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Abstract
Rationale, Aims and Objectives The field of translational neuroscience suffers from an extremely low replication levels 
compared to other life science fields. The objective of the present study was to test the hypothesis that multivariate analysis 
of a classical emotional pictures paradigm would produce meaningful brain signatures with some power to discriminate 
depressed patients from healthy subjects.
Methods Participants in the study were eighteen medicated depressed patients and eighteen sex and age matched healthy 
controls. Functional MRI paradigm with a visual presentation of emotional pictures (positive, negative and neutral) from 
the International Affective Pictures System was used. The multivariate linear method (MLM) was used to derive the specific 
brain signatures on an individual and on a group level. The predictive power of the brain signatures is tested by use of linear 
discriminant analysis.
Results Following the individual and group MLM, the three brain patterns that summarized all the individual variabilities of 
the individual brain patterns were produced. The discriminant analysis yielded accuracy levels for the three brain signatures 
ranging from 67 to 98%.
Conclusion The present study demonstrated that the multivariate linear method resulted in meaningful brain signatures with 
significant potential for distinction between healthy and depressed subjects. Such findings will fuel the emerging paradigm 
shift from more conventional statistical analysis to the probably more appropriate for the field of functional neuroimaging 
machine learning techniques.

Keywords Functional magnetic resonance imaging · Multivariate analysis · Depression · Affective pictures · Clinical 
diagnosis

1 Introduction

Depression is considered major psychiatric disorder of social 
burden, anticipated second most common disease world-
wide by 2030 [1]. The manifestations of depression include 

affective, cognitive and somatic symptoms, determined in 
common clinical practice with self-evaluation and observa-
tional inventories. Advanced cognitive and computational 
neuroscience has provided important insights into the bio-
logical mechanisms of depressive disorders [2], which none-
theless have been found to be difficult to incorporate into the 
dominating diagnostic systems. This is due to a great extent 
to the inconsistencies in the study designs and relevant find-
ings as well as the limitations for meaningful translation of 
data from neuroscience to psychiatry [3].

The mainstream hypothesis is that depressed subjects 
demonstrate negative bias during processing affective e.g. 
emotional stimuli [4] explained by increased reactivity of 
the amygdala to negative stimuli typically associated with 
decreased activity of the prefrontal cortex in depression as 
compared to healthy population. This pattern is reversed 
after successful antidepressant treatment [5–9]. More 
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specifically investigations performed with International 
Affective Picture System (IAPS) paradigm produce results 
about increased activation of amygdala, insula and parahip-
pocampal area in depressed patients as compared to healthy 
controls during processing of negative vs neutral emotional 
stimuli [5]. Such hypothesis was challenged by investiga-
tions of patients which yielded activation in prefrontal cortex 
during viewing negative vs neutral pictures without any dif-
ference in amygdala response [10].

In line with many influential publications in the field of 
neuroimaging the above are based on either pre-defined 
ROIs implicated in emotion processing from previous 
research and rather liberal statistical significance threshold 
of p < 0.005 uncorrected for multiple comparisons, which 
are two of the major confounds considered to undermine the 
recent efforts to translate neuroimaging findings into clinical 
practice [11, 12]. On the level of meta-analyses there has 
been summarized initially encouraging convergence of the 
individual study results [13, 14], yet the most recent ones 
have failed to replicate those findings [15, 16], which boosts 
the debate about replication crisis in the field [17, 18].

In particular those controversies are interpreted in terms 
of heterogeneity of inclusion/exclusion criteria for construc-
tion of patient samples (especially depression severity remis-
sion, medication status), variability across research centres 
and networks of the paradigms and wide range of the statis-
tical analyses performed. In order to address those caveats, 
there has been stressed the need of replication and applica-
tion of robust statistical methods [12, 19].

In our previous research [20], an actual precursor of the 
current paper we have attempted to replicate the findings of 
altered emotional processing in depressed patients compared 
to healthy controls by means of functional magnetic reso-
nance imaging (fMRI) during passive viewing of positive, 
negative and neutral (Pos, Neg and Neu) pictures from the 
International Affective Pictures System (IAPS) [21]. The 
whole brain voxel-wise analysis with the most stringent, 
family wise error (FWE) correction (p < 0.05) did not yield 
significant between group differences.

In the present study we analyze the same sample by use 
of machine learning technique, multivariate linear method. 
It was driven by the results achieved by similar methodo-
logical frameshift applied to another, innovative paradigm, 
comprised of the items from clinical self-evaluation scale 
for depression. In this paradigm Paranoid-Depressive 
Scale of Von Zerssen was administered simultaneously 
with the functional MRI BOLD (Blood Oxygenation Level 
Dependent) signal acquisition. The conventional mass uni-
variate analysis did not cross the significance threshold on 
between-group level after inclusion of gender as co-variate 
and correction for multiple comparisons (FEW p < 0.05) 
in standard two sample t-test analysis procedure [3, 22]. 
When we applied multivariate linear method (MLM) to the 

same sample, the brain signatures behind each group of 
item responses (paranoid, depressive, and neutral) under-
pinned strong discriminative power for respective psychi-
atric disorders, major depressive disorder and schizophre-
nia [23].

In that respect we have decided to employ alternative 
approach of cross-validation of IAPS and brain activation 
patterns by adopting the machine learning methodology. The 
hallmark of our rationale is to experimentally confirm the 
theory of translational cross-validation across neuroscience 
and psychiatry as defined elsewhere [24–26]. According to 
this theory convergence between psychopathological and 
functional MRI measures may be achieved in terms of syn-
chronization of data acquisition, i.e. simultaneous applica-
tion of the two methods. This may facilitate the translation 
from the clinical psychopathology domain to neuroimaging 
and vice versa.

2  Aim

The objective of the present study was to test the hypothesis 
that the characteristic distribution of regional BOLD signal 
changes captured through MLM where the brain signatures 
identified by three principal components based on activa-
tions yielded from the three kinds of emotional stimuli (Pos, 
Neg and Neu) in depressed patients would have some power 
to discriminate them from healthy subjects.

3  Methods

3.1  Subjects

This study includes total 36 right-handed adult subjects 
divided into 2 groups and matched by age and sex between 
the groups. The distribution of the subjects follows the 
below pattern:

• 18 adult subjects (mean age 44.5 ± 13.6 y, 5/13 males/
females) suffering from a depressive episode (single or 
recurrent, according to the DSM-IV-TR criteria) in the 
context of major depressive disorder (MDD, 12 partici-
pants) or bipolar affective disorder (BD, 6 participants)

• 18 healthy controls (mean age 38.7 ± 13.7 y, 5/13 males/
females).

All patients were medicated with various antidepressants 
and mood stabilizers (including escitalopram, sertraline, 
venlafaxine, duloxetine, lamotrigine, olanzapine) for at least 
3 weeks before enrolment.
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3.2  Pre‑MRI Stage

The fMRI testing is preceded by 3-component clinical evalu-
ation—general psychiatric interview; structured Mini Inter-
national Neuropsychiatric Interview—M.I.N.I 6.0 [27] and 
Montgomery–Åsberg Depression Rating Scale—MADRS 
[28].

3.2.1  Inclusion Criteria

Total score of at least 20 points on MADRS for depressed 
individuals; lack of psychiatric history, major neurological 
or somatic illness affecting the CNS, head traumas causing 
loss of consciousness for healthy controls.

3.2.2  Exclusion Criteria

Presence of second axis I diagnosis (any of but not limited 
to psychotic, anxiety, substance related disorder), severe 
decompensated somatic illness, neurological disease, his-
tory of head trauma with loss of consciousness or severe 
suicidal risk (10th item of MADRS ≥ 2).

3.2.3  Ethics

Informed consent complying with the Declaration of Hel-
sinki is officially signed by all participants. This study is 
approved by the University’s Ethics Committee.

3.3  MRI Data Acquisition

3.3.1  Equipment and Tools

3 T MRI system (GE Discovery 750w) was used as a main 
data acquisition tool, in combination with goggles (Visual 
System, NordicNeuroLab, Bergen, Norway) to project the 
visual stimuli to the individuals.

3.3.2  Scanning Protocol

The scanning protocol is a combination between HiRes 
anatomical scan and functional scan to ensure full brain 
coverage and obtain best structural and functional datasets. 
Anatomical scan parameters—Sag 3D T1 FSPGR, slice 
thickness 1 mm, matrix 256 × 256, TR = 7.2 ms, TE = 2.3, 
flip angle 12°. Functional scan parameters—2D EPI, slice 
thickness 3 mm, spacing 0.5, 36 axial slices, matrix 64 × 64, 
TR = 2000 ms, TE = 30 ms, flip angle 90°, 240 volumes.

3.4  fMRI Design

The functional paradigm was designed and presented via 
E-prime software (Psychology Software Tools, Inc). IAPS 

served as the main source for images equally distributed (20 
each) between Positive (Pos), Negative (Neg), and Neutral 
(Neu). The selection criterion is based on valence scores 
within the ranges 7.04–8.2, 1.8–2.49, and 4.38–5.22 respec-
tively. The homogeneity of the stimuli within each group is 
ensured by a proper selection of images presenting humans 
at different ages and under similar proportions.

The functional paradigm consists of sequences of 12 
off-blocks and 12 (4 of each type) active blocks, each with 
duration of 20 s. While the off-blocks only presented a fixa-
tion cross on monochrome background, the active blocks 
contained sequences of 5 images with equal duration (4 s) 
within the block.

A set of 20 feedback controls were additionally intro-
duced to ensure the subjects attended the stimuli. The con-
trols registered the subject’s attention by presenting equally 
distributed elements (red dots) superimposed on the image 
projected during the off-blocks and the active blocks, and 
demanding an action (pressing a button) by the subject.

3.5  fMRI Data Analysis

fMRI data analysis was performed using the SPM 12 soft-
ware package (Statistical Paramertic Mapping, https ://
www.fil.ion.ucl.ac.uk/spm/) in combination with MATLAB 
R2020 running on MS Windows environment. Data analysis 
comprises of two main stages—preprocessing and first-level 
analysis.

Preprocessing included realigning the fMRI images to 
the first image (motion correction), which were then co-
registered with the high-resolution structural images, nor-
malized to Montreal Neurological Institute (MNI) space, 
and smoothed with a 6 mm full-width-at-half-maximum 
Gaussian kernel.

First-level analysis of the fMRI (BOLD) responses was 
conducted using a general linear model (GLM) as a major 
tool recognized for fMRI data analysis. GLM was applied 
to the time series, convolved with a canonical hemodynamic 
response function. Nuisance covariates included the six rigid 
body motion parameters. F-contrast of all three active condi-
tions vs the off condition was calculated for each individual 
dataset.

3.6  Multivariate Analysis

MLM is applied on the highly-dimensional data to explain 
the variance of the data in its distinct features with mini-
mal loss of information. This method is characterized 
by three core advantages. Opposed to similar dimension 
reduction methods such as principal component analysis 
(PCA), MLM takes into account information coming not 
only from the data (Y), but also form the design matrix (X), 
e.g. contextual, experimental, behavioural. In addition, 

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
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MLM is specially adapted to fMRI data by including in 
the model the temporal autocorrelation from the noise. 
Thus it can be used in statistical framework for hypothesis 
testing and inference [29]. We implemented the analysis 
in the SPM toolbox Multivariate Methods for fMRI (https 
://githu b.com/LREN-CHUV/MLM).

The steps of the following analysis are described in 
more detail in our recent publication [23] and will be given 
shortly here:

(1) In the first step, we conducted an MLM analysis for 
each participant (Fig. 1, Individual Level MLM) iden-
tifying the brain patterns that describe most of the 
changes in the BOLD signal and that are most cor-
related with the three experimental conditions (Pos, 
Neg, and Neu). The experimental paradigm, was rep-
resented in a design matrix X , including the three types 
of stimuli (Pos, Neg and Neu) and the nuisance covari-
ates (the six realignment parameters). For each sub-
ject i ( i = 1..s ) we computed the principal components 
of Z

i
  the complex normalized correlation matrix of 

Fig. 1  Procedure steps: (1) Individual MLM: MLM decomposed 
covariance matrix between the functional data and the design matrix 
containing the experimental conditions into three components (or 
condition loadings) and three brain signatures (or eigenimages). (2) 
Group MLM: MLM analysis is performed on the covariance matrix 
between individual level eigenimages and the design matrix encod-

ing the diagnostic label (healthy vs depressed) and the confounding 
variables (age, sex). This resulted in group level brain signatures (or 
eigenimages) and the subject loadings that discriminate between the 
groups. (3) We used a linear discriminant analysis to assess the pre-
dictive power of the brain signature

https://github.com/LREN-CHUV/MLM
https://github.com/LREN-CHUV/MLM
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the design matrix X
i
 (time by covariates) and the data 

matrix Y
i
 (time by voxel). Each matrix Z

i
 is decom-

posed into model parameters eigenvectors U
i
 and spatial 

eigenvectors V
i
 . The spatial eigenvectors are referred as 

eigenimages.
(2) The second step summarized the information from the 

individual MLMs by building a second level facto-
rial design in SPM on each of the three eigenimages. 
The population level confounds age and gender were 
removed [30, 31]. We then performed a second MLM 
analysis (Fig. 1, Group Level MLM). At this level we 
build the matrixZ

G
 , constructed as a complex normal-

ized correlation matrix of the design matrix X
G

 (subject 
by covariates) and Y

G
= [U1,U2,… ,U

s
] , the eigenim-

ages (active conditions by voxel) calculated during the 
previous step. The matrix Z

G
 is then decomposed to 

find eigenvectors U
G

 and VG. The V
G

 identify the most 
consistent brain pattern across individuals in terms of 
variance explained. The U

G
 , the subject loadings quan-

tify individual differences i.e. the contribution of each 
subject to the main brain pattern.

(3) In the final step, we applied a linear discriminant analy-
sis classifier (LDA in Statistics and Machine learning 
toolbox, Matlab R2020a) on each of the three sub-
ject loadings to assess whether the brain signatures 
can differentiate between the depressed patients and 
the healthy controls. Accuracy of classification was 
obtained using k-fold (k = 2) cross-validation technique.

All the steps of the analysis are schematically explained 
in Fig. 1 where it can be seen that we used multivariate 

method at individual and group levels in order to compute 
the relevant brain signatures.

3.7  Statistical Analysis

In this study we used SPSS 22.0 running on Windows for the 
statistical analysis of the demographic and clinical character-
istics of the participants. Continuous variables were tested 
with Student’s t-test and categorical ones with Chi-square 
test. The chosen level of significance was p < 0.05 for all 
tests.

4  Results

4.1  Demographic and Clinical Characteristics

The depressed patients and the matched healthy controls 
did not differ in their age, sex and education level. Expect-
edly, significantly higher total scores on the Montgom-
ery–Åsberg Depression Rating Scale were characteristic for 
the depressed participants. The two patient subgroups were 
not significantly different in neither of the demographic and 
clinical characteristics explored (see Table 1).

4.2  MLM Results

Step 1: The individual level MLMs demonstrated a con-
sistent profile across all participants with the first compo-
nent corresponding to positive loading for the Neu condi-
tion and negative loadings for both the Pos and the Neg 

Table 1  Demographic and 
clinical characteristics of the 
participants

SD Standard Deviation
a Independent samples t-test
b χ2–test, MADRS—Montgomery–Åsberg Depression Rating Scale, MDD–Major Depressive Disorder, 
BD–Bipolar Disorder
*p < 0.05

Healthy controls 
(n = 18)

Depressed patients (All n = 18)
(MDD n = 12, BD n = 6)

p-value

Age (mean, SD) 38.7 ± 13.7 All—44.5 ± 13.6 0.274a

MDD—44.8 ± 13.8 0.524a

BD—40.5 ± 12.1
Sex (M/F) 5/13 All—5/13 1.000b

MDD—3/9 0.709b

BD—2/4
Education (secondary/higher) 8/10 All—10/8 0.746b

MDD—7/5 0.737b

BD—3/3
MADRS score (mean, SD) 0.4 ± 1.2 All—30.8 ± 6.2 *0.000a

MDD—29.9 ± 6.9 0.439a

BD—32.5 ± 5.4
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pictures. The second component, had negative loadings 
less pronounced for the Pos and more for the Neg com-
bined with positive Neu loadings. The last component was 
characterized by a positive loading for the Neg condition 
and negative loadings for Pos and Neu.

Step 2: The group level MLM captured the three brain 
signatures that summarized the variabilities of the indi-
vidual brain patterns (see Fig. 2). The first of them had a 
positive pattern spanning across different parts of the frontal 
lobes (superior and middle frontal gyrus, orbitofrontal cor-
tex, frontal operculum), motor cortex, occipital and some 

Fig. 2  MLM results: subject 
and Brain projections across all 
participants. Panels A, B, and 
C show the subject loadings 
for the first, second and third 
components, the corresponding 
Eigen-images projected on a 3D 
brain and the condition load-
ings. Solid blue line indicates 
the observed subjects’ loadings, 
and the dotted line represents 
the predicted ones. The brain 
signatures show the statistical 
association (T-Test) between the 
subjects’ loadings and the value 
at each voxel. The strength of 
this correlation is for illustration 
purposes. The group condition 
loadings are the averaged load-
ings of each subject calculated 
at the individual level MLM 
and weighted by the subject 
loading obtained at the group 
level MLM
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subcortical structures such as thalamus and putamen. The 
second signature demonstrated much more concise clus-
ters in calcarine cortex, cuneus, precuneus, insular cortex, 
hippocampus and parahippocampal gyrus for the positive 
pattern and in supramarginal gyrus, motor cortices, ventro-
medial prefrontal areas extending to the anterior cingulate 
cortex (ACC), and planum temporale for the negative one. 
The third signatures’ positive pattern encompassed parts of 
the ventrolateral and the dorsolateral PFC, lingual gyrus, as 
well as smaller cluster in supramarginal gyrus. However, 
the negative pattern demonstrated smaller clusters in pari-
etotemporal (superior parietal lobule, angular and middle 
temporal gyrus) and frontal regions (middle frontal gyrus 
and dorsal anterior cingulate).

Step 3: The cross-validated accuracy (twofold cross vali-
dation and repeated 100 times to estimate the medians and 
25th and 75th percentiles of its distribution.) of the linear 
discriminant analysis on the subjects’ loadings for the three 
brain signatures was measured. The median accuracy was 
0.67 for the first brain signature, 0.92 for the second and 0.98 
for the third signature.

5  Discussion

The results of this study demonstrated that by using the 
methods of multivariate analysis (namely MLM) on emo-
tional task related fMRI data we were able to derive mean-
ingful brain signatures on a group level that reflected the 
underlying regional activity. Those consistent patterns of 
brain activation were further used to achieve clinically sig-
nificant levels of accurate discrimination between the two 
groups of participants (spanning from above 67 to 98%) 
which was not possible when applying classical mass uni-
variate analysis with stringent criteria of inference (e.g. 
FWE correction for multiple comparisons) as demonstrated 
in a previous publication on the same data [20].

The brain signatures that were produced by the MLM 
analysis clearly encompassed regions related to the emo-
tional visual task. The first of them represented broad acti-
vations in areas of the frontal lobes (superior and middle 
frontal gyrus, orbitofrontal cortex, frontal operculum), motor 
cortex, occipital regions and some subcortical structures 
such as thalamus and putamen. Some of those regions are 
related to the behavioural component of the task (e.g. motor 
cortex—button press) but most of them are implicated in the 
processing of visual stimuli with different emotional valence 
[32–34]. Since this signature yielded the least significant 
distinction between the two groups, we will focus more on 
the other two.

The second brain signature demonstrated more con-
cise clusters with a positive pattern in calcarine cortex, 
cuneus, precuneus, insular cortex, hippocampus and 

parahippocampal gyrus and a negative pattern in supramar-
ginal gyrus, motor cortices, ventromedial prefrontal areas 
extending to the anterior cingulate cortex (ACC), and pla-
num temporale. The positive pattern relates to areas of acti-
vation that contribute to the distinction between the groups 
being more pronounced in the patients, while the negative 
pattern demonstrates the opposite – higher activation in 
the control group. The experimental condition loadings for 
this brain signature were reflecting positive and negative 
loadings for the Neu and Neg conditions respectively (see 
Fig. 2).

The activation of cuneus, insula and hippocampus might 
be linked to the performance part of the task that was used 
for monitoring participant’s attention as those brain areas 
have been found active in similar functional paradigms [35]. 
We might speculate that the patients recruited in a higher 
extent those areas as it is well known that impairment of 
attention, memory and decision making is a core feature 
of depression [36]. In addition, both functional and struc-
tural MRI studies implicate the role of the hippocampus in 
depression with findings of reduced volume, disturbed activ-
ity and connectivity that can be seen even in unmedicated 
subjects and are linked to illness severity and treatment out-
come [37–41].

The ventromedial PFC and the ACC have been sug-
gested to play an important role in both emotion process-
ing and pathophysiology of depression [42–44]. Moreover, 
depressed patients demonstrate distinct connectivity distur-
bances of specific subdivisions of the ACC with parts of the 
PFC [45]. The effective connectivity of the fronto-limbic 
circuit has been suggested as a predictor of response to anti-
depressants [46]. Most recent study suggests that stimulation 
of pre- or subgenual ACC might be an effective treatment for 
depression [47]. Our results of less activation of the above-
mentioned regions in depressed patients are in line with the 
cited literature.

The third signature reflects a positive loading for the Neg 
condition and a negative loading for the Pos pictures. It pro-
duced the highest level of discrimination accuracy of the 
classifier and we feel tempted to suggest an interpretation of 
this fact in line with the mainstream findings of more pro-
nounced disturbances of the processing of negative stimuli 
(of various nature) in depression, e.g. the negative bias that 
is suggested as well to predict treatment outcome [48–51].

The positive pattern of this last brain signature encom-
passed parts of the ventrolateral and the dorsolateral PFC, 
lingual gyrus, as well as a smaller cluster in supramar-
ginal gyrus on the left side which are more activated in the 
patient group. The functional area of the dorsolateral PFC 
is associated with executive functions—attention, work-
ing memory, planning, inhibition of response [52–55]. 
The disturbed activity of this region is associated with 
depression [43] and is targeted in transcranial magnetic 
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stimulation treatment for resistant depression [56]. The 
supramarginal gyrus on the other hand is reported to 
be involved in the mechanisms of empathy [57]. The 
increased activation of this region in the patient group 
might be a reflection of the negative bias once again [4].

The negative pattern of the last brain signature dem-
onstrated mainly smaller areas of activation in parieto-
temporal (superior parietal lobule/precuneus, angular 
and middle temporal gyrus) and frontal regions includ-
ing clusters in middle frontal gyrus and dorsal anterior 
cingulate. This patter reflects more activation in healthy 
controls. Lisieacka et al. reported higher activations in 
control subjects located to the right precuneus/posterior 
cingulate cortex, right insula, left and right frontal oper-
culum, left angular and left supramarginal gyrus during 
emotion processing [58].

In summary, the multivariate analysis of this highly 
dimensional data from a classical emotional pictures func-
tional paradigm generated meaningful brain signatures that 
were not only convergent with the main findings within the 
field (in contrast with the negative findings of the previ-
ous analysis) but produced as well significant discrimi-
native power as demonstrated by the final results of the 
classification.

This fact is even more important having in mind that the 
emotional stimuli are taken from the IAPS which on one 
hand is used for the investigation of the neural mechanisms 
underlying emotional processing in healthy individuals but 
has also been considered as a valuable instrument to assess 
affectivity in psychosis from a diagnostic and treatment per-
spective [59, 60]. There is evidence that neutral scenes on 
IAPS cause significant over-arousal in patients with schizo-
phrenia, which is attenuated during anti-psychotic treatment. 
There are also implications on the role of IAPS in the diag-
nostic process of affective and anxiety spectrum disorders 
[61].

We suggest that results of the present study along with 
other similar findings of our group [23] and other research-
ers focusing on the use of multivariate analysis will fuel the 
emerging paradigm shift from more conventional statistical 
analysis to the probably more appropriate for the functional 
neuroimaging field machine learning techniques.

However, the present study has a number of limitations 
that should be noted. Main concern is the relatively small 
sample size that might impair the generalizability of the 
results. The heterogeneity of the patient group in terms of 
diagnosis (major depressive disorder and bipolar disorder) 
has to be addressed too. We focused here on the syndromic 
presentation of depression and this is the reason to include 
two different diagnostic classes. In addition, the fact that 
the patients were receiving antidepressant medication prior 
to inclusion might have contributed to the results to some 
extent.

6  Conclusion

The present study adds to the growing body of evidence 
that multivariate linear models might be better suited for 
the analysis of task related fMRI paradigms where con-
ventional mass univariate analysis might not yield sig-
nificant results when more stringent criteria for statistical 
inference are employed, e.g. FWE correction for multiple 
comparisons. This method resulted in meaningful brain 
signatures that demonstrated significant potential for dis-
tinction between healthy and depressed subjects. Such 
findings will hopefully fuel the emerging paradigm shift 
from conventional statistical analysis to the probably more 
appropriate for the functional neuroimaging field machine 
learning techniques.
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