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Abstract. We define a class of Euclidean distances on weighted graphs,
enabling to perform thermodynamic soft graph clustering. The class can
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tioned, illustrate the procedure as well as visualization aspects.
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1 Introduction

Bavaud, F.: Euclidean Distances, Soft and Spectral Clustering on Weighted Graphs. In:

Balcázar, J.L. et al. (Eds.) Machine Learning and Knowledge Discovery in Databases,

ECML-PKDD 2010, LNCS 6321, pp 103–118. Springer, Heidelberg (2010)

In a nutshell (see e.g. Shi and Malik (2000); Ng, Jordan and Weiss (2002);
von Luxburg (2007) for a review), spectral graph clustering consists in

A) constructing a features-based similarity or affinity matrix between n objects
B) performing the spectral decomposition of the normalized affinity matrix, and

representing the objects by the corresponding eigenvectors or raw coordinates
C) applying a clustering algorithm on the raw coordinates.

The present contribution focuses on (C) thermodynamic clustering (Rose et
al. 1990; Bavaud 2009), an aggregation-invariant soft K-means clustering based
upon Euclidean distances between objects. The latter constitute distances on
weighted graphs, and are constructed from the raw coordinates (B), whose form
happens to be justified from presumably new considerations on equivalence be-
tween vertices (Section 3.3). Geographical flow data illustrate the theory (Section
4). Once properly symmetrized, endowed with a sensible diagonal and normal-
ized, flows define an exchange matrix (Section 2), that is an affinity matrix (A)
which might be positive definite or not.

A particular emphasis is devoted to the definition of Euclidean distances on
weighted graphs and their properties (Section 3). For instance, diffusive and chi-
square distances are focused, that is zero between equivalent vertices. Commute-
time and absorption distances are not focused, but their values between equiva-
lent vertices possess an universal character. All these distances, whose relation-
ships to the shortest-path distance on weighted graphs is partly elucidated, differ
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in the way eigenvalues are used to scale the raw coordinates. Allowing further
Schoenberg transformations (Definition 3) of the distances still extends the class
of admissible distances on graphs, by means of a high-dimensional embedding
familiar in the Machine Learning community.

2 Preliminaries and notations

Consider n objects, together with an exchange matrix E = (eij), that is a n× n
non-negative, symmetric matrix, whose components add up to unity (Berger and
Snell 1957). E can be obtained by normalizing an affinity of similarity matrix,
and defines the normalized adjacency matrix of a weighted undirected graph
(containing loops in general), where eij is the weight of edge (ij) and fi =∑n
j=1 eij is the relative degree or weight of vertex i, assumed strictly positive.

2.1 Eigenstructure

P = (pij) with pij = eij/fi is the transition matrix of a reversible Markov chain,
with stationary distribution f . The t-step exchange matrix is E(t) = ΠP t, where
Π is the diagonal matrix containing the weights f . In particular, assuming the
chain to be regular (see e.g. Kijima 1997)

E(0) = Π E(2) = EΠ−1E . E(∞) = ff ′

P is similar to the symmetric, normalized exchange matrix Π−
1
2EΠ−

1
2 (see e.g.

Chung 1997), and share the same eigenvalues 1 = λ0 ≥ λ1 ≥ λ2 ≥ . . . λn−1 ≥ −1.
It is well-known that the second eigenvalue λ1 attains its maximum value 1 iff
the graph contains disconnected components, and λn−1 = −1 iff the graph is
bipartite. We note U ′ΛU the spectral decomposition of the normalized exchange
matrix, where Λ is diagonal and contains the eigenvalues, and U = (uiα) is
orthonormal and contains the normalized eigenvectors. In particular, u0 =

√
f is

the eigenvector corresponding to the trivial eigenvalue λ0 = 1. Also, the spectral
decomposition of higher-order exchange matrices reads Π−

1
2E(t)Π−

1
2 = UΛtU ′.

2.2 Hard and soft partitioning

A soft partition of the n objects into m groups is specified by a n×m membership
matrix Z = (zig), whose components (obeying zig ≥ 0 and

∑m
g=1 zig = 1) quan-

tify the membership degree of object i in group g. The relative volume of group
g is ρg =

∑
i fizig. The components θgh =

∑
i fizigzih of the m×m matrix Θ =

Z ′ΠZ measure the overlap between groups g and h. In particular, θgg/ρg ≤ 1
measures the hardness of group g. The components agh =

∑
ij eijzigzjh of the

m×m matrix A = Z ′EZ measure the association between groups g and h.
A group g can also be specified by the objects it contains, namely by the dis-

tribution πg with components πgi = fizig/ρg, obeying
∑
i π

g
i = 1 by construction.

The object-group mutual information

I(O,Z) = H(O) +H(Z)−H(O,Z) = −
∑
i fi ln fi −

∑
g ρg ln ρg +

∑
ig fizig ln(fizig)
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measures the object-group dependence or cohesiveness (Cover and Thomas 1991).
A partition is hard if each object belongs to an unique group, that is if the

memberships are of the form zig = I(i ∈ g), or equivalently if z2ig = zig for all
i, g, or equivalently if θgg = ρg for all g, or still equivalently if the overall softness
H(Z|O) = H(Z)− I(O,Z) takes on its minimum value of zero.

Also, H(O) ≤ lnn, with equality iff fi = 1/n, that is if the graph is regular.

2.3 Spectral versus soft membership relaxation

In their presentation of the Ncut-driven spectral clustering, Yu and Shi (2003)
(see also Nock et al. 2009) determine the hard n×m membership Z maximizing

ε[Z] =

m∑
g=1

agg
ρg

=
∑
g

agg
θgg

= tr(X ′EX) where X[Z] = Z Θ−
1
2 [Z]

under the constraint X ′ΠX = I. Relaxing the hardness and non-negativity con-
ditions, they show the solution to be ε[Z0] = 1 +

∑m−1
α=1 λα, attained with an

optimal “membership” of the form Z0 = X0RΘ
1
2 where R is any orthonormal

m ×m matrix and X0 = (1, x1, . . . , xα, . . . , xm−1) is the n ×m matrix formed
by the unit vector followed by of the first raw coordinates (Sec. 3.3). The above
spectral relaxation of the memberships, involving the eigenstructure of the nor-
malized exchange matrix, completely differs from the soft membership relaxation
which will be used in Section 3.2, preserving positivity and normalization of Z.

3 Euclidean distances on weighted graphs

3.1 Squared Euclidean distances

Consider a collection of n objects together with an associated pairwise distance.
A successful clustering consists in partitioning the objects into m groups, such
that the average distances between objects belonging to the same (different)
group are small (large). The most tractable pairwise distance is, by all means, the
squared Euclidean distance Dij =

∑q
c=1(xic − xjc)2, where xic is the coordinate

of object i in dimension c. Its virtues follow from Huygens principles∑
j

pjDij = Dip +∆p ∆p =
∑
j

pjDjp =
1

2

∑
ij

pipjDij (1)

where pi represents a (possibly non positive) signed distribution, i.e. obeying∑
i pi = 1, Dip is the squared Euclidean distance between i and the centroid

of coordinates x̄pc =
∑
i pixic, and ∆p the average pairwise distance or inertia.

Equations (1) are easily checked using the coordinates, although the latter do not
explicitly appear in the formulas. To that extent, squared Euclidean distances
enable a feature-free formalism, a property shared with the kernels of Machine
Learning, and to the “kernel trick” of Machine Learning amounts an equivalent
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“distance trick” (Schölkopf 2000; Williams 2002), as expressed by the well-known
Classical Multidimensional Scaling (MDS) procedure. Theorem 1 below presents
a weighted version (Bavaud 2006), generalizing the uniform MDS procedure
(see e.g. Mardia et al. 1979). Historically, MDS has been developed from the
independent contributions of Schoenberg (1938b) and Young and Householder
(1938). The algorithm has been popularized by Torgeson (1958) in Data Analysis.

Theorem 1 (weighted classical MDS). The dissimilarity square matrix D
between n objects with weights p is a squared Euclidean distance iff the scalar
product matrix B = − 1

2HDH
′ is (weakly) positive definite (p.d.), where H is

the n × n centering matrix with components hij = δij − pj. By construction,
Bij = − 1

2 (Dij − Dip − Djp) and Dij = Bii + Bjj − 2Bij. The object coordi-

nates can be reconstructed as xiβ = µ
1
2

β p
− 1

2
i viβ for β = 1, 2, . . ., where the µβ

are the decreasing eigenvalues and the viβ are the eigenvectors occurring in the
spectral decomposition K = VMV ′ of the weighted scalar product or kernel
K with components Kij =

√
pipjBij. This reconstruction provides the optimal

low-dimensional reconstruction of the inertia associated to p

∆ =
1

2

∑
ij

pipjDij = tr(K) =
∑
β≥1

µβ .

Also, the Euclidean (or not) character of D is independent of the choice of p.

3.2 Thermodynamic clustering

Consider the overall objects weight f , defining a centroid denoted by 0, together
with m soft groups defined by their distributions πg for g = 1, . . . ,m, with
associated centroids denoted by g. By (1), the overall inertia decomposes as

∆ =
∑
i fiDi0 =

∑
ig fizigDi0 =

∑
g ρg

∑
i π

g
iDi0 =

∑
g ρg[Dg0 +∆g] = ∆B +∆W

where ∆B [Z] =
∑
g ρgDg0 is the between-groups inertia, and ∆W [Z] =

∑
g ρg∆g

the within-groups inertia. The optimal clustering is then provided by the n×m
membership matrix Z minimizing ∆W [Z], or equivalently maximizing ∆B [Z].
The former functional can be shown to be concave in Z (Bavaud 2009), implying
the minimum to be attained for hard clusterings.

Hard clustering is notoriously computationally intractable and some kind
of regularization is required. Many authors (see e.g. Huang and Ng (1999) or
Filippone et al. (2008)) advocate the use of the c-means clustering, involving
a power transform of the memberships. Despite its efficiency and popularity,
the c-means algorithm actually suffers from a serious formal defect, questioning
its very logical foundations: its objective function is indeed not aggregation-
invariant, that is generally changes when two groups g and h supposed equivalent
in the sense πg = πh are merged into a single group [g ∪ h] with membership
zi[h∪g] = zih + zjh (Bavaud 2009).

An alternative, aggregation-invariant regularization is provided by the ther-
modynamic clustering, minimizing over Z the free energy F [Z] = ∆W [Z]+TI[Z],
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where I[Z] ≡ I(O,Z) is the objects-groups mutual information and T > 0 the
temperature (Rose et al. 1990; Rose 1998; Bavaud 2009). The resulting member-
ship is determined iteratively through

zig =
ρg exp(−Dig/T )∑m
h=1 ρh exp(−Dih/T )

(2)

and converges towards a local minimum of the free energy. Equation (2) amounts
to fitting Gaussian clusters in the framework of model-based clustering.

3.3 Three nested classes of squared Euclidean distances

Equation (2) solves the K-way soft graph clustering problem, given of course the
availability of a sound class of squared Euclidean distances on weighted graphs.
Definitions 2 and 3 below seem to solve the latter issue.

Consider a graph possessing two distinct but equivalent vertices in the sense
their relative exchange is identical with the other vertices (including themselves).
Those vertices somehow stand as duplicates of the same object, and one could
as a first attempt require their distance to be zero.

Definition 1 (Equivalent vertices; focused distances). Two distinct ver-
tices i and j are equivalent, noted i ∼ j, if eik/fi = ejk/fj for all k. A distance
is focused if Dij = 0 for i ∼ j.

Proposition 1. i ∼ j iff xiα = xjα for all α ≥ 1 such that λα 6= 0, where
xiα = uiα/

√
fi is the raw coordinate of vertex i in dimension α.

The proof directly follows from the substitution eik → fiejk/fj in the iden-

tity
∑
k f
− 1

2
i eikf

− 1
2

k ukα = λαuiα. Note that the condition trivially holds for the

trivial eigenvector α = 0, in view of f
− 1

2
i ui0 ≡ 1 for all i. It also holds trivially

for the “completely connected” weighted graph e
(∞)
ij = fifj , where all vertices

are equivalent, and all eigenvalues are zero, except the trivial one.

Hence, any expression of the form Dij =
∑
α≥1 gα(f

− 1
2

i uiα − f
− 1

2
j ujα)2 with

gα ≥ 0 constitutes an admissible squared Euclidean distance, obeying Dij = 0
for i ∼ j, provided gα = 0 if λα = 0. The quantities gα are non-negative, but
otherwise arbitrary; however, it is natural to require the latter to depend upon
the sole parameters at disposal, namely the eigenvalues, that is to set gα = g(λα).

Definition 2 (Focused and Natural Distances on Weighted Graphs).
Let E be the exchange matrix associated to a weighted graph, and define Es :=
Π−

1
2 (E − E(∞))Π−

1
2 , the standardized exchange matrix. The class of focused

squared Euclidean distances on weighted graphs is

Dij = Bii +Bjj − 2Bij , where B = Π−
1
2KΠ−

1
2 and K = g(Es)

where g(λ) is any non-negative sufficiently regular real function with g(0) = 0.
Dropping the requirement g(0) = 0 defines the more general class of natural
squared Euclidean distances on weighted graphs.

If g(1) is finite, K can also be defined as K = g(Π−
1
2EΠ−

1
2 ) = Ug(Λ)U ′.
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First, note the standardized exchange matrix to result from a “centering”
(eliminating the trivial eigendimension) followed by a “normalization”:

esij =
eij − fifj√

fifj
=

∑
α≥1

λαuiαujα . (3)

Secondly, B is the matrix of scalar products appearing in Theorem 1. The re-
sulting optimal reconstruction coordinates are

√
g(λα)xiα, where the quantities

xiα = f
− 1

2
i uiα are the raw coordinates of vertex i in dimension α = 1, 2, . . . ap-

pearing in Proposition 1 - which yields a general rationale for their widespread
use in clustering and low-dimensional visualization. Thirdly, the matrix g(Es)
can be defined, for g(λ) regular enough, as the power expansion in (Es)t with
coefficients given by the power expansion of g(λ) in λt, for t = 0, 1, 2, . . .. Fi-
nally, the two variants of B appearing in Definition 2 are identical up to a matrix
g(1)1n1′n, leaving D unchanged.

If g(1) = ∞, the distance between vertices belonging to distinct irreducible
components becomes infinite: recall the graph to be disconnected iff λ1 = 1.
Such distances will be referred to as irreducible.

Natural distances are in general not focused. The distances between equiva-
lent vertices are however universal, that is independent of the details of the graph
or of the associated distance (Proposition 2). To demonstrate this property, con-
sider first an equivalence class J := {k |k ∼ j} containing at least two equivalent
vertices. Aggregating the vertices in J results in a new ñ× ñ exchange matrix Ẽ
with ñ = (n−|J |−1), with components ẽJJ =

∑
ij∈J eij , ẽJk = ẽkJ =

∑
j∈J ejk

for k /∈ J and f̃J =
∑
j∈J fj , the other components remaining unchanged.

Proposition 2. Let D be a natural distance and consider a graph possessing an
equivalence class J of size |J | ≥ 2. Consider two distinct elements i ∼ j of J
and let k /∈ J . Then

Dij = g(0) (
1

fi
+

1

fj
) DjJ = g(0) (

1

fi
− 1

f̃J
) ∆J = g(0)

|J | − 1

f̃J
.

Moreover, the Pythagorean relation Dkj = DkJ +DjJ holds.

Proof: consider the eigenvalues λ̃β and eigenvectors ũβ , associated to the ag-

gregated graph Ẽ, for β = 0, . . . , ñ. One can check that, due to the collinearity
generated by the |J | equivalent vertices,

• ñ among the original eigenvalues λα coincide with the set of aggregated
eigenvalues λ̃β (non null in general), with corresponding eigenvectors ujβ =

f
1
2
j f̃
− 1

2

J ũJβ for j ∈ J and ukβ = ũkβ for k /∈ J
• |J − 1| among the original eigenvalues λα are zero. Their corresponding

eigenvectors are of the form ujγ = hjγ for j ∈ J and ukγ = 0 for k /∈ J ,
where the hγ constitute the |J |−1 columns of an orthogonal |J |×|J | matrix,

the remaining column being (f
1
2
j f̃
−

1
2

J )j∈J .
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Identities in Proposition 2 follow by substitution. For instance,

Dij =

ñ∑
β=1

g(λβ)(
uiβ√
fi
− ujβ√

fj
)2 + g(0)

|J|−1∑
γ=1

(
hiγ√
fi
− hjγ√

fj
)2 = g(0) (

1

fi
+

1

fj
) .

General at it is, the class of squared Euclidean distances on weighted graphs of
Definition 2 can still be extended: a wonderful result of Schoenberg (1938a), still
apparently little known in the Statistical and Machine Learning community (see
however the references in Kondor and Lafferty (2002); Hein et al. (2005)) asserts
that the componentwise correspondence D̃ij = φ(Dij) transforms any squared

Euclidean distance D into another squared Euclidean distance D̃, provided that

i) φ(D) is positive with φ(0) = 0
ii) odd derivatives φ′(D), φ′′′(D),... are positive

iii) even derivatives φ′′(D), φ′′′′(D),... are negative.

For example, φ(D) = Da (for 0 < a ≤ 1) and φ(D) = 1− exp(−bD) (for b > 0)
are instances of such Schoenberg transformations (Bavaud 2010).

Definition 3 (Extended Distances on Weighted Graphs). The class of
extended squared Euclidean distances on weighted graphs is

D̃ij = φ(Dij)

where φ(D) is a Schoenberg transformation (as specified above), and Dij is a
natural squared Euclidean distance associated to the weighted graph E, in the
sense of Definition 2.

3.4 Examples of distances on weighted graphs

The chi-square distance The choice g(λ) = λ2 entails, together with (3)

∆ = tr(K) = tr((Es)2) =
∑
ij

(eij − fifj)2

fifj
= χ2

which is the familiar chi-square measure of the overall rows-columns dependency
in a (square) contingency table, with distance Dχ

ij =
∑
k f
−1
k (f−1i eik−f−1j ejk)2,

well-known in the Correspondence Analysis community (Lafon and Lee 2006;
Greenacre 2007 and references therein). Note that Dχ

ij = 0 for i ∼ j, as it must.

The diffusive distance The choice g(λ) = λ is legitimate, provided the ex-
change matrix is purely diffusive, that is p.d. Such are typically the graphs re-
sulting from inter-regional migrations (Sec. 4) or social mobility tables (Bavaud
2008). As most people do not change place or status during the observation time,
the exchange matrix is strongly dominated by its diagonal, and hence p.d.

Positive definiteness also occurs for graphs defined from the affinity matrix
exp(−βDij) (Gaussian kernel), as in Belkin and Niyogi (2003), among many
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others. Indeed, distances derived from the Gaussian kernel provide a prototypical
example of Schoenberg transformation (see Definition 3). By contrast, the affinity
I(Dij ≤ ε2) used by Tenenbaum et al. (2000) is not p.d.

The corresponding distance, together with the inertia, plainly read

D
dif
ij =

eii
f2i

+
ejj
f2j
− 2

eij
fifj

∆dif =
∑
i

eii
fi
− 1 .

The “frozen” distance The choice g(λ) ≡ 1 produces, for any graph, a result
identical to the application of any function g(λ) (with g(1) = 1) to the purely
diagonal “frozen” graph E(0) = Π, namely (compare with Proposition 2):

D
fro
ij =

1

fi
+

1

fj
for i 6= j D

fro
i0 =

1

fi
− 1 ∆fro = n− 1 .

This “star-like” distance (Critchley and Fichet 1994) is embeddable in a tree.

The average commute time distance The choice g(λ) = (1 − λ)−1 cor-
responds to the average commute time distance; see Fouss et al. (2007) for a
review and recent results. The amazing fact that the latter constitutes a squared
Euclidean distance has only be recently explicitly recognized as such, although
the key ingredients were at disposal ever since the seventies.

Let us sketch a derivation of this result: on one hand, consider a random
walk on the graph with probability transition matrix P = Π−1E, and let Tj
denotes the first time the chain hits state j. The average time to go from i to j
is mij = Ei(Tj), with mii = 0, where Ei(.) denotes the expectation for a random
walk started in i. Considering the state following i yields for i 6= j the relation
mij = 1 +

∑
k pikmkj , with solution (Kemeny and Snell (1976); Aldous and Fill,

draft chapters) mij = (yjj − yij)/fj , where Y = Π−1
∑
t≥0(E(t) − E(∞)) =

(E(0)−E+E(∞))−1Π is the so-called fundamental matrix of the Markov chain.

On the other hand, Definition 2 yields K = (I − Es)−1 = Π
1
2 (E(0) − E +

E(∞))−1Π
1
2 = Π

1
2Y Π−

1
2 , and thus B = Y Π−1 = Π−1Y . Hence

Dcom
ij = Bii +Bjj − 2Bij =

yii
fi

+
yjj
fj
− yij
fj
− yij
fj

= mij +mji

which is the average time to go from i to j and back to i, as announced.
Consider, for future use, the Dirichlet form E(y) = 1

2

∑
ij eij(yi − yj)2, and

denote by y0 the solution of the “electrical” problem miny∈Cij E(y), where Cij
denotes the set of vectors y such that yi = 1 and yj = 0. Then y0k = Pk(Ti <
Tj), where Pk(.) denotes the probability for a random walk started at k. Then
Dcom
ij = 1/E(y0) (Aldous and Fill, chapter 3).

The shortest-path distance Let Γij be the set of paths with extremities i
and j, where a path γ ∈ Γij consists of a succession of consecutive unrepeated
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edges denoted by α = (k, l) ∈ γ, whose weights eα represent conductances.
Their inverses are resistances, whose sum is to be minimized by the shortest path
γ0 ∈ Γij (not necessarily unique) on the weighted graph E. This setup generalizes
the unweighted graphs framework, and defines the shortest path distance

D
sp
ij = min

γ∈Γij

∑
α∈γ

1

eα
.

We believe the following result to be new - although its proof simply combines a
classical result published in the fifties (Beurling and Deny 1958) with the above
“electrical” characterization of the average commute time distance.

Proposition 3. D
sp
ij ≥ Dcom

ij with equality for all i, j iff E is a weighted tree.

Proof: let γ0 ∈ Γij be the shortest-path between i and j. Consider a vector y
and define dyα = yl − yk for an edge α = (k, l). Then

|yi − yj |
(a)

≤
∑
α∈γ0

|dyα| =
∑
α∈γ0

√
eα
|dyα|√
eα

(b)

≤ (
∑
α∈γ0

eα(dyα)2)
1
2 (

∑
α∈γ0

1

eα
)
1
2

(c)

≤
√
E(y)

√
D
sp
ij

Hence D
sp
ij ≥ (yi−yj)2/E(y) for all y, in particular for y0 defined above, showing

D
sp
ij ≥ Dcom

ij . Equality holds iff (a) y0 is monotonously decreasing along the path

γ0, (b) for all α ∈ γ0, dy0α = c/eα for some constant c, and (c) dy0αeα = 0 for all
α /∈ γ0. (b), expressing Ohm’s law U = RI in the electrical analogy, holds for
y0, and (a) and (c) hold for a tree, that is a graph possessing no closed path.

The shortest-path distance is unfocused and irreducible. Seeking to determine
the corresponding function g(λ) involved in Definition 2, and/or the Schoenberg
transformation φ(D) involved in Definition 3, is however hopeless:

Proposition 4. Dsp is not a squared Euclidean distance.

Proof: a counter-example is provided (Deza and Laurent (1997) p. 83) by the
complete bipartite graph K2,3 of Figure 1:

Fig. 1. Bipartite graph K2,3, associated exchange matrix and shortest-path distance

The eigenvalues occurring in Theorem 1 are µ1 = 3, µ2 = 2.32, µ3 = 2,
µ4 = 0 and µ5 = −0.49, thus ruling out the possible squared Euclidean nature
of Dsp.
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The absorption distance The choice g(λ) = (1−ρ)/(1−ρλ) where 0 < ρ < 1
yields the absorption distance: consider a modified random walk, where, at each
discrete step, a particle at i either undergoes with probability ρ a transition
i → j (with probability pij) or is forever absorbed with probability 1 − ρ into
some additional “cemetery” state. The quantities vij(ρ) = “average number of
visits from i to j before absorption” obtain as the components of the matrix (see
e.g. Kemeny and Snell (1976) or Kijima (1997))

V (ρ) = (I − ρP )−1 = (Π − ρE)−1Π with fivij = fjvji and
∑
i

fivij =
fj

1− ρ
.

Hence K = g(Π−
1
2EΠ−

1
2 ) = (1−ρ)Π

1
2V Π−

1
2 and Bij = (1−ρ)vij/fj , measur-

ing the ratio of the average number of visits from i to j over its expected value
over the initial state i. Finally,

Dabs
ij (ρ) =

vii(ρ)

fi
+
vjj(ρ)

fj
− 2

vij(ρ)

fj
.

By construction, limρ→0D
abs(ρ) = Dfro and limρ→1(1− ρ)−1Dabs(ρ) = Dcom.

Also, limρ→1D
abs(ρ) ≡ 0 for a connected graph.

The “sif” distance The choice g(λ) = λ2/(1− λ) is the simplest one insuring
an irreducible and focused squared Euclidean distance. Identity λ2/(1 − λ) =

1/(1− λ)− λ− 1 readily yields (wether Ddif is Euclidean or not)

D
sif
ij = Dcom

ij −Ddif
ij −D

fro
ij .

4 Numerical experiments

4.1 Inter-cantonal migration data

The first data set consists of the numbers N = (nij) of people inhabiting the
Swiss canton i in 1980 and the canton j in 1985 (i, j = 1, . . . , n = 26), with
a total count of 6′039′313 inhabitants, 93% of which are distributed over the
diagonal. N can be made brutally symmetric as 1

2 (nij + nji) or
√
nijnji, or,

more gently, by fitting a quasi-symmetric model (Bavaud 2002), as done here.
Normalizing the maximum likelihood estimate yields the exchange matrix E.
Raw coordinates xiα = uiα/

√
fi are depicted in Figure 2. By construction, they

do not depend of the form of the function g(λ) involved in Definition 2, but they
do depend on the form of the Schoenberg transformation D̃ = φ(D) involved
in Definition 3, where they obtain as solutions of the weighted MDS algorithm
(Theorem 1) on D̃, with unchanged weights f (Figure 3 (a) and (b)).

Iterating (2) from an initial n×m membership matrix Zinit (with m ≤ n) at
fixed T yields a membership Z0(T ), which is by construction a local minimizer of
the free energy F [Z, T ]. The number M(Z0) ≤ m of independent columns of Z0
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Fig. 2. Proportion of Swiss-German speakers in the 26 Swiss cantons (left), and raw
coordinates xiα associated to the inter-cantonal migrations, in dimensions α = 1, 2
(center) and α = 3, 4 (right). Colours code the linguistic regions, namely: 1 = German,
2 = mainly German, 3 = mainly French, 4 = French and 5 = Italian. The central
factorial map reconstructs fairly precisely the geographical map, and emphasizes the
linguistic German-French barrier, known as “Röstigraben”. The linguistic isolation of
the sole Italian-speaking canton, intensified by the Alpine barrier, is patent.

Fig. 3. Raw coordinates extracted from weighted MDS after applying Schoenberg
transformations D̃ = φ(Dcom) with φ(D) = D0.7 (a), and φ(D) = 1 − exp(−bD) with
b = 1/(4∆com) (b). Decrease of the number of effective groups with the temperature
(c); beside the main component, two microscopic groups of size ρ2 = 6 · 10−4 and
ρ3 = 2 · 10−45 survive at Trel = 2. (d) is the so-called rate-distortion function of Infor-
mation Theory; its discontinuity at Tcrit = 0.406 betrays a phase transition between
a cold regime with numerous clusters and a hot regime with few clusters (Rose et al.
1990; Bavaud 2009). Behaviour of the overall softness H(Z|O) (e) (Section 2.2) and of
the clusters-regions variation of information (f) (see text).
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measures the number of effective groups: equivalent groups, that is groups whose
columns are proportional, could and should be aggregated, thus resulting in M
distinct groups, without changing the free energy, since both the intra-group
dispersion and the mutual information are aggregation-invariant (Bavaud 2009).
In practice, groups g and h are judged as equivalent if their relative overlap
(Section 2.2) obeys θgh/

√
θggθhh ≥ 1− 10−10.

Define the relative temperature as Trel = T/∆. One expects M = 1 for
Trel � 1, and M = n for Trel � 1, provided of course that the initial membership
matrix contains at least n columns. We operate a soft hierarchical descendant
clustering scheme, consisting in starting with the identity membership Zinit = I
for some Trel � 1, iterating (2) until convergence, and then aggregating the
equivalent columns in Z0(T ) into M effective groups. The temperature is then
slightly increased, and, choosing the resulting optimum Z0(T ) as the new initial
membership, (2) is iterated again, and so forth until the emergence of a single
effective group (M = 1) in the high temperature phase Trel ≥ 1.

Numerical experiments (Figure 3) actually conform to the above expecta-
tions, yet with an amazing propensity for tiny groups ρg � 1 to survive at
high temperature, that is before to be aggregated in the main component. This
metastable behaviour is related to the locally optimal nature of the algorithm;
presumably unwanted in practical applications, it can be eliminated by forcing
group coalescence if, for instance, H(Z) or F [Z]−∆ become small enough.

The softness measure of the clustering H(Z|O) is expected to be zero in
both temperature limits, since both the identity matrix and the single-group
membership matrix are hard. We have attempted to measure the quality of the
clustering Z with respect to the regional classification R of Figure 2 by the
“variation of information” index H(Z) + H(R) − 2I(Z,R) proposed by Meila
(2005). Further investigations, beyond the scope of this paper, are obviously
still to be conducted in this direction.

The stability of the effective number of clusters around Trel = 1 might en-
courage the choice of the solution with M = 7 clusters. Rather disappointingly,
the latter turns out (at Trel = 0.8, things becoming even worse at higher tem-
perature) to consist of one giant main component of ρ1 > 0.97, together with
6 other practically single-object groups (UR, OW, NW, GL, AI, JU), totalizing
less than three percent of the total mass (see also Section 5).

4.2 Commuters data

The second data set counts the number of commuters N = nij between the
n = 892 French speaking Swiss communes, living in commune i and working in
commune j in 2000. A total of 733′037 people are involved, 49% of which are
distributed over the diagonal. As before, the exchange matrix E is obtained after
fitting a quasi-symmetric model to N . The first two dimensions α = 1, 2 of the
raw coordinates xiα = uiα/

√
fi are depicted in Figure 4 a). The objects cloud

consists of all the communes (up, left) except a single one (down, right), namely
“Roche d’Or” (JU), containing 15 active inhabitants, 13 of which work in Roche
d’Or. Both the very high value of the proportion of stayers eii/fi and the low
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Fig. 4. Raw coordinates associated to the unmodified exchange matrix E are unable
to approximate the geographical map (a), in contrast to (b), (c) and (d), based upon
the diagonal-free exchange matrix Ê. Colours code the cantons, namely BE=brown,
FR=black, GE=orange, JU=violet, NE=blue, VD=green, VS=red. In particular, the
central position of VD (compare with Figure 2) is confirmed. (e) and (f) represent the
low-dimensional coordinates obtained by MDS from D̂jump (4).

value of the weight fi make Roche d’Or (together with other communes, to a
lesser extent) quasi-disconnected from the rest of the system, hence producing,
in accordance to the theory, eigenvalues as high as λ1 = .989, λ2 = .986, ... ,
λ30 > .900...

Theoretically flawless as is might be, this behavior stands as a complete geo-
graphical failure. As a matter of fact, commuters (and migration)-based graphs
are young, that is E is much closer to its short-time limit E(0) than to its equi-
librium value E(∞). Consequently, diagonal components are huge and equivalent
vertices in the sense of Definition 1 cannot exist: for k = i 6= j, the proportion
of stayers eii/fi is large, while eij/fj is not.

Attempting to consider the Laplacian E−E(0) instead of E does not improve
the situation: both matrices indeed generate the same eigenstructure, keeping the
order of eigenvalues unchanged. A brutal, albeit more effective strategy consists
in plainly destroying the diagonal exchanges, that is by replacing E by the
diagonal-free exchange matrix Ê, with components and associated weights

êij =
eij − δijeii
1−

∑
k ekk

f̂i =
fi − eii

1−
∑
k ekk

.
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Defining Ê as the new exchange matrix yields (Sections 2 and 3) new weights f̂ ,

eigenvectors Û , eigenvalues Λ̂ (with λ̂n = 0), raw coordinates X̂ and distances
D̂, as illustrated in Figure 4 b), c) and d).

However, an example of equivalent nodes in the sense of Definition 1 is still
unlikely to be found, since 0 = êii/f̂i 6= êij/f̂j in general. A weaker concept of
equivalence consists in comparing i 6= j by means of their transition probabilities
towards the other vertices k 6= i, j, that is by means of the Markov chain con-
ditioned to the event that the next state is different. Such Markov transitions
approximate the so-called jump process, if existing (see e.g. Kijima (1997) or
Bavaud (2008)). Their associated exchange matrix is precisely given by Ê.

Definition 4 (Weakly equivalent vertices; weakly focused distances).

Two distinct vertices i and j are weakly equivalent, noted i
w∼ j, if êik/f̂i =

êjk/f̂j for all k 6= i, j,. A distance is weakly focused if Dij = 0 whenever i
w∼ j.

By construction, the following “jump” distance is squared Euclidean and
weakly focused:

D̂
jump
ij =

∑
k | k 6=i,j

f̂k(
êik

f̂if̂k
− êjk

f̂j f̂k
)2 =

∑
k

1

f̂k
(
êik

f̂i
− êjk

f̂j
)2−

ê2ij

f̂if̂j
(

1

f̂i
+

1

f̂j
) . (4)

The restriction k 6= i, j in (4) complicates the expression of Djump in terms
of the eigenstructure (Û , Λ̂), and the existence of raw coordinates x̂iα, adapted
to the diagonal-free case, and justified by an analog of Proposition 1, remains
open. In any case, jump distances (4) are well defined, and yield low-dimensional
coordinates of the 892 communes by weighted MDS (Theorem 1) with weights

f̂ , as illustrated in Figure 4 e) and f).

Fig. 5. Comparison between the clustering obtained from D̂sif (in red) and D̂jump (in
green): evolution of the number of effective clusters with the temperature (a), rate-
distortion function (b) and overall softness measure (c). In (b), ∆̂jump has been multi-
plied by a factor five to fit to the scale.



15

5 Conclusion

Our first numerical results confirm the theoretical coherence and the tractability
of the clustering procedure presented in this paper. Yet, further investigations
are certainly required: in particular, the precise role that the diagonal compo-
nents of the exchange matrix should play into the construction of distances on
graphs deserves to be thoroughly elucidated. Also, the presence of fairly small
clusters in the clustering solutions of Section 4, from which the normalized cut al-
gorithm Ncut was supposed to prevent, should be fully understood. Our present
guess is that small clusters are inherent to the spatial nature of the data un-
der consideration: elongated and connected clouds as those of Figure 4 cannot
miraculously split into well-distinct groups, irrespectively of the details of the
clustering algorithm (classical chaining problem). This being said, squared Eu-
clidean are closed under addition and convex mixtures. Hence, an elementary
yet principled remedy could simply consist in adding spatial squared Euclidean
distances to the flow-induced distances investigated in the present contribution.
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