the plasmid marker. On average 60% of colonies of 

RW1 (pPROBE'-PTac-egfp) was Km-resistant after the first growth passage without antibiotic 

selection pressure, whereas close to 100% of the colonies were Km-resistant when the cells 

had been grown on medium with Km (Figure 1A). After the fourth passage, the proportions 

of KmR-colonies decreased to 50 and 75%, respectively, for cells that had been growing on 

medium without or with Km. Astonishingly, only around 1% of the KmR-colonies after the 

fourth transfer were fluorescent, regardless of the addition of Km to the liquid growth 

medium. Close to 100% of RW1 (pME6012-PTac-egfp) colonies were TcR after the first 

transfer, irrespective of Tc addition to the liquid growth medium (Figure 1B). During the 

subsequent transfers, the proportion of TcR-colonies decreased to 25% in the case of growth 

without Tc-addition to the culture medium, whereas it remained close to 100% for colonies in 

the Tc-supplemented liquid culture. Around 75% of the TcR-colonies were no longer 

fluorescent after the second transfer in medium without Tc, but almost 100% remained 

fluorescent as long as Tc had been added. Plasmids based on pME6012 were thus better 

maintained in RW1 than those based on pPROBE. 
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As an alternative to the plasmid system, two transposons were tested for maintenance 

in RW1, a miniTn7 and a miniTn5-based construct. Unfortunately, no RW1 transconjugants 

with mini-Tn7 insertion (pME3280::miniTn7-PTac-egfp) could be obtained, despite different 

attempts of conjugation or electrotransformation. In contrast, RW1 electrotransformants with 

the mini-Tn5::PTac-egfpRW1 were obtained at an estimated frequency of 100 transformants per 

µg DNA. After four passages in liquid medium without Km, close to 60% of all colonies 

were still KmR and fluorescent. This percentage was close to 90% when Km had been added 

to the liquid growth medium (Figure 1C). Unfortunately, mini-Tn5-based constructs carrying 

RW1 homologous DNA for unknown reasons were not stable in RW1, but after several 

passages in MM+SAL+Km liquid growth medium produced false PCR amplicons despite 

conferring KmR (data not shown). We therefore chose to work with pME6012-based reporter 

constructs in RW1 from thereon. 
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Figure 1. Plasmid maintenance of pPROBE-PTac-egfp (A), pME6012-PTac-egfp (B) and miniTn5::PTac-egfp (C) 

in Sphingomonas wittichii RW1 over four successive culture transfers (~28 generations) in liquid medium with 

SAL as sole carbon source without (no AB) or with (AB) addition of antibiotic selecting for the plasmid or 

transposon insertion. Proportions show the number of antibiotic resistant colonies (Resist) divided by the 

number of colonies on non-selective media, or the number of fluorescent colonies amidst all resistant colonies 

(R/Fluo). For pPROBE and mini-Tn5, Km was used as antibiotic, whereas Tc was used for pME6012.  
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Calibration of the eGFP response of RW1 bioreporters under standard conditions  

Two putative RW1 promoter regions, selected from microarray data from a previous 

study (Coronado et al., 2012), plus the upstream region of the previously described dxnA1-

gene (Armengaud et al., 1998), were evaluated for their inducibility in the presence of DBF, 

SAL and PHE. Strain RW1 (pME6012- P4925-egfp) displayed higher fluorescence when 

growing on DBF than on SAL or PHE, measured either by fluorimeter (not shown) or by 

EFM (Figure 2A and 2D). In contrast, RW1 (pME6012-PdxnA1-egfp) produced a slightly 

higher eGFP fluorescence when grown with SAL compared to PHE or DBF (Figure 2B and 

2D). Contrary to our expectations from microarray data (19-fold higher signal in DBF-grown 

compared to PHE-grown cells), strain RW1 (pME6012-P5102-egfp) did not produce more 

eGFP fluorescence when grown with DBF compared to PHE or SAL (Figure 2C and 2D).  

 

 

 

Figure 2. Microscope images (phase contrast, PhC and the corresponding eGFP fluorescence image) of RW1 

carrying the constructs (A) pME6012-P4925-egfp, (B) pME6012-PdxnA1-egfp and (C) pME6012-P5102-egfp, grown 

with PHE, SAL or DBF as carbon sources. (D) Average eGFP intensity of the RW1 clones grown with PHE, 

SAL and DBF, measured from EFM images of early stationary phase cultures. 
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Figure 3. eGFP production rate as a function of growth rate of RW1 carrying the construct pME6012-P4925-egfp 

(○/●), pME6012-P5102-egfp (□/■), pME6012-PdxnA1-egfp (/) and pME6012-PuspA-egfp (/). Rates were 

calculated from linear regression of ln-transformed eGFP or culture turbidity values versus time. Decrease of 

exponential growth rate was achieved by decreasing water potential in the medium through the addition of NaCl 

(open symbols) or PEG (closed symbols). 

 

 

All three RW1 strains were next tested for activity of the promoter fragments as a 

function of growth rate on SAL, which was modulated by increasing concentrations of NaCl 

or PEG. Addition of NaCl or PEG decreases the water potential in the medium, which has 

been suggested to mimic the conditions in a dry soil (Halverson and Firestone, 2000). eGFP 

production rates from the catabolic promoters P4925 and P5102 were linearly dependent on the 

growth rate (R=0.95 and R=0.83, respectively, Figure 3), suggesting they are insensitive to 

lowered water potential by either NaCl or PEG. However, the increase in eGFP production 

rate from P5102 as function of growth rate was smaller than from P4925 (i.e., slope in Figure 3). 

In contrast, the eGFP production rate from PdxnA1 was correlated less well to the growth rate 

(R=0.66, Figure 3), which was mainly due to the difference in reaction of the promoter upon 

addition of NaCl or PEG. This suggests that dxnA1 expression is dependent on the type of 

water stress. As a control, we used RW1 (pME6012-PuspA -egfp), in which case there was no 
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apparent correlation between the growth rate and the eGFP production rate (R=0.08, Figure 

3). This indicates that expression of the uspA-like gene in RW1 remains upright when cells 

grow slower. 

 

Bioreporter response in contaminated material  

Due to its specific egfp induction in liquid cultures in the presence of DBF compared 

to PHE, RW1 (pME6012-P4925-egfp) was selected to interrogate contaminant availability in 

sandy soil microcosms. Hereto cells were inoculated at relatively low density in the 

microcosms (105 per g material) and followed during 8 days for population size development 

and single cell eGFP fluorescence. RW1 (pME6012-P4925-egfp) could be detected by plating 

on MM+SAL+Tc during the 8 days of the experiment in all microcosms except for the 

uninoculated control. All colonies growing on MM+SAL+Tc agar plates showed green 

fluorescence. RW1 population growth was observed in S+DBF microcosms with an increase 

from 6×105 to 8×107 CFU/g five days after inoculation, which decreased to 3×107 CFU/g at 

day 8 (Figure 4A). RW1 cells also multiplied with approximately similar growth rates in sand 

mixed with the highly contaminated material from Jonction to which DBF was added 

(S+J+DBF), but yielding a smaller maximum population size (4×107 CFU/g after 4 d). In 

S+TM the population increased during the first day after inoculation from 1×106 to 8×106 

CFU/g, after which it decreased until around 1×106 CFU/g at day 8. Similarly, in the S+J 

microcosms, a small increase from 3×104 to 1×106 CFU/g was observed after 1 d. After this 

time the population remained at around 105 CFU/g soil (Figure 4A). Population 

developments were similar for microcosms inoculated with RW1 (pME6012-PdxnA1-egfp, 

Figure S2).  
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Figure 4. Population size development and reporter gene expression of RW1 (pME6012-P4925-egfp) inoculated 

in different microcosms. (A) Number of TcR-RW1 CFU/g soil over time and (B) average eGFP levels. 

Microcosms included S+DBF (■), S+J+DBF (□), S+TM (●) S+J () and non-inoculated S microcosms, NI (×). 

(C) Illustrations of microscope images (phase contrast, PhC and the corresponding eGFP image) of RW1 

(pME6012-P4925-egfp) at the moment of inoculation (t=0), 3 (t=3d), 8 days (t=8d) after inoculation in S+DBF 

(upper panels), and 8 days after inoculation in S+J+DBF, S+J and S+TM (lower panels). 

 

 

Interestingly, average eGFP levels of RW1 (pME6012-P4925-egfp) cells inoculated in 

S+DBF increased two-fold after inoculation until day 2, after which it remained constant 

until the end of the experiment (Figure 4B). In contrast, average eGFP levels remained 

constant in cells inoculated in S+J+DBF. In all the microcosms supplemented with either 

pristine (S+TM) or contaminated soil (S+J), the eGFP signals decreased from the day of 

inoculation and were lower than in microcosm S+DBF (Figure 4B). Even if the signals in 

cells from microcosm S+J were slightly higher than in cells from S+TM, this difference was 

not significant. Microscope images at different time points clearly show an increase in the 
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overall number of cells in microcosm S+J+DBF or S+J, many of which were not RW1 

(Figure 4C). The lower eGFP signal from RW1 cells in microcosms S+J+DBF compared to 

S+DBF therefore suggests that indigenous bacteria compete with RW1 for DBF. Since the 

P4925-promoter responds to a metabolic intermediate the lower eGFP signal in S+J+DBF may 

indicate that indigenous bacteria scavenge (temporarily) released metabolic intermediates 

from DBF by RW1. eGFP signals from inoculated cells of RW1 (pME6012-PdxnA1-egfp) were 

no different in S+DBF or S+TM microcosms, whereas its population increased from 7×105 to 

2×107 in S+DBF (Figure S2), indicating that the dxnA1-promoter is constitutively on and 

does not react to DBF.  

 

PAH-availability in the Jonction material was further evaluated by inoculations with 

the Sphingomonas sp. LH128 (pME6012-PphnA1-egfp) and B. sartisoli RP037-mche 

bioreporters. The population of LH128 increased in S+PHN microcosms from 1×104 to 

7×105 CFU/g at day 8, but not in S+J+PHN or S+J (Figure 5). Microscope images indicated 

again a high number of cells from indigenous bacteria besides the LH128 reporter cells 

(Figure 5C). Only around 3% of the LH128 cells in the S+PHN microcosms showed eGFP 

signal, which increased over time until day 5 (Figure 5B). A similar proportion of fluorescent 

cells was observed when LH128 was grown in pure liquid cultures with PNH as carbon 

source. The rest of the cells had a low signal comparable to background. No eGFP-expressing 

LH128 reporter cells were detected in the S+J+PHN or the S+J microcosms. This may have 

been the result of the competition for PHN by indigenous microorganisms present in the 

Jonction material (Figure 5C). In contrast to LH128, the B. sartisoli PHN reporters did not 

grow in any of the microcosms (not shown) and there was no difference in eGFP intensity in 

the different samples during the whole duration of the experiment (Figure S3), but these 

results will have to be further repeated and verified. 
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To test whether the lower eGFP levels in RW1 reporter cells in S+J+DBF compared 

to S+DBF microcosms were due to scavenging of substrate (DBF) or metabolites, we co-

cultured RW1 (pME6012-P4925-egfp) or RW1 (pME6015-P5012-egfp) in MM+DBF with or 

without a mix of meta-toluate degrading strains isolated from Jonction. Indeed, RW1 

populations in co-cultures yielded only about half of the size attained in pure culture (Figure 

6A and 6C) similar to what was observed in soil microcosms (Figure 4A). In contrast, eGFP 

intensities of RW1 reporter cells were indistinguishable in pure or co-culture (Figure 6B and 

6D).  

 

 

 

Figure 5. Population size development and reporter gene expression of LH128 (pME6012-PphnA1-egfp) 

inoculated in microcosms. (A) Number of TcR-CFU/g soil and (B) boosted average eGFP level. Microcosms 

included, S+PHN (■), S+J+PHN (□), S+J () and non-inoculated S microcosms, NI (×). (C) Illustrative 

microscope images (phase contrast, PhC and the corresponding eGFP image) of LH128 (pME6012-PphnA1-egfp) 

at the moment of inoculation (t=0), 4 (t=4d), 12 days (t=12d) after inoculation in S+PHN (upper panels), and 12 

days after inoculation in S+J+PHN, S+J and without inoculation, NI (lower panels). 
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Figure 6. Population development and reporter gene expression of RW1 (pME6012-P4925-egfp) or (pME6012-

P5102-egfp) growing in MM+DBF in pure or co-culture (+Soil cells) with three m-toluate degrading strains 

isolated from Jonction. (A, C) Number of RW1 cells per ml culture volume over time (flow cytometry data). (B, 

D) Average eGFP levels of individual RW1 reporter cells. Arrows indicate the point when the cultures were 

coinoculated with the m-toluate degrading strains. 
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Discussion 

 

Bacterial bioreporters have been shown to be useful for probing the physical or 

chemical nature of the immediate environment surrounding the reporter cells (Leveau and 

Lindow, 2002; Tecon et al., 2006). For example, a proU-gfp fusion in Pantoea agglomerans 

or Pseudomonas syringae was useful to document water potential differences in soils, on 

plant leaves and around plant roots (Axtell and Beattie 2002; Herron et al., 2010). In other 

work, cells of E. herbivora carrying a fruB-egfp fusion probed the available fructose content 

leaking from plant leaves (Leveau and Lindow, 2001), whereas others used an E. coli-based 

GFP reporter to gauge tetracycline presence in the rat intestine (Bahl et al., 2004). 

Bioreporters have also been used to measure the availability of hydrophobic contaminants 

such as PAHs (Tecon et al., 2006; 2010) PAH bioreporters respond with rather low signals, 

which is thought to be due to the low aqueous solubility of the PAH (Tecon et al., 2009; 

2010). In addition, they have to be constructed in the strain which metabolizes the PAH, 

because it is often a metabolite which leads to induction from PAH-responsive promoters 

rather than the parent PAH-compound itself (Tecon et al., 2006; Werlen et al., 2004). The 

goal of the underlying work was to develop PAH-bioreporters based on S. wittichii RW1 and 

use those to better understand the fate of bioaugmented strains in contaminated material 

(here: PAHs). RW1 is not a standard laboratory bacterium for which genetic tools are easily 

available, and previous studies have reported difficulties in performing genetic studies in 

RW1 (Armengaud et al., 1998), and plasmid instabilities (Basta et al., 2004). Our results 

demonstrated that promoter-egfp fusions could be introduced into RW1 and relatively stably 

maintained using the broad-host range vector pME6012 (Heeb et al., 2000). In contrast, 

similar constructions in pPROBE-type plasmids were not very well maintained and must 

have undergone genetic rearrangements, since many RW1 transformant colonies displayed 
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antibiotic resistance of the plasmid but no longer carried egfp. Systems like the mini-Tn5, 

known for their stability in numerous gram-negative bacteria (de Lorenzo and Timmis, 

1994), were not stable to the same extent in RW1. Although RW1 transformants carrying 

mini-Tn5 insertions (Kristensen et al, 1995) were obtained, we detected genetic 

rearrangements by PCR after several generations of growth in liquid media even in the 

presence of the corresponding antibiotic. Despite several attempts, no transformants carrying 

a mini-Tn7 insertion were obtained using the system of Rochat et al. (2010), perhaps due to 

an inappropriate insertion site (McKnown et al., 1988) in the RW1 chromosome.  

 

Based on transcriptome data obtained from a previous study (Coronado et al., 2012) 

three loci involved in DBF degradation were selected as target for DBF bioreporter 

construction. The first consisted in an upstream region of dxnA1, which codes for part of the 

dibenzofuran dioxygenase (PdxnA1), the second in a region upstream of the cluster Swit_4925-

4921, which encodes the downstream part of a meta-cleavage pathway (P4925), and the third 

in a region upstream of the genes Swit_5102-5101, with Swit_5102 putatively coding for the 

enzyme gentisate dioxygenase that transforms gentisate to 3-maleyl pyruvate (P5102). As 

expected, strain RW1 (pME6012- PdxnA1-egfp) detectably expressed eGFP, but independent of 

its growth substrate (DBF, SAL or PHE), confirming that this region contains a constitutive 

promoter (Bunz and Cook, 1993; Armengaud et al., 1998; Coronado et al., 2012). Good 

eGFP inducibility on DBF compared to PHE- or SAL-grown cells was found for RW1 

(pME6012-P4925-egfp), which is in agreement with the transcriptome data (Coronado et al., 

2012). In contrast, RW1 (pME6012-P5102-egfp) expressed egfp very poorly and showed no 

sign of specific induction either in liquid cultures or soil microcosms regardless of DBF 

addition. Therefore, even though global expression analysis had indicated up to 19-fold 

increased expression of the cluster Swit_5102-5101 in DBF- compared to PHE-grown cells 
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and more than 50-fold in SAL- versus PHE-grown cells (Coronado et al., 2012), the P5102-

reporter construct remained mostly uninduced. This could indicate that the 256-bp fragment 

used for cloning may not contain the promoter sequence, or that the plasmid again displayed 

some sort of rearrangement (see e.g., Chapter 3 for P5102-reporter induction of a mini-Tn5 

insertion). More tests should be done in order to find the promoter location in this area.  

 

The RW1 (pME6012-P4925-egfp) appeared to be useful to monitor DBF degradation 

activity not only in liquid cultures but also in soil microcosms. Interestingly, inoculated RW1 

reporter cells multiplied in DBF-amended soil microcosms and were still detected 8 days 

after inoculation. This positive result was in contrast to previous studies by Megharaj et al. 

(1997) and Halden et al. (1999), who inoculated RW1 to soil microcosms spiked with DBF 

and dibenzodioxin, but found a constant decrease in cell numbers from the moment of the 

inoculation. This may be explained by the high inoculation cell density (108 CFU per g soil), 

which cannot be sustained by the amount of DBF, whereas we started from a low inoculation 

density (105 CFU/g), in which case population growth can occur. RW1 reporter cells grown 

in soil microcosms with DBF also increased eGFP reporter signal, indicating they were 

actively metabolizing DBF. Interestingly, however, when a small fraction of highly PAH-

contaminated material from Jonction was added to the microcosms with DBF, RW1 reporter 

cells multiplied to a much lower population yield and displayed lower eGFP expression 

(Figure 4B). Since the material in those microcosms is not sterilized, a large proportion of 

endogenous bacteria from Jonction developed, which likely competed with RW1 for carbon. 

The lower eGFP expression of the RW1 reporter cells is intriguing and suggests that one 

particular type of metabolite, possibly 2-OH-2,4-penta-dienoate that is cleaved from DBF in 

yielding salicylate, is scavenged by the endogenous cells. We attempted to demonstrate this 

directly in liquid culture by using competition experiments with three strains isolated from 
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Jonction on the basis to metabolize m-toluate, and therefore, theoretically capable of 

metabolizing 2-OH-2,4-penta-dienoate. Unfortunately, RW1 reporter cells in co-culture on 

DBF did not decrease eGFP expression, although their yield was indeed again lower than in 

pure culture. This confirms that interspecies interactions and resource competition is a 

common trait in nature, as has been reported by others authors (Møller et al., 1998; Pelz et 

al., 1999; Wintermute and Silver, 2010; McGenity et al., 2012) and a key trait to manipulate 

when enhancing the efficacy of bioaugmentation. More studies should be performed in order 

to determine the nature of the interaction of RW1 strain with native soil organisms to degrade 

the xenobiotic compounds.  

 

The population size of inoculated RW1 reporter cells also increased in microcosms 

with Jonction material only (and without added DBF), but to a much lower level than in 

microcosms with added DBF. In addition, their eGFP expression was barely detectable 

suggesting that RW1 cannot find sufficient specific carbon substrate in Jonction to multiply, 

or is outcompeted entirely by endogenous cells for usage of PAHs. Similar results were 

obtained with the PHN-reporter strain Sphingomonas sp. LH128 (pME6012-phnA1-egfp). 

Although the LH128 PHN-reporter multiplied and expressed eGFP in sandy microcosms with 

PHN but without Jonction material, it failed entirely to do so when Jonction material was 

present (Figure 5). Again, microscopy data suggested abundant growth of other endogenous 

bacteria from the Jonction material, which effectively competed for PHN present in Jonction 

and/or added externally. Even less than RW1, the LH128 PHN-reporter was not capable of 

sustaining sufficiently long in microcosms with Jonction material to 'report' on its PAH-

availability.  
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Bioavailability has been pointed as the main constraint for the success of 

bioremediation (Harms and Bosma, 1997; Bosma et al., 1996; Wammer and Peters, 2005). 

The results presented here show that RW1 could survive in the soil supplemented with DBF, 

and thus has no inherent 'incapacity' to survive in such environments. However, the 

bacterium did not react to the compounds present in Jonction material, and even with 

subsequent addition of DBF, developed less well than in sand plus DBF alone. Since the 

Jonction soil comes from an old contaminated site (close to 100 years), the PAHs present 

may be no longer available for degradation, or have insufficient DBF to support RW1 

population growth. Screening of compound availability and competition by the use of 

bioreporter strains, therefore, makes sense as a strategy to assess the possible outcome of 

bioaugmentation before starting in large-scale.  
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Supplementary information 

 

Figure S1.Change in codon sequence of egfp to obtain egfpRW1, which favors the codon usage of S. wittichii 

RW1.  

 
Original sequence of egfp in pPROBE’ 
atg agt aaa gga gaa gaa ctt ttc act gga gtt gtc cca att ctt gtt gaa tta gat ggt gat gtt aat ggg cac 
aaa ttt tct gtc agt gga gag ggt gaa ggt gat gca aca tac gga aaa ctt acc ctt aaa ttt att tgc act act 
gga aaa cta cct gtt cca tgg cca aca ctt gtc act act ttg act tat ggt gtt caa tgc ttt tca aga tac cca gat 
cat atg aaa cgg cat gac ttt ttc aag agt gcc atg ccc gaa ggt tat gta cag gaa aga act ata ttt ttc aaa 
gat gac ggg aac tac aag aca cgt gct gaa gtc aag ttt gaa ggt gat acc ctt gtt aat aga atc gag tta aaa 
ggt att gat ttt aaa gaa gat gga aac att ctt gga cac aaa ttg gaa tac aac tat aac tca cac aat gta tac 
atc atg gca gac aaa caa aag aat gga atc aaa gtt aac ttc aaa att aga cac aac att gaa gat gga agc 
gtt caa cta gca gac cat tat caa caa aat act cca att ggc gat ggc cct gtc ctt tta cca gac aac cat tac 
ctg tcc aca caa tct gcc ctt tcg aaa gat ccc aac gaa aag aga gac cac atg gtc ctt ctt gag ttt gta aca 
gct gct ggg att aca cat ggc atg gat gaa cta tac aaa taa 
 
Sequence of egfpRW1  
atg agc aag ggg gaa gag ctg ttc act ggc gtt gtc cca atc ctt gtt gag tta gac ggc gac gtt aat ggc cat 
aag ttc tcg gtc agt ggg gag ggc gaa ggc gac gcc acc tac ggc aag ctg acc ctg aag ttc atc tgc acc 
act ggc aag cta cct gtt ccg tgg ccg aca ctc gtc acc acc ttg acc tat ggc gtt caa tgc ttc tca cgc tat 
cca gat cac atg aag cgc cat gac ttc ttc aag agt gcg atg ccg gag ggg tat gta cag gag aga acc ata 
ttc ttc aag gac gac ggg aac tat aag acc cgt gcg gag gtc aag ttc gag ggc gac acc ctt gtt aat cgc 
atc gag tta aag ggc atc gac ttc aag gaa gac ggc aac atc ctt ggg cat aag ctg gag tat aac tat aac 
tca cat aat gtc tat atc atg gcg gac aag cag aag aac ggc atc aag gtt aac ttc aag atc aga cat aac atc 
gag gac ggc agc gtt caa ctg gcg gac cat tat cag cag aac acc cca atc ggc gac ggc cct gtc ctt tta 
cca gac aac cat tat ctg tcc aca cag tct gcc ctg tcg aag gac ccg aac gag aag aga gac cac atg gtc 
ctg ctg gag ttc gtc aca gcg gcg ggg atc aca cat ggc atg gac gag cta tac aag taa 
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Figure S2. Population development and reporter gene expression of RW1 (pME6012-PPdxnA1-egfp) inoculated in 

the microcosms. (A) Number of TcR-CFU/g soil over time. (B) Average eGFP level. Different microcosms, 

S+DBF (■), S+TM (○) and non-inoculated microcosms, NI (×). 
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Figure S3. Reporter gene expression of B. sartisoli RP0037-mche (pPROBE-PphnS-egfp) inoculated in the 

microcosms. (A) Number of TcR-CFU/g soil over time and (B) average eGFP level. Different microcosms, 

S+PHN (■), S+J+PHN (□), S+J () and non-inoculated microcosms, NI (×). 
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CHAPTER 5  

Identification of water stress promoters in Sphingomonas 

wittichii RW1 

Edith Coronado, Clémence Roggo, Marc Jordi. 

 

Abstract 

 

The term water stress refers to the low availability of water for microorganisms to 

grow and perform basic metabolic functions. Water availability has been proposed as a major 

constraint for the use of microorganisms in contaminated sites with the purpose of 

bioremediation. Sphingomonas wittichii RW1 is a bacterium capable of degrading the 

xenobiotic compounds dibenzofuran and dibenzo-p-dioxin, and has potential to be used as a 

microorganism for targeted bioremediation. The aim of the current work was to understand 

the influence of water stress on the catabolic activity of RW1. We explored, by means of 

transposon mutagenesis, the genes involved in the cell’s resistance to water stress. Conditions 

of low water potential were mimicked by adding NaCl or PEG8000 to the growth media. 

When using selection for solute stress (NaCl addition), we recovered transposon mutants 

unable to grow with insertions in genes involved in proline and glutamate biosynthesis, and 

further in a gene putatively involved in aromatic compound catabolism. Transposon mutants 

growing poorer on medium with lowered water potential also included ones that had 

insertions in genes involved in more general functions such as transcriptional regulator, 

elongation factor, cell division protein, RNA polymerase β or an aconitase were also isolated.  
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The three transposon mutant screening methods used here allowed the isolation of 

different transposon mutants, with the screening based on differential production of eGFP in 

salt conditions being the more efficient.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clémence Roggo contributed to the transposon mutant encapsulation, selection in agarose 

beads and sequencing. Marc Jordi contributed to the transposon mutant selection by replica 

plating and subsequent sequencing of selected clones.  
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Introduction 

 

Several studies describe the selection and use of specific microbial strains for 

bioremediation purposes (Vogel, 1996; Shi et al., 2001; Ahn et al., 2008; Chen et al., 2008; 

Das et al., 2008; Rehmann et al., 2008; Kumar et al., 2009). However, for a success of 

bioaugmentation it is not only the strain itself that counts, and various factors in the 

environment in which the microbes are introduced can have profound impact on their 

biodegradation activities and therefore in their bioremediation efficiency (Leahy and Colwell, 

1990; Holden et al., 1997). One of the main important factors is thought to be the availability 

of water (water activity or water potential) (Holden et al., 1997). 

 

The water activity depends on the concentration of solutes in a given solution; the 

higher the solute concentration the lower the water activity. A decrease in water activity is 

equivalent to a lowered water potential and this translates in an increase of the osmotic 

pressure (Potts, 1994). The osmotic potential is numerically equal to osmotic pressure but has 

a negative sign (the units used here are MPa) and is the pressure necessary to prevent a flow 

of solvent through a membrane (Brown, 1976). The osmotic potential has two components, 

the solute potential (SP) and matric potential (MP) with the SP increasing linearly with 

increasing concentration of solutes and the MP describing the interaction of water with 

surfaces and interfaces (colloidal particles and solid particles from 0.002 to 1 µm diameter) 

(Potts, 1994). Water stress is then a consequence of the lowering of water potential, with less 

water available to enter the cell or available to maintain regular biochemical processes in the 

cell (Brown, 1976). Cells under osmotic (solute) stress will face diminished water activity as 

a consequence of high concentrations of solutes outside the cell and will experience a net flux 

of water towards the extracellular environment. Matric stress is a consequence of the net flux 
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of water from the inside to the outside as a result of capillary forces of non-permeating 

solutes (Potts, 1994).  

 

Microorganisms are known to be able to defend themselves against changes in water 

potential, by changing their membrane fatty acid composition, synthesizing compatible 

intracellular solutes like trehalose or sucrose, producing exopolysaccharides or 

overproducing transmembrane transporters (Boch et al., 1994; Lucht and Bremer, 1994; 

Ogahara et al., 1995; Halverson and Firestone, 2000; Hallsworth et al., 2003; Mutnuri et al., 

2005; Singh et al., 2005; Reva et al., 2006; LeBlanc et al., 2008; Brill et al., 2011; Gülez et 

al., 2011; Johnson et al., 2011). It is also known that solute and matric stress result in 

different effects on cells (Halverson and Firestone, 2000; Axtell and Beattie, 2002; 

Hallsworth et al., 2003; Reva et al., 2006; Cytryn et al., 2007; Johnson et al., 2011). For 

example, Johnson et al. (2011) observed an increased expression of a gene for an 

extracellular sigma24 factor when exposing S. wittichii RW1 to solute stress but not to matric 

stress. In contrast, several genes involved in protein turnover and repair were differentially 

expressed as a response to matric but not to solute stress. Commonly differentially expressed 

genes in both solute and matric stress compared to no stress conditions included genes 

involved in trehalose, exopolysaccharide or flagella biosynthesis. 

 

Genome-wide transcription analysis of RW1 exposed or not to solute or matric stress has 

helped to identify the genes differentially responding to such conditions (Johnson et al., 

2011). To try and find out whether such differentially expressed genes are important or 

essential for the cell to resist water stress, we used transposon mutagenesis followed by 

mutant screening for growth. In the present work, two mini-Tn5 mutant libraries were 

created, one using the pRL27 system (Larsen et al., 2002), and the second one with a 
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modified version, pRL27::miniTn5-egfp, coding for a promoterless egfp gene. The resulting 

libraries were screened for the absence of growth on NaCl-amended agar plates, for smaller 

microcolonies inside agarose beads upon exposure to NaCl-amended medium (pRL27), or by 

higher production of eGFP (miniTn5-egfp) following NaCl exposure using flow cytometry. 

The insertion sites of the transposon mutants were then recovered and determined by DNA 

sequencing, and compared to the RW1 genome. 

 

 

Materials and methods 

 

1. Bacteria cultivation 

A stock of Sphingomonas wittichii RW1 was kept at -80°C and a small aliquot was 

plated on agar with 5 mM salicylate (SAL). Minimal media was based on DSM457 amended 

with 5 mM salicylate (MM+SAL). Agar plates consisted on MM+SAL supplemented with 

1.5% of bacteriological agar No.1 (Oxoid). All RW1 cultures were incubated at 30°C. For 

selection and maintenance of the transposon insertions, kanamycin (Km, at 50 µg per ml) was 

added to MM+SAL. Escherichia coli strains were grown in Lysogeny Broth (LB) adding Km 

to maintain the selective pressure for the plasposon vectors. E. coli was incubated at 37°C 

according to standard procedures. Table 1 shows a list of strains, plasmids and primers used 

here. 
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Table 1. Strains, plasmids and primers used. 

    Description Reference 
Strains    
Sphingomonas wittichii RW1 Dibenzofuran degrader Wittich et al., 1992 
E. coli BW20767 For conjugative transfer of oriR6K 

oriTRP4 plasmids. Has pir/ inserted into 
the chromosome. Donor of pRL27 
plasposon. 

Metcalf et al., 
1996; Larsen et 
al, 2002. 

E. coli CC118λpir For replication of pir-dependent 
plasmids 

Herrero et al., 
1990 

E.coli  S17-1λpir For replication and mobilization of 
plasmids with oriR6K. 

de Lorenzo et al, 
1990 

Plasmids    
pRL27  Codes for a hyperactive transposase and 

contains a miniTn5 -ori transposable 
element. Used for mutant library 
creation. 

Larsen et al., 
2002 

pRL27-gfp  For transposon mutant library creation, 
codes for a promoterless egfp gene in a 
miniTn5 transposable element 

This study 

pBAM1  All synthetic plasmid bearing R6K oriV, 
oriT sequence, coding for a hyperactive 
transposase and a miniTn5 transposable 
element. Used for mutant library 
creation.  

Martínez-García 
et al., 2011 

Primers    
tnpRL17-1 aacaagcagggatgtaacg Sequencing of miniTn5 insertion sites 

(pRL27) 
Larsen et al., 
2002 

tnpRL13-2 cagcaacaccttcttcacga Sequencing of miniTn5 insertion sites 
(pRL27-egfp) 

Larsen et al., 
2002 

GFPout tcaacaagaattgggacaactccag  Anealing in egfp 70 nucleotides towards 
start 

van der Meer 
group 

npt-fw atcgtggctggccacgacggg Forward primer for the amplification of 
the Km resistance gene 

van der Meer 
group 

npt-rev ctgatagcggtccgccacacc Reverse primer for the amplification of 
the Km resistance gene 

van der Meer 
group 

 

 

2. Reduced water potential conditions 

Liquid and solid media with altered water activities (potentials) were prepared 

following the method described by Halverson and Firestone (2000). Briefly, increasing 

amounts of NaCl or PEG 8000 were added to liquid MM+ SAL to mimic a decrease in SP 

and MP, respectively (Table 2). A stationary phase culture (OD600~1.0) of S. wittichii RW1 

was used to inoculate 50 ml flasks containing 15 ml of MM+SAL (control) and flasks 

containing NaCl-amended or PEG-amended MM+SAL. Amendments corresponded to a 
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decrease in water potential of -0.5, -1.0, -1.5, -2.0 and -2.5 MPa with respect to the control 

(the control media has a water potential of around -0.23 MPa). Three replica flasks were 

prepared for each condition. Cultures were inoculated to an initial optical density of 

OD600=0.005, and incubated on a rotary shaker at 30°C until stationary phase was reached. 

OD600 was measured regularly (Ultrospec, GE) and the maximum specific growth rate (µmax, 

h-1) as a function of water potential was calculated by linear regression on ln-transformed 

OD-values versus time.  

 

Table 2. Reduction in water potential by NaCl (SP) and PEG8000 (MP) addition. 

 

 

 

 

 

3. Transposon mutant libraries 

Two different transposon mutant libraries of S. wittichii RW1 were created in order to 

identify genes important for solute stress survival. The first involved the plasmid 

pRL27::miniTn5 (Larsen et al., 2002) and the second a modified version, the plasmid 

pRL27::miniTn5-egfp.  

 

To produce the first library, S. wittichii RW1 and E. coli BW20767 (pRL27::miniTn5) 

overnight cultures were mixed in a 2/1 ratio (2 ml/1 ml) and centrifuged for 2 min at 8,000 

rpm. The supernatant was discarded and the cell pellet resuspended in 50 µl of saline solution 

(NaCl 0.9%). The 50 µl droplet was placed on the surface of an LB plate and incubated at 

30°C overnight. After incubation, the cell layer was recovered with a sterile loop, 

Water potential 
reduction (MPa) 

NaCl (g/L) mM PEG 8000 (g/L) mM 

- 0.5 2.9 50 27.6 3.2 
-1.0 5.8 100 40.6 5 
-1.5 11.6 200 59.6 7.5 
-2.0 17.4 300 73.6 9.2 
-2.5 28.9 510 95.4 12 
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resuspended in 1 ml saline solution and 150 µl aliquots were plated on selective media 

(MM+SAL+Km). The plates were incubated at 30°C during several days and when colonies 

were visible they were picked individually for replicate screening. 

 

Plasmid pRL27::miniTn5-egfp was constructed by ligating an Asp718-digested and 

5’end Klenow filled pRL27-DNA to the SmaI-EcoRV egfp fragment of pPROBE (Miller et 

al., 2000). The ligation mixture was used to transform E. coli BW20767 (Metcalf et al., 

1996). A colony of E. coli carrying pRL27::miniTn5-egfp was selected and used to perform a 

conjugation with S. wittichii RW1. Overnight cultures of RW1 and E. coli BW20767 

(pRL27::miniTn5-egfp) were mixed in a 2/1 ratio (2 ml/1 ml) as described above. Colonies 

growing on MM+SAL+Km plates were washed off with saline solution and kept as mutant 

library mix. The library was divided in 1 ml aliquots which were stored at -80°C. 

 

4. Transposon library screening 

The S. wittichii RW1 pRL27-miniTn5-generated library (library 1) was screened for 

growth impairment by replica plating on medium with NaCl (-1.5 MPa decrease). Individual 

colonies were picked from MM+SAL+Km plates and replica plated in parallel on control 

plates (MM+SAL+Km) and NaCl-amended MM+SAL+Km agar plates, which contained a 

NaCl concentration of 11.6 g/L, equivalent to a SP of -1.5 MPa. Colonies that failed to grow 

on MM+SAL+Km-NaCl but grew on control plates were selected for further 

characterization.  

 

The pRL27-miniTn5 library 1 was also used for growth deficient clones in a flow 

cytometric (FC) procedure in which individual cells were encapsulated in agarose beads. 

(FC). Encapsulated cell mixtures were prepared as follows: a single frozen Tn5 mutant 
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library aliquot was grown until stationary phase in MM+SAL and subsequently diluted to an 

OD600 of 0.1, which allowed the encapsulation of approximately one single cell per bead. 

Empty beads and beads carrying a high number of cells (initial cell culture OD ~1.4) were 

prepared as FC controls. All the material to be used (tubes, tips, pluronic acid) was preheated 

at 42°C and the procedure was carried out at 37°C. Fresh 2.5% agarose solution was prepared 

in deionized water and stored at 55°C, and transferred at 42°C only 20 min before starting the 

protocol. One ml of preheated 2.5% agarose solution was mixed with 30 µl of pluronic acid 

(Pluronic F-68 solution 10%, Sigma-Aldrich) by vortexing for one minute. After that 200 µl 

of cell suspension were added to the agarose solution and vortexed during one additional 

minute. A total of 500 µl of this agarose-cell mixture were transferred drop by drop into 15 

ml of silicone oil (dimethylpolysiloxane, Sigma-Aldrich) preheated at 37°C while vortexing 

simultaneously (2 min). The tube was immediately plunged into crushed ice and left for 10 

min, after which it was centrifuged for 10 min at 2’000 rpm. The oil was decanted, the beads 

were resuspended with 15 ml of PBS solution (phosphate buffered saline) and the residual oil 

was removed. The bead suspension was passed through a sieve of 70 µm pore size and both 

filtrate (<70 µm fraction) and beads remaining on the sieve (>70 µm fraction) were retained. 

The filtrate was then passed through a 40 µm-pore sieve, resulting in a 70-40 µm (filter cake 

fraction) and <40 µm fraction (filtrate from second sieving). After preliminary tests on FC, 

the beads with a size lower than 40 µm were kept for further microcolony growth screening. 

 

Agarose beads containing (miniTn5 mutant library) cells were analyzed by flow 

cytometry (FACSAria, BD Biosciences) and using the BD FACSDiva software (version 

6.1.3). An aliquot containing the cells-beads solution was stained by adding 1/1000 volume 

of SYTO®9 solution (Invitrogen) and incubated in the dark for 15 min. Stained cell-bead mix 
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was aspirated at approximately 50-100 µl/min and FSC, SSC and Green Fluorescence (FITC-

channel) were recorded. 

 

Gates were set using the free RW1 cell suspension (Figure 4A), a suspension of 

empty beads (Figure 4B), or beads prepared with RW1 cultures with an OD600 of 1.4 (Figure 

4C) and 0.07 (Figure 4D). Gate P4 corresponds then to the beads carrying a high cell number 

of cells while P5 includes beads with a low cell density. The presence of cells in beads from 

gates P4 and P5 was confirmed by sorting and subsequent epifluorescence/phase-contrast 

microscopy. After setting an accurate drop delay value (Accudrop protocol, BD FACSAria), 

P5 beads were sorted and recovered in a tube (Settings: Voltage FSC 25, SSC 383, FITC 429 

/ Threshold FSC 1000). Approximately 900’000 events were recovered in 1.4 ml of media. 

The P5 subpopulation was then divided in three fractions, adding to one of them MM+Km 

(no carbon), to the second MM+Km+SAL (0.5 mM) and to the last one 

MM+Km+SAL+NaCl (-1.5 MPa). The salicylate concentration (0.5 mM) was lower in this 

experiment to avoid microcolonies developing too large and exploding the beads. Bead 

suspensions were incubated at 30°C and 100 rpm for 3 days. A bead sample was analysed for 

microcolony growth every day by staining, FC and epifluorescence microscopy. Gates were 

adjusted with FITC versus SSC signals: Gate P1 corresponding to beads containing 

developed microcolonies (high fluorescence) and gate P2 corresponding to beads containing 

non-developed microcolonies (low fluorescence). Beads, which after 3 days of incubation 

entered in the P2-gate, were again sorted out individually and placed as microdroplets 

directly on MM+SAL+Km agar plates. Plates were incubated at 30°C until regular RW1 

colonies were visible (~7 days). Transposon mutant colonies were then rescreened in liquid 

cultures to determine growth rates and biomass yields in presence or absence of NaCl at  -1.5 

MPa. 
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The RW1 miniTn5-egfp library (library 2) was screened for cells producing a higher 

eGFP signal under growth conditions with decreased SP compared to the signal in control 

media. The assumption here was that an increased eGFP production under lower water 

potential would indicate that the insertion of the transposable element is within or close to a 

gene higher expressed under solute stress, and thus perhaps implicated in resisting this stress. 

A 1 ml aliquot of the library mix was taken out of the -80° storage, slowly thawed, diluted in 

50 ml of fresh media (MM+SAL+Km) and incubated overnight at 30°C on a rotary shaker at 

180 rpm. Single cell eGFP intensities in the library mutant cultures were determined by flow 

cytometry (FACSAria, BD Biosciences). Pure cultures of RW1 and E. coli BW20767 were 

employed to define the fluorescence level of cells not expressing eGFP (Figure 7A and 7B, 

P1 gate). An RW1 transposon mutant recovered from plate showing a constitutive eGFP was 

selected to define the high fluorescence gate (Figure 7C, P2 gate).  

 

To screen the mutant library we first wished to discard the P2 subpopulation of cells 

expressing high eGFP fluorescence since it would contain constitutively eGFP-producing 

clones. Thus the P1 subpopulation was recovered by cell sorting (Settings: Voltage FSC 200, 

SSC 300, FITC 300 / Threshold FSC 1000), transferred to an Erlenmeyer flask containing 20 

ml of MM+SAL+Km and again incubated overnight with rotary shaking. This depleted 

mutant culture was then divided in two fractions. To one of them 1 ml of a NaCl solution 

(116 g/L) was added to achieve a decrease in water potential of -1.5 MPa, whereas to the 

other we added 1 ml of sterile water (control). The cultures were incubated in a rotary shaker 

and after 2 and 6 hours of incubation, a 5 ml aliquot was taken from each flask to measure the 

fluorescence level of individual cells by FC. In this case, we focused on the cells having high 

eGFP fluorescence (P2 gate), assuming they might contain mutants with insertions near 

NaCl-inducible promoters. Cells in the P2-gate were sorted, transferred to new Erlenmeyer 
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flasks containing 20 ml of MM+SAL+Km and grown until an OD600 of around 0.6. NaCl 

exposure was repeated once more and the cells falling into the P2 gate from the NaCl 

exposed cultures (both after 2 and 6 h) were again sorted. The recovered P2 cells were now 

directly plated on MM+SAL+Km agar plates and incubated at 30°C until colonies developed. 

Individual colonies were picked up and transferred to 96-well microtiter plates containing 

200 µl of MM+SAL+Km per well. In total 768 individual colonies in 8 microtiter plates were 

picked and kept as master plates. The master plates were used to inoculate two series of new 

microtiter plates, 8 plates containing control media (MM+SAL+Km) and 8 plates with NaCl-

amended media (MM+SAL+Km+NaCl -1.5 MPa). The eGFP intensity and OD600 of NaCl-

exposed plates were measured after 2, 4, 8 and 20 h using a FLUOstar Omega plate reader 

(BMG Labtech), and compared to those in the control plates (without NaCl addition). eGFP 

intensities were then normalized by the culture density. 

 

The growth rates of the different transposon mutant selected on NaCl-exposed 

conditions were calculated in MM+SAL+KM+NaCl media and compared to the growth in 

MM+SAL+Km control media. The growth rate was determined as a linear regression of the 

ln-transformed OD-values as a function of time. 

 

5. Identification of miniTn5 insertion sites 

Total DNA of RW1 transposon mutants was extracted with the Xanthogenate method 

by Tillett and Neilan (2000). Briefly, overnight cell cultures were pelleted, resuspended in 

Xanthogenate lysis buffer (0.5 g Potassium Ethyl Xanthogenate, 10 ml 4M Ammonium 

Acetate, 5 ml 1M Tris-HCl pH 7.4, 2 ml 0.45M EDTA, 2.5 ml 20% SDS in 50 ml of H2O) 

and incubated at 65°C during 2 h. Cell debris was removed by centrifugation and the 

supernatant was transferred to a new tube into which one volume of 
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phenol:chloroform:isoamyl alcohol (25:24:1) was added and mixed until emulsion formed. 

After centrifugation, the DNA in the aqueous phase was recovered, precipitated with 

isopropanol, then washed once with 70% ethanol, dried and finally resuspended in 200 µl of 

H2O. DNA was digested overnight in 20 µl with SacII (which does not cut inside the 

transposon), diluted to 100 µl, and treated with T4 DNA ligase to produce self-circularized 

fragments. This ligation mixture was transformed into E. coli DH5αλpir and plated on agar 

medium containing Km. Circularized fragments containing the transposon replicate as 

plasmids because of the existing origin of replication, and were purified from the E. coli 

transformants. Plasmid DNA was then used as template for BigDye® terminator sequencing 

according to the protocol of the supplier (Applied Biosystems), and using primers tnpRL17-1 

for miniTn5 and tnpRL17-2 or GFPout for miniTn5-egfp. 

 

6. Southern blot hybridization 

The presence of unique transposon insertions in six randomly picked RW1 transposon 

mutants was analyzed by Southern blot hybridization. Total DNA of transposon mutants was 

extracted by the Xanthogenate method described above. 2 µg of DNA were digested with 

SacII in a volume of 20 µl. The digested DNA was loaded on a 200 ml agarose gel (1.5%) 

and run slowly overnight at 4°C. The DNA was depurinated by soaking the agarose gel in 

0.25 M HCl during 15 min with agitation. The gel was then placed on a vacuum blotter and 

the DNA denaturized by adding a solution of 0.5 M NaOH plus 1.5 M NaCl. Next the gel 

was neutralized with a solution of 1 M Tris-HCl plus 1.5 M NaCl at pH 7.6, and the DNA 

was transferred to an N-bond membrane (Whatman) on a vacuum blotter (Amersham) using 

20 x SSC buffer (SSC is 3 M NaCl plus 0.3 M Sodium Citrate at pH 7.6). The DNA on the 

membrane was then again denatured by rinsing with the NaOH/NaCl solution, and 
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neutralized with the Tris-HCl/NaCl solution. DNA in the membrane was crosslinked in a UV 

Stratalinker (UVP) at 1800 J, and afterwards washed with 2x SSC buffer. The membrane was 

placed in a hybridization bottle and 15 ml of hybridization buffer (5x SSC buffer, 2x 

blocking reagent [Roche], 0.1% N-Lauroylsarcosine, and 0.02% SDS) were added. A DIG- 

labeled probe was prepared by PCR amplification of the Km resistance gene using the 

primers npt-fw and npt-rev (457 bp amplicon) on pRL27, with a mixture of 

deoxyribonucleotides containing DIG-11-dUTP (Roche). The DIG-probe was denatured for 

10 min at 95°C and then chilled at 4°C. 10 µl of the DIG-probe were added to the 

hybridization buffer contained in the bottle and the membrane was incubated 16 h at 65°C in 

the hybridization oven. The membrane was next removed from the oven and washed twice 

with a solution of 2 x SSC/ 0.2% SDS, and, finally, with a solution of 0.1 x SSC/ 0.1% SDS. 

Detection of the DIG-marker was performed using anti-DIG antibody and CSPD 

chemiluminescent substrate according to the recommendations of the supplier (Roche). The 

membrane was then exposed to an X-ray film in a cassette at 37°C during 15 min and the 

film was developed in an X-ray film processor (Curix60, AGFA).  
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Results 

 

Effect of decrease in solute and matric potential on growth rate of S. wittichii RW1 

The effect of decreasing water potential on the growth rate of S. wittichii RW1 in 

control media (with a water potential of -0.23 MPa) was tested by addition of increasing 

amounts of NaCl or PEG8000. Growth rates of RW1 diminished in a similar manner with 

decreasing water potential below -0.5 MPa upon NaCl or PEG addition (Figure 1A and 1B, 

respectively). At a water potential of -1.5 MPa the growth rate of the strain RW1 decreased to 

40% and 60% (for SP and MP respectively) of the control. When the water potential 

decreased to -2.5 MPa below the control medium, the growth rate decreased by 80% (SP) and 

70% (MP). Interestingly, a small consistent increase in growth rate was observed at salt 

concentrations invoking a water potential decrease of -0.25 and -0.5 MPa, suggesting the 

cells need slightly more salt than provided in the basal growth medium. A water potential of -

1.5 MPa was selected as the condition for mutant library screening, since it clearly decreased 

growth rates of RW1, but did not arrest growth completely.  

 

MiniTn5 transposon mutant screening 

A library of around 13,000 RW1 transconjugants was obtained in the conjugation 

procedure between S. wittichii RW1 and E. coli BW20767 (pRL27::miniTn5) as donor. Six 

clones were picked randomly, the total DNA was isolated, digested and hybridized against a 

probe targeting the Km resistance gene. Southern blot hybridization results showed that a 

single transposon insertion had occurred in every mutant, and at a different genomic position 

(Figure 2), suggesting that a true transposition event had taken place.  
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Figure 1. Growth rate of S. wittichii RW1 in MM+SAL as a function of water potential decrease by NaCl (A) or 

PEG (B). Redrawn from Johnson et al. (2011). 

 

 

Figure 2. Southern blot showing the transposon insertions in SacII-digested DNA from six randomly chosen 

RW1 transposon mutants. The DIG-labeled probe used was a fragment from the Km resistance gene. W, wild 

type RW1; 1-6, RW1 transposon mutants.  

 

 

To screen for mutants carrying a transposon insertion in essential genes for NaCl 

stress resistance, 600 colonies were replica streaked on control medium plates and plates 

supplemented with NaCl to a calculated (additional) water potential decrease of -1.5 MPa. 

Three clones were detected, which no longer grew on NaCl-amended plates. The transposon 

insertions were located in genes Swit_2730, Swit_2731 and Swit_3468. The gene Swit_2730 



 177 

is annotated as a hypothetical protein, gene Swit_2731 codes for an aconitase-domain protein 

and gene Swit_3468 codes for an RNA polymerase β subunit. The growth rate of the mutants 

was determined by growth on MM+SAL+Km media and NaCl-supplemented media. 

Unfortunately, only clone 355, carrying the insertion in gene Swit_3468 was able to regrow 

in liquid cultures. The growth rate of clone 355 (Table 3) was indeed lower than the growth 

rate of the WT strain, both in control media and NaCl-supplemented media.  

 

A second library of approximately 22,000 transconjugants was obtained and some 

2000 colonies were streaked in parallel in control agar and NaCl-amended plates. Eight 

colonies were found to be impaired in growth in the presence of NaCl and the insertion sites 

of the transposons were determined (Table 3). Two clones had an insertion in Swit_2710, 

coding for a pseudouridine synthase C (clones 1-G3 and 3-G2), one clone in Swit_2958, 

coding for a BadM/Rrf2 family transcriptional regulator (clone 6-D11), and one with an 

insertion in the intergenic region between Swit_3114 and Swit_3115, which code for a 

hypothetical protein and ribosomal protein L36,  respectively (clone 6-E3). We found one 

insertion in Swit_3770, coding for an AMP-dependent synthetase / ligase (clone 6-G5), one 

insertion in Swit_4693, coding for a protein-disulfide isomerase-like protein (clone 7-D4), 

and finally, two clones with insertions in the intergenic region between Swit_5333 and 

Swit_5334 (clones 5 and 10-G5). These open reading frames code for a hypothetical protein 

and cell division FtsK/SpoIIIE, respectively. 

 

The growth rates of the transposon mutants in NaCl-supplemented media compared to 

control media were generally lower (Table 3). However, when comparing their growth curves 

with that of the WT, we observed various differences. A group of four mutants (6-G5, 3-G2, 

6-E3 and 1-G3) grew slower both in control and NaCl medium, reaching a low final OD600 
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compared to WT grown in both media. These we considered as salt-sensitive mutants. Four 

other mutants (10-G5, 7-D4, 6-D11 and clone 5) showed a growth lag of 24 h in salt medium 

compared to WT and a random control Tn5-mutant. However, these mutants reached the 

same final OD600 on salt medium as the WT, but only after a longer time period. These 

mutants were characterized as slower growers in presence of NaCl.  

 

This same mutant library was also screened by agarose beads encapsulation and by 

FC analysis and sorting, following a procedure illustrated schematically in Figure 3. Agarose 

beads of a size lower than 40 µm and mostly containing single cells were prepared. Then the 

different samples were passed through the flow cytometer. The free cell suspension (Figure 

4A), empty agarose beads (Figure 4B) and agarose beads prepared with high (Figure 4C) and 

low density cultures (Figure 4D) allowed the definition of gates corresponding to the beads 

containing a high number of cells (P4) and beads with only one or two cells per bead (P5). 

Microscope images taken immediately after sorting out the different populations confirmed 

that the settings in gating were correct (Figures 4E to 4H). 
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Figure 3. Schematic diagram of the agarose encapsulation-flow cytometry screening procedure followed to 

detect NaCl sensitive transposon mutants.  
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Figure 4. Flow cytometer diagrams and corresponding microscope images of green fluorescence versus forward 

scatter (FSC) of S. wittichii RW1 miniTn5 mutant cells embedded or not in agarose beads and stained with 

SYTO®9. MiniTn5 mutant library as free cells (A, E), empty agarose beads (B, F), agarose beads prepared with 

a highly concentrated cell culture OD600~1.4 (C, G), or with a diluted cell culture OD600~0.07 (D, H). P4, gate 

with beads with high cell density; P5, beads with low cell density. 

 

 

Figure 5. Microcolony growth inside agarose beads exposed to different media. Bead with cells on MM with no 

carbon added (A), in MM+SAL 0.5 mM (B), or in MM+SAL 0.5 mM supplemented with NaCl. Images show 

phase-contrast at 400 x magnification. 

 

 

Around 7200 beads were recovered from P5 gate, which corresponds to the beads 

containing a low cell density, ideally one or two cells. These beads were further exposed to 

conditions of no carbon, MM+SAL or MM+SAL supplemented with NaCl. 
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This FC screening protocol allowed the selection of 400 clones which formed small 

microcolonies within beads in salt conditions (Figure 5C), comparable to those formed in 

media without any added carbon (Figure 5A). In contrast, much larger microcolonies formed 

in regular medium with SAL (Figure 5B). The clones were individually recovered on 

MM+SAL+Km agar plates. Thirty mutants developed into colonies on plate after sorting, and 

their growth rate was re-examined in MM+SAL+Km compared to MM+SAL+NaCl+Km. 

Unfortunately, from the 30 recovered mutants, only one clone displayed repeatedly slower 

growth under salt conditions (Table 3, clone FACS26). The transposon insertion site was 

sequenced and this clone carries a mutation in the gene Swit_5337 (GreA/GreB family 

elongation factor), which is thought to interact with RNA polymerase for an efficient 

transcription. The mutant FACS 26 showed a small growth delay in salt liquid medium and 

the growth rate was lower in both control and salt media, compared to the WT strain in both 

growth conditions (Table 3). This mutant was thus characterized as a slower grower in salt 

conditions.  

 

As an alternative to the traditional replica plating screening, which is a rather long and 

tedious process, and to the agarose beads screening, which gave us a very low recovery (only 

one clone consistently had a lower growth in salt media), a third screening method was 

developed by creating a new transposon mutant library using the miniTn5-egfp construct. A 

library of around 22,000 mutants was obtained by conjugation of RW1 and E. coli BW20767 

(pRL27::miniTn5-egfp). In this case, the mutant library was screened for an increased eGFP 

signal in single cells when exposed to media with decreased SP (-1.5 MPa). The procedure 

followed is depicted in Figure 6. 
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Figure 6. Diagram of the egfp-flow cytometry screening of transposon mutants followed to detect genes with a 

higher expression in the presence of NaCl. 

 

 

Cells of RW1 WT (Figure 7A) and BW20767 (pRL27::miniTn5-egfp) (Figure 7B) 

were used to define a low fluorescence gate, P1. One particular RW1 (miniTn5-egfp) clone 

showing a constitutive high green fluorescence and retrieved from plate, was used to set the 

high fluorescence gate, P2 (Figure 7C). The FC dot plot of the RW1 mutant library showed 

that the library contains both cells with a low and a high fluorescence (Figure 7D). The cells 

falling into the P2 gate were discarded since we assumed they include mostly constitutively 

eGFP-producing clones. The cells in the P1 gate were sorted out and used to expose to NaCl. 
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After two rounds of NaCl exposure and fluorescence assisted sorting of potentially 

induced cells from P2, some 7000 cells were recovered from P2 and deposited on agar plates 

for culturing. 768 Colonies were picked and rescreened in 96-well microtiter plate format for 

growth and fluorescence in the presence of NaCl compared to control growth conditions. A 

total of 45 mutant strains displayed a culture-density normalized eGFP signal 1.3 to 2 times 

higher when exposed to NaCl than in control media. After repeated verification, 16 of the 45 

clones showed consistent higher normalized eGFP fluorescence when exposed to NaCl 

compared to the control (Figure 8). In some of clones the signals developed only after 4 h and 

in others after 8 h of NaCl-exposure. On average, normalized GFP signals in NaCl-induced 

cultures were between 1.3 to 1.6 times higher than in the control (Table 3). 

 

Regarding their growth rates in salt media, one group of mutants (A1, B1, C3, F3, 

B12, G1, G8 and F1) showed a higher growth rate than the WT grown in the same NaCl-

amended media. A second group of clones (H12, H5, A8 and A9) had a diminished growth 

rate in salt media when compared to the WT strain. A third set of mutants (D6, H10, C7 and 

F8) had a growth rate similar to the one observed in WT in salt exposure-conditions.  

 

The miniTn5 insertion sites of 14 of the 16 clones were determined. Clone H12 was 

not able to regrow and the sequence of clone A8 could never be recovered, despite numerous 

attempts (Table 3). Ten out of the 14 recovered insertion sites were identical and had 

occurred within the gene Swit_3298, which codes for a protein from the family of 

glyoxalase/bleomycin resistance/dioxygenase. Two further clones were identical but had an 

insertion in the gene Swit_4143. This gene codes for a 5-oxoprolinase, which is involved in 

proline metabolism, catalyzing the interconversion of L-glutamate to 5-oxo-L-proline. One 

transposon insertion localized in Swit_0265, which is annotated as a glutamate synthase, 
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involved in conversion of 2-oxoglutarate and L-glutamine into L-glutamate. The last clone 

identified carries an insertion in Swit_3912, which is annotated as an iron-sulfur cluster 

assembly protein.  

 

 

 

Figure 7. Flow cytometer diagrams of green fluorescence versus forward scatter (FSC) of S. wittichii RW1 wild-

type cells (A), E. coli BW20767 (pRL27-egfp) (B), RW1 (miniTn5-egfp) with constitutively high eGFP 

production (C), and the uninduced RW1Tn5-egfp library (D). P1 was used as gate for low fluorescence whereas 

P2 was used to differentiate cells with high green fluorescence.  

 

 

 

Figure 8. Culture-density normalized eGFP values in selected RW1 mutants, which showed consistent increase 

in NaCl-amended compared to control conditions. Measurements show values after 4 and 8 h of exposure.  
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Table 3. Summary of insertion sites, gene names, growth rates (m, h-1) in control media (Ctrl), NaCl-supplemented media (NaCl) of 

RW1 WT and miniTn5 mutant strains. The mutants obtained with the miniTn5 were screened by replica plating and agarose bead 

encapsulation. The mutants obtained with the miniTn5-egfp procedure were selected basis of a higher eGFP production after NaCl 

exposure. A transposon mutant with no observed growth impairment is included (Positive). 

 

Clone Insertion site Gene annotation µ Ctrl (1/h) µ NaC (1/h)l Ctrl Ratio 
µWT/µΜut  

NaCl Ratio 
µWT/µMut 

Ratio 
µCtrl/µNaCl 

Ratio 
eGFPCtrl/GFPNaCl 

Tn5          4h 8h 
WT avg   0.060±0.01 0.027±0.004 1 1 2.2   
Positive avg   0.043±0.01 0.026±0.004 1.4 1 1.6   
355 Swit_3468 RNA polymerase β subunit 0.044±0.002 0.029±0.001 1.1 0.8 1.5   
6-E3 Intergenic 

Swit_3114-
Swit_3115 

Hypothetical protein 
Ribosomal protein L36, rpmJ 

0.021 ± 0.0009 0.011 ±0.0007 2.6 1.8 1.9   

7-D4 Swit_4693 Protein-disulfide isomerase-
like protein 

0.053±0.005 0.027±0.001 1.3 1.1 1.9   

3-G2 Swit_2710 Pseudouridine synthase C, 
RluA family 

0.024±0.0003 0.007±0.0008 2.3 2.8 3.3   

1-G3 Swit_2710 Pseudouridine synthase C, 
RluA family 

0.028±0.002 0.011±0.001 2.6 2.4 2.5   

6-G5 Swit_3770 AMP-dependent synthetase 
and ligase 

0.033±0.001 0.017±0.0009 1.5 1.5 2   

5 Intergenic 
Swit_5333-
Swit_5334 

Hypothetical protein 
Cell division FtsK/SpoIIIE 

0.035±0.0003 0.024±0.0003 1.4 1 1.4   

10-G5 Intergenic 
Swit_5333-
Swit_5334 

Hypothetical protein 
Cell division FtsK/SpoIIIE 

0.064±0.005 0.023±0.0009 1 1.4 2.7   

6-D11 Swit_2958 BadM/Rrf2 family 
transcriptional regulator 

0.057±0.0009 0.026±0.0005 0.9 1 2.2   

FACS26 Swit_5337 GreA/GreB family elongation 
factor 

0.043±0.002 0.015±0.0004 1.4 1.7 2.8   
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Tn5-gfp              
A1 Swit_3298 Glyoxalase/bleomycin 

resistance/dioxygenase 
0.047±0.001 0.037±0.004 1.3 0.7 1.2 1.1 1.3 

B1 Swit_3298 Glyoxalase/bleomycin 
resistance/dioxygenase 

0.043±0.003 0.034±0.007 1.4 0.8 1.2 1.1 1.2 

C3 Swit_3298 Glyoxalase/bleomycin 
resistance/dioxygenase 

0.040±0.009 0.047±0.001 1.5 0.5 1 1.3 1.5 

F3 Swit_3298 Glyoxalase/bleomycin 
resistance/dioxygenase 

0.021±0.005 0.043±0.003 2.8 0.6 0.5 1.6 1.6 

B12 Swit_3298 Glyoxalase/bleomycin 
resistance/dioxygenase 

0.049±0.006 0.037±0.004 1.2 0.7 1.3 1.2 1.2 

H12 ND  0.025±0.006 0.007±0.0008 2.3 3.8 3.6 1.2 1.3 
G1  Swit_3298 Glyoxalase/bleomycin 

resistance/dioxygenase 
0.040±0.003 0.032±0.003 1.5 0.8 1.2 1.1 1.2 

G8 Swit_4143 Hydantoinase/oxoprolinase 
domain protein 

0.042±0.004 0.039±0.004 1.4 0.6 1 1.1 1.1 

H5 Swit_3298 Glyoxalase/bleomycin 
resistance/dioxygenase 

0.047±0.007 0.016±0.0007 1.3 1.7 3 1.2 1.3 

D6 Swit_0265 Glutamine amidotransferase 0.041±0.003 0.025±0.002 1.4 1 1.6 1.3 1.2 
H10 Swit_4143 Hydantoinase/oxoprolinase 

domain protein 
0.040±0.004 0.027±0.0005 1.4 1 1.4 1.2 1.2 

C7 Swit_3298 Glyoxalase/bleomycin 
resistance/dioxygenase 

0.042±0.0004 0.026±0.0003 1.4 1 1.6 1.2 1.1 

A8 ND  0.046±0.002 0.022±0.0014 1.3 1.2 2.1 1.1 1.2 
F8 Swit 3298 Glyoxalase/bleomycin 

resistance/dioxygenase 
0.044±0.0004 0.025±0.0017 1.3 1 1.7 1.2 1.2 

A9 Swit_3298 Glyoxalase/bleomycin 
resistance/dioxygenase 

0.046±0.0002 0.024±0.001 1.3 1.1 1.9 1.2 1.2 

F1 Swit_3912 Iron-sulfur cluster assembly 
accessory protein 

0.046±9E-05 0.039±0.002 1.3 0.6 1.1 1.1 1.3 
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Discussion 

 

Water stress has been considered as a major constraint in the survival of bacteria in 

the environment. We confirmed that exposing RW1 to media with decreasing solute or matric 

potential provoked a decrease in its growth rate compared to control conditions.  

 

One way to obtain a closer understanding of the genes involved in the resistance to 

water stress is to create a transposon mutant library and to screen for mutants with altered 

phenotypes. Three strategies were used here: in the first case we tested for reduced growth of 

mutants on agar plates with decreased water potential in comparison to control plates. In the 

second case, we screened for small-sized microcolonies embedded in agarose beads grown in 

NaCl-supplemented media. In the third strategy, we tested for increased expression of egfp in 

cells exposed to medium with lower water potential, with the idea that when the egfp 

transposon inserts in a gene that is higher expressed under lower water potential, it may be 

detected in the screen. Two types of mutant libraries were thus developed, the first using 

pRL27::miniTn5 and the second pRL27::miniTn5-egfp. With the first type of mutant library, 

11 clones were identified that could no longer grow on NaCl-amended agar plates (-1.5 

MPa). The insertion sites (Table 3) were localized in genes Swit_2730, Swit_2731 and 

Swit_3468, Swit_2710 (two clones), Swit_2958, the intergenic region between Swit_3114 

and Swit_3115, Swit_3770, Swit_4693 and the intergenic region between Swit_5333 and 

Swit_5334 (two clones) . 

 

Swit_2730 (coding for a hypothetical protein) is located upstream of Swit_2731 

(aconitase-domain containing protein). It has no similarity with other known genes, except 

for two hypothetical proteins from Sphingobium chlorophenolicus L1 and Sphingobium 
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japonicum UT26S. Interestingly, the two hypothetical proteins in the Sphingobium species 

and the one of S. wittichii RW1 have similar genes in their vicinity: folC (for dihydrofolate 

synthase), trpAB (for tryptophan synthase α and β) and accD (for acetyl-CoA carboxylase 

transferase β), all of which are involved in central metabolism. Johnson et al. (2011) found 

10-fold lower expression of Swit_2730 in S. wittichii RW1 cultures grown on media 

amended with PEG to mimic matric stress compared to non-stressed medium.  

 

The downstream gene, Swit_2731 (aconitase-domain containing protein) could be 

involved in the TCA cycle catalyzing the reaction of isomerization of citrate into isocitrate 

via the intermediate cis-aconitate. In other organisms, the aconitase gene has been implicated 

in multiple functions other than TCA cycle. In E. coli, an aconitase gene is activated by the 

SoxRS oxidative stress regulatory system (Gruer and Guest, 1994; Cunningham et al., 1997) 

while a second aconitase is activated by the ferric uptake regulator (Gruer and Guest, 1994). 

In Caulobacter crescentus, an aconitase gene product was found to be part of a degradosome 

(Hardwick et al., 2010). In Bacillus subtilis, the CitB aconitase is both an enzyme and an 

RNA binding protein, and citB mutants are defective in sporulation, suggesting that the 

aconitase acts as an RNA binding regulatory protein (Serio et al., 2006). The interruption of 

genes Swit_2730 and Swit_2731, putatively involved in the TCA cycle, reduce the ability of 

RW1 to resist salt induced stress, suggesting that the metabolic activities in which they are 

involved, contribute to the resistance process. 

 

The third gene, Swit_3468 codes for a RNA polymerase β subunit, with a gene size of 

4368 bp. The miniTn5 insertion is located 480 bp before the end of the gene. The RNA 

polymerase β could thus still be functional, but perhaps with a lower activity than the wild-
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type polymerase. An extra stress imposed to the cells by means of NaCl exposure could 

affect to a higher degree the growth of the mutant clone.  

 

Two mutants carried the transposon in Swit_2710, but with slightly different insertion 

position of the transposon (~500 bp). Swit_2710 codes for a pseudouridine synthase C that 

belongs to the four-membered RluA family (RluA, RluC, RluD and TruC). These enzymes 

are involved in the modification of uridine to pseudouridine (the C5-glycoside isomer of 

uridine) in RNA (Hamma and Ferré-D’Amaré, 2006). Interestingly, an E. coli mutant with a 

truncated version of rluD could not form pseudouridine and showed poor growth (Gutgsell et 

al., 2001). The growth deficit was independent of pseudouridine depletion, which suggests 

that pseudouridine synthase possesses an additional function in growth regulation (Gutgsell et 

al., 2001). RluA has been found to be induced in conditions of high salinity in Yersinia pestis 

(Han et al., 2005) and Qiao et al., (2013) related the gene pseudouridine synthase to a stress 

response function. This suggest that pseudouridine synthase has a role in the cells resistance 

to stress conditions. 

 

One transposon insertion localized in gene Swit_2958. This gene encodes for a 

BadM/Rrf2 family transcriptional regulator. Interestingly, transposon insertions in Swit_2958 

were also underrepresented in the mutant library cultured for 50 generations on salt medium 

(Roggo et al., submitted). Since this gene encodes a transcriptional regulator, it could perhaps 

modulate the expression of neighboring genes or of other genes important for water stress 

response. Directly upstream of Swit_2958 is a gene (Swit_2957) coding for an OsmC family 

protein. OsmC is induced by elevated osmolarity in E. coli and was speculated to have a 

peroxiredoxin activity working as scavenger for reactive oxygen species (Gutierrez and 

Devedjian, 1991; Shin et al., 2004). Although Swit_2957 itself was not identified as being 
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differentially represented in the mutant libraries, another gene for an OsmC family protein 

(Swit_3232) was indeed underrepresented in the library grown for 50 generations on NaCl 

medium (Roggo et al., submitted).  

 

One transposon inserted in the intergenic region between Swit_3114 and Swit_3115. 

Swit_3115 encodes a ribosomal protein L36 that constitutes the large subunit of the 

ribosome, which was shown as non-essential for protein synthesis or ribosome integrity in E. 

coli (Ikegami et al., 2005). Swit_3114 codes for a hypothetical protein and had already been 

identified as being 2.4 times up-regulated in a genome-wide transcription analysis of RW1 

cells under a short-term perturbation with NaCl (-0.25 MPa) (Johnson et al., 2011). 

Interestingly, the gene was also up-regulated in S. wittichii RW1 cells inoculated in sand for 

30 minutes (Silvia Moreno, unpublished data). In addition, mutants in this intergenic region 

were underrepresented in the mutant library sequences after 50 generations growth on salt 

medium (Roggo et al., submitted). All these results suggest that Swit_3114 plays a role when 

the cells have to deal with water stress. In contrast, both Swit_3114 and Swit_3115 were 

differentially regulated when S. wittichii RW1 was growing on dibenzofuran compared to 

cells growing on phenylalanine (Coronado et al., 2012). This suggests that it is also involved 

in other types of stress, such as exposition to a toxic compound.  

 

Swit_3770 is annotated as an AMP-dependent synthetase and ligase, but its function 

is not known. This gene has a similarity to the long-chain acyl CoA-synthetase from 

Amycolatopsis mediterranei (361 bp overlap) by BLAST comparison, thus could be 

putatively involved in fatty acid biosynthesis.  
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One mutant contained a transposon in a gene coding for a protein-disulfide isomerase-

like protein (Swit_4693). Protein-disulfide isomerases catalyze the structural change of 

disulfide bonds in proteins and play a role in proper protein folding. Therefore, Swit_4693 

may have a role in maintaining folding of damaged proteins in cells exposed to salt stress. 

The gene was also differentially regulated in RW1 cells exposed during 6 hours to 

dibenzofuran compared to phenylalanine-grown cells (Coronado et al., 2012). 

 

Two clones were recovered with a transposon inserted in another intergenic region 

(between the genes Swit_5333 and Swit_5334), but this insertion is unlikely to disrupt a 

promoter, because the genes are facing inwards. Swit_5333 and Swit_5334 encode, 

respectively, a hypothetical protein and the cell division protein FtsK/SpoIIE. This last one is 

a member of the division machinery that participates in the cell fission. A differential 

expression of an ftsK gene was demonstrated in P. putida KT2440 after exposure to 0.8 M 

urea, which was used to create a negative matric potential (Reva et al., 2006). However, since 

this gene has a general role in cell division, its function does not seem specific to water stress. 

Perhaps it is likely that the phenotype of growth delay in liquid cultures supplemented with 

NaCl is caused by the transposon insertion in an uncharacterized gene within the 680-bp long 

intergenic region. This intergenic region contains a dozen of predicted ORFs, none of which 

has significant amino acid similarities with other sequences in the NCBI database. 

 

Using the replica plating procedure around 2600 individual colonies were screened 

for a growth deficit in NaCl-supplemented plates. Eleven clones showed a lower growth in 

salt conditions (11 per 2600 screened). One disadvantage of this method is that only clones 

that can grow on SAL plates will grow, and clones that have lost the ability to use this carbon 

source or to grow in agar plates will be omitted.  
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When performing a screening of library 1 by agarose bead encapsulation, exposure to 

NaCl and sorting by FACS, 400 clones were recovered with an apparent deficit of growth in 

the presence of NaCl. Of these, only 30 grew to form microcolonies in agar plates. This 

suggests that either cells cannot escape very well from the agarose beads deposited on the 

agar surface, or were already damaged in the beads and could not regrow. When re-

evaluating the growth of those 30 in control and NaCl-amended liquid cultures, only one 

clone showed consistent poor growth in salt-conditions. This further indicates that too many 

false-negative clones were picked up in the FACS procedure. This clone (FACS 26) had a 

transposon insertion in a gene for a GreA/GreB family elongation factor (Swit_5337), which 

interacts with RNA polymerase and stimulates the transcription elongation (Opalka et al., 

2003). However, not this gene itself but a gene coding for another GreA/GreB family 

elongation factor (Swit_2490) was under-represented in salt-incubated samples screened by 

library sequencing (Roggo et al., submitted).  

 

The very low number of interesting mutants identified by FACS screening (1 per 

7200 screened) suggests that the sorted beads contained a large number of false negatives, for 

example clones whose poor growth was just a consequence of the sorting procedure, and not 

as a result of a decrease in solute potential. However, due to the large number of beads that is 

possible to screen using FACS (up to 103 events/second), it could be worth to optimize the 

selection procedure. For example, the gates could be set more conservatively or several 

rounds of regrowing and sorting could be performed. 

 

A second type of library (library 2) was created with the insertion of the miniTn5-egfp 

transposon. A screening protocol using FACS technology allowed the recovery of 768 clones 

that produced a higher eGFP intensity when exposed to NaCl. After two further rounds of 
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rescreened NaCl exposure and eGFP measurement 14 mutants were recovered that 

consistently displayed higher normalized eGFP signals in the presence of NaCl-amended 

media (14 per 7000 screened). Interestingly, ten clones carried the same insertion in gene 

Swit_3298, a protein from the broad family named glyoxalase/bleomycin 

resistance/dioxygenase, suggesting this mutant was abundant in the selected flow cytometry 

gates. The function of Swit_3298 is not known and the protein family comprises proteins 

with very broad activities. Swit_3298 has an amino acid similarity of 43% over the whole 

length to BphC (biphenyl-2,3-diol-1,2-dioxygenase) of several other organisms such as 

Rhodococcus sp. RHA1, Rhodococcus globerulus or Mycobacterium tuberculosis. On the 

other hand, the glyoxalase proteins are related to salt stress resistance factors in plants 

(Sairam and Tyagi, 2004; Lin et al., 2010).  

 

Two transposon insertions were located in Swit_4143 (putative 5-oxoprolinase) and 

Swit_0265 (putative glutamate synthase). Such enzymes are involved in the synthesis of 

proline and glutamate, which are known compatible solutes. As a consequence of 

hyperosmotic shock, the primary response in bacteria is to stimulate the uptake of potassium 

and synthesize glutamate (Sleator and Hill, 2002). The secondary response is the 

accumulation of neutral osmoprotectants (compatible solutes), which in contrast to the ionic 

osmolytes of the primary response, can be accumulated to high intracellular concentration to 

counteract the outflow of water, without adversely affecting cellular processes (Sleator and 

Hill, 2002). Compatible solutes can reach high intracellular concentrations without disturbing 

cellular functions since they are highly soluble molecules and do not carry a net charge at 

physiological pH. Compatible solutes also serve as stabilizers of proteins and cell 

components against the denaturing effects of high ionic strength (Kempf and Bremer, 1998; 

Sleator and Hill, 2002). Molecules such as glycine betaine, trehalose, glycerol, 
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glucosylglycerol, proline, glutamate, ectoine, carnitine and choline, can be accumulated 

through synthesis or uptake from the environment following exposure to osmotic stress 

(Kempf and Bremer, 1998) with different microorganisms having a preference for one or 

more compatible solutes (Lucht and Bremer, 1994; Ogahara et al., 1995; Brill et al., 2011). In 

many microorganisms, proline biosynthesis proceeds from the precursor glutamate (Brill et 

al., 2011; Moses et al., 2012). In B. subtilis the accumulation of proline in osmotically 

stressed cells is followed by a decrease in glutamate level suggesting that B. subtilis prefers 

proline over glutamate as an osmolyte and begins to convert glutamate into proline as soon as 

is exposed to osmotic stress (Brill et al., 2011). The results of our transposon mutant 

screening suggest that proline and glutamate are compatible solutes produced by RW1, 

important for the response of the cell to solute stress. 

 

The last transposon insertion identified is in Swit_3912, which belongs to the super 

family of iron-sulfur cluster assembly proteins. Proteins containing iron-sulfur clusters 

participate in a diversity of functions such as electron transport, substrate binding, regulation 

of gene expression and enzymatic activities (Johnson et al., 2005). It is not clear what the 

function of gene Swit_3912 is in resistance to salt stress so further characterization of this 

mutant should be performed.  

 

In this study, three mutant screening methods were used to detect genes putatively 

involved in the water stress resistance induced by NaCl exposure by S. wittichii RW1. The 

three methods showed different efficiencies of relevant mutant recovery. The classical replica 

plating screening allowed recovering a higher proportion of mutants from the total of 

colonies screened. However this method requires to pick several thousands of colonies in 

order to be exhaustive and long incubation times (up to 7 days for colonies to appear on agar 
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plates). The screening involving FACS technology had a lower proportion of recovered 

mutants, however it permitted to screen a higher number of mutants in a shorter time period 

(up to 103 per second), which makes it an interesting technique that needs further 

optimization. All three screening protocols resulted in a number of clones that can give us an 

indication of the genes involved in the water stress resistance process. However, several of 

these genes are either hypothetical genes, or genes with unknown function. The screening 

techniques can also recover mutants that have a better growth on salt conditions, which may 

have a survival advantage during bioaugmentation of contaminated soils.  

 

In a recent study (Roggo et al., submitted), ultra high throughput sequencing 

technology permitted the identification of 357 genes involved in the survival of S. wittichii 

RW1 to similar salt conditions. This is a very promising technique that can further 

complement the results obtained by mutant isolation, replicate screening and gene 

identification. 
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CHAPTER 6 

General discussion 

 

Genetic manipulation of S. wittichii RW1 

 

In the present study several techniques were tried for the introduction of recombinant 

DNA into RW1 cells, such as plasmid delivery, mini transposon delivery, homologous 

recombination and transposon mutagenesis. The plasmid delivery system proved to be the 

most stable in this strain, even though part of the population lost the plasmids when the strain 

is grown without an antibiotic pressure. When attempting to transform RW1 cells, very low 

transformation efficiencies were observed and amounts around 1 µg of DNA had to be used 

in order to obtain enough transformants. The transformation efficiency improved up to 45 

times when the DNA was of RW1-origin. This suggests that the restriction/modification 

system of strain RW1 has an influence on the low efficiencies observed. Furthermore, when 

introducing miniTn5-based constructs in strain RW1, rearrengements of the constructs were 

observed, which is consistent with observations by Basta et al. (2004). Quite interestingly, 

RW1 took up and integrated linear DNA fragments, which may be a process that can be 

exploited in the future. However, genome resequencing will have to be used in order to 

understand where this DNA is integrating and how this proces could be further harvested to 

make recombinant constructs or gene knockouts in RW1. 

 

Environmental bacterial isolates are more difficult to manipulate with the available 

molecular biology tools, in comparison to the strains commonly used in laboratory. In this 
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cases, techniques such as Ultra High Throughput Sequencing (Roggo et al., submitted), 

which are culture independent, seem a more practical alternative to screen for gene functions 

needed for a certain condition, for example.  

 

S.wittichii RW1 transposon mutant screening 

 

To identify genes implicated in water stress resistal by strain RW1, a mutant library 

was created and screened on the basis of growth impairment in NaCl-supplemented media or 

by the increased production of eGFP fluorescence in response to NaCl exposure. The three 

methods used to select relevant mutants showed different recovery efficiencies. While the 

classical replica plating showed a recovery of 11 mutants out of 2600 screened, the FACS-

based mutant analysis had a recovery of 1 per 7200 screened for the bead encapsulated-

mutants and 14 per 7000 screened for the eGFP production-based selection. Even though 

with the replica plating the recovery ratio seems higher, the FACS-based screening allows the 

analysis of a higher number of mutants in a shorter time (around 103 mutants per second). All 

three screening protocols allowed us to recover a number of clones that can give us an 

indication of the genes involved in the water stress resistance process. The transposon 

insertions directed us to gene functions related to compatible solute synthesis (glutamate and 

proline) and to cell membrane modification. Other gene functions, such as transcriptional 

regulators, RNA polymerase β subunit, a cell division protein or an aconitase, were also 

found with the mutant screening, but can less easily be interpreted as to their function in salt 

stress resistance. 

 

Nowadays with the great advances in sequencing technology and the drop of 

sequencing costs, techniques such as ultra high throughput sequencing seem a more feasible 
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screening option. This very promising technique eliminates the need of culturing the mutants, 

measuring the growth impairment and the gene identification. In a recent study (Roggo et al., 

submitted), ultra high throughput sequencing technology permitted the identification of 357 

genes involved in the survival of S. wittichii RW1 to similar salt conditions.  

 

Degradation and monitoring of DBF by RW1-based bioreporters 

 

As part of the major objectives of this work, the global response of S. wittichii to 

exposure to DBF was studied. Two different techniques were used here, a genome-wide gene 

expression microarray analysis and genome-wide transposon screening.We designed three 

different types of exposure of cells to DBF: in the first, named short exposure in batch, RW1 

was grown on phenylalanine (PHE) until reaching exponential phase, when cells were 

harvested and resuspended in the same medium with PHE or with DBF. The second type of 

exposure, named transient exposure in chemostat, consisted of RW1 cells grown 

continuously under carbon limiting conditions with PHE, while a new carbon source (DBF) 

was instantaneously added. In the third induction, long exposure in batch, RW1 cells were 

grown in batch either on PHE, SAL or on DBF as sole carbon source, and cells were 

harvested in exponential phase. 

 

This extensive analysis allowed us to identify the response of RW1 to a short 

exposure to DBF, which includes the repression of genes for central metabolic pathways, 

such as the TCA cycle, amino acid metabolism, ribosomal proteins, elongation factors, 

tRNA-synthetases and cell division proteins. This suggests that the cells experienced a 

condition of starvation and stress response. In the transient exposure in chemostat, RW1 cells 

perceived DBF not just as a new carbon substrate but rather as a stress factor, requiring the 
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regulation of specific stress-response genes. Genes for catalases, peroxiredoxins and 

glutathione-s-transferases, genes implicated in DNA repair, chaperones and OmpA-domain 

containing proteins, the RpoD sigma factor and of alternative ECF sigma 24 factors had an 

increased expression. It was only in the long exposure in batch that RW1 cells seem to 

metabolize DBF since an induction of DBF degrading genes was observed. An interesting 

finding is that several catabolic pathways for DBF degradation were active at the same time, 

suggesting important genetic redundancy in the RW1 genome. This was further verified with 

the transposon mutant sequencing which showed that actually only a few transposon 

insertions completely abolished growth on DBF.  

 

In order to detect and monitor DBF in the environment, bacterial bioreporters were 

constructed targeting three genes involved in DBF degradation, selected based on the 

transcriptome data. The first consisted in an upstream region of dxnA1, which codes for part 

of the dibenzofuran dioxygenase (PdxnA1), the second in a region upstream of the cluster 

Swit_4925-4921, which encodes the downstream part of a meta-cleavage pathway (P4925), 

and the third in a region upstream of the genes Swit_5102-5101, with Swit_5102 putatively 

coding for the enzyme gentisate dioxygenase that transforms gentisate to 3-maleyl pyruvate 

(P5102). The construct carrying the promotor PdxnA1 showed a detectable eGFP signal, but its 

intensity was independent on the carbon source used. In contrast, the construct with the P5102 

had almost no eGFP production regardless of DBF addition. However, a construct carrying 

the promoter region in a miniTn5, showed an eGFP induction in the presence of salicylate, 

but failed to grow with DBF as carbon source (Chapter 3, clone P5102-1). This could indicate 

that the plasmid based construct carrying the region P5102 could have suffered a genetic 

rearrangement or modification. This would have to be verified in the future. The construct 
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carrying the P4925 region showed a good egfp induction in the presence of DBF both in liquid 

cultures and in soil microcosms, what makes it an attractive tool for DBF monitoring.  

 

The inoculation of RW1 bioreporters in soil microcosms containing polluted material 

or pristine sand provided further direct evidence for the hypothesis formulated by other 

authors (Harms and Bosma, 1997; Bosma et al., 1996; Wammer and Peters, 2005) that the 

bioavailability of the carbon sources is a major constraint in the bioremediation process. Even 

if RW1 could survive and grow in the soil supplemented with DBF, the bacterium could not 

grow in PAH contaminated material from an ancient gas factory, nor induced the DBF 

bioreporter. Thus, when attempting to bioaugment aged contaminated sites, it would be worth 

to use the bioreporter tests to examine under which conditions bioavailability of the 

compounds present can be ameliorated. 
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