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Abstract

The drug discovery process has been profoundly changed recently by the adoption of computational methods helping the design of new
drug candidates more rapidly and at lower costs. In silico drug design consists of a collection of tools helping to make rational deci-
sions at the different steps of the drug discovery process, such as the identification of a biomolecular target of therapeutical interest,
the selection or the design of new lead compounds and their modification to obtain better affinities, as well as pharmacokinetic and phar-
macodynamic properties. Among the different tools available, a particular emphasis is placed in this review on molecular docking, vir-
tual high-throughput screening and fragment-based ligand design.

Keywords: docking • virtual high-throughput screening • fragment-based drug design

J. Cell. Mol. Med. Vol 13, No 2, 2009 pp. 238-248

© 2009 The Authors
Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

doi:10.1111/j.1582-4934.2009.00665.x

Guest Editor:  S. N. Constantinescu 

• Introduction
• Docking

- Protein and ligand flexibility
- Sampling algorithm
- Scoring functions
- Performance

• Virtual high throughput screening

- Ligand-based vHTS
- Structure-based vHTS

• In silico fragment-based drug design
- Theoretical advantages of FBD
- Existing FBD methods
- Synthetic accessibility of molecules proposed by FBD

• Conclusion

*Correspondence to: Prof Olivier Michielin, 
Swiss Institute of Bioinformatics, Molecular Modeling Group, 
Bâtiment Génopode, Quartier Sorge, Lausanne, Switzerland.

Tel.: +41 21 692 4053
Fax: +41 21 692 4065
E-mail: olivier.michielin@unil.ch

Introduction

Drug discovery is an interdisciplinary, complex, time consuming
and expensive process. It is widely admitted that the pharmaceu-
tical industry now spends far more on research and development
but produces fewer new molecules than 20 years ago. The
PriceWaterhouseCoopers Pharma report for 2005 stressed that
the pharmaceutical industry needs to find means to improve the
efficiency and effectiveness of drug discovery and development. It
projected that in silico methods will become a dominant tool to
address this issue, from drug discovery to marketing. Recently,
advances in computational techniques and hardware have enabled
in silico methods to speed up lead identification and optimization.
Up till now, these techniques have contributed to the design of

about 50 compounds that entered clinical trials, some of which are
now FDA approved [1]. As of today, in silico drug design should
not be seen as a ‘voilà’ technique able to suggest directly a small
number of compounds with a high affinity and selectivity for the
targeted macromolecule, along with favourable pharmacokinetic
and pharmacodynamic properties, and using only the three dimen-
sional (3D) structure of the target as a starting point. It rather con-
sists of a systematic use of a wide range of different computational
tools aiming, for instance, at improving the knowledge about the
target-ligand interactions (molecular docking), increasing the yield
of molecules screening by focusing the search on compounds
more likely to bind the target (virtual high-throughput screening
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[vHTS]) or even suggesting new potential lead compounds (frag-
ment- fragment-based ligand design [FBD]) [1]. Those methods
are detailed below.

Docking

Molecular docking tries to predict the native position, orientation
and conformation (so-called native pose, or native binding mode)
of a small-molecule ligand within the binding site of a targeted
macromolecule. By providing the basic understanding of the
interactions that are taking place between the ligand and its
receptor, docking opens the door to affinity estimation prior to
synthesis, as well as to ligand optimization techniques. As an
example, Fig. 1 shows the successful docking of the Cilengitide
molecule on the �V�3 integrin surface realized with EADock [2].
Pioneered during the early 1980s [3], docking remains a vigorous
research area, and is now among the most useful tools for in sil-
ico drug design and a primary component in many drug discov-
ery programs [4–8].

Docking can be roughly described as the combination of a
search algorithm that intends to suggest several possible ligand
poses, and a scoring function aiming at identifying the true
(native) binding mode. The number of putative binding modes for
a ligand on a protein surface is virtually infinite. Hence, the search
algorithm has to be fast and effective in covering the relevant con-
formational space, including poses very close to the native bind-
ing mode. For its part, the scoring function needs to capture the
thermodynamics of the ligand–protein interaction adequately to

distinguish the true binding modes, ideally corresponding to the
global minimum of the function, from all the others putative ones
suggested by the search algorithm. It also has to be fast enough
to treat a large number of potential solutions.

Over 30 different docking programs are available today [5]. The
most widely used are AutoDock [9, 10], Genetic Optimisation for
Ligand Docking (GOLD) [11, 12], FlexX [13]/FlexE [14], DOCK [3,
15] and Internal Coordinate Mechanics (ICM) [16]/ICM-flexible
receptor docking algorithm (IFREDA) [17]. Table 1 gives a short
description of some representative programs. Docking software dif-
fer in the way they handle the protein and ligand flexibility, their
sampling algorithm and their scoring function. These aspects are
detailed below.

Protein and ligand flexibility

During the physical binding, both the ligand and the protein adapt
their conformations to each other. This phenomenon is called the
induced fit. As a consequence, docking algorithms should handle
the flexibility of both molecules. However, taking account of all
these degrees of freedom (DOF) leads to a combinatorial explo-
sion of the conformational space making the docking an even
more challenging task. Therefore, almost all docking programs
perform flexible ligand docking while the receptor is kept rigid.
The main exceptions are GOLD, AutoDock, DOCK and EADock,
which apply some flexibility to the protein during the docking
through active site side chains rotations and more global mini-
mizations, as well as FlexE and the IFREDA, which use a set of
 different pre-generated receptor conformations obtained experi-
mentally or with in silico approaches.

Fig. 1 Example of a successful docking of the Cilengitide molecule on the �V�3 integrin surface realized with EADock [2]. (A) The starting population
of the evolutionary process, composed of random yet plausible binding modes, is shown in magenta thick lines. These poses were generated 15 to 25
Å RMSD away from the known native binding mode (in ball and stick) to assess the sampling algorithm. (B) The binding mode proposed by EADock at
the end of the docking process, in cyan thick lines, is compared to the native binding mode in ball and stick representation. The RMSD between the two
poses is 1.2 Å. Importantly, although the native binding mode is known, this information was not used during the docking process, which employed
only physical considerations.
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Sampling algorithm

Several approaches are used to sample the ligand-binding modes,
and in some cases, to treat the flexibility of the protein. These
sampling algorithms may be divided into three major categories:
systematic search algorithms (FlexX or FlexE, DOCK, Glide [18],
Hammerhead [19]), stochastic methods [AutoDock, GOLD, Quick
Explore (QXP) [20], EADock] and simulation approaches.

The ideal systematic exploration of all DOF in a molecule to find
its native binding mode is usually an impossible task due to the
combinatorial explosion of the search space. Therefore, several
methods that fall into the category of ‘systematic search algo-
rithms’ use the technique of the incremental reconstruction of the
ligand to compensate for this exponential dependence on the
molecular size. There are basically two ways to perform incremen-
tal reconstruction. In the first one (FlexX, FlexE), the molecule is
divided into a single rigid fragment and several shells of flexible
extensions. The rigid fragment, selected for its ability to make the
highest number of interactions with the receptor, is docked first.
The flexible moieties are then reconnected incrementally. After
adding one flexible component, new interactions are searched for
in compliance with the torsional database, and the scoring func-
tion is used to select the best partial solutions that are used for the
next extension step. In the second variant of incremental recon-
struction (Hammerhead and original version of DOCK), the mole-
cule is decomposed into various fragments that are docked inde-
pendently and subsequently fused into the active site using a
hinge-bending algorithm. In addition to these reconstruction algo-
rithms, other programs approximate a complete systematic
search of the binding modes space of the ligand by narrowing the
latter using several filters. For instance, Glide [18, 21, 22]

 performs an initial rough positioning and scoring phase to narrow
the search space, followed by torsionally flexible energy optimiza-
tion for a few hundred surviving candidate poses. The very best
candidates are further refined via a Monte Carlo (MC) sampling of
pose conformation to improve their accuracy.

In stochastic methods, the ligand is considered as a whole, and
step-by-step changes are applied to a starting pose or a popula-
tion of poses. Such methods subsequently score the new poses at
each step trying to enhance the interactions with the protein, lead-
ing hopefully to the native binding mode. Evolutionary algorithms
(EA) and MC simulations fall into this category.

EA mimic the process of the Darwinian evolution. The starting
point is a collection of poses corresponding to plausible ligand-
receptor complexes, also called the starting population or seeds.
An objective function assigns a score to each binding mode, so
that the less likely can be replaced by new ones to form a novel
generation. These new poses are generated via computational
procedures, called operators, that mimic biological mutations
and crossovers. A mutation will introduce perturbations in the
binding mode, like a rotation of one dihedral angle, while a
crossover combines two poses. Operators are applied on the
poses selected from the fittest elements of the population, with
the hope that even fitter solutions will be generated. The algo-
rithm ends after a given number of generations or energy evalu-
ations, or if it has converged to a solution. The best-known pro-
grams in this category are GOLD and AutoDock, but several new
promising EA-based algorithms are emerging, like EADock or
MolDock [23]. These programs vary in the way they handle
poses, in their operators and scoring functions. The reader is
referred to relevant papers for a more detailed description of
these methods.

Table 1 Representative docking programs

Program Ligand flexibility Protein flexibility Scoring function

AutoDock 4.0 [9, 10] EA Flexible side chains Force field

GOLD [11, 12] EA Protein side chain and backbone flexibility Empirical score

FlexX [13] / FlexE [14] Incremental build Ensemble of protein structure Empirical score

Dock 6.2[3, 15] Incremental build Protein side chain and backbone flexibility Force field or contact score

Glide [18, 21, 22] Exhaustive search - Empirical score

ICM [16], IFREDA [17]
Pseudo-Brownian sampling 
and local minimization

Flexible side chains Force field and Empirical score

QXP [20] MC - Force field

Hammerhead [19] Incremental build - Empirical score

EADock EA Flexible side chains and backbone Force field

MC: Monte Carlo search; EA: Evolutionary algorithm.
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MC-based methods start from a single randomly generated
pose and apply subsequent random moves, like rotation of one
dihedral angle and global translation or rotation of the whole
ligand. After each modification, the new pose is scored, and the
Metropolis criterion [24] is applied to choose whether the new
pose is retained as a starting point for the next modification, or if
the algorithm continues from the previous one. The algorithm
ends similarly to EA-based approaches. As an example, the QXP
[20] program belongs to this category.

Simulation methods group molecular dynamics and minimiza-
tion methods. These approaches are often unable to cross high-
energy barriers within feasible simulation time periods, and there-
fore might only accommodate ligands in local minima of the
energy surface [5]. As a consequence, they are rarely employed as
stand-alone search techniques. However, they can efficiently com-
plement other search methods, by refining locally the poses that
are suggested by one MC or EA-based step, like in AutoDock,
DOCK or EADock.

Scoring functions

The scoring functions typically implemented in protein-ligand
docking can be divided into three major categories [5]: knowl-
edge-based, empirical and force-field-based scoring functions.
Knowledge-based scoring functions use inter-atomic interaction
potentials obtained by a reverse-Boltzmann analysis of the occur-
rence of different atom–atom pair contacts in known experimen-
tal complex structures [25, 26]. Empirical scoring functions are
based on the idea that binding free energies can be written as a
weighted sum of uncorrelated terms, such as hydrogen bonds,
non-polar and aromatic contacts or entropy penalties. The
weighting factors of these terms are determined by regression
analysis using protein-ligand complexes with known experimen-
tal binding free energy and 3D structure [13, 27, 28]. Although
easy and fast, these methods suffer from a limited description of
the physical aspects of the binding process and from a depend-
ence on the experimental dataset used for their parameterization.
On the contrary, the estimation of the binding free energy by
force field-based methods use unfitted, universal and physically
sound energy functions, such as van der Waals and electrostatic
 interaction energies, and intramolecular energies [10, 12].
Recently, implicit solvation models have been introduced into
docking scores to capture solvent effects upon association [2,
10, 29]. Docking programs generally approximate the exact
force-field energy using a grid summation, in which the interac-
tion energy between the protein and an atomic sample is calcu-
lated on different regularly spaced points. The binding energy of
a ligand is then calculated by summing the contribution of the
grid points occupied by the small molecule, taking account of the
actual nature and charge of the ligand atoms. EADock is among
the very few docking programs that make direct use of a univer-
sal and detailed force field such as CHARMM22 and an accurate
solvation model such as Generalized Born using Molecular
Volume (GB-MV2) [30, 31].

Performance

The performance of docking programs is generally assessed
through re-docking calculations. First, hundreds to few thou-
sands of experimentally determined representative ligand–protein
complexes are collected, like the Ligand–Protein Database [32],
the Astex/Cambridge Crystallographic Data Centre (CCDC) [33]
and Astex/Diverse [34] sets or the Mother of All Databases [35].
Ligands are then removed from their binding sites, and the abil-
ity of the programs to reproduce the native binding mode is
assessed. Generally, a docking is considered successful if the
root mean square deviation (RMSD) between the experimental
and calculated binding modes is lower than 2 Å. Although it is the
current standard, this definition is arguable since it has been
shown that two binding modes within 2 Å RMSD can make very
different interactions with the protein [36]. Several benchmarks
of different docking algorithms are available [37–39], which show
that the typical success rate for re-docking ranges from 70% to
80%, depending on the authors and the test sets. It is important
to note that these figures overestimate the efficiency of these pro-
grams for typical drug design studies. Indeed, the re-docking
process neglects the induced-fit issue, because the protein con-
former that is used for the docking of a given ligand comes from
the experimental structure of the complex and is thus adapted to
fit that particular compound. This is not the case when the ligand
is taken from a screening database or is designed by in silico
methods. It has been recently confirmed that docking a ligand to
a non-native protein conformer, i.e. performing what is called a
cross-docking, is a more difficult task in which the success rate
of docking programs is reduced by at least 20% [40]. However,
progress might be expected from methods developed to handle
the protein flexibility in a fast and efficient way. Several analyses
have also shown that the performance of most docking software
highly depends on the particular characteristics of the binding
site and ligand, so that it is hardly possible to figure out a priori
which method, or combination of search algorithm and scoring
function, is the more suited for a particular study [37, 41–43].

Virtual high throughput screening

High throughput screening (HTS) is typically used at an early
stage of the drug design process in order to test a large com-
pound collection for potential activity against the chosen target
[4–7]. Unfortunately, HTS is time consuming and costly. For
this reason, its computational corollary, the vHTS, has become
an important tool to precede the large in vitro screening assays
performed in pharmaceutical companies [44–46]. vHTS aims
at using computational tools to estimate a priori, from an entire
database of existing compounds (or compounds that could be
made), those that are the most likely to have some affinity for
the target. There are basically two approaches to this topic:
 ligand- and structure-based vHTS.
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Ligand-based vHTS

When the structure of the target is unknown, the measured activ-
ities for some known compounds can be used to construct a phar-
macophore model. The latter summarizes the positioning of key
features like hydrogen-bonding and hydrophobic groups to be
matched by putative ligands. Such a model can be used as a
 template to select the most promising candidates from the library
[47, 48]. This strategy can also be used as a filter before applying
a structure-based vHTS, so that only 1–10% of the initial database
has finally to be docked [46].

Structure-based vHTS

Structure-based vHTS is probably the most straightforward appli-
cation of docking algorithms. It consists of using a molecular
docking program to determine the binding mode on the protein
target for an entire database of existing or virtual compounds 
[44, 46, 49]. The bound conformations are used to approximate
the binding free energy or the related affinity of the compound.
Then, the most promising compounds are retained for further
experimental testing. The most widely used docking programs for
vHTS are DOCK, FlexX, Glide, GOLD and AutoDock. The size of the
libraries used in such an approach ranges from hundreds of thou-
sands to a few million compounds, limiting the time available for
each docking to a few minutes or less. The size of the database is
a trade off between the number of molecules that can be treated in
a reasonable amount of time, and the chemical space that is desir-
able to cover. Despite the steady improvement of computer hard-
ware, the conformational sampling is, therefore, very limited and
vHTS suffers from a lot of false negatives. Despite the vast amount
of resources invested in HTS and vHTS, and several successful
studies [50–55], the outcome in terms of new compounds reach-
ing the clinics might be seen as rather disappointing [56, 57].

In silico fragment-based drug design

Since a few years, FBD has become an attractive alternative to
experimental or virtual HTS. Contrarily to HTS, where complete
molecules are screened for activity, FBD aims at building new 
ligands piece-by-piece by connecting small and well-chosen com-
pounds that bind into separate binding pockets, close enough to
be chemically linked in their relative favourable positions [58].
When tested experimentally, hit molecular fragments exhibit gen-
erally only weak affinities, with IC50 in the order of 1 mM to 
30 �M. However, they provide interesting starting points for fol-
low-up strategies trying to connect several of them to give new
efficient lead compounds. Fragment-based design can be per-
formed in silico [59] or experimentally using nuclear magnetic
resonance (NMR) or X-ray crystallography [60]. This review will
focus on in silico approaches.

Theoretical advantages of FBD

FBD has several theoretical advantages over vHTS. First, FBD 
samples a higher chemical diversity than HTS. Indeed, HTS chem-
ical libraries typically contain 105–106 individual compounds.
Although it is a huge effort to handle such an amount of molecules
experimentally or even in silico, this only covers a tiny amount of
the chemical space accessible to the small drug-like molecules.
Several studies have estimated this number to be around
1060–10100 [45, 61–64], far beyond what can be tested by vHTS.
Even the largest possible effort that could be imagined nowadays,
using the estimated 120 million compounds available worldwide
[65], only scratches the surface of the chemical space. On the
contrary, FBD allows sampling of a much larger amount of the
chemical diversity using a much smaller number of starting mol-
ecules. As an illustration, a chemical space of 106 molecules can
be obtained by connecting combinatorially three fragments
belonging to a 100-fragment database. But, contrarily to HTS, it
only requires one virtual or experimental assay per each of the 100
fragments themselves and the few molecules that can be con-
structed from the most promising ones. Also, it has been calcu-
lated that the number of stable and synthetically accessible molec-
ular fragments is around 44 � 106 [66]. This number is nearly of
the same order of magnitude of what is tested with HTS, but cov-
ers a much vaster part of the chemical space.

Second, FBD leads to higher hit rates. This is illustrated by the
fact that the probability of a bad ligand–protein interaction
increases exponentially with the size and complexity of the mole-
cule [67]. As a consequence, the probability that small and simple
molecules bind to the protein, even with a low affinity, is much
higher than for HTS-size compounds. This probability climbs up to
30% to 40% for simple fragments [67]. This supports the use of
molecular fragments to anchor the drug design process rather
than complex and large molecules.

Finally, FBD leads to molecules with a higher ligand efficiency.
HTS chemical libraries are composed of complex molecules orig-
inally developed for other purposes than binding to the current tar-
get. As a consequence, even a HTS hit is expected to form sub-
optimal binding interactions with the target. On the contrary, due
to its size, a high proportion of the atoms in a fragment hit are
directly involved in protein-binding interaction. Their optimization
has thus a better probability to lead to more efficient and therefore
smaller drugs (Fig. 2), with better chances of favourable pharma-
cokinetic properties [57].

Interestingly, the binding free energy of a molecule resulting
from an optimal linking of two fragments is expected to be lower,
thus more favourable, than the sum of the free energies of binding
of the two isolated fragments [68] (see Fig. 3). This results from the
fact that the rigid body entropic loss upon binding of a molecule is
large, whereas the entropic penalty associated with freezing the
rotatable bonds is small in some circumstances. The rigid body
entropic loss upon binding of one molecule is due to the freezing 
of 6 DOF: the three rigid translations and three rigid rotations of
the small molecule. 12 DOF are frozen upon binding of the two
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separated fragments A and B. This leads to a higher entropic penalty
than when freezing the 6 DOF of the A:B joined molecule. This
favourable difference in rigid body entropy prevails the conforma-
tional entropic loss of the A:B molecule, which is due to the freezing
of the rotatable bonds that do not exist in the A and B fragments.

Existing FBD methods

The properties of 40 fragment hits identified experimentally
against several targets indicated that they show, on average, prop-
erties consistent with a ‘rule of three’ [69], i.e. molecular weight
� 300 g/mol, number of hydrogen-bond donors � 3, number of
hydrogen-bond acceptors � 3, calculated LogP � 3. In addition,
it was found that the number of rotatable bonds and the polar sur-
face area were usually lower or equal to 3 and 60 Å2, respectively.
Fragments are usually obtained using a chemoinformatics
approach by breaking down biologically active compounds into a
limited number of fragments. Depending on the definition of
molecular fragments that is used, the chemical space of drug-like
molecules reduces to some hundreds [70, 71] to thousands of
fragments [72]. Several approaches are available to automatically
decompose molecules into rigid fragments [73, 74].

Several methods have been developed for in silico FBD (see
Table 2), which differ in the building blocks used to construct the
ligands (atoms or fragments), the target constraints applied (ligand-
or receptor-based), the strategy used to sample the chemical space
(depth first [59], breadth first [59], MC, EA), the structural sampling
(mainly growing, linking and random structure mutations) and the
scoring function used to rank the putative ligands. Among the most

representative methods, one can find LUDI [75], Multicopy
Simultaneous Search (MCSS) [76]/HOOK [77], PRO_LIGAND [78],
Small Molecule Growth (SMOG) (DeWitte and Shakhnovich),
LigBuilder [79], LeapFrog (Tripos Inc., Tripos, St. Louis, MO, USA),
CCLD [80] and Genetic Algorithm–based de Novo Design of
Inhibitors (GANDI) [81].

In ligand-based FBD, new molecules are designed based on
existing ligands. From the latter, different constraints and scoring
functions can be derived, like pharmacophore models, molecular
similarity or Quantitative Structure Activity Relationship (QSAR)
scoring functions. On the contrary, receptor-based FBD uses the
3D structure of the protein binding site to design molecules that
are expected to optimize ligand–protein interactions.

Several scoring functions, called the primary constraints, can
be used to rank the suggested molecules and drive the search in
the chemical space. They correspond mainly to those used by
docking programs, i.e. force field-based, empirical and knowl-
edge-based scoring functions. In addition, several other physico-
chemical parameters related to the drug-likeness of the com-
pounds, as well as terms accounting for molecular and spatial
similarity to known ligands, can be used as filters or added to the
scoring functions [81, 82]. The latter are called the secondary
constraints.

The linking approach (Fig. 2B) starts with the placement of
building blocks at key interaction sites of the receptor. This can
be done by the fragment-based design software itself, or using a
dedicated software like MCSS [76], Solvation Energy for
Exhaustive Docking (SEED) [83] or EADock [2]. The latter is
 particularly suited for the fragment-based approach since,
thanks to its cluster-based sampling algorithm and its universally

Fig. 2 HTS compared to FBD. (A) Typical HTS hits. The compounds found by HTS are complex and full molecules often exhibiting sub-optimal binding
interactions with the target. Some can be modulated to increase the binding affinity, but inefficient compounds might still be obtained. (B) FBD using a
linking approach. Several molecular fragments with weak affinities, each occupying a different yet close key pocket of the binding site, are connected
together to provide a large, efficient and high affinity ligand. (C) FBD using a growing approach. Starting from a single molecular fragment, the mole-
cule is grown piece-by-piece to give a large, efficient and high affinity ligand.
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applicable scoring function, it is able to both map fragments
favourable positions and dock complete molecules [2]. The
positioned fragments are then automatically connected to each
other using linkers, resulting in several complete molecules that
satisfy all key interaction sites. On the contrary, the growing
procedure (Fig. 2C) starts from a single fragment located at one
of the key interaction site of the target. This fragment can be cho-
sen by the user or by the program. The structure is then grown
from this first fragment iteratively, piece-by-piece. Each addi-
tion is made so as to yield favourable interactions between the
target and the new fragments, while keeping those already
shown by the starting molecule. Connection rules are derived

from the existence of certain bonds in organic compounds, or
from organic synthesis reactions. Both growing and linking
strategies have strengths and weaknesses [59]. Growing might
run into difficulties if the active site contains several distinct
pockets separated by a large gap in which the interactions
between a ligand and the protein are limited. When using a 
linking approach, slightly misplaced fragments or fragments with
loosely defined spatial orientation (like a phenyl ring with no pre-
ferred orientation in a large lipophilic binding pocket) can lead
to the construction of a suboptimal molecule.

We should not expect ab initio FBD to yield nanomolar com-
pounds in the first instance. Rather, the methods will probably

Table 2 Representative FBD programs, adapted from Schneider et al. [59]

Method Building block Structure sampling Target constraints Search strategy Scoring function

HSITE [94] Fr
Fitting and clipping of
planar skeleton

Rec BFS Steric constraints, HB

Legend [95] At Growing Rec Random Force field

LUDI [75, 96] Fr Growing, Linking Rec BFS Emp

SPROUT [97] Fr Growing, Linking Rec DFS, BFS Emp

MCSS/HOOK [76, 77] Fr Linking Rec BFS Force field

DLD [98, 99] At Stochastic Rec MC Force field

PRO_LIGAND [78] Fr Growing, Linking Rec, Lig DFS Emp

SMoG [100] Fr Growing MC K-B

BUILDER [101] At Lattice Rec BFS Steric constraints

CONCERTS [102] Fr MD Rec MC Force field

PRO_SELECT [103, 104] Fr Growing Rec BFS Emp

Skelgen [105] Fr Stochastic Rec, Lig MC Geom. and chem. constraints

LigBuilder [79] Fr Growing, Linking Rec EA Emp

TOPAS [106] Fr Stochastic Lig EA Mol Sim

ADAPT [107] Fr Stochastic Rec EA Emp using DOCK score

SYNOPSIS [88] Fr Stochastic Rec EA Emp

CoG [108] At, Fr Stochastic Lig EA Mol Sim

BREED [87] Fr Linking Lig Ex No scoring

LEA3D [82] Fr Stochastic Rec EA Emp using FLExX score

Gandi [81] Fr Linking Rec EA Force field and Sim3D

Fr: fragment; At: atom; MD: Molecular Dynamics; Rec: receptor-based; Lig: ligand-based; BFS: Breadth-first search; DFS: depth-first search; 
MC: Monte Carlo search; EA: Evolutionary algorithm; Ex: exhaustive enumeration; HB: hydrogen bonds; Emp: empirical scoring function; 
K-B: knowledge-based scoring function; Mol Sim: molecular similarity; Sim3D: spatial similarity.
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design new perspective lead compounds of medium affinity, which
will be the starting point of further optimization [59]. However,
FBD techniques already contributed to generate an impressive
number of high affinity ligands [84–90] and drug leads for clinical
trials, although they were only recently adopted in the drug dis-
covery pipeline. FBD represents a very promising technique to
address tomorrow’s challenges of drug discovery.

Synthetic accessibility of 
molecules proposed by FBD

One critical aspect of in silico FBD is the synthetic accessibility of
the proposed compounds. Obviously, experimental HTS hits are
known to be synthesizable, since they have already been synthe-
sized to be present in the tested molecules collection. It can also
be expected that their derivatives are accessible using an
approach similar to that used for the parental compound. On the
contrary, all molecules assembled on the screen of a computer
using in silico FBD are not insured to be easily synthesized.
However, several strategies can be designed to optimize this
aspect. First, drug design studies often aim at deriving new ele-
ments of a known class of drugs (the so-called ‘me too’
approach). In this case, the synthetic issue might be limited
thanks to the knowledge already available for such families of
molecules. Second, the fragments that are used in silico can be
selected to involve organic reactions that are in the core compe-
tence of the in house pharmacochemist, or a set of other virtual
organic reaction schemes, like in the Retrosynthetic
Combinatorial Analysis Procedure (RECAP) [91] or Synthesize
and Optimize System in Silico (SYNOPSIS) [88] approaches.
Once a few fragments have been successfully assembled in the
active site, another option is to screen databases like Zinc
(http://zinc.docking.org/) for compounds containing this motif.
The results of this search will provide commercially available
molecules, thus for which the synthesis has likely been
described and optimized. It is also possible to assess the syn-
thetic accessibility of the candidate compounds by an additional

software attempting to define synthetic routes and select poten-
tial precursors from databases of available compounds [89, 92].
Similarly, scoring functions have been established recently that
try to mimic the intuition of the organic chemist and estimate the
synthetic feasibility of molecules by examining their chemical
structures, without suggesting any retro-synthesis [93].

Conclusion
A brief outline on the most common types of in silico tools has
been presented, emphasizing the great progress that in silico drug
design has made great changes over the past years, making it a
valuable and efficient tool for drug discovery.

Despite the numerous successful studies and the very posi-
tive picture that is often drawn, the docking problem is far from
being solved [5]. Molecular docking still holds several limita-
tions, like the lack of a universally applicable scoring function,
able to efficiently combine accuracy and speed. Several direc-
tions of improvements are being investigated, like the use of
implicit solvent models and entropic terms. In addition, although
ligands are commonly handled with full flexibility, the protein
flexibility is still only partially considered, at best. Further stud-
ies are still necessary to tackle this issue and address the
induced-fit problem. Also, the dynamic inclusion of water mole-
cules during the docking process, to take account of eventually
important water-mediated hydrogen bond bridges between the
ligand and the protein, could increase the efficiency of the
approach. As of today, the results of a docking experiment
should be taken with care, and be seen as a good starting point
for more involved studies [5].

Several studies have illustrated the ability of vHTS to suggest
putative lead compounds, and help its experimental counterpart
by reducing drastically the number of molecules that will be effec-
tively tested. However, despite the large efforts that have been
deployed, the outcome in terms of new compounds reaching the
clinical trials might be seen as rather disappointing [56, 57].

Fig. 3 Influence of fragment linking on the experimental affinity in a FBD study targeting avidin [109].
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Structure-based FBD could also benefit from a better treatment of
the flexibility of the target protein and improvement in binding free
energy estimation methods. However, automated de novo design,
and in particular FBD, has already proven its value for hit and lead-
structure identification [59]. In silico designed molecules can pro-
vide the medicinal chemist with rational support to guide his ideas
about valuable new chemical entities, and thus help the develop-
ment of novel and patentable leads.
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