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a b s t r a c t 

Accurate detection and quantification of unruptured intracranial aneurysms (UIAs) is important for rupture risk 
assessment and to allow an informed treatment decision to be made. Currently, 2D manual measures used to 
assess UIAs on Time-of-Flight magnetic resonance angiographies (TOF-MRAs) lack 3D information and there is 
substantial inter-observer variability for both aneurysm detection and assessment of aneurysm size and growth. 
3D measures could be helpful to improve aneurysm detection and quantification but are time-consuming and 
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. Introduction 

Approximately 3% of the world general population have an unrup-
ured intracranial aneurysm (UIA) ( Vlak et al., 2011 ). For some risk
roups they are even more common, with a prevalence of approximately
0% in individuals with a positive family history for aneurysmal sub-
rachnoid haemorrhage (aSAH) ( Bor et al., 2014 ). Rupture of an in-
racranial aneurysm causes an aSAH which is a severe type of stroke.
pproximately one-third of patients die, and another third have long-

erm, life-changing disabilities ( Keedy, 2006 ; Nieuwkamp et al., 2009 ).
uring screening, it is important that UIAs are detected early, to al-

ow for a treatment decision to be made. From diagnosis, the risk of
rowth and rupture of the UIA can be determined based on accurate
easurement and assessment ( Backes et al., 2017 ; Greving et al., 2014 ).

f an aneurysm has high risk of rupture it will be treated preventively.
neurysms with a lower rupture risk will be followed-up with imaging
nd carefully monitored to assess aneurysm growth which is an impor-
ant determinant for aneurysm rupture ( Backes et al., 2015 ). This allows
nformed treatment decisions to be made ( Wardlaw and White, 2000 ).
ue to the increasing availability and quality of brain imaging, the num-
er of incidentally discovered UIAs is increasing, and follow up imag-
ng is usually performed ( Brown and Broderick, 2014 ; Nakagawa et al.,
019 ). Also, screening for UIAs with MRA is increasing with knowledge
f risk factors for UIA presence. Screening for UIAs with MRA has been
hown to be cost-effective in persons with a positive family history for
SAH and in persons with autosomal dominant polycystic kidney disease
 Bor et al., 2010 ; Flahault et al., 2018 ; Hopmans et al., 2016 ). The most
ommon imaging techniques for monitoring UIAs are contrast-enhanced
omputed tomography angiography (CTA) and non-contrast 3D time-of-
ight magnetic resonance angiography (TOF-MRA). TOF-MRA is well
uited for routine follow-up imaging as it does not need contrast agent
r radiation ( Lane et al., 2015 ). 

The detection and measurement of UIAs can be difficult and it has
een reported that approximately 10% of all UIAs are missed dur-
ng screening ( Forbes et al., 1996; Kim et al., 2017 ; Keedy, 2006 ;

hite et al., 2000 ). Detection is particularly difficult for small UIAs and
etection by radiologists from MRAs of UIAs < 5 mm on MRAs can have
 sensitivity as low as 35% ( White et al., 2001 ). However, detection by
adiologists is improving as MRA scan resolution is increasing, especially
ith higher field strengths ( HaiFeng et al., 2017 ; Wrede et al., 2017 ). In

linical practice, aneurysm detection is performed by a radiologist care-
ully searching through the axial slices of the TOF-MRA, often combined
ith coronal and sagittal multi-planar reconstructions, a maximum in-

ensity projection (MIP) or 3D volume reconstruction, before making 2D
ize measurements of the aneurysm. 
2 
liable automatic UIA detection and segmentation method. The Aneurysm De-
) challenge was organised in which methods for automatic UIA detection and
 submitted to be evaluated on a diverse clinical TOF-MRA dataset. 

tal of 129 UIAs) was released, each case including a TOF-MRA, a structural MR
ion of any present UIA(s) and the centre voxel of the UIA(s). A test set of 141
or evaluation. Two tasks were proposed: (1) detection and (2) segmentation of
oped and submitted containerised methods to be evaluated on the test set. Task
sensitivity and false positive count. Task 2 was evaluated using dice similarity
stance (95 th percentile) and volumetric similarity. For each task, a ranking was
 metrics. 

d in task 1 and nine of those teams participated in task 2. Task 1 was won by
r the detection task (i.e. not participating in task 2). Based on segmentation
 task 2 performed statistically significantly better than all other methods. The
-ranking methods was comparable to visual inspection for larger aneurysms.
 top ranking method, after selection of true UIAs, was similar to interobserver
ge remains open for future submissions and improved submissions, with a live
king for method developments at https://adam.isi.uu.nl/ . 

As more individuals are followed-up or screened, the speed of clinical
orkflow could be increased with automatic methods of detection and
uantification of UIAs from TOF-MRAs. However, it is important that
hese methods do not compromise the accuracy of human observers for
he detection and measurement of UIAs. Automated volumetric segmen-
ation of UIAs would enable 3D quantification of UIAs and may aid the
rediction of UIA rupture risk. For example, it is known that the shape
f an UIA, such as non-spherical and lobular shape, are related to an
ncrease in growth and rupture risk ( Backes et al., 2017 ; Lindgren et al.,
016 ; Raghavan et al., 2009 ). Furthermore, quantified shape measure-
ents of the UIAs may aid in models assessing treatment complication

isk ( Ji et al., 2016 ). 
There are numerous different methods for the (semi-) automatic de-

ection and segmentation of UIAs. Semi-automatic methods include,
efining the neck of the aneurysm where it attached to the parent ves-
el, before segmenting the aneurysm ( Cardenes et al., 2011 ). The shape
f the aneurysm has been used in some UIA detection techniques, in-
luding using blobness filters ( Hentschke et al., 2012 ) and shape anal-
sis of the surface of the vessel segmentations ( Arimura et al., 2006 ;
izjak et al., 2021 ; Lawonn et al., 2019 ). Furthermore, multiple deep

earning techniques for UIA detection have been developed with high
ccuracy ( Faron et al., 2019 ; Nishimori et al., 2018 ; Park et al., 2019 ).
owever, most methods are developed for CTA or Digital Subtraction
ngiography (DSA) 2D images ( Duan et al., 2019 ; Sulayman et al., 2016 )
nd are for UIA detection only. The segmentation of UIAs is a difficult
roblem as UIAs can occur at many different locations and positions
elative to the vessels.They are small and can vary greatly in shape and
onfiguration. TOF-MRAs can also vary significantly during the time
etween baseline and follow-up scans, due to the use of different scan-
ers, protocols, field strengths and field of view. This all leads to a basic
equirement for accurate UIA detection and segmentation methods on
OF-MRA. 

The Aneurysm Detection And segMentation (ADAM) Challenge de-
cribed in this paper provides an overview of methods to fully au-
omatically detect and segment UIAs from clinical TOF-MRA images
 Timmins et al., 2020 ). The aim was to compare methods and assess
he performance over clinical data from an in-house test set. Evaluation
as performed by ranking the methods against each other, for both the
etection and segmentation of UIAs, by determining detection and seg-
entation metrics. This paper provides an overview of the challenge

ncluding the organisation, the results, a detailed evaluation of methods
ubmitted and their performance on the test data. This paper follows the
tructure outlined in the Biomedical Image Analysis challengeS (BIAS)
uidelines for transparent reporting of biomedical image analysis chal-
enges ( Maier-Hein et al., 2020 ). 
would therefore benefit fro
tection and segMentation (A
segmentation were develop

A training set (113 cases wi
image ( T1, T2 or FLAIR), an
cases (with 153 UIAs) was u
UIAs on TOF-MRAs. Teams 
1 was evaluated using metr
coefficient, modified hausdo
made based on the average 

In total, eleven teams parti
a method specifically desig
metrics, the top two metho
detection performance of th
Segmentation performance 
performance. The ADAM ch
leaderboard to provide benc

https://adam.isi.uu.nl/
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2. Material and methods 

2.1. Challenge Organisation 

The results of the ADAM Challenge 2020 were presented at the 23 rd 

International Conference on Medical Image Computing and Computer 
Assisted Intervention (MICCAI) on October 8 th , 2020. From 3 rd April 
2020, participants could register on the website ( http://adam.isi.uu.nl/ ) 
to participate in the challenge. They could download a training dataset 
(for full details on the data, see Section 2.3 ) to train and develop 
fully automatic methods for the challenge. Participants were also al- 
lowed to use their own training data, as long as they referenced this 
in their method descriptions. Once trained, methods were container- 
ised by participants with Docker ( Merkel, 2014 ) and submitted to 
the organiser. Examples and instructions are provided on the website 
( http://adam.isi.uu.nl/methods/ ). The containerisation allowed easy 
evaluation of the methods, guaranteeing it could be run on our platform. 
Submitted containers were run on an individual training case from the 
training dataset, containing UIAs, and the results were sent back to the 
participant for verification. If technical issues or bugs occurred, teams 
were allowed to resubmit a new version with the bugs fixed. 

The final verified, submitted methods were evaluated on a test set of 
images (see Section 2.3 ) using evaluation code that was made publically 
available ( https://github.com/hjkuijf/ADAMchallenge ). If the method 
required, NVIDIA Titan Xp GPUs were used for evaluation. The deadline 
for submission for consideration for the challenge leaderboard at MIC- 
CAI was 17 th August 2020 and the results and awards were announced at 
the MICCAI conference (8 th October 2020). However, the challenge con- 
tinues to remain open for submissions, with an up-to-date online leader- 
board to allow for benchmarking of the methods. The ADAM challenge 
was advertised on the MICCAI website, various social media platforms, 
and via email to previous MRBrainS and WMH challenge participants 
( Kuijf et al., 2019 ; Mendrik et al., 2015 ) . 

2.2. Mission of the challenge 

The ADAM Challenge consists of two tasks. Task 1 had the aim of 
automatic detection of UIAs on TOF-MRAs. Task 2 was for a method 
that could perform automatic segmentation of UIAs on TOF-MRAs. Par- 
ticipants could submit to one or both tasks, and methods submitted to 
task 2 were also assessed for task 1. The target cohort is the term used 
to describe the patient group of which data would be acquired for the 
final application of the submitted methods ( Maier-Hein et al., 2020 ). 
For the ADAM Challenge the target cohort was any patient undergo- 
ing a clinical brain TOF-MRA to screen for the presence of an UIA. To 
reflect the clinical setting, some MRA scans were negative (i.e. a pa- 
tient without any diagnosed UIAs) and some scans had more than one 
UIA. A patient in the target cohort may be scanned for the following 
reasons: (1) follow-up scans of patients with diagnosed UIA(s), with or 
without additional treated aneurysms; and (2) patients screened for pos- 
itive family history of UIAs or aSAH. The challenge cohort is the term 

used to describe is the patient group of which the challenge data was 
acquired, for both the training and the test datasets ( Maier-Hein et al., 
2020 ). The challenge cohort consists of a subset of patients, who had an 
available TOF-MRA, from a cohort of patients at the University Medical 
Center (UMC), Utrecht with at least one diagnosed UIA and cohorts of 
persons screened for UIAs because of a positive family history for aSAH. 
The assessment aim of the challenge is to find a method that performs 
optimally for the automatic detection and segmentation of UIAs from 

the TOF-MRAs in the challenge cohort test dataset. 

2.3. Challenge data sets 

A total of 254 brain TOF-MRA scans were included with 282 un- 
treated UIAs. The training dataset provided to participants consisted of 
113 training cases, while the test dataset consisted of 141 cases, where 

each case contained a TOF-MRA and a structural image (either T1 -, T2 - 
weighted or FLAIR). All MRIs were performed at the UMC Utrecht, the 
Netherlands, on a variety of Philips scanners with field strength of ei- 
ther 1, 1.5 or 3T. The MRAs had an in-plane voxel spacing range of 
(0.195–1.04) mm and slice thickness range of (0.4–0.7) mm, without a 
set acquisition protocol. This was due to the clinical nature of the data 
and that it was taken from several studies across a long period of time 
(between 2001 and 2019). The subjects with UIAs ( N = 53) had a me- 
dian age of 55 years (range 24–75 years), with 75% of subjects being 
female. A subset ( N = 156) of the dataset includes two scans from the 
same subject, both a baseline and a > 6 month follow-up scan, to reflect 
the real clinical data. The UIAs ranged in size, with a median maximum 

diameter of 3.6 mm and a range from 1.0–15.9 mm. 25% ( N = 52) of 
the scans contain multiple UIAs and 28% of the scans contained treated 
(either coiled or clipped) UIAs ( N = 59). The median age of the popu- 
lation without UIAs was 41 years (range 19–61 years) and 65% were 
female. This reflects the clinical setting, as UIAs are more common in 
females and the older generation ( Vlak et al., 2011 ). The dataset was re- 
alistic and diverse, reflecting different standard clinical protocols used 
between MR-scanners and over time. 

2.3.1. Training and test data 

Subjects were randomly split into training and test sets and it was en- 
sured that both sets contained an adequate number of scans without any 
UIAs. Every case in the dataset contained one TOF-MRA and one struc- 
tural ( T1 / T2 /FLAIR) MR image of the same subject. The training dataset 
consisted of 113 cases: 93 cases containing at least one untreated, UIA 

(35 baseline and 35 follow-up cases of the same subject and 23 cases of 
unique subjects) and 20 cases of subjects without UIAs. The test dataset 
consists of 141 cases: 115 cases containing at least one untreated UIAs 
(43 baseline and 43 follow-up cases of the same subject and 29 cases 
of unique subjects) and 26 cases of subjects without UIAs. The training 
data is available on the challenge website and requires a registration and 
acceptance of our terms of distribution. An example of a provided train- 
ing case can be seen in Fig. 1 . A specific validation set was not provided 
and it is up to the participants to decide their own train/validation set 
split. Statistical tests were performed to ensure both training and test 
sets had a fair distribution of scans. An unpaired t-test was used to as- 
sess this difference in age, maximum diameter, and number of UIAs, 
number of treated UIAs, pixel spacing and slice spacing. Gender was as- 
sessed using Fisher’s exact test, and the Chi-square test was used to as- 
sess location and magnetic field strength. The location categories used 
were: anterior cerebral or communicating artery (ACA/ACoA), the inter- 
nal carotid artery (ICA), posterior communicating artery (PCoA), middle 
cerebral artery (MCA) and posterior circulation. 

2.3.2. Pre-processing 

All images were pre-processed with N4 bias-field correction 
( Tustison et al., 2011 ). The structural image was aligned to the cor- 
responding TOF-MRA using the elastix toolbox for image registration 
( Klein et al., 2010 ). The transformation parameters used were provided 
with the training data. Both original and pre-processed data was pro- 
vided to the registered participants. 

2.3.3. Annotation procedure 

All UIAs were diagnosed on the scans as part of clinical routine. The 
UIAs were manually segmented from the original TOF-MRAs using in- 
house developed software implemented in MeVisLab (MeVis Medical 
Solutions AG, Bremen, Germany). A contour was drawn around the out- 
line of the UIA, on all axial slices of the MRA. The parent vessel and any 
branching vessels were excluded from the annotation and annotations 
were always drawn starting from the UIA neck to the UIA dome. An 
experienced interventional neuro-radiologist ( > 10 years of experience) 
trained a second rater with considerable experience in medical image 
analysis and annotation software, but not specifically UIAs. The trained 
second rater annotated all images in the dataset. Finally, the first and 
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Fig. 1. An example training case. 
Top Row: a) Original TOF-MRA, b) Original structural MR image c) original structural MR image aligned to TOF-MRA in a) using registration parameters derived 
from elastix ( Klein et al., 2010 ) d) binary aneurysm image derived from annotations as described in Section 2.3.3 
Bottom Row: e) pre-processed TOF-MRA using n4 bias field correction ( Tustison et al., 2011 ), f) structural MR image preprocessed using n4, g) pre-processed 
structural MR image aligned to TOF-MRA using pre-determined registration parameters. 

second rater assessed the full dataset together and made required mod- 
ifications to the annotations in consensus to form the official ground 
truth data set. During annotation, the raters had access to the structural 
image and a radiologist report made at the time of the scan, indicating 
the location and size of the UIA. The same annotation procedure was 
performed for all treated UIAs and dilated to create a slightly larger 
mask for exclusion of treated aneurysm. 

The resulting annotations were converted to binary masks and voxels 
were considered part of the UIA if they were > 50% inside the contour. 
Untreated UIAs were given the label 1, treated UIAs label 2 and back- 
ground was labelled 0. From the binary image, the centre of mass and 
maximum diameter of each of the untreated UIAs were determined in 
voxel coordinates in the corresponding TOF-MRA image space. This was 
provided in a text file for each training case. 

2.4. Assessment method 

2.4.1. Metrics and ranking 

Task 1 and task 2 were evaluated separately using different metrics. 
All submitted methods for task 2 were also evaluated for task 1, where 
the centre of mass of 3D connected components in the image was used 
to determine the detection metrics. 

For task 1, methods were evaluated by determining two detection 
metrics: (1) Sensitivity and (2) False Positive Count (the total number 
of false positives per scan). The sensitivity gives a measure of how many 
detected UIAs correspond to true UIAs, ensuring we optimise to detect 
as many of the UIAs as possible. False positive count balances the sensi- 
tivity ensuring not too many falsely identified UIAs are detected, which 
would not aid the radiologist. 

For task 2, methods were evaluated by determining three segmenta- 
tion metrics: (1) Dice Similarity Coefficient (DSC), (2) Modified Haus- 
dorff Distance (MHD) (95 th percentile) and (3) Volumetric Similarity 
(VS) ( Taha and Hanbury (2015) .) DSC describes how much the predic- 
tion and ground truth segmentations overlap. If there was no detection 
of UIAs, then the DSC was zero. MHD is a distance metric which is sensi- 
tive to the shape of the segmentation. This is important when segment- 
ing UIAs as the shape may be used to assess rupture risk. MHD was only 
calculated where there was any detection of UIAs by the method, if there 

was no detection then it was ignored. VS assesses the similarity in vol- 
ume of the predicted and ground truth segmentation. Accurate volume 
segmentation is important for UIAs for growth assessment. 

Individual UIAs were defined as 3D connected components. A detec- 
tion was considered positive when the predicted coordinate was within 
the maximum diameter of the location of the centre of mass of the 
ground truth UIA. 

A similar ranking was performed for both tasks . Teams were ranked 
per metric. The rankings were averaged to achieve the overall ranking 
per task. For each team, each metric was averaged over all test scans 
containing UIAs, other than false positive count, which was evaluated 
over all test scans, independent of UIA presence. Next, for each average 
metric, the participating teams were ordered from best to worst. The 
metrics were scaled linearly to a number between 0 (corresponding to 
the best team) and 1 (worst team) and then averaged to obtain a single 
‘rank’. For task 1 the two detection ranks were averaged, and for task 2, 
the three segmentation ranks were averaged. For task 2, average inter- 
observer segmentation metrics were also found based on measurements 
made by two separate observers, on a subset of the scans. 

2.4.2. Further analyses 

To evaluate the performance and approach of each method, more 
analyses were performed beyond the ranking procedure. In this way, 
we could determine if there were particular factors that affected the 
results including both the method approaches and the data characteris- 
tics. This included investigating the different method approaches, UIA 

size dependence, intra-subject variance and assessing train vs test per- 
formance. 

2.4.2.1. Method analyses. Based on the ranking of the method, a de- 
tailed look at each method could be performed to see and characterise 
similarities and differences between the performances. This was per- 
formed to investigate if some methods performed significantly better 
than others and if method design had an influence on performance. 
Bootstrapping was performed to compute 95% confidence intervals for 
each metric and ranking for each team. 2,000 random samples were 
taken from the test set with replacement. If confidence intervals did not 
overlap, methods were considered to have significantly different perfor- 
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mance. Furthermore, the STAPLE algorithm ( Warfield et al., 2004 ) was 
used to ensemble first, all of the segmentations from each method and 
second, the segmentations from the top 3 teams in task 2. Segmenta- 
tion metrics and rankings were determined for these STAPLE ensemble 
method results and compared to the individual team performances. 

2.4.2.2. Segmentation performance of true UIAs. To assess the segmen- 
tation performance of the methods, the segmentation metrics were de- 
termined for only the true detected UIAs, excluding any false positives. 
This was done in order to imitate how the tool could be used in clin- 
ical practice; as a radiologist will only select a correctly detected UIA 

for segmentation. To make a similar scenario, it was assessed first if 
the predicted segmentation overlapped with the ground truth segmen- 
tation. Connected component analysis was performed on the predicted 
segmentation. If a connected component overlapped with the ground 
truth segmentation, it remained and all other connected components 
(false positives) were removed. Segmentation metrics were determined 
for the remaining connected component relating to the true UIA. This 
was performed for each predicted segmentation by each team and a 
mean of the metrics and a ranking was made for each team. 

2.4.2.3. Detection performance on negative scans. When screening for 
UIAs, some scans will be negative if a patient does not have UIAs. A 

well performing method should have a low false positive rate on the 
negative scans, as no true UIAs exist in these scans. Twenty-six scans of 
the test set did not have any UIAs, and the performance of each method 
on these scans was evaluated by determining the average false positive 
count. The average false positive count in negative scans was compared 
to the average false positive count in all scans in the test set containing 
true positives. 

2.4.2.4. Size of UIAs. It was thought that the size of aneurysm would 
affect the performance of methods, as it is known that detection rates 
from visual inspection are lower for smaller aneurysms ( Wardlaw and 
White, 2000 ). The relationship between the size of the UIAs and the de- 
tection and segmentation performance was investigated. Both sensitiv- 
ity and DSC were assessed for each team in four different size quartiles 
based on the maximum UIA diameter. 

2.4.2.5. Intra-subject analyses. Both the training and test data contained 
a subset of baseline and follow-up scans of the same subject. As this 
is common in clinical practice, it is vital that a measurement method 
should perform to a similar standard for both baseline and follow-up 
imaging, even though the two scans may differ in scanner type, acqui- 
sition protocol and quality. An accurate measure of the volume differ- 
ence between follow-up and baseline scans is important to be able to 
detect growth of the UIA. To assess if the method could detect growth, 
the difference in volume between baseline and follow-up ground truth 
segmentations was determined (ground truth volume change). This was 
compared to the difference in volume of follow-up and baseline pre- 
dicted segmentations by each method (predicted volume change). These 
measurements were only assessed for detected true UIAs, where the UIA 

was detected on both baseline and follow-up scan by the method. Sim- 
ilarities between the two volume change measurements indicate how 

reliable the measurement of the method is and this was assessed us- 
ing Kendall’s rank correlation measure ( Kendall, 1938 ). Kendall’s tau 
indicates how well two values correspond, where 1 indicates a strong 
agreement, 0 indicates no association and -1 indicates a strong disagree- 
ment. 

Furthermore, a method that performs well, and to the same stan- 
dard, in both baseline and follow-up scans is required. The intrasubject 
performance of each team was investigated by comparing the evalua- 
tion metric for the baseline scan to the metric at the follow-up scan. 
A Wilcoxon-signed rank test was used to compare the two values for 
each team. This was performed for sensitivity, to assess detection per- 
formance, and DSC and volumetric similarity for segmentation perfor- 
mance. 

2.4.2.6. Train vs test performance. To assess performance differences be- 
tween the training and test data, all methods were re-run on the training 
set and detection and segmentation metrics were determined. Perfor- 
mance should be similar to that of the test set and a large increase in 
performance indicates that the method may not be very generalisable 
to unseen data. A similar ranking of methods was made and this per- 
formance was compared to the performance of the methods on the test 
set. 

All data analyses were conducted using pandas ( McKinney, 2010 ), 
scipy ( Virtanen et al., 2020 ), seaborn ( Michael Waskom and the seaborn 
development team, 2020 ) and pingouin ( Vallat, 2018 ) toolboxes with 
Python 3.7. 

3. Results 

3.1. Training and test data 

There were no statistically significant differences between the cases 
of the training and test datasets in age ( p = 0.20), sex ( p = 1), maximum 

diameter of the UIA ( p = 0.58), number of UIAs ( p = 0.32), number of 
treated UIAs ( p = 0.45), magnetic field strength of the scanner ( p = 0.11), 
in-plane voxel spacing of the scan ( p = 0.43), slice thickness of the scan 
( p = 0.78). 

3.2. Challenge submission 

Over 250 users registered for the challenge on the website, 
and 11 teams submitted methods. Two teams submitted only un- 
der task 1, for the detection of UIAs, and nine teams submitted 
under task 2, for the segmentation of UIAs. Results, presentations, 
posters and a brief description of all submitted methods can be 
found on the challenge website ( http://adam.isi.uu.nl/results/results- 
miccai-2020/ ). The inference code submitted in Docker containers 
for the challenge is also available for most methods on DockerHub 
( https://hub.docker.com/orgs/adamchallenge ). 

3.2.1. Task 1 Submissions 

MiBaumgartner submitted a 3D neural network based on the Retina 
U-Net architecture ( Jaeger et al., 2018 ). The decoder was extended to 
incorporate semantic segmentation information and followed by a Path 
Aggregation Network ( Liu et al., 2018 ) to generate the features used for 
the detection prediction. ( Baumgartner et al., 2020 ) 

Unil_chuv submitted a 3D U-Net ( Ronneberger et al., 2015 ) which 
was patch trained using patches selected based on landmark points from 

a registered vessel atlas ( Mouches and Forkert, 2019 ). Both the ADAM 

dataset and an in-house dataset for training. On inference, patches were 
evaluated only if they were within a set distance from the registered 
landmark points and had a minimum intensity. A maximum number of 
four false positives were allowed based on the average brightness of the 
connected components. ( Di Noto et al., 2021 , 2020 ) 

3.2.2. Task 2 submissions 

IBBM submitted a 2D convolutional neural network with TriWinged- 
Net architecture based on the BtrflyNet ( Sekuboyina et al., 2018 ). MIPs 
of the MRAs were made in all three orientations (axial, coronal and 
sagittal) with each view as a different input branch. These are encoded 
separately before being concatenated in the centre of the network. From 

this, there were three corresponding decoding branches, to provide seg- 
mentation masks for each view which were, finally, recombined to form 

the full segmentation volume. ( Shit et al., 2020 ) 
Inteneural submitted a method including three 2D neural networks 

with U-Net architecture based on EfficientNet ( Tan and Le, 2019 ) that 
were pre-trained using ImageNet ( Fei-Fei et al., 2010 ). Each network 
was fine-tuned for one axis: axial, coronal and sagittal with 2 input 
channels: raw TOF signal and blood vessel segmentation, which was 
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Table 1a 

Task 1: Average metrics and ranking for each team, with the lowest (best) rank placing highest in the table. Each value is provided as a mean of 
all scans (95% confidence interval, determined using bootstrapping). The dotted lines indicates groups of methods that can be considered to have 
statistically different ranking from the other groups as their 95% ranking confidence intervals do not overlap. 

performed using Jerman filter ( Jerman et al., 2015 ). A loss function in- 
cluding both a generalised dice loss ( Sudre et al., 2017 ) and boundary 
loss ( Kervadec et al., 2021 ) was used. The final prediction was deter- 
mined as an average of the evaluated models’ outputs. ( Wali ń ska et al., 
2020 ) 

Joker submitted a 3D fully-convolutional neural network based on 
no new U-Net (nnUNet) ( Isensee et al., 2021 ). Group Normalisation 
( Wu and He, 2018 ) was used instead of Batch Normalisation and leaky 
ReLU was used. A Dice ranking loss was used for training. Predictions 
were made by four separately trained models and ensembled using ma- 
jority voting. ( Yang et al., 2020 ) 

JunMa submitted a 3D fully-convolutional neural network based on 
no new U-Net (nnUNet) ( Isensee et al., 2021 ). Networks were trained 
using five-fold cross validation and two different loss functions: Dice loss 
and cross entropy, and Dice loss with topK loss ( Berrada et al., 2018 ) be- 
cause the two losses have been proven to be robust on highly imbalanced 
segmentation tasks ( Ma et al., 2021 ). At prediction, the five models with 
optimum performance were ensembled. ( Ma, 2020 ; Ma and An, 2020 ) 

Kubiac submitted an ensemble of 18 neural networks with three 
network variants: A two path dual resolution fully convolutional neural 
network and two U-Net ( Ronneberger et al., 2015 ) style architectures 
with two paths including contextual information in both the encoding 
and decoding path ( Hilbert et al., 2020 ) trained on different loss func- 
tions. The loss functions were the sum of cross entropy, (generalised) 
Dice loss ( Sudre et al., 2017 ) and boundary loss ( Kervadec et al., 2021 ). 
( De Feo et al., 2020 ) 

Stronger submitted an ensemble method of three models, where 
each model included a segmentation and a classification stage. The seg- 
mentation stage was based on a patch-trained 3D U-Net ( Zhou et al., 
2019 ). The classification consisted of a 3D convolutional neural network 
to distinguish between true and false positives. ( Hu et al., 2020 ) 

TUM-IBBM submitted a U-Net based architecture with MRA and 
aligned structural image as different input channels ( Li et al., 2018 ). Two 
networks were trained on sagittal and coronal slices and during testing, 
voxelwise predictions of both models were averaged. ( Loehr et al., 2020 ) 

Xlim submitted a hybrid two input neural network: one for 3D 

patches and the second for the corresponding maximum intensity pro- 
jection of the patches ( Nakao et al., 2018 ). The two paths are brought 
together with a final concatenation layer. The patches consist of vessels 
only, segmented from the MRAs using an intensity and morphological 
transform based method. ( Rjiba et al., 2020 ) 

Zelosmediacorp submitted a 3D fully convolutional neural network 
with a U-Net like architecture ( Ronneberger et al., 2015 ) trained on 
patches centred on the average UIA position. Twelve networks were 
trained on four different training and validation splits, and the best of 
four networks were selected to form an ensemble that averaged the out- 
puts of each network on the test set. Monte-Carlo dropout ( Wang and 
Manning, 2013 ) was used for both training and inference. ( Giroud and 
Dubost, 2020 ) 

Further, more in-depth descriptions of each method can be found on 
the website ( http://adam.isi.uu.nl/results/results-miccai-2020/ ). 

3.3. Metrics and rankings 

The mean performance of each participating team for task 1 is shown 
in Table 1a ) and for task 2 is shown in Table 1b ). The dotted lines indi- 
cate groups of methods that can be considered to have statistically dif- 
ferent ranking from the other groups as their 95% ranking confidence 
intervals do not overlap. Figs. 2 and 3 are bar charts and boxplots to 
show the distribution of metrics for each team. For task 1 the method of 
xlim performed best for sensitivity and the method of IBBM performed 
best for false positive count. Based on the overall ranking (equal weight- 
ing of both metrics) mibaumgartner performed the best for task 1. For 
task 1, mibaumgartner, joker, junma and kubiac had overlapping 
bootstrapped confidence intervals for rank and thus were considered to 
have not substantially different performance from each other. For task 2, 
junma had the best DSC and VS and joker had the best MHD. Based on 
the overall ranking (equal weighting of all three segmentation metrics) 
junma performed the best for task 2. For task 2, junma and joker per- 
formed statistically significantly better than any other methods based 
on the bootstrapped confidence intervals being non-overlapping with 
any other methods. The bottom row of Table 1b ) indicates the inter- 
observer agreement of two observers. This was assessed as a mean over 
144 scans (72 paired baseline-follow-up scans). The average metrics are 
much higher than any submitted method. An example segmentation of 
team junma can be seen in Appendix A , Fig. 1 . 

3.4. Further analyses 

3.4.1. Method analyses 

All 11 submissions for both tasks used deep learning techniques for 
the detection and/or segmentation of the UIA and information about the 
methods is provided in Table 2 . The U-Net ( Ronneberger et al., 2015 ) 
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Table 1b 

Task 2: Average metrics and ranking for each team, and the brackets contain the 95% confidence interval determined using bootstrapping. The dotted 
lines indicates groups of methods that can be considered to have statistically different ranking from the other groups as their 95% ranking confidence 
intervals do not overlap. STAPLE (all) and STAPLE (top-3) are the average metrics and ranking of the segmentation from the STAPLE algorithm of 
all and the top-3 methods, respectively. Interobserver are the metrics comparing manual segmentations of two different observers on a subset of the 
scans. DSC: Dice Similarity Coefficient; Modified Hausdorff Distance: MHD; VS: Volumetric Similarity. 

Table 2 

Submitted methods sorted on their final ranking per task, with highest placed ranking first, and information about method design. 

Team Task Place Architecture 2D/3D 
Segmentation Loss 
function Ensemble 1 

Use of structural 
image 2 Data Augmentation 3 Post Processing 4 

mibaumgartner 1 1 Retina U-Net + Path 

Aggregation Network 

3D Dice and Cross Entropy 
√ √

C, M, R, S FPS 

unil_chuv 1 9 U-Net 3D Dice C, M, R FPC, L, M 

junma 2 1 U-Net (nn-Unet) 3D Dice and Cross entropy 

or Top-K 

√
C, M, R, S 

joker 2 2 U-Net (nn-Unet) 3D Dice ranking 
√ √

C, E, M, R, S 

kubiac 2 3 Multi resolution U-Net 

style network and CNN 

classifier 

3D Cross entropy, 

(generalised) Dice and 

Boundary 

√ √
T L 

inteneural 2 4 Efficientnet-b1 2D Generalised Dice and 

Boundary 

√
FPC, FPS 

xlim 2 5 AneurysmNet 2D (MIP) 

and 3D 

Dice FPS 

zelosmediacorp 2 6 U-Net 3D Dice 
√

M, R, T FPS 

stronger 2 7 U-Net and CNN 

classifier 

3D Dice and Cross Entropy 
√

M, R, T 

IBBM 2 8 TriWingedNet 2.5D Dice 

TUM_IBBM 2 9 U-Net 2D Dice 
√ √

M, R, SH FPS 

1 Ensemble was used at any point of the method, either for training and/or inference. Different ensembles were used including combing models: with different 
validation splits, different loss functions and different architectures 

2 Use of the structural image as input for the models 
3 Augmentation of training data: C = contrast augmentation, E = elastic deformation, M = mirroring, R = rotation, S = scaling, SH = shearing, T = translation 
4 Post-Processing: FPC = false positive reduction based on count, FPS = false positive reduction based on size/volume, L = location dependent inference, M = merge 

neighbouring detections/segmentation 

was the most common architecture with 72% (8/11) submissions us- 
ing a U-Net style architecture for at least part of their method. The 
top two ranking segmentation methods used nnU-Net ( Isensee et al., 
2021 ) as the base for their approach. Seven methods used 3D ap- 
proaches, including the top 5 ranking methods. All methods incorpo- 
rated the Dice loss in their loss function for training, however junma 

and joker, the top-ranking segmentation methods, also incorporated 
topK loss ( Berrada et al., 2018 ). Ensembles were commonly used, and 
appeared to boost performance with the top 5 methods for task 1 and 2 
using an ensemble. Ensembles were used by different teams in various 
ways for example: with different validation splits, different loss func- 
tions and different architectures before combining the trained models. 
Unil_chuv was the only team to use an external, in-house dataset for 
training. 8/11 teams use augmentation of the training data and 7/11 

teams used post-processing techniques to reduce the number of false 
positives. 

3.4.2. Segmentation Performance of true UIAs 

To evaluate segmentation performance, average segmentation met- 
rics were determined for all teams for only the true UIAs that were de- 
tected, as displayed in Table 3 . A similar ranking was made as for task 
2 based on these metrics. It was observed that this ranking changed the 
placing of the teams, as is shown by the red brackets and arrows. How- 
ever, the top 3 teams remained unchanged in position. The box plots 
of the segmentation metrics for each team over detected UIAs only is 
shown in Appendix B , Fig. 1 . 
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Table 3 

The mean segmentation metrics of each team evaluated only on the detected true UIAs. The arrows and brackets 
in red signify the difference between the original task 2 ranking ( Table 1b ), and the ranking based only on 
the detected UIAs. All values are quoted as means with 95% confidence intervals determined by bootstrapping 
in brackets. Table is ordered with the highest placed ranking first. DSC: Dice Similarity Coefficient; Modified 
Hausdorff Distance: MHD; VS: Volumetric Similarity. 

Place team DSC MHD (mm) VS Rank 

1 junma 0.64 (0.59 - 0.68) 2.62 (2.12 - 3.31) 0.71 (0.65 - 0.76) 0.00 (0.00 - 0.14) 

2 joker 0.60 (0.55 - 0.66) 2.95 (2.42 - 3.66) 0.66 (0.60 - 0.72) 0.11 (0.02 - 0.25) 

3 kubiac 0.45 (0.39 - 0.51) 4.95 (3.82 - 6.28) 0.53 (0.45 - 0.6) 0.53 (0.25 - 0.70) 

4 xlim ( ↑ 1) 0.40 (0.35 - 0.44) 6.55 (5.42 - 7.83) 0.58 (0.52 - 0.64) 0.61 (0.32 - 0.80) 

5 stronger ( ↑ 2) 0.39 (0.27 - 0.5) 5.87 (3.94 - 8.06) 0.54 (0.36 - 0.71) 0.63 (0.25 - 0.94) 

6 zelosmediacorp 0.40 (0.30 - 0.50) 5.63 (4.29 – 7.00) 0.49 (0.37 - 0.62) 0.66 (0.30 - 0.87) 

7 IBBM ( ↑ 1) 0.30 (0.11 - 0.47) 5.47 (2.00 - 12.17) 0.49 (0.11 - 0.82) 0.74 (0.23 – 1.00) 

8 inteneural( ↓ 4) 0.34 (0.28 - 0.41) 5.76 (4.34 - 7.64) 0.42 (0.34 - 0.50) 0.80 (0.40 - 0.96) 

9 TUM_IBBM 0.31 (0.24 - 0.38) 8.44 (6.85 - 10.25) 0.56 (0.48 - 0.65) 0.83 (0.45 - 0.93) 

Fig. 2. Sensitivity and False Positive Count for all teams for all scans in the test 
set. 
a) Bar chart of sensitivity of all teams for task 1, taken as an average across all 
scans in the test set b) Box plot of total false positive count per scan of all teams 
for all scans in the test set 

3.4.3. Detection Performance on Negative Scans 

The average false positive count over all scans containing no true 
UIAs was determined ( Appendix C , Table 1 ). This can be compared to 
the average false positive count for all scans with true UIAs. Teams 
IBBM, zelosmediacorp, junma and joker all have a zero false posi- 
tive count for the scans containing no UIAs. All teams have a smaller 
false positive count per scan for the negative scans, compared to the 
positive scans containing true UIAs. IBBM and zelosmediacorp have a 
low false positive count for positive scans (0.02 and 0.06 respectively), 
but they also had a very low true positive count. Junma and joker have 
a substantially higher false positive count for positive scans (0.22 and 
0.20 respectively). 

3.4.4. Size of UIAs 

The detection and segmentation performance improved with the size 
of the UIA. Fig. 4 shows the increase in sensitivity with increasing UIA 

diameter, when assessing the UIA diameter in four quartiles. This was 
represented as the mean sensitivity over all teams for each UIA. The 
error bar shows the 95% confidence interval of the mean. In Appendix D , 
Fig. 1 , it can be seen how the sensitivity of each individual team varies 
with size of UIA. Fig. 5 a) and b) demonstrate that the segmentation 
performance also increased with UIA size. In 5a) the median DSC over 
all teams for each UIA was plotted against the individual UIA diameter. 
In 5b), the UIA diameter is again split into four quartiles and the mean 
DSC over all teams for each UIA was included. DSCs for individual teams 
were plotted in Appendix D , Fig. 2 . 

3.4.5. Intra-subject analyses 

Table 4 shows the volume change measurements, the ground truth 
measurements and the predicted measurements for each team, and how 

well they agree using the Kendall’s tau correlation measure. All mea- 
surements are taken only for true UIAs with a positive detection in both 
baseline and follow-up scans. This means that the ground truth volume is 
also different as it is taken as a mean over a different set of scans. The me- 
dian ground truth difference over all baseline and follow-up scans was 
2.9 μl. Team IBBM was not included, as less than 5 true UIAs were de- 
tected for both baseline and follow-up scans. Junma were found to have 
the highest statistically significantly agreement between ground truth 
and predicted volume change (Kendall’s tau > 0.5, p < 0.05). Inteneu- 

ral had a Kendall tau < 0, which indicates there was some disagree- 
ment between ground truth and predicted volume change. Stronger and 
TUM_IBBM had values for Kendall’s tau which were close to zero, sug- 
gesting that there is no association between ground truth and predicted 
volume change for these methods. 

The performance of each method was evaluated between baseline 
and follow-up scans using the Wilcoxon rank test, the results of which 
can be seen in Appendix E , Fig. 1 . For sensitivity, DSC and volumetric 
similarity, all methods had p > = 0.05 suggesting that performance was 
not different between baseline and follow-up subjects. 
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Table 4 

Comparison of volume change measurements (median (IQR)) for ground truth and predicted segmentations 
with correlation measure, Kendall’s tau ( p value). Volume change measurement was determined as the vol- 
ume of the follow-up volume minus the baseline volume in μl. Note that the ground truth volume is different 
for each team, as it is evaluated only over true UIAs that were detected in both baseline and follow-up scans 
by the method. 

Team Ground Truth Volume Change(μl) Predicted Volume Change(μl) Kendall’s tau (p value) 

inteneural 3.8 (-0.2, 11.6) 0.4 (-2.1, 10.4) -0.10 (0.57) 

joker 5.0 (-0.3, 13.3) 1.8 (-3.7, 7.3) 0.42 ( < 0.05) 

junma 4.2 (0.7, 12.5) 0.2 (-3.0, 10.7) 0.54 ( < 0.05) 

kubiac 2.9 (-0.6, 11.8) 1.5 (-1.3, 6.9) 0.17 (0.19) 

stronger 12.1 (-13.9, 14.8) -0.7 (-4.3, 12.6) 0.06 (0.92) 

TUM_IBBM 4.0 (-0.2, 13.7) -6.4 (-27.4, 15.0) 0.09 (0.53) 

xlim 2.9 (-1.4, 10.2) -9.5 (-22.1, 18.1) 0.44 ( < 0.05) 

zelosmediacorp 8.5 (-12.8, 13.3) 5.5 (-1.9, 13.1) 0.42 (0.11) 

3.4.6. Train vs test performance 

All the submitted methods were also evaluated on the training data. 
The results can be seen in Appendix F , Tables 1a and 1b ; which corre- 
spond to Tables 1a and 1b in the main text. As expected, the results on 
the training data are generally better than on the test data. For task 1, 
the overall ranking remains roughly similar, with some teams going up 
or down a few places. This could suggest that some methods generalise 
less well to the unseen test data, resulting in a lower performance on the 
test data as compared with the training data. For task 2, the top-4 rank- 
ing methods remained the same order of ranking as when assessed on 
the training data. All methods show a considerable drop in performance 
when assessed on the test set, relative to the training set. This suggests 
that the methods submitted for task 2 do not generalise well to the test 
data set. 

4. Discussion 

This paper presents the results and analysis of the Aneurysm Detec- 
tion and segMentation Challenge held at the international conference 
of Medical Image Computing and Computer Assisted Intervention (MIC- 
CAI) in October 2020. 

Two methods perform significantly better than all other methods 
for both tasks: (1) detection and (2) segmentation of UIAs on TOF- 
MRAs. Although the results are encouraging for automated UIA detec- 
tion and segmentation methods, there is still room for substantial im- 
provement. Compared to visual UIA detection from MRAs, the sensitiv- 
ity of the submitted methods is, on average, lower than quoted in litera- 
ture ( HaiFeng et al., 2017 ; White et al., 2000 ). The submitted segmenta- 
tion methods also show a lower performance than the two observers in 
this study. Future developments will hopefully bring new and updated 
methods that are closer in performance to manual methods. 

4.1. Top ranked methods 

Mibaumgartner placed first in task 1 for detection of UIAs and did 
not participate in the second segmentation task. The method focuses on 
the detection task, by outputting bounding boxes from which a centre 
of mass was derived, as opposed to performing semantic segmentation. 
This is different to all other submitted methods. Mibaumgartner opts to 
still include semantic segmentation information by using Retina U-Net 
( Jaeger et al., 2018 ), before classifying and regressing anchor boxes us- 
ing a Path Aggregation Network ( Liu et al., 2018 ). Mibaumgartner did 
not discriminate between treated and untreated UIAs, using both as fore- 
ground voxels for training, which was different from other methods. This 
may have aided detection by giving more examples as some aneurysms 
treated with coils may look similar to untreated UIAs. As treated UIAs 
were masked on evaluation, this did not negatively affect the perfor- 
mance. Furthermore, mibaumgartner used both the structural MR im- 
ages and the MRAs, which may have aided in the performance of the 
model by incorporating more information. Although mibaumgartner 

has the highest overall ranking, it does not achieve the highest sensitiv- 
ity or lowest false positive count. 

For task 1 and task 2, the methods of junma and joker showed com- 
parable performance, both ranking above the other methods. Both use 
a 3D U-Net architecture based on the no new net (nnUnet). The nnUnet 
is an “out-of-the box tool for state-of-the-art segmentation ” which is an 
open-source deep learning segmentation framework that automatically 
adapts to new datasets. In December 2019, the nnUNet performed opti- 
mally or on par with the best methods in 19 different biomedical image 
analysis challenges, including the KiTS challenge ( https://kits19.grand- 
challenge.org/ ), the largest challenge at MICCAI 2019 ( Isensee et al., 
2019 ). Joker made some small changes to the model, including using 
group normalisation instead of batch normalisation, although this did 
not appear to make much difference to its overall performance. Joker 

also used the structural images as input for training. 

4.2. Method analyses 

All top 3 methods for each task used an ensemble of trained models 
for prediction and in total 7/11 submitted methods used an ensemble. 
It is known that ensembles of deep learning models can aid in both 
image classification ( Krizhevsky et al., 2017 ) and segmentation tasks 
( Kamnitsas et al., 2018 ; Kuijf et al., 2019 ). In general, ensemble meth- 
ods were made up of models trained on different train/validation data 
splits or cross-validation. Winning team junma trained using five fold 
cross-validation and two different loss functions, before selecting the 
optimal five trained networks (based on DSC) to ensemble. Joker used 
an ensemble of four networks, which included networks trained for dif- 
ferent classes in the scan (both treated and untreated UIAs) as well as 
including the structural MRI scans in two of the networks. The STAPLE 
analysis confirms that ensembles perform well, with an ensemble of all 
segmentations from all methods achieving the best ranking. STAPLE us- 
ing an ensemble segmentation of the top three teams for task 2, junma, 

joker and kubiac, performs better than joker and kubiac individually 
but junma still remains the highest ranking. 

In addition to joker, the methods of mibaumgartner, kubiac and 
TUM_IBBM also use the structural images in their method suggesting 
that the networks may benefit from having the information contained 
in the structural images when detecting and segmenting UIAs. Other 
teams use the structural images to aid in patch selection for training. 

The volume of an UIA is a very small percentage of the volume of a 
whole TOF-MRA, and in most MRAs only one UIA is present. As a result 
of this unbalanced problem, most methods chose to use ground truth 
knowledge for the patch selection, choosing a particular proportion of 
training patches to contain an UIA. Only two methods, inteneural and 
xlim, perform vessel segmentation on the TOF scans before performing 
UIA detection/segmentation. However, both methods are middle rank- 
ing (0.39, 0.41 respectively), suggesting that vessel segmentation may 
not help much in UIA detection or segmentation. 
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Fig. 3. Box plots of metrics for all teams for task 2. 
a) Dice Similarity Coefficient (DSC) b) Modified Hausdorff Distance (MHD) c) 
Volumetric Similarity for all scans containing a UIA. Each point in the box plots 
is the metric evaluated on one scan in the test set for each method. The centre 
line shows the median metric of all scans. 

Almost all task 2 segmentation methods used dice loss in some form 

for training their networks. This is a calculated choice, as dice is one 
of the metrics on which we evaluate the submitted solutions. Some 
methods use the generalised dice loss ( Sudre et al., 2017 ), which has 
proven to be reliable for unbalanced problems, and others in combina- 
tion with other loss functions such as cross-entropy, topK and boundary 
loss ( Kervadec et al., 2021 ). The winning method junma used an en- 
semble of methods trained using dice + cross entropy and dice + topK 

loss. Kubiac and inteneural both included the boundary loss in their 
loss functions for training their models. By including boundary loss, the 
models are trained to minimise the distance between the predicted and 
ground truth segmentations. This reduces the problems associated with 

Fig. 4. Sensitivity of methods for UIA of different sizes. 
Sensitivity of all teams for each UIA as a function of maximum UIA diameter in 
mm, when separating UIA diameter into four quartiles. Each point included in 
the box plot is the mean sensitivity of all teams across each UIA. 

regional based metrics, such as Dice, for highly imbalanced data. Kubiac 

and inteneural have similar performance for task 2 (rankings 0.24 and 
0.39 respectively) and this may be due to the similar architecture and 
loss function used. 

Many teams performed post-processing to only accept positive de- 
tections of a certain number of voxels, within a range that was common 
in the training dataset. Further, some teams even limited the maximum 

number of true positives found based on probability, size or intensity 
of the predictions. This aided in the challenge ranking, as we explicitly 
evaluated on false positive count. This can be seen for example by xlim, 

with a mean false positive count of 4.03 but a sensitivity of 70%, meant 
their ranking was lower than if they had perhaps used a further false 
positive reduction method. 

4.3. Segmentation Performance of true UIAs 

The top three teams in task 2, junma, joker and kubiac , also ranked 
top for segmentation performance of true UIAs only. Junma with a DSC 

of 0.64 is slightly higher than the interobserver DSC of 0.63. The MHD 

and VS are comparable to the MHD and VS of the interobserver, with all 
95% confidence intervals overlapping. This suggests that the automatic 
segmentation method performance is on par with the manual segmenta- 
tion, once the true UIA has been identified. This method could be used 
in the clinical research or routine, whereby a radiologist would only 
need to select an UIA, from a small population of candidate UIAs, and 
segmentation of the correct UIA could be performed. 

4.4. Detection performance on healthy scans 

Top performing teams junma and joker also perform well on scans 
without true UIAs, and have an average false positive count of 0 for 
such scans. This would be ideal for in the clinic by not wrongly identi- 
fying UIAs, and providing radiologists with more work to censor these 
falsely identified UIAs. Team IBBM and zelosmediacorp also had a false 
positive count of 0, however, their overall detection performance (sen- 
sitivity) across all scans, including those with positive UIAs, was poor. 

4.5. Size of UIAs 

Overall, it was clear that both detection and segmentation perfor- 
mance was better for all methods for larger UIAs, as both sensitivity 
and DSC increased with UIA diameter (Spearman’s coefficient = 0.47 
and 0.42 respectively). Not surprisingly, smaller UIA are more difficult 
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Fig. 5. Dice Similarity Coefficient (DSC) as a function of aneurysm diameter 
a) Median Dice Similarity Coefficient (DSC) of all teams for each UIA as a func- 
tion of maximum UIA diameter in mm, b) Mean DSC of all teams for each UIA 

as a function of maximum UIA diameter in mm, when separating UIA diameter 
into four quartiles. 

to detect, which is also consistent with studies investigating visual de- 
tection of aneurysms. White et. al. ( White et al., 2000 ) cite an average 
of 87% sensitivity for detecting UIAs on MRAs by radiologists, of which 
sensitivity is 38% for UIAs < 3 mm and 94% for UIA > 3 mm. From the 
results, it can be seen that the lower quartiles of diameter have a com- 
parable sensitivity. Xlim has the highest sensitivity with 71% for UIAs 
with diameter > 3.54 mm and < 4.98 mm and 95% for UIAs > 4.98 mm. 
As such, this method may be suitable for detection of larger UIAs with 
performance that is on par with human visual inspection. We assessed 
segmentation using DSC, which is a difficult measure for small objects 
and is limited by voxel sizes of the images. For small UIAs, with few 

voxels, the overlap will be less likely and this results in a smaller DSC. 

4.6. Intra-subject Analyses 

Comparing volume change between ground truth and predicted seg- 
mentations, found that different methods performed differently. Junma 

had the best agreement between ground truth and predicted volume 

changes (Kendall’s tau > 0.5), suggesting that can accurately measure 
volumetric change and growth. Junma had the best segmentation per- 
formance overall which could explain the volumetric change agreement. 
For some methods there was disagreement or almost no association be- 
tween the predicted and ground truth volume changes, suggesting that 
these methods are not appropriate for measuring volumetric growth. It 
was also noted that the actual volumetric change was very small, and 
none of the aneurysms showed considerable growth between baseline 
and follow-up. The small volumetric change may explain the low vol- 
umetric change agreement of all methods. Based on the segmentation 
metrics and Wilcoxon rank test, the methods performed similarly for 
both baseline and follow-up scans. One variable that may have affected 
the intrasubject performance, was the train, test and validation splits 
between the methods, as many methods did not take baseline-follow-up 
pairs into account. 

4.7. Train vs test performance 

Most methods, for both tasks, had a considerably lower performance 
on the test data than on the training data. This suggests that these meth- 
ods did not generalise well to the unseen data. Reasons for this could 
be in the method design, the training/validation data splits, aneurysm 

sizes, or not taking into account the baseline-follow-up pairs. The dis- 
tribution of aneurysm and scan characteristics is similar between the 
training and test sets, ensuring that the training data is representative 
of the test data. Nevertheless, some features such as aneurysm shape or 
the configuration with respect to the parent vessel were difficult to take 
into account, as they can vary considerably between patients. This re- 
flects the true clinical nature of the data set, but ideally methods should 
be able to detect and segment UIAs, even on unseen examples. 

4.8. Future work 

Overall, further improvement is necessary to be comparable to man- 
ual clinical standards for UIA detection and segmentation. All methods 
performed worse for smaller UIAs and as small UIAs are often over- 
looked by radiologists, this would be a main aspect for improvement of 
the methods. Furthermore, with increased screening studies, detection 
of small UIAs would be beneficial to speed up workflow and to learn 
more about the prevalence of UIAs in the general population. The best 
detection method used a network specifically designed for detection as 
opposed to semantic segmentation. The other submitted methods appear 
limited for detection with most using a generic semantic segmentation 
method. This suggests that a “brute force ” technique, by just applying 
a standard U-Net architecture, may not be optimal for this problem. In- 
stead, future developments should think out of the box. It was also noted 
that few methods use information from the structural images to aid in 
their methods. Perhaps some prior knowledge of, for example, the loca- 
tion, shape and size of the UIA would aid in the method performance. 
The dataset was a true clinical dataset, with a mixture of scan parame- 
ters, and although this makes it technically challenging, a method that 
performs well over the whole test set would be very convenient to have 
for clinical use. For larger aneurysms, the top-ranked detection meth- 
ods had a performance that was on par with human visual detection 
suggesting that these methods could be used for the detection of larger 
UIAs. 

The method of junma showed promising segmentation performance 
on the true UIAs. This suggests that a semi-automatic workflow allowing 
a radiologist to identify the location of the UIA and then using the model 
of junma as an accurate method of UIA segmentation may already be 
of use in current clinical practice. In future work, incorporating this 
segmentation method, with an improved detection method, may lead to 
an optimal automatic detection and segmentation method for UIAs. 
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5. Conclusions 

The provided results were presented at the 23rd International Con- 
ference of MICCAI 2020. Methods for UIA detection and segmentation 
are encouraging but require further development before being able to 
be accurately used to detect, segment and quantify UIAs automatically, 
to the same level as a radiologist. However, detection methods may be 
suitable for use for larger aneurysms. Furthermore, segmentation per- 
formance of the top ranking method suggests it may be suitable for UIA 

segmentation after manual selection of the true UIA. The ADAM chal- 
lenge remains open for submission of both new and improved methods 
. 

6. Data availability 

Training data and results are available at http://adam.isi.uu.nl/ . 
Scripts for evaluation of methods can be found at: https://github.com/ 
hjkuijf/ADAMchallenge . 

The test set is not publicly available, as it is kept secret for 
evaluation purposes of the submitted methods. The inference code 
submitted in Docker containers for the challenge is also available 
for most methods, whose teams gave permission, on DockerHub 
( https://hub.docker.com/orgs/adamchallenge ). 
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Appendices 

Appendix A. Segmentation example 

For the top row, one slice of the MRA is shown, where the segmentation of the ground truth and predicted segmentation is similar, shown by the 
large overlap. In the bottom row, the predicted segmentation is much smaller than the ground truth and there is little overlap. The junma method 
segmented better in the centre of the aneurysms than at the edge of the aneurysm. 

Fig. A1 

Fig. A1. Segmentation of team junma on an example test case. 
Figure 1: slices of the TOF-MRA of the same test case, to show how the segmentation from the Junma method varied from the ground truth segmentation. 
Columns a) no segmentation overlaid, b) both segmentations overlaid in yellow, c) ground truth segmentation overlaid in green, d) predicted segmentation overlaid 
in red. 

. 
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Appendix B. Segmentation Performance of true UIAs 

Fig.B1 

Fig. B1. Segmentation Performance of all detected UIAs 
Boxplots showing the distribution of segmentation metrics for all teams for task 2, taken only true UIAs detected by the method. 

. 
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Appendix C. Detection Performance on Healthy Scans 

Table C1 

Table C1 

Average number of false positive count per scan: Column 1: all 
scans in the test set; column 2: all negative scans without true 
UIAs; and column 3: all positive scans containing true UIAs. Table 
is sorted in ascending order of the first column (number of false 
positives in all scans). 

Team All Scans Negative Scans Positive Scans 

IBBM 0.01 0.00 0.02 

zelosmediacorp 0.05 0.00 0.06 

mibaumgartner 0.13 0.08 0.15 

joker 0.16 0.00 0.20 

junma 0.18 0.00 0.22 

kubiac 0.36 0.04 0.43 

stronger 0.45 0.38 0.47 

inteneural 0.88 0.58 0.95 

unil_chuv 1.45 1.54 1.43 

xlim 4.03 4.08 4.02 

TUM_IBBM 22.62 22.5 22.65 

Appendix D. Size Analyses 

Fig. D1 , Fig. D2 

Fig. D1. Sensitivity of each method assessed in different size UIAs 
Sensitivity of each method based on all scans split into four quartiles of maximum aneurysm diameter. 
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Fig. D2. a) Dice Similarity Coefficient (DSC) of each method assessed in different size UIAs. 
Dice Similarity Coefficient (DSC) of each method as a function of maximum aneurysm diameter when split into quartiles 
Figure D2) b) Dice Similarity Coefficient (DSC) against UIA Maximum Diameter 
DSC of each method a function of maximum aneurysm diameter for each UIA in all scans. Each point represents the DSC of one scan for one method. 
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Fig. D2. Continued 

Appendix E. Intrasubject Performance 

Fig. E1 and Fig.E2 

Fig. E1. Sensitivity for Baseline and Follow-up scans 
Mean sensitivity of each subject for each team for all baseline and follow-up scans in the test set. 
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Fig. E2. Segmentation Metrics for Baseline and Follow-up Scans 
DSC and VS of each subject for each team for baseline and follow-up scans of all scans in the test dataset. 
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Appendix F. Train vs Test Performance 

Tables F1a and F1b . 

Table F1a 

Task 1: Detection metrics and ranking assessed for all methods on training data. FP is average false positive count 
over all scans, sensitivity is average sensitivity over scans containing true UIAs. Difference is the average values of 
the test set subtracted from the average value of the training set. 

Train set Test set Difference (Train - Test) 
Team FPcount Sensitivity rank FPcount Sensitivity rank FPcount Sensitivity rank 

Kubiac 0.15 1.00 0.00 0.36 0.60 0.08 -0.21 0.40 -0.10 

Mibaumgartner 0.04 0.96 0.03 0.13 0.67 0.03 -0.09 0.29 0.00 

Junma 0.01 0.94 0.04 0.18 0.61 0.07 -0.17 0.33 -0.00 

Joker 0.04 0.92 0.06 0.16 0.63 0.06 -0.12 0.29 0.00 

Xlim 2.82 0.89 0.12 4.03 0.70 0.09 -1.21 0.19 0.03 

inteneural 0.62 0.83 0.13 0.88 0.49 0.17 -0.26 0.34 -0.00 

IBBM 0.03 0.56 0.31 0.01 0.02 0.50 0.02 0.54 -0.20 

Zelosmediacorp 0.00 0.53 0.33 0.05 0.21 0.36 -0.05 0.32 -0.00 

Stronger 0.45 0.47 0.38 0.45 0.20 0.38 0.00 0.27 0.00 

unil_chuv 1.27 0.29 0.52 1.45 0.20 0.40 -0.18 0.09 0.12 

TUM_IBBM 32.86 0.59 0.79 22.62 0.43 0.70 10.24 0.16 0.09 

Table F1b 

Task 2: Segmentation metrics and ranking assessed for all methods on training data. All values are averages over all scans 
containing true UIAs. DSC: Dice Similarity Coefficient, MHD: Modified Hausdorff Distance measured in mm, VS: Volumetric 
Similarity. Difference is the average values of the test set subtracted from the average value of the training set. 

Train set Test set Difference (Train - Test) 

Team DSC MHD VS rank DSC MHD VS rank DSC MHD VS rank 

Junma 0.83 2.52 0.91 0.00 0.41 8.96 0.50 0.22 0.42 -6.44 0.41 -0.22 

Joker 0.79 2.01 0.86 0.05 0.40 8.67 0.48 0.20 0.39 -6.66 0.38 -0.15 

Kubiac 0.78 5.11 0.90 0.05 0.28 18.13 0.39 0.43 0.50 -13.00 0.51 -0.38 

inteneural 0.73 14.58 0.84 0.15 0.17 23.98 0.36 0.95 0.56 -9.40 0.48 -0.80 

Zelosmediacorp 0.40 7.71 0.48 0.46 0.09 9.79 0.13 0.06 0.31 -2.08 0.35 0.40 

IBBM 0.29 8.08 0.41 0.55 0.01 12.77 0.01 0.02 0.28 -4.69 0.40 0.53 

Stronger 0.21 22.06 0.34 0.70 0.07 24.42 0.21 0.47 0.14 -2.36 0.13 0.23 

Xlim 0.27 35.29 0.32 0.76 0.21 36.82 0.39 4.02 0.06 -1.53 -0.10 -3.26 

TUM_IBBM 0.11 63.50 0.30 1.00 0.07 65.02 0.31 22.65 0.04 -1.52 -0.00 -21.65 
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